A FIELD SPACE-BASED LEVEL SET METHOD FOR COMPUTING
MULTI-VALUED SOLUTIONS TO 1D EULER-POISSON EQUATIONS

HAILIANG LIU AND ZHONGMING WANG

ABSTRACT. We present a field space based level set method for computing multi-valued so-
lutions to one-dimensional Euler-Poisson equations. The system of these equations has many
applications, and in particular arises in semiclassical approximations of the Schrédinger-Poisson
equation. The proposed approach involves an implicit Eulerian formulation in an augmented
space — called field space, which incorporates both velocity and electric fields into the con-
figuration. Both velocity and electric fields are captured through common zeros of two level
set functions, which are governed by a field transport equation. Simultaneously we obtain a
weighted density f by solving again the field transport equation but with initial density as start-
ing data. The averaged density is then resolved by the integration of the obtained f against the
Dirac delta-function of two level set functions in the field space. Moreover, we prove that such
obtained averaged density is simply a linear superposition of all multi-valued densities; and the
averaged field quantities are weighted superposition of corresponding multi-valued ones. Com-
putational results are presented and compared with some exact solutions which demonstrate
the effectiveness of the proposed method.
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1. INTRODUCTION

The aim of this paper is to introduce a new field space based level set method for computing
multi-valued solutions to the Euler-Poisson system

(1.1) Op + 0z(pu) =0, z€IR, t>0,
(1.2) Ou + ud,u = KF,
(1.3) 0. E = p—c(x).

These are equations of conservation of mass, Newton’s second law, and the Poisson equation,
respectively. Here K is a physical constant, which indicates the property of forcing, i.e., repulsive
when K > 0 and attractive when K < 0. And p = p(t,z) is the local density, u = u(t, z) is the
mean velocity field, E = E(t, z) is the electric field, and c(z) is the background charge profile.
The Euler-Poisson system arises in many physical problems such as fluid dynamics, plasma
dynamics, gaseous stars, quantum gravity and semiconductors, etc. As is known, the simple
one-dimensional unforced inviscid Burgers’ solution always forms a shock discontinuity, except
for the non-generic case of increasing initial profile, v, > 0. In contrast, it was shown in
[11] that the corresponding Euler-Poisson system has global smooth solutions as long as its
1
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initial configuration is above a critical threshold, allowing a finite, negative velocity gradient. It
was also shown for a sub-critical set of initial data, solutions of the Euler-Poisson system will
develop singularity at a finite time. For Euler-Poisson equations, beyond singularity generalized
solutions need to be chosen and interpreted to reflect the physical relevance. In some applications
such as in fluid dynamics, a shock will develop after the singularity formation. But in other
applications such as the semiclassical approximation of the Schrodinger-Poisson equation and
the wave breaking in Klystrons [39], one must allow multi-valued solutions in order to capture
physically relevant phenomena. The usual shock-capturing methods for computing entropy
solutions do not give desired results.

The main goal in this work is to develop a novel level set method for computing multi-valued
solutions to 1D Euler-Poisson equations. Previously in [38] we have identified a configuration
space to unfold the multi-valuedness in both velocity and electric fields. This extended config-
uration space from the usual phase space is hence termed as the field space. In this work we
further derive a procedure to evaluate multi-valued density and field quantities.

Our approach can be summarized as follows: we use a vector level set function ® = (¢1, o) " €
IR? in field space (x,p,q) € IR® with p = u(t,z) and ¢ = E(t,z) to describe dynamics of the
1-D Euler-Poisson system (1.1)-(1.3). The vector level set function ® = ®(t, z,p, q) is shown to
satisfy the field transport equation

0P + p0,® + Kq0p® — c(x)pdy® = 0.
The zero level set of this vector function, initiated as

Do(z,p,q) == (p — uo(z),q — Eo(z))",

forms a one-dimensional manifold in field space (z,p,q) € IR?: the interaction of two 2-D
manifolds {¢1 = 0} N {¢2 = 0}. This gives implicitly multi-valued velocity and electric fields
through

(u, E) € {(p,q)] @(t,x,p,q) = 0}.

Note that ® as a solution of the field transport equation is bounded in any domain where the
initial velocity and electric fields are bounded.

We evaluate the density function by simultaneously solving the field transport equation for a
new quantity f near {(x,p,q); ® = 0} but with initial density as starting data, i.e.,

o f +p8xf+Kq8pf - C(JU)paqf =0,
f(0,2,p,q) = po(z).

The averaged density is thus resolved by the integration of f against the Dirac delta-function
of two level set functions in field space,

plta) = [ | F(t.p. 060160 dpds

We prove that such obtained averaged density is simply a linear superposition of all multi-valued
densities, i.e.,

N

(14) pita) =S pilt,x).

i=1
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Moreover, the averaged velocity and electric fields can be further evaluated by

(1.5) — Jirz P.3(61)0(¢2)dpdg
p )
(1.6) 7 _ Jre 4f8(1)8(¢2)dpdg
> .

Regarding these two averaged quantities we have

Sy Uz‘(til’)ﬂi(tﬂ)

(L.7) = . ,
(1.8) F— i) Eit, @)pi(t, )
p )

where (u;, F;) are multi-valued fields determined from our level set method.
We note that the Euler-Poisson system can be regarded as a semiclassical approximation of
the nonlinear Schrodinger-Poisson equation

2
(1.9) iedt = —%agwf LRV, zelR, t>0,
(1.10) 2V = c(x) — [P,

where 1¢(+, t) is a complex-valued wave function depending on the scaled Planck constant €, with
K being a scaled physical constant. This equation has been studied in different contexts, and in
particular, as the fundamental equation in semiconductor applications, with ¢ > 0 standing for
the doping profile and K ~ A~2, X being the Debye number, consult [18] and references therein.
The electric field is determined by £ = —V,. Seeking the WKB-type solution of the form

¥ =/ p(t, x) exp(iS(t,z)/e),

we recover, to the leading order when € < 1, the Euler-Poisson system (1.1)-(1.3) for (p,u = S;).
We should mention that for one dimensional case the passage from the Schrédinger-Poisson
equation to the Euler-Poisson equation was proved in [37] for a set of sub-critical initial data,
and the passage from the Schrédinger-Poisson equation to the Vlasov-Poisson equation was
proved in [56] for more general initial data, see also [35, 40] for earlier works.

