
Journal of Computational Physics 213 (2006) 57–85

www.elsevier.com/locate/jcp
A pseudo-spectral multiscale method: Interfacial
conditions and coarse grid equations

Shaoqiang Tang a,b, Thomas Y. Hou b,*, Wing Kam Liu c

a LTCS, Department of Mechanics and Engineering Science, Peking University, Beijing 100871, PR China
b Applied and Computational Mathematics, California Institute of Technology, 217-50, Caltech, Pasadena, CA 91125, United States

c Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, United States

Received 28 March 2005; received in revised form 31 July 2005; accepted 1 August 2005
Available online 12 September 2005
Abstract

In this paper, we propose a pseudo-spectral multiscale method for simulating complex systems with more than one
spatial scale. Using a spectral decomposition, we split the displacement into its mean and fluctuation parts. Under the
assumption of localized nonlinear fluctuations, we separate the domain into an MD (Molecular Dynamics) subdomain
and an MC (MacrosCopic) subdomain. An interfacial condition is proposed across the two scales, in terms of a time
history treatment. In the special case of a linear system, this is the first exact interfacial condition for multiscale com-
putations. Meanwhile, we design coarse grid equations using a matching differential operator approach. The coarse grid
discretization is of spectral accuracy. We do not use a handshaking region in this method. Instead, we define a coarse
grid over the whole domain and reassign the coarse grid displacement in the MD subdomain with an average of the MD
solution. To reduce the computational cost, we compute the dynamics of the coarse grid displacement and relate it to
the mean displacement. Our method is therefore called a pseudo-spectral multiscale method. It allows one to reach high
resolution by balancing the accuracy at the coarse grid with that at the interface. Numerical experiments in one- and
two-space dimensions are presented to demonstrate the accuracy and the robustness of the method.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Multiple spatial scales are encountered in many complex physical problems of importance. Rapid
progress in nano-science and nano-technology triggers intensive studies in developing effective
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multiscale models and numerical methods for these problems. A number of multiscale computational
methods have been developed to model multiscale materials, including the quasicontinuum method to
simulate static problems [24], the coarse-grained molecular dynamics method [22], the bridging scale
method [28,15], and the ‘‘macroscopic, atomistic, ab initio dynamics’’ method [4] to simulate the
dynamics.

For a typical multiscale computation, one performs Molecular Dynamics (MD) computation only in the
localized region where the atomistic description is necessary to model the underlying physics properly, while
a coarse grid description is used in the surrounding region. The major difficulties with this class of method
are:

� The derivation of the governing equations for the coarse grid dynamics.
� The passage of information between the atomistic region and the coarse grid region.

In particular, it is well known that the abrupt termination of the atomistic region leads to strong spuri-
ous wave reflections at the interface between the two scales [28]. Due to the interaction between two regions,
these reflections spread errors to the whole domain. Extensive research has been conducted in an attempt to
reduce these numerical reflections of waves. Because the atomistic displacements include various wave num-
bers, the speed of propagation of the high frequency waves depends on their wave numbers via the discrete
dispersion relationship. Thus, traditional non-reflecting boundary conditions derived for wave propaga-
tions in homogeneous media cannot be applied here [9–12].

For most multiscale methods, a handshaking region is introduced to reduce interfacial reflections
[2,4,14]. In this region, one either uses a certain weighted average between the MD description and the
coarse grid description, or an artificial damping to diffuse the outgoing fluctuations [3]. Unfortunately,
these methods are usually proposed in an heuristic manner, and do not accurately describe fluctuations
across the interfaces. The hybrid method [7,18] and the dynamic atomistic-continuum method [8] encounter
the same difficulty.

In this study, we are concerned with atomistic displacements governed by the Newton laws (a system of
coupled ordinary differential equations), under the assumption that atomistic description is only necessary in
a localized region containing the defect of the material. We will use a full MD computation in the localized
region containing the defect. We also perform aMacrosCopic (MC) computation with a coarse grid over the
whole domain, at a much lower computational cost. Motivated by the bridging scale method (BSM)
[13,16,20,28], we develop a pseudo-spectral multiscale method with balanced accuracy on coarse and fine
scales, as well as at the interfaces. More precisely, by a spectral decomposition, we split the displacements
into the mean part and fine fluctuation part. This helps to reduce energy interchange between these two parts
across the interfaces. Together with a time history treatment, we accurately reconstruct displacements at the
ghost point atoms, which in turn provide interfacial conditions for the MD computations. In the case of lin-
ear systems, our method makes no approximation up to this point, and provides the first exact interfacial
condition for multiscale computations. In practice, we make use of a partial time history convolution. To
further reduce the computing load, the mean displacements are approximated by interpolating the displace-
ments at the coarse grid. Our method is therefore of a pseudo-spectral type. We further propose a matching
differential operator method to derive the coarse grid equations with arbitrary desired order of accuracy, up
to a spectral resolution of the selected coarse grid. We do not use a handshaking region here. The mean
displacements in the MD region are reassigned by averaging the MD solution.

We remark that the additional computational cost is reasonable. The resolution of the pseudo-spectral
multiscale method is considerably enhanced compared with other multiscale methods such as the BSM
method. Moreover, with a fixed domain decomposition and coarsening ratio, the mathematical formulation
of the pseudo-spectral multiscale method gives a systematic derivation of the interfacial conditions and the
coarse grid equations.
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There are several advantages of the the pseudo-spectral multiscale method, compared with other existing
multiscale computational methods.

� An arbitrary error reduction is obtained due to the accurate time history treatment and coarse
grid equations derived by the matching differential operator method. This is a major advantage
of the pseudo-spectral multiscale method compared with other multiscale methods, which rely
heavily on empirical derivations due to lack of a systematic mathematical analysis. We demon-
strate this nice feature, using several detailed numerical experiments in both one and two space
dimensions.

� The interfacial reflection reduction is robust, insensitive to the size of the MD region. For lattices in one
space dimension, the interfacial reflection is effectively reduced, with an amplitude about one tenth that
of a BSM scheme.

� Using the coarse grid equations designed by the matching differential operator method, we capture cor-
rect propagation speed for long waves in the coarse grid.

� The pseudo-spectral multiscale method applies to complex situations including high space dimensions
and non-nearest neighbor interactions. In particular, we simulate a two-dimensional fracture problem
with a relatively thin MD region, and successfully resolve not only the tip position, but also the detailed
profile in both the MD region and the coarse grid accurately.

The rest of this paper is organized as follows. We shall formulate the the pseudo-spectral multiscale
method in Sections 2 and 3, particularly the interfacial conditions and coarse grid equations. The general
framework is illustrated through several interesting applications, including a linear system (harmonic lat-
tice), a nonlinear anharmonic lattice, and a lattice with the Lennard-Jones potential in one space dimension.
We also demonstrate the performance of the method using a two-dimensional example of a Slepyan frac-
ture model. A flowchart for the method is presented in Section 4. The numerical results are shown in Sec-
tion 5. In the last section, we make some concluding remarks.
2. Displacements and domain decompositions, interfacial conditions

Consider a solid body in X � R3, consisting of na atoms. The position of the nth atom at rest is xn. Let
u; f ; fext 2 R3na represent the displacement, internal force and external force, respectively. Motion of the
atoms is governed by the Newton law
MA€u ¼ f þ fext: ð1Þ
Here the mass matrix is MA ¼ diagðm1I3�3; . . . ;mnaI3�3Þ, with mni > 0. The internal force comes from atom-
istic interactions, described by a potential U as
f ¼ �ruUðuÞ: ð2Þ
2.1. Decomposition of the displacements and computational domains

To decompose the motion into two scales, we specify a symmetric matrix L3na�3na . The choice of L will
be discussed later. We require that there exist a complete set of normalized eigenvectors Wj 2 R3na for the
generalized eigenvalue problem:
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LWj ¼ gjMAWj; WT
i MAWj ¼

1; i ¼ j;

0; i 6¼ j:

�
ð3Þ
We refer to each eigenvector as a mode. A characteristic wavelength is recognized for each mode. We select
3nc lowest order modes to form N ¼ ðW1; . . . ;W3ncÞ and let H ¼ diagðg1; . . . ; g3ncÞ.

