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Abstract

We study model reduction techniques for frequency averaging in radiative heat transfer. Espe-
cially, we employ proper orthogonal decomposition in combination with the method of snapshots
to devise an automated a posteriori algorithm, which helps to reduce significantly the dimension-
ality for further simulations. The reliability of the surrogate models is tested and we compare the
results with two other reduced models, which are given by theapproximation using the weighted
sum of gray gases and by an frequency averaged version of the so–calledSPn model. We present
several numerical results underlining the feasibility of our approach.

Key words. Radiative Heat Transfer, Frequency Averaging, Proper Orthogonal Decomposition,
Weighted Sum of Grey Gases,SPn Approximations.

AMS(MOS) subject classification.35K55, 49K20, 80A20

1 Introduction

The simulation of industrial high temperature processes requires to take into account heat conduction
and convection as well as heat transfer via radiation, e.g. in simulation of gas turbine combustion
chambers [24, 23], combustion in car engines or cooling of a hot glass melt [4, 26]. Since the ra-
diation field is dependent on time and space as well as on frequency and the angular direction, a
simulation using a full radiative heat transfer model is computationally expensive; if the simulation is
part of an optimization problem, it becomes infeasible [2, 14, 5, 19, 21, 20]. In order to decrease the
dimensionality, several simplified models have been developed, among them the Rosseland,Pn and
SPn equations that replace directed radiation by a direction–independent radiative flux [17, 11]. The
discretization with respect to frequencies is done by frequency band models; the so–called grey model
is a model with just one band. Another possibility to reduce the high dimensional discrete phase space
is to use adaptive discretization techniques [9].

Realistic simulation of the cooling of glass or combustion has to take into account that some frequency–
dependent properties of the material show rapid variationseven on small frequency intervals; these
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rapid variations are also observed in experimental data or high precision simulations [17, 23]. The
frequency band models require a high number of narrow bands to resolve rapid variations, causing
extreme demands on processing time and memory storage for the simulation. Here, we will discuss
and compare different strategies that try to work around these difficulties, while still providing results
of high precision.

Most approximate models which are employed to reduce the number of frequency bands are either
derived using asymptotic analysis, like in [12] where the so–calledfrequency averagedSPn equations
are derived, or using fitting techniques combined with approximations, like in the so-calledweighted
sum of grey gases[17].

Here, we discuss an a posteriori method for automated frequency averaging based onproper orthogo-
nal decomposition(POD) with respect to the frequency variable. This method iswidely discussed in
literature during the last two decades. The original concept goes back toPearson[18]. The method
is also known as Karhunen–Loève decomposition [8, 13] or principal component analysis [7]. It pro-
vides an optimally ordered, orthonormal basis in the least–squares sense for a given set of theoretical,
experimental or computational data [3]. POD falls into the general category of projection methods
where the dynamical system is projected onto a subspace of the original phase space. In combination
with Galerkin projection it provides a powerful tool to derive surrogate models for high–dimensional
or even infinite dimensional dynamical systems, since the subspace is composed of basis functions
inheriting already special characteristics of the overallsolution. This is in contrast to standard finite
element discretizations where the choice of the basis functions is in general independent of the system
dynamics.

This paper is organized as follows. In the remaining part of the introduction, we will present the
well–knownSP1 equations on which we build our new model reduction method ofproper orthogonal
decomposition with respect to the frequency variable that is the subject of our paper. In the second
section, we focus on POD, deriving it fromSP1 band models, discussing its implementation and nu-
merical results. The third section deals with two other model reduction techniques, i.e. the frequency
averagedSPn model and the weighted sum of grey gases. Here, we present thefirst two dimensional
simulations for the former model. Finally, section 4 contains the comparison of all three discussed
models and conclusions are given in section 5.

1.1 TheSP1 equations

The SP1 equations form the basis of our reduced models. Following anoverview over the used
notation, a short introduction into the frequency–dependent and band formulation ofSP1 is given in
this subsection; for details, the reader is referred to the introductory sections of [9].