For the Euler-Poisson system (1.1)-(1.3) alone, the authors in [11] showed that for X' > 0 and
c(x) =0, the EP system (1.1)-(1.3) admits a global smooth solution if and only if

ug(a) > —v/2Kpo(a), Va € IR.

Moreover,

(1.11) pla(a,t)) = 120(00(42)) D(a,t) =1+ uh(a)(t) + gpo(a)tz.

If the initial slope of ug is too negative, then the solution will breakdown at a finite time ¢,

te = min,{t, T'(a,t) =0},

beyond which multi-valued solutions should be sought. For the case of K > 0 and c(z) =
const > 0, the critical regularity condition becomes

lug(a)] < VK (2p0(a) —¢), Va € lR.

Interestingly, if electric force becomes repulsive K < 0, the critical regularity condition reads

up () > <1 - ”0(0‘)> V—cK, VYaclR

C
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We note that parameterized solutions along particle trajectory remains valid if multi-valued
solutions are considered. The solution formulas and the blowup time estimates obtained in
[11] provide us a valuable guide when we check the accuracy and validity of our methods using
various testing examples.

We also note that previously in [39] the authors evaluated averaged density of an Euler-Poisson
system in Klystrons with a quite different approach, using Vlasov-Poisson equations in phase
space to interpret the multi-valued solutions. We comment on this in §4. We refer to [22, 23]
for multi-phase semiclassical approximation of an electron in a 1D crystalline lattice using the
K-branch solution approach [1].

From a broader perspective, numerical capturing of multi-valued solutions is important in
many applications. Examples are the computation of dispersive waves [16, 31, 32, 33, 55|, optical
waves [10, 12, 13, 20, 36, 42, 46], seismic waves [17, 49, 53], semiclassical limits of Schrodinger
equations [6, 21, 26, 48], electron beam modulation in vacuum electronic devices [25, 39], etc.
In these applications when the wave field is highly oscillatory, direct numerical simulation of
the wave dynamics can be prohibitively costly, and approximate models for wave propagation
must be used. The resulting approximate models are often nonlinear, and classical entropy-type
solutions are not adequate in describing the wave behavior beyond the singularity, where multi-
valued solutions in physical space should be sought. Techniques that have been suggested in
literature include ODE based Lagrangian methods, nonlinear Hamilton-Jacobi equation-based
Eulerian methods.

A recent approach for improving physical space-based Eulerian methods is the use of a kinetic
formulation in the phase space, consult [1, 12] for its early use in the context of multi-phase
computation for optical waves. There is, however, a serious drawback with direct numerical
approximations of the kinetic equation which is the need for a large set of independent variables
in the phase space. To remedy this problem, two ways are suggested in the literature. One is the
moment method, which is based on reducing the number of independent variables by introducing
equations for moments, see e.g., [1, 12, 21, 26, 46]. The other is based on computations of special
wave front solutions. For tracking wave fronts in geometric optics, geometry based methods in
phase space such as the segment projection method [14] and the level set method [9, 42] have
been recently introduced. Consult the seminal survey article [13] for recent development of
computational high frequency wave propagation.

More recently, with a geometric point view in place of the kinetic one in phase space, a new
level set method framework has been developed for computing multi-valued phases and other
physical observables in the entire physical domain in [6, 29, 30, 27, 28]. The effective equations
which have been studied include general nonlinear first-order equations [30] and weakly coupled
WKB systems of the form

oS+ H(x,V,S8) =0, Op+Vy-(pViH(z,V,9)) =0,

with applications in the semiclassical approximation of Schrédinger equations (H = %|k!2 +
V(z))[6, 27], geometrical optics limit of the wave equation (H = c(z)|k|) [28, 43]. We note
that for first order quasi-linear hyperbolic equations, the level set formulation based on graph
evolution was known much earlier, see e.g.,[4]. We also refer to [5, 10, 36, 43] for various
developments of the phase space based level set method applied to the geometric optics. The
use of level set formulation for computing discontinuous solutions to Hamilton-Jacobi equations
is proposed in [52]. We refer to the recent review article [34] for the level set method and
multi-valued solutions in computational high frequency wave propagation.

However, in the Euler-Poisson system (1.1)-(1.3) the second equation for velocity u couples
with the Poisson equation (1.3), hence phase space-based level set methods introduced previously
do not apply. The main novelty of our approach in this work is the use of field space in which
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the Lagrangian manifold is identified by ® = 0 and the dynamics of the Euler-Poisson system
can be recast into a closed characteristic system along the particle trajectory in field space.
Then the level set equation is just a transport equation with speed determined by the vector
field of the characteristic system. Multi-valued velocity and electric fields are thus resolved as
common zeros of two level set functions initiated as (p — up(z)) and (¢ — Ep(z)), respectively.
A postprocessing step described above enables us to evaluate the density and other physical
observables.

The rest of this paper is organized as follows. In §2 we describe the field space method and
level set formulations introduced in [38], which are crucial ingredients for evaluating the density.
§3 is devoted to a derivation of the field transport equation for a new quantity f as well as the
justification of the integration procedure for computing the density. In §4 linear superposition
principle for multi-valued p is proved; Averaged field quantities are also shown to be a weighted
superposition of corresponding multi-valued ones. In §5 we discuss generalizations and possible
connections with kinetic equations as well as the Schrédinger-Poisson equation. In §5 we present
detailed numerical procedures for implementing the proposed method. Finally in §6 we describe
the numerical strategy explored in this paper and present some numerical results to verify the
capacity of our method.

2. LEVEL SET EQUATION IN FIELD SPACE

We recall the level set formulation derived in [38] for computing multi-valued velocity and
electric fields for 1D Euler-Poisson equations (1.1)-(1.3), subject to the following initial condi-
tions

(2.1) p(0,z) = po(z), u(0,2) = up(x).

In this model, ¢(x) > 0 denotes the fixed positively charged background, i.e. the doping profile
in semiconductor modeling [41]. The initial electric field can be determined from the density,
but in different way for cases, ¢ # 0 and ¢ = 0, respectively.

