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Abstract

We develop an efficient algorithm for simulating wave propagation over long dis-

tances with both weak and strong scatterers. In domains with weak heterogeneities

the wave field is decomposed into forward propagating and back scattered modes

using two coupled parabolic equations. In the region near strong scatterers, the

Helmholtz equation is used to capture the strong scattering events. The key idea in

our method is to combine these two regimes using a combined domain decomposi-

tion and wave decomposition method. A transparent interface condition is derived

to couple these two regions together. Numerical examples show that the simulated

field is close to the field obtained using the full Helmholtz equation in the whole

domain.



Keywords: Helmholtz equation, Parabolic approximation, Wave decomposi-

tion, Domain Decomposition.

1 Introduction

Wave propagation in complex media is a challenging multi-scale problem both math-

ematically and numerically. There are at least three typical length scales involved:

the wave length, the propagation distance, and the correlation length (the scale

on which the medium varies). These three scales can differ by several orders of

magnitude. For example, in many applications, such as underwater acoustics, com-

munications and remote sensing, the wave propagates over a long distance which can

be several orders of magnitude larger than the wavelength. If the medium is inhomo-

geneous there is an additional characteristic scale corresponding to the correlation

length of the medium inhomogeneities. If the wave length is much smaller than the

correlation length of the medium, geometric optics provide in general a good approx-

imation for the relatively smooth phase envelope. If the correlation length is much

smaller than the wave length, homogenization theory gives an effective medium that

can be used for propagation distances on the scale of the wavelength. Many wave

propagation phenomena have a multi-scale nature in both space and time which

complicates development of efficient numerical algorithms. In this paper we focus

mainly on developing an efficient algorithm for the simulation of wave propagation

in frequency domain. After Fourier transform in time the wave equation is reduced

to the Helmholtz equation in space (for a fixed wave number), which is a boundary

value problem. Due to the oscillatory wave nature of the solution, basic sampling

conditions require resolution of the wavelength for numerical discretization. If the

computational domain is large compared to the wave length, which corresponds to

a large wave number, then the numerical discretization will result in a large system

of equations. Moreover, unlike coercive elliptic equations, this discretized system is

not positive definite. Computations are therefore very demanding both with respect
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to CPU time and memory. Direct solvers are too costly due to memory constraints

and iterative solvers may not converge or may converge slowly. However, if the wave

propagates in a weakly inhomogeneous medium, e.g., underwater acoustics or elec-

tromagnetic waves in the atmosphere [12, 19, 22], the Helmholtz equation can be fur-

ther simplified. In a situation where the propagation distance is much larger than the

transverse dimension corresponding to a narrow angle geometry and when the back

scattering can be neglected the Helmholtz equation can be reduced to a parabolic

equation. The main advantage of the parabolic approximation is that it gives an

initial value problem which is much easier to analyze and much cheaper to compute.

The parabolic equation (PE) approximation provides an important tool for analysis

and computation of wave propagation. Generalized parabolic approximations have

been developed to deal with back scattering and wide angle geometries. For example

the two way parabolic approximation by Collins [7], see also the review paper [11]

for more detailed survey of the parabolic approximations. Strong scattering and/or

multiple scattering events from scatterers of arbitrary geometry is still a challenge

using parabolic approximations. In many applications, such as underwater acoustics

and electromagnetic waves in the atmosphere, there are strong localized scatterers

or targets embedded in the weakly heterogeneous background. In [13] Fishman de-

veloped a one-way propagation formulation based on wave-field decomposition and

the scattering operators. The wave field is decomposed as u = u(+) + u(−) and the

condition uz = iB(z)[u+ − u(−)] is required, where z is propagation direction and

B(z) =
√

∂2
x + k2(x, z) is the square root operator which can be defined based on the

eigenvalues and eigenfunctions of the transverse operator ∂2
x + k2. The construction

of several explicit, uniform asymptotic approximations of the square root Helmholtz

operator are given in [14]. A re-formulation based on the Dirichlet-to-Neumann

(DtN) map has also been derived in [16] and [17, 18]. An operator Riccati equation

should be solved for decreasing propagating distance with an initial condition that

matches the exact radiation condition at ∞. While the field should be solved for in-

creasing propagating distance. This is practical only if the total number of operator
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equation solutions required is not very large.