The optimal linear combination of these modes to represent u is obtained by minimizing a residual func-
tional ðu� N~dÞTMAðu� N~dÞ. The solution is
~d ¼ NTMAu: ð4Þ

Its components are the amplitudes of the 3nc lowest order modes in u. We further define
�u ¼ N~d ¼ NNTMAu � Pu; u0 ¼ ðI � P Þu � Qu; ð5Þ
where �u is a low order mode approximation of u, and u 0 represents the remaining high order residual. We
refer to them as the mean displacements and fine fluctuations, respectively.

From (3), it can be shown that
LN ¼ MANH ; MAQ ¼ QTMA; LQ ¼ QTL: ð6Þ

Let A(u) = f(u) � Lu. The low order mode amplitude ~d evolves according to
€~d ¼ NTðLuþ AðuÞ þ fextÞ
¼ H~d þ NTðAðuÞ þ fextÞ: ð7Þ
The fine fluctuation equation reads
MA€u
0 ¼ QTðLuþ AðuÞ þ fextÞ
¼ Lu0 þ QTðAðuÞ þ fextÞ: ð8Þ
In many applications, nonlinear interactions among different scales are active only in certain localized re-
gions. In such regions, we must perform detailed MD computations to resolve the physics. We denote the
collection of these regions as XD. On the other hand, the mean displacement description is satisfactory for
the complimentary subdomain XC = XnXD.

In the following, we shall extensively use subscript D to denote quantities in XD, and C for those in XC.
For instance, the displacement vector u and the matrix L are
u ¼
uD
uC

� �
; L ¼

LDD LDC

LCD LCC

� �
: ð9Þ
In the pseudo-spectral multiscale method, we adopt the multiscale methodology to restrict the MD compu-
tation in XD, and to perform an MC computation to obtain the mean displacement in XC. The MC com-
putation is actually performed for a coarse grid variable d over the whole domain X, which has a much
smaller degree of freedom than u. The computing cost is considerably reduced in this way.

However, two new challenges emerge in this approach. The first challenge is to compute the mean dis-
placement. In particular, we need to approximate the effects of the fine fluctuations on the mean displace-
ment. Because we do not compute the fine fluctuation u0C in XC, A(u) needs to be approximated in Eq. (7).
Derivation of accurate and efficient coarse grid equations is crucial for multiscale algorithm. The second
challenge comes from the domain decomposition. The abrupt termination of the atomistic region leads
to strong spurious wave reflections at the interface between the two scales [28]. These spurious reflections
can be amplified through the strong nonlinear interactions in XD. Thus the interesting physics in the MD
region can be reproduced only when the spurious reflections are considerably reduced. We will address
these two challenging issues in Section 3 and the next subsection, respectively.
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2.2. Interfacial conditions

Most multiscale methods reduce interfacial reflection by making use of a handshaking region, where
either a weighted average is performed between the MD description and the coarse grid description, or
an artificial damping is applied [3,4,22]. Usually proposed in an heuristic manner, these methods have a
limited accuracy in describing fluctuations across the interfaces. On the other hand, using macroscopic
equations (e.g., Navier–Stokes equations) for the coarse grid, special interfacial treatments were proposed,
such as a hybrid method in [7,18] and a dynamic atomistic-continuum method in [8]. These conditions can-
not cleanly damp out the reflections without making over-damping on physical motions, when a broadband
of wave numbers are present. In the literature, there is also a class of non-reflecting boundary conditions
and Dirichlet-to-Neumann boundary conditions for scattering problems or exterior wave problems [9–12].
These techniques do not apply to our study here because we are dealing with a discrete lattice and the wave
speed of the atomistic displacements depends on the wave numbers.

Another interfacial treatment assumes linearity along a semi-infinite periodic chain. Based on the study
of a harmonic lattice [1], the exact displacement of the first atom outside of the main MD region may be
expressed as a convolution of the time history at the interfacial atom [5]. By further including the idea of
separation of the displacement into a mean and a fluctuation part, the bridging scale method (BSM) uses
the time convolution only for the fluctuation part [25,27,28].

Due to its clear and precise form, we use the time history treatment as a starting point in developing our
multiscale method. We notice that the internal force on an interfacial atom in XD involves the displacement
at certain neighboring ghost point atoms in XC. The interfacial condition amounts to a reconstruction of
displacement uG at these ghost point atoms. This includes two steps, namely, to calculate the mean displace-
ment and to find the fine fluctuation. We compute the mean displacement by MC computation and inter-
polation described in Section 3. Here we focus on the fine fluctuation u0G.

For this purpose, we apply the Laplace transform to a subsystem of (8)
MAC
€u0C ¼ LCCu0C þ LCDu0D þ QT

CðAðuÞ þ fextÞ: ð10Þ
By straightforward manipulations, we find that
cu0C ¼ ðs2I �M�1
AC
LCCÞ�1 M�1

AC
LCD

cu0D þ QT
C

dAðuÞ þ f̂ ext

� �� �
þ su0Cð0Þ þ _u0Cð0Þ

h i
: ð11Þ
In general, this is a nonlinear integral equation, because A(u) depends on u0C. If we choose
L ¼ ruf ¼ �ru �ruUðuÞ, then A(u) contains only nonlinear terms with respect to uC. Based on the
assumption of localized nonlinear fluctuations, we further approximate (11) at ghost point atoms by ignoring
the nonlinear term A(u). More precisely, for each ghost point atom, we take the corresponding row from
the time history kernel matrix
eU ¼ L�1 s2I �M�1
AC
LCC

� ��1
� �

: ð12Þ
Let us denote by eUGðtÞ the submatrix formed by these rows. We get u0G from the following formula:
u0G � eUGðtÞ � M�1
AC

LCDu0D þ eQT

Cfext
� �h i

þ _eUGðtÞu0Cð0Þ þ eUGðtÞ _u0Cð0Þ: ð13Þ
The atomistic internal force decreases quickly with respect to the interatomic distance. Accordingly, L and
hence LCC are sparse matrices with a few off-diagonal entries. This results in a relatively simple form ofeUGðtÞ.

We make a few remarks here. First, if the system is linear, the expression (13) is exact. This is in con-
trast with other interfacial conditions for multiscale algorithms, which are not exact for lattice structures.
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Fig. 1. Reflection in a harmonic lattice for initial fluctuation of a magnitude 0.0005 (atomic distance is 0.005), computed with the
interfacial condition proposed in [8], yet without a moving mesh treatment: (a) t = 0; (b) t = 80; (c) t = 99 and (d) t = 120.

62 S. Tang et al. / Journal of Computational Physics 213 (2006) 57–85
For instance, the interfacial conditions proposed in [8] will give reflections that come back after being
absorbed, if one does not incorporate a moving mesh strategy. This is shown for a harmonic lattice
in Fig. 1. Under our assumption of localized nonlinear fluctuations, in theory, interfacial reflection
can be completely eliminated if we can maintain a full record of the displacement time history and
use an exact convolution. In practice, one often compromises between computational expense and accu-
racy, and uses a partial time history of displacement. Secondly, for general systems, the nonlinear effects
decrease with the decrement of ku0Ck. Thirdly, when na ! +1, it is virtually impossible to numerically
find all modes for a general L. However, in the case of repeated structures, we may select L in a special
form such that the modes can be computed theoretically. The time history treatment was adopted for a
multiscale computation in BSM [28]. However, with a coarse-fine decomposition based on the linear
finite element interpolation, BSM produces a complicated time history kernel matrix, and an approxima-
tion is implicitly made by discarding some terms. Even for linear systems, these approximations lead to
energy interchange between the two scales across the interfaces. See Appendix A and [25]. Finally, our
pseudo-spectral multiscale method applies directly to non-nearest neighbor interactions [19], as shown
in Appendix B.
2.3. Examples

2.3.1. A linear example: harmonic lattice

To better illustrate the interfacial conditions, we consider a harmonic lattice in one space dimension with
(na + 2) atoms. The position of the nth atom at rest is xn = �K + nha for n = 0, . . . ,na + 1, with
2K = (na + 1)ha. Its displacement is denoted by un(t). With both ends fixed, we have rescaled governing
equations
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€u ¼ DAu; u0ðtÞ ¼ unaþ1ðtÞ ¼ 0; DA ¼

�2 1

1 �2 . .
.

. .
. . .

