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Abstrat

Blood vessel networks form by spontaneous aggregation of individual

ells migrating toward vasularization sites (vasulogenesis). A suess-

ful theoretial model of two dimensional experimental vasulogenesis has

been reently proposed, showing the relevane of perolation onepts and

of ell ross-talk (hemotati autorine loop) to the understanding of this

self-aggregation proess. Here we study the natural 3D extension of the

omputational model proposed earlier, whih is relevant for the investiga-

tion of the genuinely threedimensional proess of vasulogenesis in verte-

brate embryos. The omputational model is based on a multidimensional

Burgers equation oupled with a reation di�usion equation for a hemo-

tati fator and a mass onservation law. The numerial approximation

of the omputational model is obtained by high order relaxed shemes.

Spae and time disretization are performed by using TVD shemes and,

respetively, IMEX shemes. Due to the omputational osts of realisti

simulations, we have implemented the numerial algorithm on a luster

for parallel omputation. Starting from initial onditions mimiking the

experimentally observed ones, numerial simulations produe network-like

strutures qualitatively similar to those observed in the early stages of in

vivo vasulogenesis. We develop the omputation of ritial perolative

indies as a robust measure of the network geometry as a �rst step towards

the omparison of omputational and experimental data.

1 Introdution

In reent years, biologists have olleted many qualitative and quantitative data

on the behavior of mirosopi omponents of living beings. We are, however,

still far from understanding in detail how these mirosopi omponents interat

to build funtions whih are essential for life. A problem of partiular interest
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whih has been extensively investigated is the formation of patterns in biologial

tissues [2℄. Suh patterns often show self-similarity and saling laws [18℄ similar

to those emerging in the physis of phase transitions [26℄.

The vasular network [28, 29℄ is a typial example of natural struture har-

aterized by non trivial saling laws. In reent years many experimental in-

vestigations have been performed on the mehanism of blood vessel formation

[6℄ both in living beings and in in vitro experiments. Vasular networks form

by spontaneous aggregation of individual ells travelling toward vasularization

sites (vasulogenesis). A suessful theoretial model of two dimensional ex-

perimental vasulogenesis has been reently proposed, showing the relevane of

perolation onepts and of ell ross-talk (hemotati autorine loop) to the

understanding of this self-aggregation proess.

Theoretial and omputational modelling is useful in testing biologial hy-

potheses in order to explain whih kind of oordinated dynamis gives origin

to the observed highly strutured tissue patterns. One an develop omputa-

tional models based on simple dynamial priniples and test whether they are

able to reprodue the experimentally observed features. If the basi dynamial

priniples are orretly hosen, omputational experiments allow to observe the

emergene of omplex strutures from a multipliity of interations following

simple rules.

Apart from the purely theoretial interest, reproduing biologial dynamis

by omputational models allows to identify those biohemial and biophysial

parameters whih are the most important in driving the proess. This way,

omputational models an produe a deeper understanding of biologial meh-

anisms, whih in priniple may end up having relevant pratial onsequenes.

It is worth notiing here that a omplete understanding of the vasularization

proess is possible only if it is onsidered in its natural threedimensional setting

([1, 7℄).

In this paper we illustrate omputational results regarding the simulation of

vasular network formation in a threedimensional environment. We onsider the

threedimensional version of the model proposed in [10, 23℄. The model is based

on a Burgers-like equation, a well studied paradigm in the theory of pattern

formation, integrated with a feedbak term desribing the hemotati autorine

loop. The numerial evolution of the omputational model starting from initial

onditions mimiking the experimentally observed ones produes network-like

strutures qualitatively similar to those observed in the early stages of in vivo

vasulogenesis.

Sine in the long run we are interested in developing quantitative omparison

between experimental data and theoretial model, we start by seleting a set of

observable quantities providing robust quantitative information on the network

geometry. The lesson learned from the study of twodimensional vasulogenesis is

that perolative exponents [27℄ are an interesting set of suh observables, so we

test the omputation of perolative exponents on simulated network strutures.

A thorough quantitative omparison of the geometrial properties of experi-

mental and omputational network strutures will beome possible as soon as an

adequate amount of experimental data, allowing proper statistial omputation,
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will beome available.

The paper is organized as follows. Setion 2 summarizes some bakground

knowledge on the biologial problem of vasular network formation. Setion

3 is a short review of the properties of the model introdued in [10, 23℄. In

Setion 4 the numerial approximation tehnique for the model is desribed. In

Setion 5 we desribe the qualitative properties of simulated network strutures

and present the results of the omputation of the exponents of the perolative

transition. Finally, in the Conlusions, we point out at preditable developments

of our researh.

2 Biologial bakground

To supply tissues with nutrients in an optimal way, vertebrates have devel-

oped a hierarhial vasular system whih terminates in a network of size-

invariant units, i.e. apillaries. Capillary networks haraterized by interap-

illary distanes ranging from 50 to 300µm are essential for optimal metaboli

exhange [11℄.