The key motivation in this paper is to couple parabolic approximation with

full Helmholtz equation to deal with more general situations. Here we develop an

approach based on both domain decomposition and wave field decomposition to deal

with this situation with large propagation distances and short correlation length for

the medium fluctuations. We decompose the wave propagation domain into two

types of regions as illustrated in Figure 1. In the region of weak heterogeneities and

long propagation distance, a coupled parabolic approximation is used, while in the

region where there are strong scatterers, the Helmholtz equation is used.

There are two crucial steps involved in coupling the solution from these two re-

gions consistently. First, we implement a boundary condition that is consistent with

the wave field decomposition and is transparent to waves propagating in different di-

rections at the interface between these two regions. We comment that our approach

is different from the typical domain decomposition method since our computational

domain is decomposed according to different physical regimes and different types of

approximation are used in each sub-domain, moreover, since the boundary condi-

tion between the sub-domains is transparent to let information pass through rather

than being absorbing [6] to damp the error propagation. Second, we decompose the

wave field in the parabolic approximation region into two coupled parabolic equa-

tions to take into account both forward propagating waves and the back scattered

wave due to the presence of the strong scattering in the Helmholtz region. The

parabolic region has weak random medium fluctuations and is associated with long

range propagation. The following coupled parabolic system is used as a correction

of the standard parabolic equation approximation of the Helmholtz equation there:

2ikAz + 4⊥A + k2νA = −k2νBe−2ikz,

−2ikBz + 4⊥B + k2νB = −k2νAe2ikz.
(1)

This system derives from an approximation of the Helmholtz equation after express-

ing the wave field in terms of left and right (with respect to z) propagating modes.

3



In the layered case this system is exact and reads

∂A

∂z
=

ik

2
ν
(

A + Be−2ikz
)

,

∂B

∂z
=

ik

2
ν
(

Ae2ikz + B
)

,

and is analyzed in for instance [1]. The random field ν corresponds to the random

fluctuations in the refractive index. This system captures very strong longitudinal

scattering and interaction of modes that is associated with a strongly fluctuating

layered medium. In the case with a general three dimensional variation in the index

of refraction, the two left hand sides in (1) gives the system

2ikAz + 4⊥A + k2νA = 0,

−2ikBz + 4⊥B + k2νB = 0,

which are the standard parabolic equations with a random potential that describes

long range (uncoupled) propagation in a fluctuating medium. They capture the

effects of transversal scattering for these modes in the associated narrow angle ge-

ometry. Finally, observe that in the deterministic case ν = 0 the system (1) becomes

2ikAz + 4⊥A = 0,

−2ikBz + 4⊥B = 0,

which are the leading order transport equations of geometrical optics that are asso-

ciated with a left or right outgoing condition for high frequency waves and captures

geometrical spreading effects. The system (1) can be generalized to the situation

with a slowly varying background and then include a phase term that comes from

the solution of the Eiconal equation, see (9) below.

The outline of our paper is as follows. In Section 2 we describe the general

setup of the problem and the main approach. In section 3 we derive the wave-field

decomposition for the parabolic approximation and the transparent boundary con-

dition between sub-domains. Numerical implementations and numerical examples

are presented in section 4. A stability analysis for the wave decomposition is given

in Appendix A.
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u=Ae ikz + Be −ikz Helmholtz domain

scatter

PML

PML
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z

x

Figure 1: P-H domain decomposition

2 The Basic Setup and Wave Decomposition

We consider propagation of acoustic waves over long distances in weakly heteroge-

neous background with localized strong scatterers. Let u(x, t) and p(x, t) be the

acoustic velocity and pressure satisfying the equation of continuity of momentum

and mass

ρut + ∇p = F(x, t) , (2)

K−1pt + ∇ · u = 0, (3)

where t is time, z is depth into the medium and defined so as to increase with depth,

(x, z) = (x, y, z) are the space coordinates, ρ is the density, K is bulk modulus, and

the source is F(x,t). We model the medium by ρ = ρ0 constant and

K−1(x, z) =











K−1
0 z ∈ (−∞, 0]

K−1
p (x, z)(1 + ν(x, z)) z ∈ (0,∞).

The function ν modulating the compliance corresponds to the medium fluctu-

ations. In the case of a stationary random medium it is a zero-mean, stationary

stochastic process whose statistics take on particular forms depending on the as-

sumptions about the medium, whether it is locally layered, strongly or weakly het-

erogeneous media and so on [1]. In our discussion here ν models the weak medium
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heterogeneities. At this stage, the source term is omitted, but it will be taken into

account through the initial conditions for the parabolic equation.