.
1

1 �2

266664
377775

na�na

: ð14Þ
Consider an XC/XD interface at the nbth atom, as shown in Fig. 2. We take L = DA. Correspondingly, the
eigen-modes are
Wj ¼

ffiffiffiffiffi
2

na

s
ðsinðjx0Þ; . . . ; sinðnajx0ÞÞT; gj ¼ �4sin2ðjx0=2Þ; ð15Þ
with x0 = p/(na + 1), j = 1, . . .,na. We take the lowest nc modes to compose the interpolation matrix N. The
corresponding diagonal matrix is H ¼ diagðg1; . . . ; gncÞ.

If the initial fine fluctuations away from the MD region are negligible, we take u0Cð0Þ ¼ _u0Cð0Þ ¼ 0, and
have
€u0C ¼ DCu0C þ

u0nb
0

..

.

0

266664
377775; DC ¼

�2 1

1 �2 . .
.

. .
. . .

.
1

1 �2

266664
377775. ð16Þ
We obtain a simple and exact formula, corresponding to (13)
u0nbþ1 ¼ h � u0nb . ð17Þ
Here h(t) is the Laplace inverse transform of the (1,1) entry in (s2I � DC)
�1. By a direct computation, we get
bh ¼ S
1� S2N

1� S2ðNþ1Þ ���!N!þ1
S; ð18Þ
with S ¼ ½s2 þ 2� s
ffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4

p
	=2. We approximate
/1ðtÞ ¼ hðtÞ � L�1ðSÞ ¼ � J 1ð2tÞ
t

� 	0

¼ 2J 2ð2tÞ
t

: ð19Þ
So we end up with an interfacial condition
unbþ1 � �unbþ1 þ hðtÞ � u0nbðtÞ: ð20Þ
When t ! +1, the Bessel function is approximately JnðtÞ �
ffiffiffiffiffiffiffiffiffi
2=pt

p
cosðt � np=2� p=4Þ. Because we

use the time history treatment only on the fine fluctuations, cancellations occur in the convolution. The
Fig. 2. Harmonic lattice in one space dimension.
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function h(t) and a typical time history is displayed in Fig. 3. Accordingly, we only keep a partial history
u0nbðsÞ for s 2 (t � T, t) to alleviate the computing load. An upper-bound for the numerical error is
Z t�T

0

hðt � sÞgðsÞ ds




 



 6 kgkL2ð½0;t�T 	ÞkhkL2ð½T ;t	Þ 6 CkgkL2ð½0;1ÞÞT

�1: ð21Þ
2.3.2. Nonlinear examples: an anharmonic lattice and a lattice with the Lennard-Jones potential

For a nonlinear system, we use a time history treatment corresponding to the linearized system. This is a
good approximation if the nonlinear interaction between the two scales is negligible in XC, namely, under
the assumption of localized nonlinearity.
2.3.2.1. An anharmonic lattice. For an anharmonic lattice, we take a potential
UðuÞ ¼ U 1ðuÞ þ U 2ðuÞ ¼
1

2

X
n

ðunþ1 � unÞ2 þ
K
4

X
n

ðunþ1 � unÞ4: ð22Þ
Accordingly, the Newton equation is
€un ¼ un�1 � 2un þ unþ1 þ K½ðunþ1 � unÞ3 � ðun � un�1Þ3	: ð23Þ

Because the linearized system is precisely the harmonic lattice, we take the interfacial condition
unbþ1 � �unbþ1 þ
2J 2ð2tÞ

t
� u0nbðtÞ: ð24Þ
2.3.2.2. A lattice with the Lennard-Jones potential. The Lennard-Jones potential has been widely used for
modeling atomistic interactions, e.g. [29,18]. In a one-dimensional lattice, the Lennard-Jones potential
for a displacement vector u = (u1, . . .,uN)

T is
UðuÞ ¼ 4�
X
n

r
r0 þ unþ1 � un

� 	12

� r
r0 þ unþ1 � un

� 	6
" #

; ð25Þ
with r0 being the atomic distance at rest, r the collision diameter and � the bonding/dislocation energy. In
our numerical tests, we take rescaled values of r = � = 1, and correspondingly r0 = 21/6.
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The governing equation for displacement un is
€un ¼ �48½ðr0 þ unþ1 � unÞ�13 � ðr0 þ un � un�1Þ�13	 þ 24½ðr0 þ unþ1 � unÞ�7 � ðr0 þ un � un�1Þ�7	: ð26Þ

The linearized system is a harmonic lattice with a spring constant k ¼ U 00ðr0Þ ¼ 72=

ffiffiffi
23

p
. The interfacial con-

dition is
unbþ1 � �unbþ1 þ
2J 2ð2

ffiffiffi
k

p
tÞ

t
� u0nbðtÞ: ð27Þ
2.3.3. A Slepyan model for fracture in two space dimensions

We consider a Slepyan model describing dynamic Mode III fracture in an ideal brittle crystal [23]. For a
square lattice with nx · ny atoms, the displacement out of the lattice plane is uij at the (i, j)th atom. With a
damping coefficient b P 0, the Newton law takes the form
€uij ¼ �b _uij þ
X
i0 ;j0

ðui0j0 � uijÞHð2� jui0j0 � uijjÞ: ð28Þ
Here H(z) is the Heaviside step function, which describes string break when two adjacent atoms snap. An
anti-plane shear is caused by external force at the upper and lower boundaries, whereas Neumann bound-
ary conditions are applied to the left and right boundaries. These conditions are
ui1 ¼ �C
ffiffiffiffiffi
ny

p
; uiny ¼ C

ffiffiffiffiffi
ny

p
; u0j ¼ u2j; unxþ1;j ¼ unx�1;j: ð29Þ
We define a displacement vector uj ¼ ðu1j; . . . ; unxjÞ
T for the jth layer of atoms. The full displacement (except

for the top and bottom layers) is arranged in vector u ¼ ðu2; . . . ; uny�1ÞT.
We define the MD region XD as a strip containing layers j = jm, . . ., jM. The crack propagates inside this

region. Away from the crack, we have a damped harmonic lattice in two space dimensions. The linearized
system then reads
€uij ¼ �b _uij þ ðuiþ1;j � 2uij þ ui�1;jÞ þ ðui;j�1 � 2uij þ ui;j�1Þ; ð30Þ

which may be written in a vector form as follows:
€u ¼ �b _uþ

D� 2I I

I D� 2I . .
.

. .
. . .

.
I

I D� 2I

26664
37775u; D ¼

�2 2
1 �2 1

. .
. . .

. . .
.

1 �2 1
2 �2

266664
377775: ð31Þ
2.3.3.1. Decomposition of the displacements. The spectral decomposition is performed in the following way.
We first subtract a linear stretching part from the displacement:
wij ¼ uij �
2ðj� 1Þ
ny � 1

� 1

� �
C
ffiffiffiffiffi
ny

p
: ð32Þ
The unstretched displacement w satisfies the same linear Newton law (30), but with a homogeneous Dirich-
let boundary condition wi1 ¼ winy ¼ 0. The (l,m)th mode has an eigenvalue glm = 2(cos[(l � 1)xx]
� 1) + 2(cos(m � 1)xy] � 1) (l = 1, . . .,nx, m = 2, . . .,ny � 1), and an eigenvector
Wlm ¼
Wlm

1

..

.

Wlm
ny

2664
3775; Wlm

k ¼ sin½ðk � 1Þðm� 1Þxy 	

1

cos½ðl� 1Þxx	
..
.

cos½ðnx � 1Þðl� 1Þxx	

26664
37775; ð33Þ
with frequencies xx = p/(nx � 1), xy = p/(ny � 1).
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We expand w in these normal modes, and pick the lowest Nx · (Ny � 2) modes (l = 1, . . .,Nx, m = 2, . . .,
Ny � 1), with Nx = (nx � 1)/px + 1, Ny = (ny � 1)/py + 1. We define an interpolation matrix
N ¼ ðN 2; . . . ;NNy�1Þ with NJ ¼ ðW1J ; . . . ;WNxJÞ: ð34Þ
The governing equation for the the fine fluctuation w 0 = (I � NNT)w is
€w0 ¼ �b _w0 þ

D� 2I I

I D� 2I . .
.

. .
. . .

.
I

I D� 2I

266664
377775w0: ð35Þ
2.3.3.2. The interfacial conditions. Now we derive an interfacial condition for the upper interface, i.e. the
jMth layer. In computing the interfacial conditions, we should modify the formula (13) by including the ef-
fects of the damping term. It may be shown that UG is the upper-left block of L�1ðs2I þ sbI � LCCÞ with
LCC ¼

D� 2I I

I D� 2I . .
.