Capillaries are made of endothelial ells. Their growth is essentially driven

by two proesses: vasulogenesis and angiogenesis [6℄. Vasulogenesis onsists of

loal di�erentiation of preursor ells to endothelial ones, that assemble into a

vasular network by direted migration and ohesion. Angiogenesis is essentially

haraterized by sprouting of novel strutures and their remodelling.

In twodimensional assays, the proess of formation of a vasular network

starting from randomly seeded ells an be aurately traked by videomi-

rosopy [10℄ and it is observed to proeed along three main stages: i) migration

and early network formation, ii) network remodelling and iii) di�erentiation in

tubular strutures. During the �rst phase, whih is the most important for de-

termining the �nal geometrial properties of the strutures, ells migrate over

distanes whih are an order of magnitude larger than their radius and aggre-

gate when they adhere with one of their neighbours. An aurate statistis of

individual ells trajetories has been presented in [10℄, showing that, in the �rst

stage of the dynamis, ell motion has marked diretional persistene, pointing

toward zones of higher ell onentration. This indiates that ells ommuniate

through the emission of soluble hemial fators that di�use (and degrade) in the

surrounding medium, moving toward the gradients of this hemial �eld. Cells

behave like not-diretly interating partiles, the interation being mediated by

the release of soluble hemotati fators. Their dynamis is well reprodued

by the theoretial model proposed in [10℄.

The lessons learned from the study of in vitro vasulogenesis is thus that

the formation of experimentally observed strutures an be explained as the

onsequene of ell motility and of ell ross-talk mediated by the exhange of

soluble hemial fators (hemotati autorine loop). The theoretial model

also shows that the main fators determining the qualitative properties of the

observed vasular strutures are the available ell density and the di�usivity and

half-life of the soluble hemial exhanged. It seems that only the dynamial
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rules followed by the individual ell are atually enoded in the genes. The

interplay of these simple dynamial rules with the geometrial and physial

properties of the environment produes the highly strutured �nal result.

At the moment, no diret observation of the hemotati autorine loop

regulating vasular network formation is available, although several indiret

biohemial observations point to it, so, the main evidene in this sense still

omes from the theoretial analysis of omputational models.

Several major developments in threedimensional ell ulture and in ell and

tissue imaging allow today to observe in real time the mehanisms of ell mi-

gration and aggregation in threedimensional settings [9, 21℄.

In the embryo, endothelial ells are produed and migrate in a threedi-

mensional sa�old, the extraellular matrix. Migration is atually performed

through a series of biohemial proesses, suh as sensing of hemotati gra-

dients, and of mehanial operations, suh as extensions, ontrations, and de-

grading of the extraellular matrix along the way.

The evidene provided by twodimensional experimental vasulogenesis sug-

gests that ell motion an be direted by an autorine loop of soluble hemoat-

tratant fators also in the real threedimensional environment.

As a sample of typial vasular strutures that are observe in a threedimen-

sional setting in the early stages of development of a living being, we inlude

here (750µm)2 images of hik embryo brain at di�erent development stages

(Fig. 1). At an early stage (about 52-64 hours) one observes a typial immature

vasular network formed by vasulogenesis and haraterized by a high density

of similar blood vessels (Fig. 1A). At the next stage (70-72 hours) we observe

initial remodelling of the vasular network (Figs. 1B,C). Remodeling beomes

more evident when the embryo is 5 days old, when blood vessels are organized

in a mature, hierarhially organized vasular tree (Fig. 1D).

3 Mathematial model of blood vessel growth

The multidimensional Burgers' equation is a well-known paradigm in the study

of pattern formation. It gives a oarse grained hydrodynami desription of

the motion of independent agents performing retilinear motion and interating

only at very short ranges. These equations have been utilized to desribe the

emergene of strutured patterns in many di�erent physial settings (see e.g.

[24, 15℄). In the early stages of dynamis, eah partile moves with a onstant

veloity, given by a random statistial distribution. This motion gives rise to

intersetion of trajetories and formation of shok waves. After the birth of these

loal singularities regions of high density grow and form a peuliar network-like

struture. The main feature of this struture is the existene of omparatively

thin layers and �laments of high density that separate large low-density regions.

In order to study and identify the fators in�uening blood vessel forma-

tion one has to take into aount evidene suggesting that ells do not behave

as independent agents, but rather exhange information in the form of soluble

hemial fators. This leads to the model proposed by Gamba et al. in [10℄

4



A B

C D

Figure 1: Vasular networks formed by vasulogenesis in hik embryo brain, at

various stages of development, lassi�ed aording to Hamilton and Hamburger

(HH). A: HH stage 17, orresponding to 52-64 hours; B: HH stage 20 (70-72

hours); C,D: HH stage 26 (5 days).
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and Serini et al. in [23℄. The model desribes the motion of a �uid of ran-

domly seeded independent partiles whih ommuniate through emission and

absorption of a soluble fator and move toward its onentration gradients.