Eliminating u from equations (2) and (3), we get

4p − ρ

K
ptt = 0. (4)

The time-harmonic version of (4) is the Helmholtz Equation:

4p̂ + (1 + ν)ω2γ2p̂ = 0 , (5)

where

γ(x, z) =
√

K−1
p (x, z)ρ ,

and p̂ is the Fourier transform of p with respect to time:

p̂ =
∫

peiωt dt.

Note that below we suppress the ‘hat’ and that γ represents the effective slowness

and 1/γ the speed in the corresponding effective medium.

The Helmholtz equation is a boundary value problem. If the computational

domain is large compared to the wavelength, solving the discretized linear system

using a direct method may be impossible due to memory constraints. Moreover,

since the linear system is not positive definite, usual iterative methods typically

converge slowly, if at all. We propose a domain decomposition approach by dividing

the whole domain into two types of sub-domains, as is illustrated in Figure 1. The

wave propagates over a long distance and in a weakly heterogeneous medium in

the first type of sub-domain, in the second type of sub-domains there are strong

scatterers present.

In the first type of sub-domains the parabolic approximation can be used to

simulate the wave propagation. The basic approach is to neglect the back scat-

tering, and only consider waves going mainly in one direction, as the medium is

only weakly heterogeneous and the domain fits into a narrow angle geometry. The
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parabolic approximation becomes an initial value problem which significantly re-

duces the complexity for both analysis and computation. This approximation is

accurate in many scenarios such as in range dependent ocean wave-guides or in the

case of atmospheric wave propagation. However in our setup, although there is no

strong back scattering for wave propagation in the weakly heterogeneous domain,

we need to capture the back scattered wave field from the domain that includes

strong scatterers. Here we use a pair of coupled parabolic equations based on a

wave-field decomposition formulation developed in [15, 21]. In fact, this coupled

parabolic formulation also allows us to capture the effects of strong heterogeneities

with slow lateral variations in the parabolic domain as was demonstrated in [15].

In the second type of sub-domains, the full Helmholtz equation has to be solved in

the near field of strong scattering events. At the interface between these two type

of domains appropriate boundary conditions have to be imposed, which allow the

correct information to propagate through the interface. The crucial point in our for-

mulation is that the wave-field decomposition in the parabolic domain is consistent

with our transparent boundary condition at the interface.

In the following we first briefly review the wave decomposition and the coupled

parabolic equations in the weakly heterogeneous domain. Then we describe the

transparent boundary conditions and the domain decomposition algorithm.

2.1 Wave Decomposition and Coupled Parabolic Equations

In the standard parabolic approximation, assuming the wave is propagating along

the positive z axis, the plane wave ansatz

p(x, z) = A(x, z) exp(ik0z) , (6)

can be used for the solution of Helmholtz equation:

4p + ω2γ2(x, z)(1 + ν)p = 0 , (7)
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where k0 = ω/c0 is a reference wave number and c0 =
√

Kp/ρ is the background

velocity. The factor exp(ik0z) in (6) represents a plane wave traveling in the positive

z direction and is supposed to take out the rapid oscillations of p in the z direction;

the function A(x, z) captures the modulation of the plane wave phase and usually

varies slowly with z.

Substitution of Equation (6) into Equation (7) gives

∂2A

∂z2
+ 2ik0

∂A

∂z
+ 4⊥A + [ω2γ2(1 + ν) − k2

0]A = 0 , (8)

with 4⊥ being the Laplacian in the lateral coordinates x. We next make the crucial

paraxial approximation (small angle approximation) corresponding to the situation

with

∂2A

∂z2
<< 2ik0

∂A

∂z
,

so that we have

2ik0
∂A

∂z
+ 4⊥A + [ω2γ2(1 + ν) − k2

0]A = 0.

This approximation requires that we consider wave propagation in a narrow beam

geometry, not close to the source and that the medium is weakly inhomogeneous.

The resulting equation is called the narrow-angle parabolic equation (PE). In the

PE method we take into account only waves traveling in the positive z direction;

back scattering is neglected, see [12, 19].

Now we consider a more general wave decomposition. We define

τ(z) =
∫ z

zs

√

ρ

Kp

− |κ|2ds = (z − zs)
√

γ2 − |κ|2 , and S± = κ · x ± τ ,

with κ being the lateral slowness vector. Note that S+ is a plane wave phase

corresponding to waves traveling in the spatial direction (κ,
√

γ2 − |κ|2). In the case

with a general three dimensional background the phase terms S± will be solutions

of the Eiconal equation associated with the slowness γ(x, z), see [1, 20, 21].
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We decompose the wave into forward and backward modes :

p = AeiωS+

+ BeiωS−

,

0 = Aze
iωS+

+ Bze
iωS−

.