As shown in [11], for Euler-Poisson equations, only a subset of initial configurations leads to
global smooth solutions. For subcritical initial data the classical solution will fail at finite time
when particle trajectory collides. As pointed out in §1 beyond the singularity we are going to
adopt and compute multi-valued solutions.

In order to capture multi-valued fields, we advocate a new method based on level set formu-
lations in an augmented space. The augmented space we are taking is (z,p, q) € R® with p = u
and ¢ = F, called the field space since it incorporates both velocity and electric fields. Instead
of looking for explicit solutions in field space, we are seeking implicit solutions identified as a
common zero of two implicit functions, in which multi-valued velocity and electric fields are
implicitly represented.

We now sketch one derivation of the level set formulation by employing the given Euler-
Poisson system. It is known that the electric field E satisfies a forced transport equation, see
[24, 38],

(2.2) E; +uE; = —c(z)u.

Let ®(t,z,p,q) € IR? be a vector function and its Jacobian matrix det <%) # 0, the

implicit function theorem suggests that ®(¢, z,p,¢) = 0 may determine two functions p = p(x, t)
and ¢ = ¢(x,t), at least locally where the Jacobian matrix is nonsingular. Let p = u(z,t) and
q = E(z,t) be a solution of the Euler-Poisson system, we thus obtain

(2.3) ®(t,z,u(t,z),E(t,z)) =0, (x,t) €IRxIRT.
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Differentiation of (2.3) with respect to ¢ and x respectively gives
O + dpuy + O = 0,

&, + ®pu, + P E, = 0.

Multiplying u to the second equation and adding to the first one results in the following
Oy + udy + (ur + vug) Py + (B + uEy) Py = 0.
Applying v = p, uy + wu, = KE, and E; + E,u = —c(z)u to the above equation, we obtain
(2.4) o, + pd, + Kq®) — c(z)pP, = 0.
Note that this transport equation can also be written as in conservative form
¢+ (pP)y + (KqP)p — (c(x)p®)q = 0,

since the divergence of the velocity field in (z,p, ¢) space is null.
The initial conditions of (2.4) can be chosen as

(25) d)l(oaxapa Q) = p—UO(ZE),

(26) d)Q(vavpa Q) = q- Eo(l')

Note that the choice of initial condition is not unique. However the zero sets of selected level
set functions should uniquely embed the given initial data uy and Fy.

As argued in [11] based on the physical principle, Fy(x) needs to be determined from py(x)
according to whether the background charge is present. For ¢ # 0, the electric field is given by

(2.7) B0.2) = [ (pl€.0) - €)) e

and for ¢ = 0:

(2.) p0.0) =5 ([ eoie- [ o).

3. EVALUATION OF DENSITY

Equipped with the obtained level set formulation for both velocity and electric fields in field
space (z,p,q) € IR?, we now introduce an approach for capturing the multi-valued density p.
Note that the density p formally solves the mass equation in the physical space (t,z) € IRT x IR,

Otp + u0zp = —puy.

When the velocity field is multi-valued, the density is forced to become multi-valued too. Note
that along the particle trajectory x = z(¢, o), governed by %x = u(t,z) with (0) = a € IR, we
have

po(a)
t,x(t =
plt aft,0)) = S,
where I'(t, o) = 0qx(t, ) indicates the deformation of particle trajectories. The density would
become unbounded at the instant ¢., I'(t;,a) = 0, when the velocity field starts to become

multi-valued. This difficulty makes a direct computation of p unrealistic.

The strategy is to first derive an evolution equation for a density representative in field
space (z,p,q), and then project it onto the 1D Lagrangian manifold expressed implicitly by
{(z,p,q)| @ = 0}, involving both velocity and electric fields.

Let p(t,x,p,q) be a representative of p(t,z) in field space, i.e.,

p(t,z) = p(t, z,u(t,z), E(t,z)).
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We thus have
Oip + ubzp
= Oip + wOpp + ErOgp + w(0pp + ugOpp + E104p)
= [0 + u0y + (ut + uug)0p + (Er + uEy)04)p.
Using the equation (1.2) and (2.2) we have
Oip + u0zp = O0¢p + u0yp + KEO,p — c(x)udyp.
Hence the density equation in the field space follows:
(3.1) L = — 0y,
where the field transport operator is defined as
L := 0y + p0y + Kq0, — c(x)pdy.
The above observation, also true for other quantities, is summarized in the following
Lemma 3.1. Let w(t,z,p,q) be a representative of w(t,z) in field space such that
w(t,x) = w(t, z,u(t,x), E(t,x)).
Then
Ow + ud,w = Lw(t, z,p, q).

From (3.1), we still need to evaluate u, in field space in terms of the level set function ®. To
this end we differentiate the level set equation, L® = 0, with respect to p and ¢ respectively and
obtain

L(0p®) + (0 — c(x)04)® =0,
L(0,®) + K0,® = 0.

Set
T = det(Dy®,) = By, - B, D= (g9, —¢1) 7,
we have
(3.2) L(J) = —det(®,P,).
In fact

L(J) = L((I)p) ’ @j + 8p<I> ) (L((I)q))L
= (cOy — 03)® - 9, — K8,® - (3,®)"
= 0,0 -9,0"
= —det(P,Py).
In order to express u; in (3.1) in terms of ®, we further differentiate the relation
O(t,x,u(t,x), E(t,z)) =0

with respect to z to obtain
0z ® + u,,0,® + E,0,P = 0,

from which we obtain

_ det(PyPy)
YT T det(,3,)
This when inserted into (3.1) gives
- _det(®,P
(3.3) 1(5) = p 2 2=P)

J
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Note that at the singular point, J is zero and (3.3) is not defined, where integral equation
should be considered. Following [27, 28] for density evaluation from phase space, we evaluate
the multi-valued density in physical space by projecting its value from field space (z,p, q) onto
the manifold ® = 0, i.e., for any x we compute

ot ) = / (., p, 0)|T16(61)6(62)dpda.