3.1 Model equations

The ell population is desribed by a ontinuous density n(x, t), where x ∈ Rd

(d = 2, 3) is the spae variable, and t ≥ 0 is the time variable. The population

density moves with veloities v(x, t), that are stimulated by hemial gradients

of a soluble fator. The hemoattratant soluble fator is desribed by a salar

hemial onentration �eld c(x, t). It is supposed to be released by the ells,

di�use, and degrade in a �nite time, in agreement with experimental observa-

tions.

The dynamis of the ell density an be desribed by oupling three equa-

tions. The �rst one is the mass onservation law for ell matter, whih expresses

the onservation of the number of ells. The seond one is a momentum bal-

ane law that takes into aount the phenomenologial hemotati fore, the

dissipation by interation with the substrate, the phenomenon of ell diretional

persisteny along their trajetories and a term implementing an exluded vol-

ume onstraint [10, 3℄. Finally there is a reation-di�usion equation for the

prodution, degradation and di�usion of the onentration of the hemotati

fator. One then has the following system:

∂n

∂t
+∇ · (nv) = 0 (1a)

∂v

∂t
+ v · ∇v = µ(c)∇c−∇φ(n)− β(c)v (1b)

∂c

∂t
= D∆c+ α(c)n− c

τ
(1)

where µ measures the ell response to the hemotati fator, while D and τ are

respetively the di�usion oe�ient and the harateristi degradation time of

the soluble hemoattratant. The funtion α determines the rate of release of

the hemial fator. The frition term −βv mimis the dissipative interation

of the ells with the extraellular matrix.

A simple model an be obtained by assuming that the ell sensitivity µ, the
rate of release of the hemoattratant α and the frition oe�ient β are on-

stant. A more realisti desription may be obtained inluding saturation e�ets

as funtional dependenies of the aforementioned oe�ients on the onentra-

tion c.
The term ∇φ(n) is a density dependent pressure term, where φ(n) is zero for

low densities, and inreases for densities above a suitable threshold. This pres-

sure is a phenomenologial term whih models short range interation between

ells and the fat that ells do not interpenetrate.

We observe that, at low density n and for small hemoattrative gradients,

(1bb) is an invisid Burgers' equation for the veloity �eld v [5℄, oupled to the

standard reation-di�usion equation (1) and the mass onservaton law (1aa).
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Sine in the early stages of development almost all intraembryoni mesoder-

mal tissues ontain migrating endothelial preursors, we use initial onditions

representing a randomly sattered distribution of ells, i.e., we throw an assigned

number of ells in random positions inside the ubi box, with zero initial velo-

ities and zero initial onentration of the soluble fator, with a single ell given

initially by a Gaussian bump of width σ of the order of the average ell radius

(≃ 15µm) and unitary weight in the integrated ell density �eld n.
In order to model the fat that losely paked ells resist to ompression,

a phenomenologial, density dependent, pressure ∇φ(n) ating only when ells

beome lose enough to eah other is introdued. The potential φ has to be

monotonially inreasing and onstant for n < n0 where n0 is the lose-paking

density. Our simulations suggest that the exat funtional form of φ(n) is not
relevant. For simpliity we hoose

φ(n) =

{
Bp(n− n0)

Cp n > n0

0 n ≤ n0

(2)

3.2 Parameter values

Fourier analysis of Eq. (1) with onstant parameters and in the fast di�usion

approximation ∂c/∂t = 0 suggests that starting from the aformentioned initial

onditions, equation (1) should develop network patterns haraterized by a

typial length sale r0 =
√
Dτ , whih is the e�etive range of the interation

mediated by soluble fators. As a matter of fat, Fourier omponents ĉk of the

hemial �eld are related to the Fourier omponents of the density �eld n̂k by

the relation

ĉk =
ατn̂k

Dτk2 + 1
.

This means that in equation (1) wavelengths of the �eld n of order r0 are

ampli�ed, while wavelengths λ ≫ r0 or λ ≪ r0 are suppressed.

Initial onditions introdue in the problem a typial length sale given by the

average ell-ell distane L/
√
N , where L is the system size and N the partile

number. The dynamis, �ltering wavelengths [8℄, rearranges the matter and

forms a network haraterized by the typial length sale r0.
It is interesting to hek the ompatibility of the theoretial predition with

physial data. From available experimental results [22℄ it is known that the order

of magnitude of the di�usion oe�ient for major angiogeni growth fators is

D = 10−7 cm2 s−1
. In the experimental onditions that were onsidered in [10℄

the half life of soluble fators is 64± 7 min. This gives r0 ∼ 200 µm, a value in

good agreement with experimental observations.