Note that this plane wave decomposition is exact in the case of a homogenous

medium and in the effective medium case when the effective medium parameters

are constant.

Plugging this decomposition into the Helmholtz equation we get the following

mode coupling transport equations:

2∇S+ · ∇A + 4S+A − iωγ2ν(A + Beiω(S−−S+))

=
i

ω
4⊥A − R−eiω(S−−S+) , (9)

2∇S− · ∇B + 4S−B − iωγ2ν(B + Aeiω(S+−S−))

=
i

ω
4⊥B − R+eiω(S+−S−) , (10)

with

R+ = 2∇⊥S+ · ∇⊥A + 4S+A − i

ω
4⊥A ,

R− = 2∇⊥S− · ∇⊥B + 4S−B − i

ω
4⊥B ,

where 4⊥ is the transverse Laplacian. In the case that the fluctuations and the

reflected field vanish, (ν ≡ 0, B ≡ 0), (9) becomes

2∇S+ · ∇A + 4S+A =
i

ω
4⊥A ,

which in the high frequency limit gives

2∇S+ · ∇A0 + 4S+A0 = 0 ,

that is, the leading order transport equation of geometrical optics.

9



Here, we will consider the generalization of the parabolic case with waves prop-

agating primarily in the z direction and set κ = 0. Then the coupling transport

equations become

2ikAz + 4⊥A + k2νA = −(k2νB + 4⊥B)e−2ikz , (11)

−2ikBz + 4⊥B + k2νB = −(k2νA + 4⊥A)e2ikz , (12)

with k = γω. A particular κ corresponds to a specific plane wave mode. This

variable is the Fourier variable dual to the lateral space variable x introduced when

the wave field in space and time is transformed into plane wave modes via Fourier

transformation with respect to the lateral spatial coordinates. We next continue our

discussion of the system (11) and (12) by introducing specific boundary conditions

and a scheme for numerical approximation of the solution.

A naive Jacobi iteration of these coupled parabolic equations corresponds to

solving for A using the current B in a source term and then solving for B with cur-

rent A defining a source term and then iterate. This would reduce the computation

of the Helmholtz equation into the computation of a sequence of parabolic equa-

tions. However, as we show in Appendix A, this iterative procedure is not stable.

That is, without solving for A and B simultaneously evanescent modes will grow

exponentially, with the instability caused by the coupling transverse Laplacian.

Since we are interested in the narrow angle wave propagation in the z-direction

and long distance propagation, we drop the lateral scattering terms 4⊥B (respec-

tively 4⊥A) when we solve for A(x, z) (respectively B(x, z)) in (11) (respectively

(12)). Consider the equation (11). In the homogeneous case with ν ≡ 0 the terms

involving the reflected field B will be lower order correction terms to the paraxial

approximation. We will consider regimes where there is significant back-scattering

due to the scatterer ν and therefore retain the term involving ν in the coupling part

of equations (11) and (12):

2ikAz + 4⊥A + k2νA = −k2νBe−2ikz , (13)

10



−2ikBz + 4⊥B + k2νB = −k2νAe2ikz. (14)

3 P-H Domain Decomposition and the Interface

Condition

The two reduced coupled parabolic equations can simulate wave propagation over

long distances. Both the forward propagating field and backward propagating field

as well as their interactions are captured. The domain will be decomposed into

parabolic region ΩP and Helmholtz region ΩH as shown in Figure 1 and we design

transparent boundary conditions consistent with our wave decomposition to couple

the wave fields in these two regions together. ¿From the wave decomposition

u = Aeikz + Be−ikz ,

0 = Aze
ikz + Bze

−ikz ,

we find

iku + uz = 2ikAeikz, (15)

B =
iku − uz

2ik
eikz. (16)

After solving the parabolic equation (13), we use (15) as the boundary condition

when solving the Helmholtz equation in ΩH , and then we use (16) as the initial

condition for solving the parabolic equation (14) in ΩP , i.e., the incoming wave is

passed from parabolic region to the Helmholtz region and the back scattered wave

is passed correspondingly.