. .
. . .

.
I

I D� 2I

266664
377775: ð36Þ
Taking a matrix R whose (l,m)th entry is cos[(l � 1)(m � 1)xx], we diagonalize LCC by a transform matrix
diag(R, . . .,R). It is easy to check that R�1DR ¼ diagðf1; . . . ; fnxÞ � H 1 for fk ¼ 2ðcos½2ði� 1Þxx	 � 1Þ. In the
limit of a semi-infinite sheet, we may compute w0

jMþ1 from
w0
jMþ1 ¼ Rdiagðh1; . . . ; hnxÞ � R�1w0

jM
: ð37Þ
Here
ĥi ¼
1

2
sþ b

2

� 	2

þ 2ci �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ b

2

� 	2

þ 2ci

 !2

� 4

vuut264
375; ð38Þ
with ci = 2 � fi � b2/4. The kernel functions hi(t) may be computed numerically (see Appendix C).
By virtue of the special form of R, we use FFT for the transform, which is very efficient. The original

variable ujMþ1 is recovered from
ujMþ1 ¼ �wjMþ1 þ w0
jMþ1 þ

2jM
ny � 1

� 1

� 	
C
ffiffiffiffiffi
ny

p
: ð39Þ
Here the mean displacement �wjMþ1 is computed with ~d by an equation similar to (69), with a modification
due to the damping term.

The same treatment applies to the lower layer j = jm.
3. A pseudo-spectral approximation and coarse grid equations

3.1. A pseudo-spectral approximation

In the previous discussions, we have derived the governing equation (7) for the low order mode ampli-
tude ~d. As mentioned before, this is not a closed system. Moreover, because a component in ~d is a mode
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amplitude, it involves displacement over the whole domain. Thus we face a situation similar to solving par-
tial differential equations by a spectral method. For nonlinear problems, it is known that a pseudo-spectral
method can handle nonlinear terms more efficiently.

We first define a coarse grid over the whole domain X. At each coarse grid point yJ, we assign a displace-
ment dJ. These displacements form a coarse grid displacement vector d. Note that both d and ~d describe the
long wave length components of the total displacement u, and we may approximate ~d (and hence the mean
displacement �u) with the information of d. The dynamics of d are local and relatively easier to compute. In
the following, we propose a matching differential operator method to derive governing equations for d. This
method allows us to reach any desired order of accuracy, up to the spectral resolution of the selected coarse
grid.

3.2. A motivating example: harmonic lattice

The right-hand side of the Newton equation (14) approximates the second-order derivative to the leading
order.
utt ¼ h2auxx þOðh4aÞ: ð40Þ

For the MC computation, we take coarse grid points located at yJ = �L + Jhe for J = 0, . . .,nc + 1, where
he = pha and na + 1 = p(nc + 1). It is then natural to design an equation for the coarse grid displacement d
as follows:
€dJ ¼
1

p2
ðdJ�1 � 2dJ þ dJþ1Þ: ð41Þ
We may regard the full MD system (14) and the coarse grid equations (41) as two numerical approxima-
tions to the same wave equation, yet with different grid sizes. After interpolations, these two numerical solu-
tions are expected to differ only by the order of Oðh4aÞ. In principle, we can design a governing equation for
d, which has the same underlying partial differential equation as the Newton law to a higher order in ha.
This is the basic idea of the matching differential operator method.

For an infinitely long harmonic lattice, we use the Taylor series to obtain
€u ¼ uðx� ha; tÞ � 2uðx; tÞ þ uðxþ ha; tÞ ¼
X1
m¼1

2

ð2mÞ!
o2mu
ox2m

h2ma � DAu: ð42Þ
We define a central difference operator D by Dd = d(y � pha, t) � 2d(y,t) + d(y + pha, t). It corresponds to a
central difference in the coarse grid. We expand it as
Dd ¼
X1
m¼1

2

ð2mÞ!
o
2md
oy2m

ðphaÞ
2m
: ð43Þ
We take an operator set K ¼ fD;D2; . . .g. For appropriate coefficients Bk 2 R to be determined, we con-
struct the equation
€d ¼
X1
k¼1

BkDkd; ð44Þ
to approximate (42).
We may solve Bk by equating coefficients of hla in (42) and the expansion of (44)
X1
k¼1

2h2ka
ð2kÞ!

o2k

ox2k
¼
X1
k¼1

Bk

X1
m¼1

2ðphaÞ
2m

ð2mÞ!
o2m

ox2m

" #k
: ð45Þ
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This fixes the coarse grid equation. For example, with an error to the order of Oðh10a Þ, a scheme can be de-
signed as
€d ¼ D
p2

1� ðp2 � 1Þ
12p2

D 1� 4p2 � 1

30p2
D 1� 9p2 � 1

56p2
D

� 	� �� �
d: ð46Þ
Lower order schemes are obtained by dropping high order terms in D. Meanwhile, for a finite lattice, there
is a limited number of coarse grid points, leading to a limitation in the order of accuracy that can be
reached. If we choose the operator set properly, we may reproduce a spectral method for the coarse grid.
That is, the limit in accuracy is a spectral resolution of the selected coarse grid.

The harmonic lattice is linear, and we remark that the matching differential operator approach has an
alternative derivation by matching the dispersion relation. Moreover, it is easy to find that the Newton
equation takes a dispersion relation
k2 ¼ 2ð1� cosxÞ: ð47Þ
With z = 2sin(xp/2), the scheme (46) takes a dispersion relation
l2 ¼ z2

p2
1þ p2 � 1

12p2
z2 1þ 4p2 � 1

30p2
z2 1þ 9p2 � 1

56p2
z2

� 	� �� �
: ð48Þ
Here l approximates k, corresponding to the approximation in (46) for the original Newton law (14).

3.3. A matching differential operator method

For the sake of clarity, we adopt a conventional notation of multi-index, e.g. n = (nx,ny,nz).
We imagine a continuous displacement �field� u(x, t) in the Lagrangian coordinate, and study its evolu-

tion. The displacement of the nth atom is recovered from un(t) = u(xn, t), with xn its position at rest. We take
the same notation u for the field and the displacement vector, when there is no confusion. Furthermore, the
atomic position has been rescaled by a characteristic macroscopic scale. This means that the characteristic
atom distance ha is a small quantity, and the distance between two adjacent atoms hi = |xn + i � xn| = O(ha).

The dynamics for un are governed by the potential gradient at this atom. We present the method for non-
nearest neighbor interactions here. Without loss of generality, we assume an internal force depending on
adjacent atoms un + i for |i| 6 I. It reduces to nearest-neighbor interactions if I = 1.

We further imagine a continuous density field m(x) and external force field fext(x, t). The Newton law for
this atom can be put as
mðxnÞ
o2uðxn; tÞ

ot2
¼ f ðuðxnþi; tÞjij6IÞ þ fextðxn; tÞ: ð49Þ
We make the Taylor expansion for an adjacent atom with
uðxnþi; tÞ ¼ uðxn; tÞ þ
X1
s¼1

1

s!
osuðxn; tÞ

oxs
hsi : ð50Þ
Plugging into the previous equation, we obtain an underlying differential equation around this atom (coor-
dinate (xn, t) suppressed)
o
2u
ot2

¼ 1

m
f uþ

X1
s¼1

1

s!
o
su
oxs

hsi

 !
jij6I

þ fext

24 35
� F ðu; ux; uxx; . . . ; x; tÞ: ð51Þ
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If f is a multivariate function with enough regularity, we may cut-off the internal force expression to Oðhlþ1
a Þ

for any l 2 N. This leads to a closed form of the approximated internal force, involving u and its finite spa-
tial derivatives. Formally, we write it as
o2u
ot2

¼ F l u; ux; . . . ;
olu
oxl

� 	
þOðhlþ1

a Þ: ð52Þ
To get a coarse grid equation, we further assume a reduced displacement vector d of size smaller than u.
We imagine each component dJ representing a displacement of a �virtual particle cluster� at position yJ
with unitary mass. Though a cluster is bigger than an atom, we assume that it occupies a volume much
smaller than the the macroscopic scale. Accordingly, there is a characteristic cluster distance he 
 1, for
which we have |yJ + 1 � yJ| = O(he). This allows us to consider another �displacement field� d(x) for which
dJ = d(yJ).