3.3 Lower dimensional models

In order to get some intuition about the typial system dynamis, we exploit the

1D version of model (1) to simulate the �ollision� of two ells. For small values

of Bp and su�iently high Cp in (2), the two bumps merge into a single one (see
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Fig. 2 left) whih appears to be stationary, as suggested also by the graphs of

the kineti energy and of the momentum of inertia (Fig. 3 top). On the other

hand a less smooth onset of pressure obtained with larger Bp or smaller Cp

leads to fores overoming the hemial attrative ones, making the two bumps

boune bak (Fig. 2 right, Fig. 3 bottom). We observe that the better dynamis

from the biologial point of view is the �rst behavior with two bump oalesing.

Biologial observations suggest that the dynamis of ell hanges when they

establish ell-ell ontats. It is reasonable to suppose that a di�erent geneti

program is ativated at this moment, disabling ell motility. We therefore swith

o� ell motility as soon as the ell onentration, signalled by hemoattratant

emission, reahes a given threshold. In this way the omputational system is

guaranteed to reah a stationary state.

These e�ets an be taken into aount using a non-onstant sensitivity µ(c),
a non-linear emission rate α(c), or a variable frition oe�ient β(c). We hoose

a threshold c0 and funtions of the form

µ(c) = µ0[1− tanh(c− c0)] (3a)

α(c) = α0[1− tanh(c− c0)] (3b)

β(c) = β0[1 + tanh(c− c0)] (3)

The e�et of the �rst two terms is that the sensitivity of the ells and their

hemoattratant prodution is strongly damped when the onentration c reahes
the threshold c0. We did not observe a signi�ant dependene on the exat form

of the damping funtion, provided that it approximates a step funtion that is

nonzero only when c < c0.
β(c), on the other hand has the e�et of turning on a strong frition term

at loations of high hemoattratant onentration. We performed several tests

and observed that the di�erent hoies are approximately equivalent in freezing

the system into a network-like stationary state.

4 Numerial methods

Our sheme is based on a suitable relaxation approximation [14℄ of the mass

onservation law (1a) and the multidimensional Burgers equation (1b) oupled

with a seond order �nite-di�erenes method for the reation-di�usion equation

(1) of the hemotati fator. We point out that also for the last equation (1)

we ould onsider a relaxation approximation [13, 19℄ in order to deal with the

system (1) in an uniform way, but we prefer to adopt here a simpler approah.

We �rst brie�y review an extension of the approah proposed by Jin and Xin

in [14℄ for a salar onservation law to the ase when a soure term is present

∂u

∂t
+

∂

∂x
f(u) = g(u). (4)

Introduing an auxiliary variable j that plays the role of a physial �ux we

8



0 0.2 0.4 0.6
0

0.5

1

d
en

si
ty

0 0.2 0.4 0.6
−5

0

5
x 10

−5

ve
lo

ci
ty

0 0.2 0.4 0.6
0

0.5

1

d
en

si
ty

0 0.2 0.4 0.6
−5

0

5
x 10

−5

ve
lo

ci
ty

0 0.2 0.4 0.6
0

0.5

1

d
en

si
ty

0 0.2 0.4 0.6
−5

0

5
x 10

−5

ve
lo

ci
ty

0 0.2 0.4 0.6
0

0.5

1

d
en

si
ty

0 0.2 0.4 0.6
−5

0

5
x 10

−5

ve
lo

ci
ty

0 0.2 0.4 0.6
0

0.5

1

d
en

si
ty

0 0.2 0.4 0.6
−5

0

5
x 10

−5

ve
lo

ci
ty

0 0.2 0.4 0.6
0

0.5

1

d
en

si
ty

0 0.2 0.4 0.6
−5

0

5
x 10

−5

ve
lo

ci
ty

Figure 2: Bump oalesene driven by hemotati fore and pressure. In the

�rst three rows the density and veloity �elds at subsequent instants of time are

shown. In the last row we show the time evolution of the kineti energy and

of the momentum of inertia. Left olumn: Cp = 3 and Bp = 10−3
, leading to

bump oalesene. Right olumn: Cp = 2 and Bp = 10−1
, leading to undesired

rebound of the two bumps.
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Figure 3: Time evolution of the kineti energy and of the momentum of inertia.

Top: Cp = 3 and Bp = 10−3
, leading to bump oalesene. Bottom: Cp = 2

and Bp = 10−1
, leading to undesired rebound of the two bumps.
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onsider the following relaxation system:

∂u

∂t
+

∂j

∂x
= g(u) (5a)

∂j

∂t
+ a

∂u

∂x
= −1

ǫ
(j − f(u)), (5b)

where ǫ is a small positive parameter, alled relaxation time, and a is a suitable

positive onstant. Formally, Chapman-Enskog expansion justi�es the agreement

of the solutions of the relaxation system with the solutions of the equation

∂u

∂t
+

∂

∂x
f(u) = g(u) + ǫ

∂

∂x

(
(a− f ′(u)2)

∂u

∂x

)
, (6)

whih is a �rst order approximation of the original balane law (4).