3.1 Initial Condition For the Parabolic Equation

We assume that the scatterer ν is compactly supported and is located in a slab of

thickness L, so that k is constant for z < 0 and z > L. The source is located in the

homogeneous medium, at zs < 0. Recall that with B = 0 the amplitude equation for
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A is equivalent to the standard parabolic equation. We impose an initial condition

for the total field u at z = 0. We use a Gaussian form for the initial data [22]:

u(x, 0) =
√

k0e
−

|x|2

2 .

Consequently, the initial data for A is

A(x, 0) = u(x, 0) − B(x, 0).

3.2 Artificial Boundary Condition

The governing wave equation

−4u − ω2u = f in Rd , (17)

lim
r→∞

r(d−1)/2(
∂u

∂r
− iωu) = 0 , (18)

describes linear propagation of time-harmonic acoustic waves. The Sommerfeld

radiation condition (18) states that the solution u is outgoing at infinity. The finite-

element or finite-difference solution of this problem requires the unbounded domain

to be truncated at a finite distance, and it becomes necessary to approximate the

radiation condition at the truncation boundary. We truncate the domain by adding

a PML ( Perfectly Matched Layer ) artificial boundary.

The idea is to introduce an exterior layer at the artificial boundary in such a way

that all plane waves are totally absorbed, and no reflection occurs at the boundary

[4]. For simplicity, we assume two spatial dimensions corresponding to one lateral

dimension. In order to introduce the artificial boundary condition we return to the

Helmholtz equation:

pzz + pxx + k2(1 + ν(x, z))p = 0.
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In the matched layer we change this equation to obtain damping of the plane wave

modes. We introduce the governing equations

∂2p

∂z2
+

iω

σ1 − iω

∂

∂x
(

iω

σ1 − iω

∂p

∂x
) + k2(1 + ν)p = 0 ,

where σ1 > 0 in the artificial domain giving damping of the plane wave modes,

whereas σ1 = 0 in the physical domain giving the Helmholtz equation there.

At the end of the slab we similarly implement a radiation boundary condition

with a PML layer with a damping σ = σ2(z) see (24) below.

Denote

s1(x) =
iω

σ1(x) − iω
,

then, with the PMLs, the coupling transport equations can be written

2ikAz + s2
1Axx + k2νA + s1s

′
1Ax

= −(k2νB + s2
1Bxx + s1s

′
1Bx)e

−2ikz , (19)

−2ikBz + s2
1Bxx + k2νB + s1s

′
1Bx

= −(k2νA + s2
1Axx + s1s

′
1Ax)e

2ikz. (20)

With PML included we have the following two coupled parabolic approximations

(with one lateral dimension):

2ikAz + s2
1Axx + k2νA + s1s

′
1Ax = −k2νBe−2ikz , (21)

−2ikBz + s2
1Bxx + k2νB + s1s

′
1Bx = −k2νAe2ikz. (22)

At the boundary of the PML layer we use a zero dirichlet boundary condition.

3.3 P-H-D Iteration

In this section we describe in detail the iterative procedure we use to approximate

the wave field. With the initial value B(0) = 0, for each m ≥ 1 we solve for A(m)

and u(m) according to:
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









2ikA(m)
z + s2

1A
(m)
xx + k2νA(m) + s1s

′
1A

(m)
x = −k2νB(m−1)e−2ikz in ΩP

A(m)(x, 0) =
√

k0e
−

|x|2

2 − B(m−1)(x, 0)
(23)



























s2
∂
∂z

(s2
∂u(m)

∂z
) + s1

∂
∂x

(s1
∂u(m)

∂x
) + k2(1 + ν)u(m) = 0 in ΩH ,

iku(m) + u(m)
z = 2ikA(m)eikz on Γ,

u(m) = 0 on ∂ΩH\Γ,

(24)

where σ1 = σ1(x), σ2 = σ2(z) and σ1(x) > 0 in the artificial domain giving damping

of the plane wave modes in the lateral direction, σ2(z) giving damping of the wave

in the propagation direction (at end of computational domain), whereas σi = 0 in

the physical domain giving the Helmholtz equation there.

Then, having solved for A(m) and u(m) we compute B(m) by










−2ikB(m)
z + s2

1B
(m)
xx + k2νB(m) + s1s

′
1B

(m)
x = −k2νA(m)e2ikz in ΩP

B(m) = iku(m)−u
(m)
z

2ik
eikz on Γ

(25)

This procedure generates A(m) in ΩP , u(m) in ΩH and B(m) in ΩP sequentially.

A simple modification of this procedure after the first iteration makes it parallel for

m ≥ 2.