1.1.1 Notation

The physical model is described usingt for time,x for spatial coordinates; the temperature is denoted
by T , the radiation intensity byI. (For theSPn models that include theSP1 model as their most basic
case, the intensity is replaced by direction–independent radiation fluxesφ by integratingI over all
directions.) The model further depends on the following physical parameters:σ is a scattering,κ an
absorption coefficient;kc denotes the thermal conductivity,hc the convective heat transfer coefficient.
ρm is the density,cm the specific heat capacity. The refractive index of the medium is denoted bynm.
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Parameter Value Description

tref 18 704 s reference time

xref 0.1 m reference length

Tref 1 K reference temperature

Iref 5 W
m2 reference radiation intensity

κref 3 m−1 reference absorption coefficient

kc,ref 1.672 W
m K reference coefficient of thermal conductivity

hc,ref 5 W
m2 K reference convective heat transfer coefficient

ρm 2 514.8 kg
m3 density

cm 1 239.6 J
kg K specific heat capacity

Table 1: Reference values

The equations presented here use non–dimensional variables; the scaling is given by

t∗ =
t

tref
, x∗ =

x

xref
, T ∗ =

T

Tref
, I∗ =

I

Iref
, (1a)

σ∗ =
σ

σref + κref
, κ∗ =

κ

σref + κref
, k∗c =

kc

kc,ref
, h∗c =

hc

hc,ref
. (1b)

The subscript “ref” is used for the corresponding referencevalues; these are assumed to fulfill the
relations

tref = cmρm(σref + κref)x
2
ref

Tref

Iref
, (2a)

kc,ref =
Iref

(σref + κref)Tref
, hc,ref =

Iref
Tref

. (2b)

The parameterǫ is a reference opacity and given by

ǫ =
1

(σref + κref)xref
. (3)

In the following, only the scaled values will be used, without denoting them explicitly with the stars.
The reference values used in our numerical simulations can be found in table 1. As we assume the
absence of scattering in the medium, noσref is given, anσ andσ∗ are zero.

Let Ω be a bounded domain, subset ofR
d, d ∈ {1, 2, 3}, representing the geometry of the medium,

and letn be the outward normal ofΩ on∂Ω. Let (0, tend) be the time interval used in the simulation,
and defineQ andΣ by

Q := Ω × (0, tend),

Σ := ∂Ω × (0, tend).
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1.1.2 Frequency–dependentSP1 equations

The frequency dependentSP1 equations that can be derived as an approximation of the fullradiative
heat transfer equations under the assumption of an optically thick, diffusive situation [11], are given
by

∂tT −∇ · (kc∇T ) =

∫

∞

ν0

∇ ·

(

1

3(σ + κ)
∇φ

)

dν (4a)

∀ν > ν0 : −ǫ2∇ ·

(

1

3(σ + κ)
∇φ

)

+ κφ = 4πκB∗

glass(T, ν) (4b)

in Q,

kc n · ∇T =
hc

ǫ
(Tb − T ) +

απ

ǫ

∫ ν0

0
(B∗

air(Tb, ν) −B∗

air(T, ν)) dν (4c)

ǫ

3(σ + κ)
n · ∇φ =

1 − 2r1
2 + 6r2

(

4πB∗

glass(Tb, ν) − φ
)

(4d)

onΣ, and
T (x, 0) = T0(x), x ∈ Ω (4e)

as initial condition.

Here,r1 andr2 are given as

r1 = 0.2855742 r2 = 0.1452082 (5)

(see [11]).B∗

m is given by the scaled black–body radiation intensity at a frequencyν for a temperature
T · Tref

B∗

m(T, ν) =
Bm(T · Tref , ν)

Iref
, (6)

whereBm is the Planck function describing monochromatic black–body intensity

Bm(T, ν) =
n2

m

c20
·

2hP ν
3

exp(hP ν/(kBT )) − 1
. (7)

In this expression,hP = 6.62608 · 10−34 J s is the Planck,kB = 1.38066 · 10−23 J/K is the
Boltzmann constant.nm is the refractive index giving the ratio of the speed of lightin vacuumc0 and
in the mediumc

nm =
c0
c
. (8)

For glass,nglass = 1.46 is a valid choice; for the surrounding air we setnair = 1. ν0 is the frequency
up to which the glass is opaque and absorbs radiation; the opacity in the rest of the spectrum is given
by 1/κ, andσ is a scattering coefficient.

Remark 1.1. For a mathematical investigation of system (4) we refer to [20], where also an optimal
control problem is considered. During the last years this model proved to be a reliable substitute for
the full radiative heat transfer problem [24, 23, 11].
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1.1.3 Frequency–bandSP1 equations

The frequency bandSP1 equations are derived by dividing the frequency space into discrete bands
[νi−1, νi], i = 1, 2, . . . , N and integrating the frequency dependentSP1 equations over these bands
using a simple quadrature rule,

φi :=

∫ νi

νi−1

φ dν, (9)

i.e. we use a piecewise constant finite element ansatz with respect to the frequency. Under the as-
sumption thatκ andσ are (nearly) constant on the frequency bands