We select a set of differential operators K ¼ fKag. Each operator is chosen to be related to a few adja-
cent atoms, numerically easy to compute, and not explicitly relying on yJ. These operators are in general
nonlinear. Though the choice of the operator set is usually not as obvious as for the harmonic lattice, math-
ematical and physical considerations can be used for a suitable selection. We shall demonstrate the choice
of K by some examples in Section 3.4.

An operator is of lth order, if its Taylor expansion leads to a residual of (l + 1)st order. For instance, the
central difference operator Dc defined by (Dcd)n = dn + 1 � dn�1 is of second order, whereas the forward dif-
ference D+ defined by (D+d)n = dn + 1 � dn is of first order.

We collect a subset of the same order l as Kl ¼ fKl;1; . . . ;Kl;nðlÞg, and K ¼
S

lKl.
With parameters Bij to be determined, we construct a coarse grid equation for d
€d ¼
Xl
i¼1

XnðiÞ
j¼1

BijKi;jd þ gext: ð53Þ
In the same way, we make approximations using Taylor expansions. Formally, we write an approximate
equation with parameters Bij as
o
2d
ot2

¼ Gl d; dx; dxx; . . . ;
o
ld
oxl

; x;Bij

� 	
þOðhlþ1

e Þ: ð54Þ
Comparing (54) with (52), we may find Bij to match the Taylor expansion coefficients to the desired order.
This determines the coarse grid equation. It solves the same underlying partial differential equation as the
Newton law, up to a desired order. It is conceivable that d(x) � u(x) to the same order. For various
numerical examples in this paper, typically the leading term in the Newton equation is of the order of
Oðh2aÞ. In (54), we match up to the order hlþ1

a . We subtract 2 from the order, and call it an MDO-
(k � 1) scheme for brevity. The corresponding multiscale method is referred to as a pseudo-spectral
MDO-(k � 1) scheme.

We remark that for multiscale computations, the coarse grid equations may be extracted by either a dis-
crete or a continuous approach. Many multiscale methods take a discrete approach, where one assumes a
reduced displacement vector, and derives a governing equation by making some form of approximations
[4,21,22,24,28].

In contrast, in a continuous approach, one assumes a continuous �displacement field� instead. Equations
derived in this manner typically bear nice features such as simplicity, clarity and locality. The equation of
continuum may be regarded as a special case.

The matching differential operator method adopts a continuous approach, sharing some similar ideas
with [6]. It is a systematic way for deriving coarse grid equations. We can also construct higher order
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coarse grid equations. Same as for the harmonic lattice, in the limit of including all coarse grid points, we
may choose a suitable operator set K, and derive an equation on d that is equivalent to a spectral method
for the coarse grid approximation of the Newton laws. Therefore, the matching differential approach pro-
vides a way to reach arbitrary desired order of accuracy, up to a spectral resolution of a selected coarse
grid.
3.4. Examples

3.4.1. Nonlinear examples in one space dimension

3.4.1.1. Anharmonic lattice. The linear part of the interatomic force in (23) is related to the same operator as
that for the harmonic lattice
DA ¼
X1
m¼1

2

ð2mÞ!D
m: ð55Þ
For the nonlinear force, we expand
ðunþ1 � unÞ3 � ðun � un�1Þ3 ¼ 2
X1
k¼1

ðhaÞ2ðkþ1Þ
LkðuÞ; ð56Þ
where the operator Lk is given by
Lk�1ðf Þ ¼
X

3k1¼2k

f ðk1Þ

k1!

� 	3

þ 3
X

2k1þk2¼2k
k1 6¼k2

ðf ðk1ÞÞ2f ðk2Þ

ðk1!Þ2k2!
þ 6

X
16k1<k2<k3
k1þk2þk3¼2k

f ðk1Þf ðk2Þf ðk3Þ

k1!k2!k3!
: ð57Þ
We assume that the coefficient for nonlinearity is of the order h�2
a , i.e. K ¼ K=h2a. Adding the previous terms

together, we have
€un ¼ 2
X1
k¼1

h2ka
uð2kÞ

ð2kÞ!þ KLkðuÞ
� �

: ð58Þ
Similar computations yield
ðdIþ1 � dIÞ3 � ðdI � dI�1Þ3 ¼ 2
X1
k¼1

ðphaÞ
2ðkþ1Þ

LkðdÞ: ð59Þ
Noticing that
L2ðdÞ ¼
dxx

2

� 	3

þ d2
xdxxxx

8
þ dxdxxdxxx

2
¼ 1

8
ðdxd

2
xx þ d2

xdxxxÞx; ð60Þ
we may design an MDO-4 scheme as follows:
€dI ¼
1

p2
ðDdÞI �

p2 � 1

12p4
ðD2dÞI þ

K

h2ap
4
½ðDþdÞ3I � ðD�dÞ3I 	 �

Kðp2 � 1Þ
4h2ap

6
½ðDdÞ3I þ ðDcdÞ2I ðD2dÞI

þ 4ðDcdÞIðDdÞIðDcDdÞI 	: ð61Þ
The subscript I denotes the Ith component of the vector, and (D+d)
3 means componentwise cubic power of

the vector D+d.
Though not explicitly written, here the differential operator set K includes not only linear operators Dk,

but also nonlinear operators involved terms like (D+d)
3.
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3.4.1.2. A lattice with the Lennard-Jones potential. Similar to the anharmonic lattice, an MDO-4 scheme for
(26) is designed as
€dI ¼ � 48

p
r0 þ

dIþ1 � dI

p

� 	�13

� r0 þ
dI � dI�1

p

� 	�13
" #

þ 24

p
r0 þ

dIþ1 � dI

p

� 	�7

� r0 þ
dI � dI�1

p

� 	�7
" #

þ ðp2 � 1Þð�52r�14
0 þ 14r�8

0 Þ
p4

ðdI�2 � 4dI�1 þ 6dI � 4dIþ1 þ dIþ2Þ: ð62Þ
3.4.2. The Slepyan model for fracture in two space dimensions

Because the system (28) is a damped linear harmonic lattice in each dimension, we treat it in the same
way as in the one-dimensional lattice. The coarse grid MDO-4 equation is
€dIJ ¼ �b _dIJ þ
1

p2x
ðdI�1;J � 2dIJ þ dIþ1;J Þ þ

1

p2y
ðdI ;J�1 � 2dIJ þ dI ;Jþ1Þ

� p2x � 1

12p4x
ðdI�2;J � 4dI�1;J þ 6dIJ � 4dIþ1;J þ dIþ2;J Þ �

p2y � 1

12p4y
ðdI ;J�2 � 4dI;J�2 þ 6dIJ � 4dI ;Jþ1 þ dI;Jþ2Þ:

ð63Þ
4. Numerical implementation

4.1. Time integration

For time integration of both the MD computation and the coarse grid computation, we use a verlet algo-
rithm. We illustrate this algorithm for
€q ¼ Aðq; tÞ: ð64Þ
With a time step size Dt and data qðtnÞ ¼ qn; _qðtnÞ ¼ _qn, the acceleration is computed as An = A(qn, tn). We
update one step for q and one half step for _q in
qnþ1 ¼ qn þ _qnDt þ An ðDtÞ
2

2
; _qnþ1=2 ¼ _qn þ An Dt

2
: ð65Þ
A new acceleration An + 1 = A(qn + 1, tn + 1) is computed, and we update another half step for _q by
_qnþ1 ¼ _qnþ1=2 þ Anþ1 Dt
2
: ð66Þ
This second-order scheme is applied to the dynamics of both d and uD. Furthermore, we use a mixed time
integration technique. That is, we take a time step size Ds for computing uD, and Dt = mDs for computing
d.
4.2. A flowchart of the pseudo-spectral multiscale method

We summarize the pseudo-spectral multiscale method in the following list, with a mesh schematically
depicted in Fig. 4.