2ikA(m)
z + s2

1A
(m)
xx + k2νA(m) + s1s

′
1A

(m)
x = −k2νB(m−1)e−2ikz in ΩP

A(m)(x, 0) =
√

k0e
−

|x|2

2 − B(m−1)(x, 0)
(26)



























s2
∂
∂z

(s2
∂u(m)

∂z
) + s1

∂
∂x

(s1
∂u(m)

∂x
) + k2(1 + ν)u(m) = 0 in ΩH ,

iku(m) + u(m)
z = 2ikA(m−1) on Γ,

u(m) = 0 on ∂ΩH\Γ,

(27)











−2ikB(m)
z + s2

1B
(m)
xx + k2νB(m) + s1s

′
1B

(m)
x = −k2νA(m−1)e2ikz in ΩP

B(m) = iku(m−1)−u
(m−1)
z

2ik
eikz on Γ.

(28)
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3.4 Dispersion relation

Note that for Helmholtz homogeneous medium plane wave modes: u = ei(kxx+kzz), k2
x+

k2
z = k2 the interface conditions correspond to

Ã =
iku + uz

2ik
e−ikz =

k + kz

2k
ei[kxx+(kz−k)z] ,

B̃ =
iku − uz

2ik
eikz =

k − kz

2k
ei[kxx+(kz+k)z].

The homogeneous medium parabolic approximation corresponds to the longitudinal

wave number

k̃z = k(1 − k2
x

2k2
) = kθ(kx) , (29)

and modes of the form

A = ei[kxx+(k̃z−k)z] ,

B = ei[kxx+(k̃z+k)z].

Hence, in the homogeneous case and with only modes traveling in the z direction

with kx = 0 the modes in the two domains coincide, but for general kx they have a

different representation.

4 Numerical Examples

Four different examples are presented in this section. We compare the PE and P-H

solution with Helmholtz equation in the first three examples. In the last example,

we show the PE and P-H solutions while we do not give the Helmholtz solution

due to computer limitations. The experiments clearly show that our approach is

much better in dealing with strong scattering than the PE method. Moreover, our

approach produces comparable results to the full Helmholtz equation while having

comparable cost to the PE method.

In the first three examples, the speed of propagation in the homogeneous medium

is 330m/s and to the frequency being 25Hz so that the corresponding wavelength is

15



13.2m. In the discretization we use 6π grid points per wavelength in both directions.

Our computational domain contains 400 grid points (horizontal) and 1400 grid-

points (vertical), whereas on the left and the right sides, we use 15 grid points for

the PML medium, and 50 grid points for PML medium in the propagation direction.

The P-domain corresponds to the section from the source to 800 grid points while

the rest comprises the H-domain.

4.1 Example 1

There is a single circular scatterer center at the 1000’th grid point (53 wavelengthes

) from the source with a radius of 100 grid point (5 wavelengthes) in a homogeneous

background medium with the speed of propagation in the scatterer being 467m/s,

faster than that of in the background medium.

In Figure 2 the top left figure shows the speed of propagation in the medium.

The background medium is homogeneous and there is one strong scatterer in the

Helmholtz domain. The top right figure plots the reference solution for the magni-

tude of the wave field corresponding to solving the Helmholtz equation in the full

domain. The two middle plots show the solution for the wave field obtained by

using respectively the parabolic equation (PE) approximation and our P-H domain

decomposition approach. Note that the PE solution does not capture well longi-

tudinal scattering and is smooth whereas the P-H domain decomposition approach

captures the high frequency components in the solution that is caused by such scat-

tering events. In the two bottom plots we show the magnitude of the wave field

evaluated at the center line corresponding to zero lateral offset. The solid lines cor-

respond to the Helmholtz solution and the two dotted line to respectively the PE

and the P-H domain decomposition solutions respectively.
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Figure 2: The figure shows numerical approximations for the wave field using re-

spectively the Helmholtz, the PE and the P-H domain decomposition methods when

the medium contains a strong imbedded circular scatterer shown in the top left plot.
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4.2 Example 2

In this example there are two identical scatterers that are located 1000 grid points

( 53 wavelengthes) away from source in the homogeneous medium. Each scatterer

consists of two half circle and one rectangle. The speeds of propagation are 404m/s

in the half circle and 466m/s in the rectangle respectively. The radius of the half

circle is 40 grid points, the lengths of the rectangle’s edges are 80 grid points and

120 grid points.

In Figure 3 the top left figure shows the speed of propagation in the medium.