P,q
Note that by the use of absolute value for J is required since the Jacobian changes sign if
singularities are formed.
A combination of (3.2) and (3.3) gives

L(p(J)) =0,
away from singularities. Then we have, away from the singular points,

L(f)=0, f:=plJ]
where the absolute sign is used to ensure the same nonnegative sign of f before and after the

blow-up time when J = 0. Thus we just need to compute the quantity f by solving the field
transport equation

(3-4) Of +po.f+ anpf - C(."L‘)paqf =0,
subject to initial data
(3.5) f(0,z,p,q) = po(z)J(0,z,p, q) = po(z).

Note that by choice of (2.5) and (2.6), J(0,x,p,q) = 1. With this quantity f the singularities in
density p is canceled out by J(®). Thus, we are able to locally evaluate the density in physical
space by projection of f onto the manifold {(p,q): ®(z,p,q) =0}

(36) pta) = [ | Ft2.0.0)6(60)3(62)dpds

Note that in field space the effective manifold for single valued fields is given by {(z,p,q)| p =
u(t,x), g = E(t,z)}. For multi-valued velocity and electric fields, we have

(qu) € {(p7 q) : gf)l(t,l‘,p, q) = 0’ ¢2(t,l‘,p, q) = 0}

We can evaluate their averages by

(3.7) u(t,r) = /|R2 pf(t,z,p,q)0(®)dpdq/p,

(3.8) B(t,z) = /IR2 of (b, 2. p, )5(@)dpdg/p.

4. SUPERPOSITION OF MULTI-VALUED QUANTITIES

This section is devoted to the issue of how to relate the computed averaged physical ob-
servables such as p, @ and F to exact multi-valued quantities predicted by the characteristic
method.

We start with the observed mean density computed from the formula (3.6). We shall show that
if multi-valued densities are given, the above calculated mean density is simply a superposition
of all multi-valued densities. This result is summarized below.

Theorem 4.1 (Superposition principle for the density). Let {p;}Y, be multi-valued den-
sities corresponding to multi-valued fields (u;, ;) determined by

(UuEz) S {(p7 q) : ¢l(t>$7p7 q) = Ovl = 172}
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Then

N
(4.1) pt,x) = pi(t, ).
=1

Proof. In order to evaluate the integral (3.6), we assume that all (u;, £;) lie in a bounded domain
and use a partition of unity so that we just need to evaluate

| [ sostonstendpaa

where o € CJ° vanishes near (p;, ¢;), with o(p;,¢;) = 1. Recall that for any smooth function
g(p) with only one zero p = p* we have

d(p —p*)

19 (p*)]
In the neighborhood of (p;,¢;), the implicit function theorem suggests that the zero level set
¢1 = 0 can be explicitly expressed by p = h(q) for each ¢ near ¢;, with p; = h(g;). Thus

| [ 1owasensenana = [ [ o5 rap¢1|p B gy

/f (t,z, h(q), q)o(h(q),q)d (¢2(t,$7h(Q)7Q))dq
\3p¢1\p ha)|
f(t,,h(q), 9)o(h(9), 9)5(a — 4i) ,
’8p¢1‘p—h(q qu@’qz
B f(t>$>pza%)
 10p01110p321/ (q) + g2 (prgr)”

Furthermore, for any ¢ near ¢; we have

d(g(p)) =

(4.2)

which leads to
Opd1h (q) + g1 = 0.
This when inserted into the denominator in (4.2) gives the Jacobian of (¢1, ¢2):
|Op 10992 — 0q10p¢2| = | J].
Note that f(t,z,u;, E;) = pi(t, z)|J|, we thus have

/ / Fo(p. 0)5(61)5(dn)dpdq = pi(t, ).

This when combined with the partition of unity gives the asserted (4.1). U

This theorem shows that the linear superposition principle holds for the density of the nonlin-
ear Euler-Poisson system in the sense that direct summation of all multi-valued densities gives
the physical observed density. To our knowledge, this is the first rigorous proof via the field
space configuration. It would be interesting to see whether this could be justified using the usual
Wigner transform in the phase space.

Similar results hold for velocity and electric fields and are stated in the following.
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Theorem 4.2 (Weighted superposition for field quantities). Let {p;}Y, be multi-valued
densities corresponding to multi-valued fields (u;, E;) determined by

(UMEZ) € {(pa Q) : ¢l(t>m7pa Q) = Oal = ]-72}

Then

N

; % tv % t?
(4.3) atr) = Za=tilbeilto)

p
N
= i E’L t? % ta

Proof. Replacing f by fp and fq respectively in the proof of Theorem 4.1 we obtain the desired
u and F. g

Finally, we remark that the multi-valued quantities predicted by the characteristic method
are nothing but those expressed implicitly by the zero level sets of ¢1 and ¢o defined above.

5. KINETIC AND QUANTUM DESCRIPTIONS

In the following we discuss a kinetic formulation in field space for Euler-Poisson equations,
and its connections with Schrodinger-Poisson equations, as well as Vlasov-Poisson equations in
phase space.

Kinetic equation in field space

Since both ® and f solve a linear homogeneous transport equation (3.4), so does n = fi(P).
For smooth initial velocity and electric fields, the density distribution n thus evolves according
to

(5.1) 9 + pdan + Kqdpn — c(x)pdyn = 0,
(5.2) n(0,2,p,q) = po(x)d(p — uo(x))d(q — Eo(x)).

This is a kinetic type equation in field space with non-negative measure data. If we formally set
p= /ndpd% pu' 7 = /piandpdq 0<i4j<2.

Multiplying {1, p, ¢} to (5.1) and integrating over IRf,,q we obtain
Op + Ox(pu) =0,
0y (pu) + 9, (pu®) — KpE =0,
A (pE) + 0z(puF) + c(x)pu = 0,

which, for smooth solutions, recovers the expected Euler-Poisson system (1.1),(1.2) and (2.2).
In order to recover (1.3), we let

W=E;—(p—c).
By the choice of Ej in (2.7) and (2.8), we have

(5.3) W(0,z) = Ex(0,2) — p(0,x) + ¢ = 0.
Using (1.1) and (2.2), we find that W solves the following transport equation
(5.4) Wi+ (uW), =0.