Fig. 4. Illustration of computing mesh.
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(1) The coarse grid displacement d is updated in X with a time step size Dt by solving the coarse grid
equation:
€d ¼
X
a2I

baDad þ gext: ð67Þ
The precise form of the equation is devised by the matching differential operator approach.
(2) Holding the velocity for d fixed at tn, we compute the corresponding spectral representation from
~d � R�1d; _~d � R�1 _d; R ¼ ð eW1; . . . ; eW3ncÞ: ð68Þ
At sub-time steps tn + kDs (for k = 1, . . .,m), we compute the mean displacement �u ¼ N~d at the inter-
facial atoms and ghost point atoms with
~dJ ðtn þ kDsÞ ¼ ~dJðtnÞ cosð
ffiffiffiffiffiffiffiffiffi�gJ

p
kDsÞ þ

_~dJ ðtnÞffiffiffiffiffiffiffiffiffi�gJ
p sinð ffiffiffiffiffiffiffiffiffi�gJ

p
kDsÞ þ fext

ðkDsÞ2

2
: ð69Þ
(3) Within each sub-time step, we compute the fine fluctuation at the ghost point atoms u0G with a subgrid
time step size Ds by solving
u0G � eUGðtÞ � M�1
AC
ðLCDu0D þ eQT

CfextÞ
h i

þ _eUGðtÞu0Cð0Þ þ eUGðtÞ _u0Cð0Þ: ð70Þ
Here UG(t) is a submatrix of
U ¼ L�1 s2I �M�1
AC
LCC

� ��1
� �

: ð71Þ
In XD, we compute a subsystem of the Newton law
MAD
€uD ¼ fD þ fext;D; ð72Þ
with the interfacial conditions of ghost point atom displacement uG ¼ �uG þ u0G. We update the time
history of M�1

AC
LCDu0D after each sub-time step.

(4) After finishing m steps of MD computations, we have uD at time tn + mDs = tn + Dt. The average of
uD typically gives dD different from that by MC computation. We force consistency by reassignment
of d and _d. A simple choice is to take the mean value of the MD solution for nearby 2p + 1 atoms
around a coarse grid point.

In step (4), we make use of the MD solution to enforce consistency with the MC computation. In the
next time step, we use the new value to update d. Information is then naturally passed from the MD
region XD to the MC region XC. Moreover, by this procedure we avoid using a handshaking region. This
is another feature of the pseudo-spectral multiscale method which differs from most existing multiscale
methods.
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4.3. Computational costs

To estimate the computing load, we consider a typical case with na atoms in the lattice. For our multi-
scale computations, we take nc coarse grid points, nD atoms in MD region, nG ghost point atoms, and keep
a time history of period T = nHDs. The number of interfacial atoms is on the same order as the ghost point
atoms.

In one big time step Dt, the coarse grid update creates a computing load on the order of O(nc). The spec-
tral decomposition by FFT technique requires a computing load Oðnc log ncÞ. In each time step Ds, the MD
update mainly includes the following computations. Finding the mean displacement at ghost point atoms
and interfacial atoms requires OðnG log nGÞ computations. The time history convolution requires O(nGnH)
computations. The update of the MD displacement, velocity and acceleration requires O(nD) computations.
Other computations are of the order O(nD). Summing them together, we find the total computing load to be
Oðnc log nc þ mðnGðnH þ log nGÞ þ nDÞÞ.

As a comparison, the update of one Dt step takes O(mna) operations for a full MD computation with a
step size Ds. On the other hand, in a multiscale method such as the BSM, the computing load is
O(nc + m(nGnH + nD)). The pseudo-spectral multiscale method has slightly more computations since it uses
FFT. The gain in resolution is worth this additional cost.
5. Numerical results

We present our numerical results to demonstrate nice features of the pseudo-spectral multiscale method.
We perform simulations for the harmonic lattice, anharmonic lattice, and the lattice with the Lennard-
Jones potential, as well as the Slepyan model for fracture in two space dimensions. For comparisons, we
make also computations by full MD simulations. We shall refer to full MD solutions as exact solutions.
Meanwhile, for multiscale computations, we use MD to represent a solution by MD computation in XD

and MC to represent that by coarse grid computation in XC. We remark that these numerical examples
have a much smaller size than the real applications.

5.1. Harmonic lattice

A harmonic lattice is the simplest model for molecular dynamics of a crystal, and serves as a test problem
for our multiscale methods.

In our numerical simulations, we take ha = 0.005, p = 10 and he = pha = 0.05. The initial condition is
given by un(0) = u0(xn) with
u0ðxÞ ¼ 0:005 e�100x2�e�6:25

1�e�6:25 1þ 0:1 cosð80pxÞð Þ for jxj 6 0:25;

0; elsewhere:

(
ð73Þ
First, we compare different coarse grid schemes, by performing numerical tests in the domain x 2 [�2,2]
without the time history kernel. Solutions at time t = 150 are depicted in Fig. 5. Because of finite propaga-
tion speed, the lattice is essentially at equilibrium far away. Furthermore, the system has a symmetry
x ! �x, which is preserved by our numerical schemes. Therefore, we only plot solutions in part of the com-
puting domain.

The exact solution is computed by a full MD simulation with Ds = 0.005. In Fig. 5, we observe that the
primary wave (solid line) is centered around x = hat = 0.75, and the fine fluctuation propagates slower.

Coarse grid schemes are tested for Dt = 0.05. Fine fluctuations could not be reproduced in such coarse
grid. The MDO-2 scheme produces a slower phase speed and a kink at the wave tail. The MDO-4 scheme
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Fig. 5. Harmonic lattice u(x, 150): by the MDO-2, MDO-4 and MLE schemes.
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resolves the mean displacement very well. These are clearly explained by the dispersion relations, as shown
in Fig. 6.

For comparison, we use a BSM-MLE scheme. The scheme is described in Appendix A. For more details,
please refer to [25,28]. We observe that the MLE scheme resolves the coarse grid very well. However, one
has to perform the inverse for the square root of the effective mass matrix, which is numerically quite
expensive.

Now we compute with the pseudo-spectral multiscale method. The time history is kept for T = 5. There
are 151 atoms used in XD = [�0.375,0.375].

The solution at various times is shown in Fig. 7, computed by the pseudo-spectral MDO-4 scheme.
Throughout the whole process, the mean displacement in XC is faithfully reproduced, and almost no reflec-
tion is observed across the interface.

For comparison, we show results by the BSM-MLE scheme with the same numerical setting in Fig. 8.
Besides long wave reflection across the interface, the mean displacement at the peak is also slightly higher.
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Fig. 6. Dispersion relation for the harmonic lattice by different schemes: the round frequency in time k is plotted versus the wave
number x 2 [0,p/10].
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Fig. 7. Harmonic lattice by the pseudo-spectral MDO-4 method: (a) u(x, 50); (b) u(x,100); (c) u(x, 130) and (d) u(x, 150).
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See subplots (c) and (d). Moreover, as analyzed in [25], the numerical error comes mainly from energy inter-
change between the mean displacement and fine fluctuations. As described in Appendix A, an approxima-
tion has been made in BSM for interfacial conditions. A consequence of this approximation is a sensitivity
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Fig. 8. Harmonic lattice by the BSM-MLE scheme: (a) u(x,50); (b) u(x, 100); (c) u(x, 130); and (d) u(x, 150).
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to the choice of XD. For instance, if we take an enlarged MD-region containing 161 atoms instead, larger
reflections occur in the BSM-MLE scheme. In contrast, the pseudo-spectral MDO-4 method is not affected
(see Fig. 9).

To investigate the source of error further, we make use of linearity, and separately compute the evolution
with smooth initial data (mean part) and that with purely fluctuation initial data. From Fig. 10(a) and (b),
we observe that the residual in the MD region is mainly due to the smooth initial data for the BSM-MLE
scheme. By the pseudo-spectral multiscale method, the reflection amplitude is reduced to about 1/10 of that
by BSM. Moreover, we observe that the numerical error with the smooth initial data is comparable to that
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Fig. 9. Harmonic lattice u(x, 150): (a) pseudo-spectral MDO-4 scheme with enlarged XD; (b) BSM-MLE scheme with enlarged XD;
(c) BSM scheme, no time history treatment and (d) BSM scheme with enlarged XD, no time history treatment.
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Fig. 10. The source of error in harmonic lattice at t = 150: (a) pseudo-spectral MDO-4 scheme and (b) BSM-MLE scheme.
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with the purely fluctuation initial data. This indicates that a balanced accuracy is reached for this case be-
tween the coarse grid resolution and the interfacial treatment.

These analyses clearly manifest that the overall accuracy of multiscale computation relies on incorporat-
ing a coarse grid scheme and an interfacial condition properly. The pseudo-spectral interfacial conditions
are effective in reducing energy interchange between the mean and fluctuation.