The background medium is homogeneous and there are two strong scatterers in

the Helmholtz domain. The top right figure plots the reference solution for the

magnitude of the wave field corresponding to solving the Helmholtz equation in the

full domain. The two middle plots show the solution for the wave field obtained by

using respectively the parabolic equation (PE) approximation and our P-H domain

decomposition approach. In the two bottom plots we show the magnitude of the

wave field evaluated at the center line corresponding to zero lateral offset. The solid

lines correspond to the Helmholtz solution and the two dotted line to respectively

the PE and the P-H domain decomposition solutions.

4.3 Example 3

In this example we use the same circular scatterer as in Example one, but in this

case we add also small random fluctuations in the bulk modulus. The (truncated)

Gaussian random fluctuations correspond to the following model for the fluctuations

ν: The correlation length in x-direction is 5, in z-direction is 10, and we use a

Gaussian spectrum.

In Figure 4 the top left figure shows the speed of propagation in the medium.

The background medium is homogeneous and there is one strong scatterer in the

Helmholtz domain. The speed of propagation now also contains a small modulat-

ing random component. The top right figure plots the reference solution for the
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Figure 3: The figure shows numerical approximations for the wave field using re-

spectively the Helmholtz, the PE and the P-H domain decomposition methods when

the medium contains two strong imbedded circular scatterers shown in the top left

plot.
19



320

340

360

380

400

420

440

460

480

500

50 100 150 200 250 300 350 400

200

400

600

800

1000

1200

1400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Helmholtz

50 100 150 200 250 300

200

400

600

800

1000

1200

0.1

0.2

0.3

0.4

0.5

0.6

Parabolic

50 100 150 200 250 300

200

400

600

800

1000

1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Parabolic−Helmholtz

50 100 150 200 250 300

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Solid line −−− H E 

Dotted line −−− P E 

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Solid line −−− H E 

Dotted line −−− P−H−D 

(a) Helmholtz and parabolic (b) Helmholtz and P-H-D

Figure 4: The figure shows numerical approximations for the wave field using re-

spectively the Helmholtz, the PE and the P-H domain decomposition methods when

the medium contains a strong imbedded circular scatterer shown in the top left plot.

In addition the medium contains modulating random fluctuations in the speed of

propagation.
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Figure 5: The Spectrum computed by different algorithms

magnitude of the wave field corresponding to solving the Helmholtz equation in the

full domain. The two middle plots show the solution for the wave field obtained by

using respectively the parabolic equation (PE) approximation and our P-H domain

decomposition approach. Note that the PE solution does not capture well longi-

tudinal scattering and is smooth whereas the P-H domain decomposition approach

captures both the high frequency components in the solution that is caused by such

scattering events and also the modification that is due to the accumulated effect of

the small incoherent scatterers. In the two bottom plots we show the magnitude

of the wave field evaluated at the center line corresponding to zero lateral offset.

The solid lines correspond to the Helmholtz solution and the two dotted line to

respectively the PE and the P-H domain decomposition solutions.

Figure 5 shows the spectrum for the signal trace corresponding to the center

of the computational domain. Here we compute the spectrum as the Fourier trans-

form of the modulus of the field. The solid line is the spectrum associated with

the Helmholtz solver, while the dashed lines are the results of PE (a) and P-H-

D (b) respectively. We see that the spectrum of the Helmholtz and P-H Domain

decomposition solutions are very close.
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4.4 Example 4

In this example, the computational domain contains 10, 000 grid-points (531 wave-

lengthes) in the propagation direction and 600 grid-points ( 32 wavelengthes ) in

horizontal direction. The frequency of the signal is 50Hz, and the speed in the back-

ground medium is 1500m/s. In the discretization, we use 6π points per wavelength.

There is a single circular scatterer at the 9650’th grid-points ( 512 wavelengthes)

away from the source and with 50 grid-points being the radius. The background

medium is homogeneous and the speed of propagation in the scatterer is 2121m/s,

which is faster than that in the background medium. The domain from source to

9400 grid-points (499 wavelengthes) is our P-domain, the rest is the H-domain. The

number of unknowns in the discretized linear system for Helmholtz equation then

becomes 6 million.

In Figure 6 the top figure shows the speed of propagation in the medium.