κ(ν) = κi, σ(ν) = σi for ν ∈]νi−1, νi] (10)

we get theSP1 frequency band equations with

∂tT −∇ · (kc∇T ) =
N
∑

i=1

∇ ·

(

1

3(σi + κi)
∇φi

)

(11a)

−ǫ2∇ ·

(

1

3(σi + κi)
∇φi

)

+ κiφi = 4πκi

∫ νi

νi−1

B∗

glass(T, ν) dν (11b)

for i = 1, 2, . . . , N in the interior, and

kc n · ∇T =
hc

ǫ
(Tb − T ) +

απ

ǫ

∫ ν0

0
(B∗

air(Tb, ν) −B∗

air(T, ν)) dν (11c)

ǫ

3(σi + κi)
n · ∇φi =

1 − 2r1
2 + 6r2

(

4π

∫ νi

νi−1

B∗

glass(Tb, ν) dν − φi

)

(11d)

for i = 1, 2, . . . , N on the boundary, and finally

T (x, 0) = T0(x)

as initial condition.

Remark 1.2. The high number of frequency bands required in applicationscause the above system
to be of significant size. One often encounters up to 300 frequency bands, i.e. one has to solve one
nonlinear parabolic PDE coupled with 300 elliptic equations. ForSPn models withn higher than1,
this problem will be even worse, as new flux variables are needed for each radiation band[11].

2 POD and basis–transformation of theSP1 equations

After discussingSP1 in its frequency–dependent and band variant, we will now focus on a basis–
transformed band variant ofSP1, which will, in combination with proper orthogonal decomposition
(POD), finally lead to the new POD frequency averaged model. The presentation of the POD equations
for SP1 will be followed by details concerning our implementation and the numerical results that were
obtained.
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2.1 Basis–transformed frequency–bandSP1 equations

In section 1.1.3, frequency bands were chosen so that the absorptivity of the medium was almost
constant over each band. For realistic spectral data with large variations of the absorption coefficient,
this approach leads to an undesirably high number of required bands and thus to a high number of flux
variables; therefore it is important to develop a variant ofthe frequency bandSP1 model that allows
to reduce the number of flux variables by representing the full spectrum using fewer coordinates.

This is done by setting

φi :=

M
∑

j=1

mijψj , (12)

whereM ≤ N , in most casesM ≪ N , thus representing the “natural bands”φi by “artificial bands”
ψj . One possibility to find themij is the application of proper orthogonal decomposition to discover
the most important frequency modes; this approach will be discussed in detail in the next section;
meanwhile,mij will be treated as given data. However, we will assume that the matrixP := (mij)i,j
is orthonormal; this allows for simpler notation, asP−1 = P T and the matrixP T ·P that will appear
in the flux equations inΩ will be just the identity.

Applying the basis transformation to the frequency bandSP1 equations of the last chapter, we get

∂tT −∇ · (kc∇T ) =
M
∑

j=1

∇ ·

(

N
∑

i=1

mij

3(σi + κi)
∇ψj

)

(13a)

−

M
∑

k=1

ǫ2∇ ·

(

N
∑

i=1

mij mik

3κi(σi + κi)
∇ψk

)

+ ψj = 4π

N
∑

i=1

mij

∫ νi

νi−1

B∗

glass(T, ν) dν (13b)

in Q and

kc n · ∇T =
hc

ǫ
(Tb − T ) +

απ

ǫ

∫ ν0

0
(B∗

air(Tb, ν) −B∗

air(T, ν)) dν (13c)

M
∑

k=1

ǫ

N
∑

i=1

mijmik

3κi(σi + κi)
n · ∇ψk =

1 − 2r1
2 + 6r2

(

4π
N
∑

i=1

mij

κi

∫ νi

νi−1

B∗

glass(Tb, ν) dν −
M
∑

k=1

N
∑

i=1

mijmik

κi

ψk

)
(13d)

onΣ.

As one can see from these equations, all summations overi ∈ {1, . . . ,N} can be done in advance,
giving the vectors

A1 :=

(

N
∑

i=1

mij

(σi + κi)

)

j

= P T ·

(

1

(σi + κi)

)N

i=1

(14a)

A2 :=

(

N
∑

i=1

mij

κi

)

j

= P T ·

(

1

κi

)N

i=1

(14b)
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(whereA1 = A2 =: A when scattering is neglected) and the matrices

B :=

(

N
∑

i=1

mijmik

κi

)

j,k

= P T ·

(

(

1

κi

)i=N,j=M

i=1,j=1

⊗ P

)

(14c)

G :=

(

N
∑

i=1

mij mik

κi(σi + κi)

)

j,k

= P T ·

(

(

1

κi(σi + κi)

)i=N,j=M

i=1,j=1

⊗ P

)

, (14d)

with the matrixP defined asP = (mij)i,j, i ∈ {1, . . . ,N}, j ∈ {1, . . . ,M} (for POD,P is the POD
basis matrix) and⊗ being the element–wise matrix product. The matrices

(

1

κi(σi + κi)

)i=N,j=M

i=1,j=1

and

(

1

κi

)i=N,j=M

i=1,j=1

(15)

are the concatenation of theN–column–vectors(κ−1
i (σi+κi)

−1)i and(κ−1
i )i, respectively to a matrix

of N rows andM columns.