It is also lear that (6) is dissipative, provided that the subharateristi

ondition a > f ′(u)2 is satis�ed. We would expet that appropriate numerial

disretization of the relaxation system (5) yields aurate approximation to the

original equation (4) when the relaxation parameter ǫ is su�iently small.

In view of its numerial approximation, the main advantage of the relaxation

system (5) over the original equation (4) lies in the linear struture of the har-

ateristi �elds and in the loalized low order term and this avoids the use of

time onsuming Riemann solvers. Moreover, proper impliit time disretization

an be exploited to overome the stability onstraints due to the sti�ness and

to avoid the use of non-linear solvers.

We observe that system (5) is in the form

∂z

∂t
+ divf(z) = g(z) +

1

ǫ
h(z) (7)

where z = (u, j)T , f(z) = (j, au)T , g(z) = (g(u), 0)T and h(z) = (0, j − f(u))T .
When ε is small, the presene of both non-sti� and sti� terms, suggests the use

of IMEX shemes [4, 16, 20℄.

Assume for simpliity to adopt a uniform time step ∆t and denote with zn

the numerial approximation at time tn = n∆t, for n = 0, 1, . . . In our ase a

ν-stages IMEX sheme reads

zn+1 = zn −∆t

ν∑

i=1

b̃i

[
∂f

∂x
(z(i)) + g(z(i))

]
+

∆t

ε

ν∑

i=1

bih(z
(i))

where the stage values are omputed as

z(i) = zn −∆t

i−1∑

k=1

ãi,k

[
∂f

∂x
(z(k)) + g(z(k))

]
+

∆t

ε

i∑

k=1

ai,kh(z
(k))

Here (aik, bi) and (ãik, b̃i) are a pair of Buther's tableaux of, respetively, a

diagonally impliit and an expliit Runge-Kutta shemes.
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In this work we use the so-alled relaxed shemes, that are obtained letting

ε → 0 in the numerial sheme for (7). For these the �rst stage

[
u(1)

j(1)

]
=

[
un

jn

]
+

∆t

ε
a1,1h

([
u(1)

j(1)

])

beomes

u(1) = un j(1) = f(u(1)),

then it redues to h(z(1)) = 0. While the seond stage, i = 2, reads

z(2) = zn −∆tã2,1

[
∂f

∂x
(z(1)) + g(z(1))

]
+

∆t

ε
a2,1 h(z

(1))︸ ︷︷ ︸
≡0

+
∆t

ε
a2,2h(z

(2))

whih implies that h(z(2)) = 0.
Summarizing, the relaxed sheme yields an alternation of relaxation steps

h(z(i)) = 0 i.e. j(i) = f(u(i))

and transport steps where we advane for time ãi,k∆t

∂z

∂t
+ divf(z) = g(z)

with initial data z = z(i) retain only the �rst omponent and assign it to u(i+1)
.

Finally the value of un+1
is omputed as un +

∑
b̃iu

(i)
.

In order to obtain a relaxation approximation of the �rst and seond equation

of (1) we rewrite them in onservative form, introduing the moment p(x, t) =
n(x, t)v(x, t):

∂n

∂t
+∇ · p = 0 (8a)

∂p

∂t
+∇ · (nv ⊗ v) = nµ∇c− n∇φ(n)− βp (8b)

Introduing the variable u = (n,p)T and the auxiliary �ux w, the relaxation

system reads

∂u

∂t
+∇ ·w = G(u,w, c) (9a)

∂w

∂t
+A∇ · u = −1

ε
(w − F (u)) (9b)

where G(u,w, c) = (0, nµ∇c − n∇φ(n) − βp)T , F (u) = (p,nv ⊗ v) and A
is a suitable diagonal matrix whose positive diagonal elements verify a sub-

harateristi ondition. As we previously remarked, our relaxed sheme takes

alternatively an impliit step and an expliit one: the expliit step involves the

omputation of the �ux ∇·w and the evaluation of the non sti� soure term G.
In partiular we ompute ∇c and ∇φ(n) using a seond order di�erene sheme.
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In the following we desribe for simpliity the fully disrete sheme in one

dimensional ase. We introdue the spatial grid points xj with uniform mesh

width h = xj+1−xj . As usual, we denote by un
j the approximate ell average of

a quantity u in the ell [xj−1/2, xj+1/2] at time tn and by un
j+1/2 the approximate

point value of u at x = xj+1/2 and t = tn. A spatial disretization to (9) in

onservation form an be written as

∂uj

∂t
+

1

h

(
wj+1/2 −wj−1/2

)
= G(uj ,wj , cj) (10a)

∂wj

∂t
+

1

h
A
(
uj+1/2 − uj−1/2

)
= −1

ε
(wj − F (uj)) . (10b)