The background medium is homogeneous and there is one strong scatterer in the

Helmholtz domain. The two middle plots show the solution for the wave field ob-

tained by using respectively the parabolic equation (PE) approximation and our

P-H domain decomposition approach. In the two bottom plots we show the mag-

nitude of the wave field evaluated at the center line corresponding to zero lateral

offset. Again it shows that the PE approach can not capture the back scattering

due to the presence of a strong scatterer. Also the discontinuity of the speed and

the geometry of the scatterer boundary causes small oscillations due to dispersion

errors in the PE approach.
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Figure 6: The figure shows numerical approximations for the wave field using re-

spectively the PE and the P-H domain decomposition methods when the medium

contains a strong imbedded circular scatterer shown in the above.
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5 Conclusion

Our main motivation was to develop a numerical scheme that can handle strong scat-

terers on the one hand and long range propagation in a weakly fluctuating medium

on the other. This has been accomplished by developing an algorithm that couples

two different regimes of wave propagation: the parabolic and the Helmholtz regimes.

We use a domain decomposition approach that divides the region into a parabolic

and a Helmholtz domain. In the parabolic domain we decompose the wave field

locally into forward and backward propagating modes. The domain decomposition

and wave mode decomposition approach allows us to deal with long range wave

propagation in the parabolic regime as well as strong scattering in the Helmholtz

regime. Numerical examples demonstrate that our method is able to capture the

effects of the strong scatterers that give strong coherent reflections as well as small

scale fluctuations in the wave field that accumulate when the wave propagates over

large distances.

Appendix A

Here we show the potential instability when solving the full system (11, 12) by

iteration. We simplify the system by considering only one transverse variable x and

the homogeneous case with ν = 0. We then have

2ikAz + Axx + Bxxe
−2ikz = 0 ,

−2ikBz + Bxx + Axxe
2ikz = 0.

We analyze modes with lateral wave number kx so that the mode iteration becomes

L+A(m) = −B(m−1)
xx e−2ikz ,

L−B(m) = −A(m)
xx e2ikz ,

(30)

where we defined the operators

L± = ±2ik
∂

∂z
+

∂2

∂x2
.
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We apply the initial and boundary conditions

B(0)(z, x) ≡ 0 ,

A(m)(0, x) = a0e
ikxx − Bm−1(0, x) , B(m)(L, x) = 0 ,

where L is the length of the considered slab and the end condition on the mode B(m)

corresponds to a radiation condition. The eigenfunction modes satisfying L±u± = 0

are

u±(z, x) = eikx(x∓kxz/(2k)).

We now consider the case with large wave numbers satisfying k = k2
x/(2k) corre-

sponding to θ(kx) = 0 in (29). Then

u±e±2ikz = u∓ ,

and the iteration (30) will in general exhibit rapid growth whereas modes with

such lateral wave number are evanescent and rapidly decaying in the context of the

Helmholtz equation.

We next show the growth by assuming

B(m−1)(z, x) = b0(L − z)jeikx(x+zkx/(2k)) , A(m)(0, x) = a0e
ikxx.

Then, writing

A(m)(z, x) = v(z)eikxx ,

we find when assuming k = k2
x/(2k)

dv

dz
+

ik2
x

2k
v = − ik2

x

2k
(L − z)je−izk2

x
/(2k).

The rapid phase variation in the source term of this equation is canceled exactly

by the phase variation of the propagator of the right hand side operator, that is, is

canceled exactly by the integrating factor used in the solution of this equation. Thus,
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the integral of the source term then becomes large for large lateral wave numbers

kx, we find explicitly:

A(m)(z, x) =

(

a0 − ikxb0
Lj+1 − (L − z)j+1

√
2(j + 1)

)

eikx(x−kxz/(2k)) ,

B(m)(z, x) = −
(

ikxa0
L − z√

2
+ k2

xb0
Lj+1(L − z)(j + 2) − (L − z)j+2

2(j + 1)(j + 2)

)

× eikx(x+kxz/(2k)).

A similar, but slightly more complicated, analysis shows that there is a similar

growth for general kx since resonant modes are generated after several iterations.

The rapid growth is caused by the coupling transverse Laplacian term, which is a

lower order term in the parabolic regime. In heterogeneous media evanescent modes

with specific lateral wave numbers can be generated by scattering. In numerical

computations, roundoff errors or artificial boundary conditions can also generate

such spurious evanescent modes and cause instability. Only if A and B are solved

simultaneously with two appropriate point boundary conditions (which is the case

for Helmholtz equation) are the evanescent modes under control. Due to this the

iterative procedure for the coupled parabolic equations (11, 12) for A and B is

numerically unstable when the coupling transverse Laplacian term is present.
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