By the uniqueness of the zero solution to (5.4) and (5.3), we conclude

W =0,
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which gives (1.3).

Wigner transformation
Consider the one-dimensional Schrédinger-Poisson equation of the form

2
(5.5) iedbE = —%agw LV, zelR, >0
(5.6) O3V = c(x) — [v°P.
The electric field is determined by E = —V,. Seeking the WKB-type solution of the form

Y= V p(t,x) exp(iS(t, l‘)/e),

we obtain, to the leading order, the Euler-Poisson system for (p,u = S), i.e., (1.1)-(1.3).

Another path for semiclassical approximation of quantum mechanics is to use the Wigner
transformation from “physical space” into “phase space”, which was introduced by Wigner [54]
and can be written as

1 . €y €y
“(t = — PYap(t =Y(t,x — —=)dy.
witap) =5 [ Pita+ Dota - Py

We use the overbar to represent the complex conjugate. Wigner transform has been widely
used in the study of high frequency, homogenization limits of various equations, see e.g., [19,
45, 23, 35, 48]. In the current setting, a direct calculation by applying the Wigner transform to
the Schrodinger-Poisson system (5.5)-(5.6) shows that we(t, x, p) satisfies the so-called Wigner
equation

(5.7) Bpw® + pdyw® + 0°[Vwe = 0,

where the pseudo-differential operator (local in x and nonlocal in p) is defined as
' Vi + L) = V¢(z - ¢ .
o= [ f @+ VD) e, e 0 vy
™ €

The macroscopic density p(t,x) is usually computed through the zero moment in the kinetic
variable p

pS(t,z) = /we(t,x,p)dp.
Formally passing € — 0 in the quantum Wigner equation (5.7) one obtains the Vlasov-Poisson

system

(5.8) Ow + poyw+ KEO,w =0, K =1
(5.9) E, = / w(t,z,p)dp — c(x).
IR,

For the WKB type initial data

Yo(x) = v/po(z) exp(iSo(z)/€),

the limit of the corresponding Wigner function becomes

wo(z,p) = po(x)d(p — uo(x)).
The classical limit from the Schrodinger-Poisson to the Vlasov-Poisson equations in one -
dimensional case has been justified by Zhang, Zheng and Mauser [56] for bounded integrable
data. This V-P system is also a model for collisionless plasma of ions and corresponding elec-
trons. The transport is uni-directional so that the problem can be formulated in one-space
dimension. Here the particle motion is governed solely by induced electrostatic forces, while
electromagnetic interactions are neglected.
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In contrast the classical moment closure approach offers

p= / wdp, pu = / pwdp.

In an interesting earlier work [39], the authors propose a moment closure approach based on the
Vlasov-Poisson equation (5.8). From our study in [38] and in this work, we see that the electric
field E generally becomes multi-valued simultaneously with velocity field except in the case with
null background. Thus solving problem (5.1)-(5.2) in field space serves as an appropriate kinetic
formulation to interpret multi-valuedness encountered .

From field space to phase space
We may also formally derive the Vlasov-Poisson equation from (5.1)-(5.2). Assume the closure
assumption as 7 = w(t, x,p)d(q — E(t,z)) we set

w(t,z,p) = /ndq, Flw(t,z,p) = /qindq,i =1,2.
Integration of the n—equation (5.1) against {1, ¢} leads to
0w + po,w + KEOyw = 0,
O (Ew) + pdy(Fw) + Kdy(E*w) + c(z)pw = 0.
The combination of the two gives
WE + po, E + c(x)p =0,

this coincides with (2.2) when projection onto the physical space is via p = u(t, x).

6. NUMERICAL PROCEDURES AND IMPLEMENTATION

In this section we discuss the numerical procedures of the new field space based level set
method. High dimension level set method was studied in [2] for motion of curves.

The main task encountered in this work is to evaluate the density p accurately. Based on the
level set formulation, for evaluation of the density

(6.1) plt.z) = /.R /.R £(t, 2.9, 9)5(61)8(62)dpda,

we need to first compute two level set functions ¢1, ¢ and the function f, all solve the field
transport equation (2.4) of the compact form

(6.2) O+ V(X) Vx®=0, telR", XclR®,
where X = (z,p, q) and
V= (‘/DV27VY3) = (pa an —C(l')p)

The initial data are chosen to embed the given initial data of the Euler-Poisson equation. One
simple choice is

®|i—0 = (p — uo(z), ¢ — Eo(), po(x)) ",
for smooth ug, Ey. Following [38], we discretize the gradient Vx® by a first order upwind
approximation or a higher order ENO approximation [47], and then discretize time by a forward
Euler method or a higher order Runge-Kutta method. Let {¢,,x;,p;j, qr} be uniform grids in the
tX —plane with mesh sizes At, Az, Ap and Agq, respectively. The simplest first order upwind

scheme can be formulated as
n+1 n

(6.3) vy B Vi, 5, k) ®E + Vali, j, k)®E + Va(i, 4, k)®F = 0,
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where @?Z’ ) R O (tn, i, 05, qi)s Vin (4, 4, k) == Vin(xs, 5, @) (m = 1,2,3) and
ot — 2eran ~ Pain oo _ Peam = Pe1am
v Az T Az ’
similar notations are adopted for <I>+ 2, (I>+ and ®. For m = 1,2 or 3, if Vin(i, j, k) > 0, we
use ®~; otherwise, ®* is applied. Under the CFL condition

Vil Vel | [ V5]
6.4 At <1
(6.4) max < Az + Ap + Ag )=
this scheme is stable in both L> and L' norm, which, to be stated below, were shown in [38]
for more general V.

e [Discrete Maximum Principle] Assume that V,,(z,p,q)(m = 1,2,3) are bounded

functions in the computational domain. Let " be a numerical solution produced by the
first order upwind scheme subject to the initial data ®°, then

(6.5) 12" lloo < [12°]]cc-

e [L! Stability] Assume that V,,(z, p,q)(m = 1,2,3) are bounded and Lipschitz continu-
ous in its i-th argument in the computational domain. Let ®™ be a numerical solution
produced by the first order upwind scheme subject to the initial data ®°, then for finite
time T, there exists a constant M, such that

(6.6) 1271 < "9,
where [[®7|[1 1=}, ;¢ |<I>&j7k)|A:EApAq.