In order to ompute the numerial �uxes wj±1/2, we onsider the harateris-

ti variables w ± A1/2u that travel with onstant veloities ±A1/2
, and so the

semidisrete system beomes diagonal. Now we have to apply a numerial ap-

proximation to w±A1/2u. A �rst idea is to apply a ENO or WENO approah

(see e.g. [25℄), to build an high order reonstrution, oupled with a suitable

IMEX sheme. The drawbak is the high omputational osts, espeially in

a multidimensional framework. Therefore we hose a suitable ompromise be-

tween the omputational ost and the auray, using a seond order TVD

sheme. The numerial �ux that we use is obtained oupling an upwind sheme

and the Lax-Wendro� method by a non linear �ux limiter [17℄. Namely the high

order �ux F (U) for a generi variable U onsists of the low order term FL(U)
plus a seond order orretion FH(U):

F (U) = FL(U) + Ψ(U)(FH(U)− FL(U))

where Ψ is the �ux limiter. When the data U is smooth, then Ψ(U) should be

near 1, while near a disontinuity we want Ψ(U) lose to 0. The idea onsists

in the seletion of a high order �ux FH that works well in smooth regions and

of a low order �ux FL whih behaves well near disontinuities.

In our shemes we onsidered the upwind sheme as a low order �ux for the

harateristi variables

FL((w+A1/2u)j+1/2) = (w+A1/2u)j , FL((w−A1/2u)j+1/2) = (w−A1/2u)j+1

and the Lax-Wendro� sheme as a high order �ux for the same variables

FH((w ±A1/2u)j+1/2) =
A1/2

2 ((w ±A1/2u)j+1 + (w ±A1/2u)j)

−λA1/2

2 ((w ±A1/2u)j+1 − (w ±A1/2u)j)

where λ = ∆t/h (we advane of one time step).

Letting

Θ±

j =

(
(w ±A1/2u)nj − (w ±A1/2u)nj−1

(w ±A1/2u)nj+1 − (w ±A1/2u)nj

)±1

,

the fully disrete sheme for the variable u using Euler method to advane in

time is the following

un+1
j = un

j + λA1/2

2 (un
j+1 − 2un

j + un
j−1)− λ

2 (w
n
j+1 −wn

j−1)

∆t I−λA1/2

4 (−s+j + s+j−1 + s−j+1 − s−j ),

13



with

s±j =
1

h
(±A1/2un

j±1 +wn
j±1 ∓A1/2un

j −wn
j )Ψ(Θ±

j ). (11)

After the substitution of the relaxing step we get

un+1
j = un

j + λA1/2

2 (un
j+1 − 2un

j + un
j−1)− λ

2 (F (un
j+1)− F (un

j+1))

∆t I−λA1/2

4 (−s+j + s+j−1 + s−j+1 − s−j ),

where s± is obtained from (11) letting w = F (u). The sheme an be put

in a onservative form and it is possible to prove its onsisteny by standard

tehnique [17℄. In order to prove a TVD stability, we write

un+1
j+1 − un+1

j = (1−Cn
j −Dn

j )(u
n
j+1 − un

j ) +Cn
j−1(u

n
j − un

j−1)

+Dn
j+1(u

n
j+2 − un

j+1) + Ej+1/2,
(12)

where

Cn
j = λ

2

(
A1/2 +

F (un
j+1)−F (un

j )

u
n
j+1

−u
n
j

)

Dn
j = λ

2

(
A1/2 − F (un

j+1)−F (un
j )

u
n
j+1

−u
n
j

)

En
j+1/2 = ∆t 1−λA1/2

4

(
s−j+2 − 2s−j+1 + s−j − s+j+1 + 2s+j − s+j−1

)

where we notie that C and D are non negative.

The oe�ient E an be written in terms of C and D, in fat

s+j =
2

λ∆x
Cn

i Ψ(Θ+
i )(u

n
j+1 − un

j )), s−j = − 2

λ∆x
Dn

i−1Ψ(Θ−

i )(u
n
j − un

j−1)).

We an rewrite (12) in the following form

un+1
j+1 − un+1

j = (un
j+1 − un

j )
[
(1−Cn

j −Dn
j ) + (1− λA1/2)(Dn

j Ψ
−

j+1 +Cn
jΨ

+
j )
]

+(un
j − un

j−1)
[
Cn

j−1 − 1−λA1/2

2 (Dn
j−1Ψ

−

j +Cn
j−1Ψ

+
j−1)

]

+(un
j+2 − un

j+1)
[
Dn

j+1 − 1−λA1/2

2 (Dn
j+1Ψ

−

j+2 +Cn
j+1Ψ

+
j+1)

]

(13)

It's easy to see that under the CFL ondition ‖λ
√
max{ai}‖ ≤ 1, where ai are

the positive diagonal elements of the matrix A, and using the fat that the �ux

limiter veri�es

0 ≤ Ψ(Θ)