5.2. Nonlinear lattices in one space dimension

5.2.1. Anharmonic lattice

For an anharmonic lattice, we take the same numerical parameters and initial data as for the harmonic
lattice, and a nonlinear coefficient K ¼ Kh2a ¼ 10. The solution u(x, t) at time t = 50, 100, 130, 150 is dis-
played in Fig. 11 for the pseudo-spectral MDO-4 scheme. At t = 50, the primary wave starts to go across
the XC/XD interface, whereas fluctuations do not. At t = 100, fluctuations go across the interface, and min-
or reflections are observed. We remark that at this moment, the assumption of localized nonlinearity does
not hold. Theoretically multiscale methods may fail. However, we still obtain a reasonable resolution. In
particular, the primary wave is reproduced well. At t = 150, the wave has left XD, leaving behind a fairly
small amount of energy. Our numerical simulations also show that this energy can be partially reduced if a
finer time step size is taken in the MD computation. A longer time history cut-off does not seem to improve
the overall accuracy of the computations, as shown in Fig. 12.

5.2.2. A lattice with the Lennard-Jones potential
We compute in X = [�200r0,200r0] with 41 coarse grid points (p = 10), and XD = [�55r0,55r0] with 111

atoms. We take time steps Ds = 0.001, Dt = 0.01, and initial data
0 0.5 1

0

1

2

3x 10
–3

MD
MC
exact

0 0.5 1

0

1

2

3x 10
–3

MD
MC
exact

0 0.5 1

0

1

2

3x 10
–3

MD
MC
exact

0 0.5 1

0

1

2

3x 10
–3

MD
MC
exact

a b

c d

Fig. 11. Anharmonic lattice with K ¼ 10: (a) u(x, 50); (b) u(x,100); (c) u(x, 130) and (d) u(x, 150).
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Fig. 12. Anharmonic lattice with K ¼ 10: (a) longer time history cut-off T = 50 and (b) finer time step size Ds = 0.0025.
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uðxÞ ¼ 0:015 e�ðx=20Þ2�e25

1�e25
ð1þ 0:2 cosð2px=80ÞÞ if jxj < 100;

0; elsewhere:

(
ð74Þ
The numerical solutions at t = 6, 9, 12, 20 are displayed in Fig. 13. Basic features are similar to the anhar-
monic lattice. Agreement with the full MD solution is quite good up to about t = 9, when the fluctuation
partly goes across the XC/XD interface. Although the condition required for deriving multiscale methods
fails, the numerical schemes still perform very well in a later stage. In particular, the solution in XC is repro-
duced faithfully (in the sense of the mean), while the reflections in XD are fairly small.
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Fig. 13. Lattice with the Lennard-Jones potential: (a) u(x, 6); (b) u(x, 9); (c) u(x,12) and (d) u(x, 20).
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5.3. A Slepyan model for fracture in two space dimensions

We compute in a domain with 257 · 513 atoms. The damping coefficient is b = 0.01. The full MD
solution is computed by a full molecular dynamics code, with a time step size Ds = 0.05. The coarse grid
is set with ratios px = py = 8, in a mesh with 33 · 65 grid points. The MD region contains a strip for j
between layers 178 and 335, with ghost layers at j = 177 and 336, respectively. For our multiscale com-
putation, we take Ds = 0.05 for MD region, and Dt = 0.5 for the MC update. The time history is kept for
T = 20.

For the external force on upper and lower boundaries, from a systematic study on a triangular lattice, it
has been discovered that the crack tip moves only when the external driving force is strong enough, for
C > 1 [17]. For the square lattice, we observe a similar phenomenon. Here we take C = 2.

Initially, we put a crack between layers 256 and 257, from the first atom to the 48th atom in the x-direc-
tion. The displacements are piecewise linear. Velocities _uij are set to zero uniformly. The initial displacement
and subsequent evolution are shown in Fig. 14(a). At an early stage, there is an adjustment of the wave
profile, and later on the crack moves ahead.

To quantitatively compare the multiscale computation with the full MD solution, we show the tip po-
sition in the two upper subplots of Fig. 15. It remains precisely the same position up to t � 95. After that,
the accumulation of numerical errors starts to make a difference. We further compare the solution at
t = 80, for both the mean displacement over the whole domain and the total displacement in the MD re-
gion. The maximum error is about 1. To get a feeling of how small it is, we note that the snap threshold is
2, and the displacement around the crack is of the order 50. Fig. 16 shows the comparison at t = 100.
Differences in displacements are almost indiscernible, both in the coarse grid and in the MD region.
We remark that with such a thin strip for the MD region (about 1/10 of the total width of X), the pseu-
do-spectral multiscale method gives a convergent and accurate resolution of the fracture. On the other
hand, it has been noticed that the original BSM method may cause divergent results if the MD domain
is not large enough [20].
Fig. 14. Coarse grid displacement in Slepyan model by the pseudo-spectral MDO-4 method: (a) u(x, 0); (b) u(x,20); (c) u(x,40) and
(d) u(x, 80).



Fig. 15. Error analysis in Slepyan model: (a) crack tip position; (b) crack tip position (local view); (c) error of the mean displacement at
t = 80 and (d) error in the MD region at t = 80.

Fig. 16. Displacement in Slepyan model at t = 100: (a) coarse grid solution by the pseudo-spectral MDO-4 method; (b) MD solution
by the pseudo-spectral MDO-4 method; (c) the full MD solution and (d) the full MD solution in the MD region.
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6. Discussions

In this paper, we have proposed a pseudo-spectral multiscale method for simulating complex lattice sys-
tems with localized strong nonlinearities.

The key ingredients in the pseudo-spectral multiscale method are the accurate interfacial conditions
using the time history treatment, and the coarse grid equations derived by the matching differential oper-
ator method. The interfacial conditions are derived with a spectral decomposition of the displacement. We
further adopt techniques including the pseudo-spectral approach and the reassignment of the coarse grid
displacement in the MD region.

Using these techniques, the pseudo-spectral multiscale method can obtain high order accuracy. Theoretically
there is no error incurred in u0G for a linear system, which makes it the first exact condition for multiscale com-
putations. For general systems, the nonlinear effects decrease with the decrement of ku0Ck. Moreover, a trunca-
tion in the displacement time history to a time interval [t�T, t] would introduce an error bounded by O(T�1) for
the harmonic lattice. Because of the mean-fluctuation decomposition of the displacement, we effectively reduce
the energy interchange between these two scales, which is the major error source for this type of approach [25].
Another error source is the pseudo-spectral approximation. Though spectral methods produce no error over
individual modes, an aliasing error is introduced by the pseudo-spectral approximation. Nevertheless, we
may design coarse grid equations by thematching differential operatormethod, to any desired order of accuracy
for the selected coarse grid. All above-mentioned errors can bemade arbitrarily small in principle. This arbitrary
error reduction is a major advantage of the pseudo-spectral multiscale method compared with other multiscale
methods, which rely heavily on empirical derivations due to the lack of a systematic mathematical analysis.

Other nice features of the pseudo-spectral multiscale method include its robustness, conciseness and clar-
ity due to the absence of a handshaking region. Moreover, apart from the choice of differential operators,
the formalism does not include any artificial parameters to tune. It directly applies to quite general situa-
tions, including the non-nearest neighbor atom interactions (Appendix B).

Additional cost in the pseudo-spectral multiscale method includes the FFT for spectral decomposition,
and the time history convolution. The FFT is performed on the coarse grid only and is known to be very
efficient. The convolution is performed at the interface only, which is one dimension lower than the physical
space. In addition, we use the time history treatment only for the fluctuations, which has a shorter length
scale as well as a shorter time scale. From our experience, when we take several periods in the time history
kernel function, the resolution is typically good enough to match the accuracy of the coarse grid compu-
tation. The additional cost is rewarded by considerably improved resolution.

There are various aspects for further extension of the pseudo-spectral multiscale method. In particular, the
time history treatment is based on the linear approximation of u0C in XC, which is not valid for more general
situations.When strong nonlinearity becomes global, we cannot assumeL to be time-independent. To resolve
this difficulty, we shall compress the time history length properly, and try to use spatial information to extract
the time history information for the interfacial atom.Another challenge comes from thermal fluctuations over
the whole domain [30]. We plan to model thermal effects by a phonon heat bath. More precisely, we may fur-
ther introduce a random force to ghost point atoms [13]. The form of the random force is determined by the
temperature. A new time history kernel formula is designed with damping applied only to the outgoing waves
[26]. Finally, in the current formulation of the pseudo-spectral multiscalemethod, u0C is relatively small. This is
not true, for instance, when a dislocationmoves across the interface. There the fluctuation is on the same order
as the atomic distance. We shall investigate suitable interfacial treatments in these kinds of applications.
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Appendix A. The BSM-MLE method for the harmonic lattice

The BSM scheme differs from the pseudo-spectral multiscale method mainly by the coarse grid equations
and interfacial conditions. We present here a modified version of the BSM scheme for the harmonic lattice
[25].