In our numerical simulation, this first order upwind scheme is mostly adopted for computing
® = (¢1, o, f) T, with which we discuss the evaluation of density via (6.1).

Since the integration (6.1) involves the Dirac d—function in its integrand, as usual we first
regularize the Dirac §—function by a smooth bounded function J. in such a way that 6. — ¢ as
€ — 0. The error introduced in this regularization step depends on the choice of the approxi-
mation, whose accuracy is indicated by a so called moment condition [3] of the regularization. d,
is said to satisfy 7" order of moment condition if [jz 6c(z) =1 and [z 6c(z)z* =0for 1 <k <r.
It is known that the higher the order of moment condition, the smaller the regularization er-
ror. The choice of regularization J. could be any smooth function with the above properties.
However, considering the concentration of the Delta function, it suffices to choose . to have a

compact support:
1 T
V(D) |z[<e
— € € —
%(x) { 0 2] >e
One of well accepted choices of this type of & is the cosine kernel, U(n) = (1 + cos(mn)), i.e.,

(6.7) % () = 21 (1 + cos ( )) Ii_cq;

which has first order moment conditlon Here I|_. g is the standard indicator function.
Replacing §(¢1)d(p2) by de(¢1)de , we thus have the first approximation of g,

(6.8) (t,2) / / £(t 2,9, )5.(61)5 () dpd,

to which standard quadrature rules can be applied. In our simulation, the rectangle rule is
chosen and the numerical density is further evaluated by

(6.9) Pen(t, x) = > F(t, 2,y qr) 0 (61)05% (d2) ApAg.

{l#i(t,z,pj,ar)|<€i=1,2}
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In this two-step procedure, total error is bounded by the sum of regularization error |p — p¢| and
quadrature error |p. — pep|. For example, if the cosine kernel and the rectangle rule are used,
|p — pe| is of order € and |pe — pep| is of order h/e, where h = max{Ax, Ap, Aq}. Using the
similar analysis as in [44], it is clear that the total error is minimized as of order v/ when an
optimal €* is chosen to be of order vh. Thus the convergence rate of the numerical integration
is at least of order 1/2, i.e.,
16— pen| < Ch3,

for some constant C. For details on convergence rates in general cases, see [50, Theorem 3].

Though, theoretically, €* is optimal, it is impractical to determine it exactly. Thus, we choose
to run numerical experiments with a wide range of € to circumvent this numerical difficulty. In
our simulation the support of J. is tested with € = h,2h,3h,---. Based on many experiments
on €, we found that the smaller €, the sharper of density at the cost of oscillation. So we have
to pick proper e to balance the resolution and smoothness. Through our simulation, we also
found that usually we get best results when e is within [1.5h, 4.5h] depending on examples being
tested. In short, the choice of € plays a crucial role in the evaluation of density. An interesting
phenomenon is that the choice of € as mh while using the signed distance function in multi-
dimensional setting may lead to O(1) error [51]. However, in our case, a product of d—functions
is being approximated. Thus convergence is guaranteed with €* € [h, mh] for some constant m.
We also notice that the geometry of the level set function also affects the choice of €, as observed
in [27, 28]. And we refer to [15] for more regularization techniques related to level set methods.

Here we remark that one could also compute the density p by solving the field transport
equation (5.1) :

on + pdyn + Kqopn — c(x)pdyn = 0,

but subject to initial data involving delta functions,

(6.10) n(0,2,p,q) = po(2)d(p — uo(z))d(q — Eo(z)).
The density is then evaluated by
(6.11) p= /ndpdq.

Here, p is still evaluated by a post-processing step, i.e. integration over field configuration, but
with no involvement of the Dirac d—function. However, in order to utilize (6.11), one needs
to regularize the d—function in the initial condition (6.10), and such an initial regularization
error will surely evolve and accumulate, reducing accuracy of the final integration. Therefore,
the evaluation of p by post-processing in (6.9) is preferred to solving the kinetic equation with
(6.10) directly.

We now discuss several technical details to be involved in our numerical tests.

Firstly, we need to specify an appropriate computational domain. The guiding principle is
that the extreme values of u and E should be covered in the computation domain. Thus, if
the example has an exact solution, we choose to prescribe a domain containing the range of the
exact solution for all ¢ before the desired time T'. In the case of no exact solution available,
based on the initial condition, we first choose a relatively large domain with coarse meshes to
get a rough solution in order to determine the computation domain. Then we can refine our
mesh to get better resolution.

Secondly, the computational boundary condition should be enforced in such a way that no
artificial and spurious waves are propagated into the computational domain. In our simulation,
if the initial data are periodic in an argument, we use a periodic boundary data in the direction
of that argument. For other cases, we use a Neumann boundary condition.
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Finally, we show how to realize multi-valued u and E. The projection of common zeros onto
xp and xq spaces gives the visualization of multi-valued w(7, z) and E(T, z):

(u, E)(T,x) € {(p,@)|1(T, z,p,q) = 0} N {(p, ¢)|¢1 (T, z,p,q) = 0}, V€ IR

Numerically, we interpolate only grid points satisfying

{(»Tiapjan) € Q| |¢1(T) xivpjaq]C)| < g? |¢2(T7 xlvp]aqk” < g}a

where € is chosen in such a way that a unique grid point can be identified along the zero level
set. Computationally, a € which is much smaller than h works well. We point out that a larger
€ may be necessary for the case when level set functions are rough. Meanwhile the density p is
approximated by (6.9) using ¢; and ¢s.

Using the multi-valued density predicted by the characteristic method and the superposition
principle (4.1), we construct an exact averaged density

N
(6‘12) Pea = Zpi(tvx)'
i=1

Based on this, we show the numerical accuracy and convergence for averaged density obtained
by our level set method (6.9). Numerical convergence test with L? error of (6.9) and (6.12) is
performed.

Exact Solution and Breakdown Time
We now recall some solution formulas given in [11] by using the characteristic system

dx
du
.14 — = KF
(6.14) > ,
E
(6.15) (iTt = —c(z)u

of (1.1)-(1.3) subject to the initial condition
z(0) =a, u(0) =uo(a), E(0)= Ep(a).