Θ
≤ 2, 0 ≤ Ψ(Θ) ≤ 2,

we have

(1−Cn
j −Dn

j ) + (1− λA1/2)(Dn
j Ψ

−

j+1 +Cn
j Ψ

+
j ) ≥ 0

Cn
j−1 − 1−λA1/2

2 (Dn
j−1Ψ

−

j +Cn
j−1Ψ

+
j−1) ≥ 0

Dn
j+1 − 1−λA1/2

2 (Dn
j+1Ψ

−

j+2 +Cn
j+1Ψ

+
j+1) ≥ 0

and so we an dedue that our sheme is TVD stable from Harten's Theorem

[12℄.
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Figure 4: Saling of the 3D algorithm on the ULISSE luster. Dots repre-

sent exeution time (s) and asterisks the number of M�ops/s for our numerial

algorithm. Dashed and dash-dot lines are linear interpolations

In the ase of multidimensions, a similar disretization an be applied to eah

spae dimension [14, 13, 19℄. Then, sine the struture of the multidimensional

relaxation system is similar to the 1D system, the numerial implementation

for higher dimensional problems, based on additive dimensional splitting, is not

muh harder than for 1D problems.

For our threedimensional problem the omputational ost is quite high and

an be redued using parallel omputing: the semilinearity of relaxation systems,

together with our suitably hosen disretizations, provides parallel algorithm

with almost optimal saling properties. In partiular the domain is divided

in smaller subdomains and eah subdomain is assigned to a proessor. The

omputations of all non linear terms involve only pointwise evaluations and it

is easy to perform these tasks in a loal way. Only point near the interfaes

between di�erent subdomain need to be ommuniated in the transport step.

We implemented these algorithm on a high performane luster for parallel

omputation installed at the Department of Mathematis of the University of

Milano (http://luster.mat.unimi.it/). The saling properties of the algorithm

are shown in Fig. 4 and are essentially due to the exlusive use of matrix-vetors

operations and to the avoidane of solvers for linear or non-linear systems.

5 Numerial results

We perform threedimensional numerial simulations of model (1) on a ubi box

with side of length L = 1mm, with periodi boundary onditions. The initial

ondition is assigned in the form of a set of gaussian bumps with σ = 15µm

15
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Figure 5: Initial state of a numerial simulation with 2500cells/mm
3
. The

olorbar on the right is referred to the oloring of the ross setions. The red

three-dimensional isosurfae orresponds to the blak ontour lines in the ross

setions

sattered in the ube with uniform probability and having zero initial veloity.

Biohemial data [23℄ suggest the values D = 10−3mm2/s and τ = 4000 s
for the di�usion onstant and the hemoattratant deay rate. We �x the other

onstant parameters by dimensional analysis and �tting to the harateristi

sales of the biologial system. In partiular, we hoose: µ0 = 10−11mm4/s3,
α = 1s−1

, β = 10−3s−1
. For the oe�ients in the expression (2) of the pressure

funtion φ we take n0 = 1.0,Cp = 3 and Bp = 10−3
.

Very �ne grids have to be used in order to resolve the details of the n(x, t)
�eld, whih may ontain hundreds of small bumps, eah representing a single

ell. Sine eah ell has radius σ = 15µm, one needs a grid spaing suh that

∆x < 10µm and therefore grids of at least 1003 ells for a ubi domain of 1mm
side.
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Figure 6: Transient state of the evolution of the initial state depited in Fig.

5 aording to model (1). The initial formation of network-like strutures is

observed
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Figure 7: Stationary state of the evolution of the states depited in Figs. 5

and 6 aording to model (1). Well developed threedimensional network-like

strutures are observed
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We performed numerial simulations with varying initial average ell density

n̄. We observed that the initially randomly distributed ells oalese forming

elongated strutures and evolve towards a stationary state mimiking the ge-

ometry of a blood vessel network in the early stages of formation.

We assigned n̄ in the range 2100− 3500 cells/mm3
and performed 10 to 15

runs for eah density value with a 128× 128× 128 grid on a biologial system

of 1 mm3
. The harateristi lengths and geometri properties of the stationary

state depend on n̄ and we observed a perolative phase transition similar to the

one desribed in [10℄ for the twodimensional ase.

5.1 Analysis of the perolative phase transition

In experimental blood vessel formation it has been shown that a perolative

transition is observed, by varying the initial ell density. For low ell densi-

ties only isolated lusters of endothelial ells are observed, while for very high

densities ells �ll the whole available spae. In between these two extreme be-

haviours, lose to a ritial ell density nc, one observes the formation of ritial

perolating lusters onneting opposite sides of the domain, haraterized by

well de�ned saling laws and exponents. These exponents are known not to

depend on the mirosopi details of the proess while their values haraterize

di�erent lasses of aggregation dynamis.