The coarse grid setting is the same as that for the pseudo-spectral multiscale method. Taking
a ¼ 1

p ½p � 1; . . . ; 1; 0	T, and b ¼ 1
p ½1; . . . ; p	

T, one defines the linear element interpolation matrix
N ¼

1

a b

. .
. . .

.

a b

266664
377775: ðA:1Þ
The mean displacement and fine fluctuation are defined as �u ¼ Nd and u0 ¼ u� �u. Here the coarse grid dis-
placement d = M�1NTu with an effective mass matrix M = NTN. We further define a projection operator
P = NM�1NT. It can be shown that
ðM€dÞJ ¼
1

p
ðdJ�1 � 2dJ þ dJþ1 þ u0ðJ�1Þp � 2u0Jp þ u0ðJþ1ÞpÞ: ðA:2Þ
The original version of BSM uses an approximated equation to make the closure [28]
ðM€dÞJ ¼
1

p
ðdJ�1 � 2dJ þ dJþ1Þ: ðA:3Þ
The MLE (modified linear element) scheme is derived in [25], which yields better coarse grid resolutions.
Noticing that uJp ¼ dJ þ u0Jp, and the right-hand side in €uJp ¼ uJp�1 � 2uJp þ uJpþ1 approximates the sec-
ond-order spatial derivative h2auxx at the (Jp)th atom, we approximate it by (dJ�1 � 2dJ + dJ + 1)/p

2. Differ-
entiating (A.2) twice with respect to time, we have
M
d4

dt4
d ¼ 1

p3
D2d: ðA:4Þ
It can be shown that away from the boundary, M and D share the same set of eigenvectors, andffiffiffiffiffi
M

p
D ¼ D

ffiffiffiffiffi
M

p
. This allows us to decompose (A.4) into
ffiffiffiffiffi
M

p d2

dt2
þ 1ffiffiffiffiffi

p3
p D

 ! ffiffiffiffiffi
M

p d2

dt2
� 1ffiffiffiffiffi

p3
p D

 !
d ¼ 0: ðA:5Þ
The first operator is unstable, therefore irrelevant to the physical problem. An MLE (Modified Linear Ele-
ment) scheme then follows:
ffiffiffiffiffi

M
p

€d ¼ 1ffiffiffiffiffi
p3

p Dd: ðA:6Þ
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For the interfacial conditions, we may first derive the governing equations for u 0 as follows:
€u0 ¼ ðI � PTÞDAu0: ðA:7Þ
Using the Laplace transform, we can show that (assuming u0Cð0Þ ¼ _u0Cð0Þ ¼ 0)
u0nbþ1 ¼ /1u
0
nb
þ UG½ICðDAP � PDAÞ�u� PCDDDu0D � PCCðu0nb ; 0; . . . ; 0Þ

T	; ðA:8Þ
where IC ¼ ½0nb�nb ; I ðna�nbÞ�ðna�nbÞ	, PC = [PCD,PCC] is a submatrix of P, and UG ¼ ½/1; . . . ;/na�nb 	 is the first
row of L�1½ðs2I � DC þ PCCDC þ PCDKDÞ�1	. Note that P = NM�1NT is of the order O(1/p). When p is big
enough, we neglect P in the previous expressions as a first order approximation. This leads to the same
interfacial condition as that in the pseudo-spectral multiscale method.
u0nbþ1 � h � u0nb : ðA:9Þ
However, because of the different coarse-fine decompositions and the approximations made in ignoring the
P-related terms, the interfacial condition is not an exact one. This leads to an energy interchange between �u
and u 0 across the interfaces.
Appendix B. A non-nearest neighbor formulation in one dimension

For a linear lattice with non-nearest neighbor interactions, the coarse grid equation may be derived in
the same way as before. We demonstrate how to find the interfacial conditions. To illustrate the idea, we
take a semi-infinite chain with the Newton law
€un ¼
X2
i¼1

aiðun�i þ unþiÞ � 2a0un; a0 ¼ a1 þ a2: ðB:1Þ
We notice that the governing equation for the fine fluctuation u0n remains the same. Moreover, we assume
u0Cð0Þ ¼ _u0Cð0Þ ¼ 0.Nowwehave two timehistories to record, at interfacial atoms labelled nb � 1 and nb. There
are also two ghost point atoms, labelled nb + 1,nb + 2. We shall express u0nbþ1; u

0
nbþ2 in terms of u0nb�1; u

0
nb
.

In this case, we have
LCC ¼

�2a0 a1 a2

a1 �2a0 a1 a2

a2 a1 �2a0 a1 a2

. .
. . .

. . .
. . .

. . .
.

26666664

37777775: ðB:2Þ
The time history matrix
U ¼ L�1½ðs2I � LCCÞ�1	: ðB:3Þ
We will get the first two rows of U to form UG. Because there are only two ghost point atoms, and
u0Cð0Þ ¼ _u0Cð0Þ ¼ 0, we only need to compute the first two columns in UG. We denote this submatrix as
Us ¼
/11 /12

/21 /22

� �
¼ L�1 S11 S12

S21 S22

� �
: ðB:4Þ
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By a direct computation, we may find the submatrix corresponding to Us as
S11 ¼
1

ðs2 þ 2a0Þ � a1ðZ1 þ Z2Þ � a2ðZ2
1 þ Z1Z2 þ Z2

2Þ
; ðB:5Þ

S12 ¼ S21 ¼
Z1 þ Z2

ðs2 þ 2a0Þ � a1ðZ1 þ Z2Þ � a2ðZ2
1 þ Z1Z2 þ Z2

2Þ
; ðB:6Þ

S22 ¼
ðs2 þ 2a0ÞZ1Z2 � a2Z2

1Z
2
2

a2½ðs2 þ 2a0Þ � a1ðZ1 þ Z2Þ � a2ðZ2
1 þ Z1Z2 þ Z2

2Þ	
: ðB:7Þ
Here Z1, Z2 are roots with |Z1| 6 1, |Z2| 6 1 of the algebraic equation
�a2S
4 � a1S

3 þ ðs2 þ 2a0ÞS2 � a1S � a2 ¼ 0: ðB:8Þ

It is obvious that if S is a root, so is 1/S. therefore Z1, Z2 are well defined here.

The interfacial condition then reads
u0nbþ1

u0nbþ2

" #
¼

/11 /12

/21 /22

� �
�

a2 a1
0 a2

� �
u0nb�1

u0nb

" #
: ðB:9Þ
Appendix C. Computing the time history kernel in two dimensions

Except for i = 0 (damped harmonic lattice), we do not have a closed form of the inverse transform of
(38). Therefore we propose to solve it numerically from the ordinary differential equation
€hi ¼ �b _hi þ hi � hi � ð2� fiÞhi þ dðtÞ; hið0Þ ¼ _hið0Þ ¼ 0: ðC:1Þ
For a small time step Ds, we define hmi ¼ hiðmDsÞ. A numerical scheme reads

(1) At t = 0, take h0i ¼ q0i ¼ a0i ¼ 0;
(2) At t = Ds, take h1i ¼ Ds, q1i ¼ 1� b and a1i ¼ �bq1i � ð2� fiÞh1i ;
(3) For m 2 N, take
hmþ1
i ¼ hmi þ qmi Dsþ ami ðDsÞ

2
=2;

qmþ1=2
i ¼ qmi þ ami Ds=2;

amþ1
i ¼ �bqmþ1=2

i � ð2� fiÞhmþ1
i þ Ds

Xmþ1

l¼1

hlih
mþ2�l
i ;

qmþ1
i ¼ qmþ1

i þ amþ1
i Ds=2:

ðC:2Þ
Here qi and ai correspond to the derivatives _hi and €hi, respectively. It may be shown that the scheme is of
second-order accuracy. In particular, the above choices of h1i ; q

1
i and a1i have a error on the order of

O((Ds)2).
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