1. Zero background charge c¢(x) = 0.
Integration of the characteristic system (6.13)-(6.15) leads to

(6.16) z(t,a) = a+ugt+ KFEyt?/2,
(6.17) u(t,z(t,a)) = wuop+ KEpt,
(6.18) E(t,x(t,a)) = Ep.

The density is conserved along characteristics, see (1.11). As shown in [11], the necessary and
sufficient condition for the break down of smooth solution is I'(t,«) = 0 for some time ¢ and
initial position . This condition also gives the exact time when breakdown occurs, which in
current setting gives

/ 2
—uy —/ug — 2Kpo
(6.19) ind ¢ 0 uh < —/2Kpo b,

T =
ot Kpo ’

where {a : uj < —/2Kpo} denotes the set of initial points which will lead to finite time break-
down.
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2. Constant background charge ¢ > 0.

By the characteristic equations (6.14) and (6.15), we have
' 4+ cKu=0.
If the force is repulsive, K > 0, solutions are
(6.20) z(t,a) = a-+ugsin(VeKt) + Egcos(VeKt) — Ey,
(6.21) u(t,z(t,a)) = wugcos(VeKt) + Egsin(VeKt),
(6.22) E(t,z(t,a)) = FEycos(VeKt) —ugsin(vVeKt),

where the density is still given by p(t, z(t,a)) = 18(()15(2))7 but with

(6.23) [(t,a) =1+ ujsin(vVeKt) + E| cos(VcKt) — Ej,.
Finite time breakdown is unavoidable if

|ug(e)| = VK (2p0 = ©)

for some o € R. Under this condition, the first breakdown time is

T* = min {t,F(t,a) =0, [uh(a)| > VE (2po — c)} .

If the force is attractive, i.e. K < 0, then

(6.24) o(t,a) = Oé—f—%(e_)‘t—l)—i—%(e)‘t—l),
(6.25) u(t,z(t,a)) = Cre ™M+ Cye™,
_ —GiA e God
(626) E(tax(t?a)) = K e -+ e e,
po()
2 t. x(t —
(6.27) pltalt ) = FGas
where A = VK, () = MogB Gy = utEOK g
/ /
Pt ) =1+ %(e‘” -1+ %(ekt ~1).

In this case, the necessary and sufficient condition for smooth solutions to experience finite

time breakdown is
ug(a) < — (1 - MQ)) —Kc
c

for some « € R. Under this condition, T can be found by solving I'(¢, «) = 0.

These parameterized solution formulas give multi-valued solutions of u, £ and p after inter-
action of characteristic curves, i.e. ¢ > T*. Thus, we can compare our numerical solution with
exact solutions to verify the accuracy of our method.

7. NUMERICAL EXAMPLES

In this section, we demonstrate the accuracy and capacity of our level set method by test-
ing several numerical examples and compare the numerical solution with the parameterized
exact solution when available. In the following experiments, the first order up-wind scheme is
employed.

1. Numerical Test One: 5 Branches
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TABLE 1. L? error for averaged density at various spatial step sizes and support € = mh

L? error
0.1018
0.1345
0.1464
0.1693
0.0513
0.0714
0.0790
0.0901
0.0412
0.0626
0.0776
0.0895

{dx,dp,dq,t}

{0.06,0.03,0.03,3.0149}

{0.05,0.02,0.02,3.0021}

{0.02,0.01,0.01,3.0017}

%wMH%WMH%Wl\J)—lE

Our first example is the model with zero background with ¢ = 0, K = 0.01. The initial
condition is given by

u(0,2) = sin®(z),
1 2
_ = —(z—m)
p(0,z) e :

In this case, since c¢ is zero, the initial electric field Ey(x) is determined from po(z) by

Fo(x) = B0, z) = % </_Oo pod — /x_oo podx) .

In this example, (1.11) gives
1
['(t,a) = 1+ 3sin®(a)cos(a)t + 27—;(,5267(014)2.
T

A calculation based on (6.19) shows that 7% < 3. So we compare our numerical results with exact
solution at time ¢ after 3. Our computation domain is 2 = [0, 27] x [—1.2,1.2] x [—0.5,0.5], which
is chosen to include the range of u, F,p at t ~ 3. The discretization parameters Ax, Ap, Aq
are chosen to be 0.02,0.01,0.01 respectively, with € = 0.0025, ¢ = 1.5Ax and CFL number 0.8.
In Fig.1 and other following figures, unless specified otherwise, solid line is exact solution while
dots are our numerical results. We see that results from our level set method match the exact
solution, though only a first order upwind scheme has been used.

Now, we perform the numerical convergence test for the averaged density. pep is calculated
with € = mh via (6.9) for m = 1,2,3,4. Then the numerical L? error between p., and peq
obtained in (6.12) is computed as

[ o= pde % 3 Gualts ) = punlt, i) A
{z:}

In Table 1, one sees that the L? error becomes small as the step size decreases for some selected
e. This is also visually shown in Fig.2. Thus the numerical convergence is obtained, which shows
the validity of our level set approach in computing averaged density.

2. Numerical Test Two: 7 Branches
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FIGURE 1. Multi-valued solution for 1D Euler-Poisson equation at time about 3.

u-x@t=3.0017 E-x@t=3.0017

p-X@1=3.0017
T

08}

06

0.4

02

We now test the model with zero background with ¢ = 0, K = 0.01, but subject to initial
condition,

u(0,z) = sin(2x)cos(x),
1

p(0,z) = —em(@mm?,
T

Though this example is similar to the first one, the solution has richer structures. Note that
from the numerical convergence test in example 1, we are assured that the level set approach
developed here will give correct multi-valued u, E and averaged p. Thus from this example on,
we choose not to do the numerical convergence test. Instead, we will just show the averaged
density obtained from the level set method, and exact multi-valued density predicated by the
characteristic method.

As in the first example, the initial condition Ey(x) is given by

Eo(z) = % </; podx — /xoo Podw> .

Then the exact solution can be found using (6.16)-(1.11).