The purely geometri problem of perolation is atually one of the simplest

phase transitions ourring in nature. Many perolative models show a seond

order phase transition in orrespondene to a ritial value nc, i.e. the proba-

bility Π of observing an in�nite, perolating luster is 0 for n̄ < nc and 1 for

n̄ > nc [27℄. The phase transition an be studied by fousing on the values of an

order parameter, i.e. an observable quantity that is zero before the transition

and takes on values of order 1 after it. In a perolation problem the natural

order parameter is the probability P that a randomly hosen site belongs to the

in�nite luster (on �nite grids, the in�nite luster is substituted by the largest

one).

In the viinity of the ritial density nc the geometri properties of lusters

show a peuliar saling behavior. For instane, in a system of linear �nite size

L, the probability of perolation Π(n, L), de�ned empirially as the fration

of omputational experiments that produe a perolating luster, is atually a

funtion of the ombination (n− nc)L
1/ν

, where ν is a universal exponent.

In a neighborhood of the ritial point and on a system of �nite size L, the
following �nite size saling relations are also observed:

Π(n̄, L) ∼ Π̂[(n̄− nc)L
1/ν ] (14)

There are two main reasons to study perolation in relation to vasular net-

work formation: (i) perolation is a fundamental property for vasular networks:

blood should have the possibility to travel through the whole vasular network

to arry nutrients to tissues; (ii) ritial exponents are robust observables har-

aterizing the aggregation dynamis.
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A rather omplete haraterization of perolative exponents in the two-

dimensional ase has been provided in [10℄.

As a �rst step in the study of the more realisti threedimensional ase, we

ompute the exponent ν haraterizing the strutures produed by the model

dynamis (1) with varying initial ell density.

To this aim, extensive numerial simulation of system (1) were performed

using lattie sizes L = 1, 0.78, 0.62, 0.5mm, with di�erent values of the initial

density n̄. For eah point 10 to 15 realizations of the system of size 1mm were

omputed, depending on the proximity to the ritial point.

The ontinuous density at �nal time n(x) was then mapped to a set of

oupied and empty sites by hoosing a threshold n0. Eah region of adjaent

oupied sites (luster) was marked with a di�erent index. The perolation

probability Π for eah set of realizations was then measured. In Fig. 8 we

show lusters obtained in a box with L = 0.5mm with n̄ = 3100. The largest

perolating luster is shown in red, together with some other smaller lusters

shown in di�erent olors.

Using relation (14), we estimate the position of the ritial point nc and

the value of the ritial exponent ν. The data for di�erent box side length

and initial density should lie on a single urve after resaling the densities as

n̂ = (n̄ − nc)L
1/ν

. For �xed nc and ν we resale n̄ and �t the data with

a logisti urve, then ompute the distane of the data from the urve. The

squared distane is minimized to obtain estimates for nc and ν.
Using n0 = 0.35 we obtain nc = 2658 and ν = 0.84. This latter value is om-

patible with the known value 0.88 for random perolation in three dimensions

[27℄.

6 Conlusions

We have exposed results on the numerial simulation of vasular network for-

mation in a threedimensional setting.

We have used the threedimensional version of the equations proposed in

[10, 23℄ as a omputational model. Evolution starting from initial onditions

mimiking the experimentally observed ones produe network-like strutures

qualitatively similar to those observed in the early stages of in vivo vasuloge-

nesis.

As a starting point towards a quantitative omparison between experimental

data and the theoretial model we nedd to selet a set of observable quantitaties

whih provide robust quantitative information on the network geometry. The

lesson learned from the study of twodimensional vasulogenesis is that per-

olative exponents are an interesting set of suh observables, so we tested the

omputation of perolative exponents on simulated network strutures.

A quantitative omparison of the geometrial properties of experimental and

omputational network strutures will beome possible as soon as an adequate

amount of experimental data, allowing proper statistial omputation, will be-

ome available.
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Figure 8: Cluster perolation with ell density n = 2500ells/mm

3
. A: on-

neted lusters in a realization of model (1). B: the largest luster depited in

A perolates.
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ollapsed aording to formula (14)
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In order to ompute the robust statistial observables desribed in the paper

one has to perform many runs of the simulation ode using di�erent random

initial data. This, toghether with the intensive use of omputational resoures

required by a three-dimensional hydrodynami simulation on �ne grids, alls for

an e�ient implementation of the omputational model on parallel omputers,

as the one we presented in this paper.

Simulations of blood vessel strutures an in priniple present pratial impli-

ations. Normal tissue funtion depends on adequate supply of oxygen through

blood vessels. Understanding the mehanisms of formation of blood vessels has

beome a prinipal objetive of medial researh, beause it would o�er the pos-

sibility of testing medial treatments in siliio. One an think that the dynami-

al model (1) an be also exploited in the future to design properly vasularized

arti�ial tissues by ontrolling the vasularization proess through appropriate

signaling patterns.
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