Using the same formula (6.19) as in the previous example in determining the critical time
T*, we find that multi-valued solution will appear before ¢ = 4. Our computation domain is
Q = [0,27] x [-1,1] x [-0.5,0.5], which is chosen to include the range of u, E,p at desired
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FIGURE 2. Comparison of averaged p.( dash and circle) and peq(solid) at various
spatial step size and time about 3. Spatial step size decreases from top to bottom as in
Table 1
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FIGURE 3. Multi-valued solution for 1D Euler-Poisson equation at ¢ = 4.0079.

uU-x@t=4.0079 E-x@t=4.0079

p-X@1=4.0079
T
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02
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time. The discretization parameters Ax, Ap, Aq are chosen to be 0.02,0.01,0.01 respectively,
with € = 0.0025, ¢ = 4.5Az and CFL number 0.8. In Fig.3, once again, by comparing with the
exact solution, we see that results from our level set method match the exact solution. In this
example, when we used smaller €, some oscillations for x € [2,4] are observed. Thus, we pick
relatively bigger € = 4.5Ax to smear the observed oscillation.

3. Numerical Test Three: Negative K

In the previous two examples, multi-valuedness is induced by the decreasing initial velocity
in finite time. However, if the force is attractive, K < 0, even for constant initial velocity,
breakdown still occurs at finite time. This can be seen from the following example. If we
consider zero background case, i.e. ¢ = 0, the solution for x and I" are given by

z(t,a) = a + up(a)t + Eola)Kt?/2,

L(t,a) =1+ uh(a)t + poKt?/2.

Thus even if up(«) is nondecreasing, as long as K is negative, there will be some time ¢ such
that I' = 0 provided that pg > 0. This tells us that multi-valued solutions must appear in the
case of K < 0.
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FIGURE 4. Multi-valued solution for 1D Euler-Poisson equation at time around 4.
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Now we test our method with ¢ = 0 and K = —1, subject to initial condition,
u(0, ) 0.01,
1 2
0 —e~@=m7,
p(0, ) -

In this case, I' =1 — %e("‘*”)QtQ

, which starts to become zero at a = 7w, t = T*

= +/2m. Thus

when t > /27, multi-valued solutions need to be considered. In order to see more structures, we
will test our algorithm at time ¢ around 4. Our computation domain is = [0, 27] x [—1.5,1.5] X
[—0.5,0.5], which is chosen to include the range of u, E, p at desired time. The discretization
parameters Ax, Ap, Aq are chosen to be 0.02,0.01,0.01 respectively, with € = 0.002, ¢ = 1.5Az
and CFL number 0.8. In Fig.4, we see that though the structure of the solution is not so rich
as in previous one, this example does validate the physical situation that attractive force always

induces multi-valued solutions in finite time.

4. Numerical Test Four: Nonzero Background
We now test an example with nonzero background with ¢ =1, K = 1 and initial condition,

u(0,x

p(0, )

2sin? z
1.
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FIGURE 5. Multi-valued solution for 1D Euler-Poisson equation at time around 1.
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In this case, as in (6.20)-(6.23) the exact solution can be found explicitly. Here the choice of
constant initial density is to simplify the identification of when multi-valuedness happens. Since
['(t,a) = 1+ 4sinasin 2asint,

. 1
T* = min sin~* ———————— ¢ ~0.5.
a 4sin2q sin” o
We visualize our numerical simulation at ¢ = 1. Our computation domain is = [0,27] X

[—2.5,2.5] x [—2.5,2.5], which is chosen to include the range of u, E,p at desired time. The
discretization parameters Az, Ap, Aq are chosen to be 0.02,0.02,0.02 respectively, with € = 0.01,
e = 2.5Az and CFL number 0.8. In Fig.5, we see the results in two periods. Looking at the
graph for p at x near 27, one may wonder why the peak is not complete. This is caused by the
fact that the wave is shifting to right while our computation domain is fixed in [0, 47].

5. Numerical Test Five: Discontinuous Background c(z)

In previous examples, all parameters and initial conditions are smooth. Thus the exact
solution can be expressed in terms of the initial position parameter c. By comparing with exact
solution within the same graph, we have verified the accuracy of our method. We now present
an example with piecewise smooth background charge.
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FIGURE 6. Multi-valued solution for 1D Euler-Poisson equation at time around 1.
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Consider the model with discontinuous background with ¢ = %I (—1,1, K = 0.01, with initial
condition,

u(0,2) = 4dsin(z),
1 T2 T™N\2
— —(z+%) —(z—%)
p(O,x) 2\/;‘_(6 2/ +e 2 )7

where Ij_; 1) is the usual indicator function in [~1,1].

Our computation domain is Q = [—27, 27] x [—5,5] x [—1, 1], which is chosen to be large in
order to include the range of u, F/,p at t ~ 1. The discretization parameters Ax, Ap, Aq are
chosen to be 0.04,0.02,0.02 respectively, with € = 0.009, ¢ = 3Axz and CFL number 0.8. In
Fig.6, multi-valued v and E are shown along with averaged density with peaks.

8. CONCLUSION

Together with [38] we have developed a field space based level set method for computing
multi-valued solutions to 1D Euler-Poisson equations. In field space multi-valued velocity and
electric fields are naturally incorporated into the configuration, and represented implicitly by
common zeros of two level set functions. Using those level set functions as building blocks,
we further develop an implicit projection method to evaluate the multi-valued density as well
as averaged velocity and electric fields. The main advantage of the proposed approach over
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phase space based method is its ability to unfold singularities in both velocity and electric fields.
Moreover, the use of level set formulation enables us to easily treat any number of multi-valued
branches, and the topology of multi-valued solutions is handled automatically.

Furthermore, we prove that the averaged density is simply a superposition of all multi-valued
densities predicated by the characteristic method. Averaged field quantities are weighted su-
perposition of corresponding multi-valued ones. This is remarkable since the underlying Euler-
Poisson system is nonlinear!

The application of our method is not restricted to the computation of the semiclassical ap-
proximation of Schrodinger-Poisson equations. Similar problems arise in plasma oscillations,
beam propagation, to which the techniques discussed in this paper is expected to be useful.
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