Remark 2.1. Assuming that absorption and scattering are independent ofspace and due to the special
structure of the matricesB andG given above, one can apply diagonalization techniques to con-
vert these (full) matricessimultaneouslyto diagonal matrices and increase the performance of the
algorithm even more. This is what we calldiagonalized POD. In addition to being more efficient,
diagonalized POD produces frequency bands that do not couple and can thus be interpreted as a
generalization of band–models (although the frequency modes are linear independent, they overlap
strongly, what is not the case for conventional frequency band models).

2.2 Computation of an optimal frequency basis using POD

In the discussion of the basis–transformedSP1 variant above, we left open the details of how to find
a suitable basis. Now we use proper orthogonal decomposition with respect to the frequency variable
that will yield an optimal result in the least–squares sense.

The problem that has to be dealt with in our context is the question whether it is possible to express
the (discrete) spectraF1 := (φi)

N
i=1 that are encountered in all grid points of the discretization of

Ω × (0, tend) in time and space using a vectorF2 := (ψj)
M
j=1 of flux variables with a dimensionM

considerably smaller than the numberN of frequency bands. In the ideal case, the representation
F1 = P · F2 should be exact; as this is not possible in general, we demandthat the approximation
error‖F1 − P · F2‖ in a suitable norm should be minimized for given dimensionsN andM .

This problem is solved by proper orthogonal decomposition [10, 6], which is ana posteriorimethod to
compute this optimal basis. However, being a data based method, one solution of the original problem
is necessary in order to compute the suitable basis transform. This is not as bad as it might sound, as
the basis computed from this initial dataset can be used for abroad range of similar problems, what
is especially important when thinking of applying this model reduction technique in the context of
optimal control.

The initial solution of the full problem yields via themethod of snapshots[25] spectral datãS =
(F1,i)i, i ∈ I, for each grid point in space and time of the discretization.As further processing
consists of algorithms that are computationally expensivefor large size ofI, the complete set of
spectral information is replaced by a suitable subsetS = (F1,j)j , j ∈ J ⊂ I, that is still representative
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for the whole, such that one still gets the correct dynamics of the system. In order to find a small basis
of a subspace of the span of allF1,i, i ∈ I, that allows the approximate representation of allF1,i up to
high accuracy, we build thecorrelation matrixC given by

C = ST · S, (16)

using the scalar product ofR
N . C is positive semidefinite; all eigenvaluesdi of C are therefore real

and nonnegative. Using appropriate numerical algorithms,the eigenvectorsvi (sorted by decreasing
eigenvaluedi) can be computed, combined into a matrixV , and the frequency eigenmodes matrixE
is given by

E = S · V. (17)

As we demanded in 2.1 that the POD basisP should be orthonormal, this step is followed by an
orthonormalization of the firstM columns ofE, yielding the POD basisP . From this matrix and the
opacity dataset, the vectorA and the matricesB andG can be computed. After optional diagonaliza-
tion ofB andG (and corresponding updates toP andA) for diagonalized POD, the POD dataset is
complete.

Remark 2.2. It can be shown that the POD basis vectors are ordered in a way that the approximation
of the spectral snapshots using the firstk basis vectors is the best approximation that can be obtained
using an arbitrary basis ofk vectors [10].

Still, one has to decide how many basis vectors will be selected for the reduced spectral model. In
terms of a dynamical system, large eigenvalues correspond to main characteristics of the system, while
small eigenvalues give only small perturbations of the overall dynamics. The goal is to chooseℓ small
enough while therelative information content[1] of the basis defined by

I(ℓ) :=

∑ℓ
k=1 dk

∑N
k=1 dk

(18)

is near to one. Typically, the magnitude of the eigenvalues decreases very rapidly for the first values, so
that numbers of eight, five and sometimes even less eigenvectors proved to be enough for simulations
with satisfying accuracy; this will also be seen in the presentation of the computed eigenmodes in 2.4.

The algorithm used to generate the POD parameter set is givenbelow.

Algorithm 2.3. Algorithm for computing the POD coefficient dataset

begin
• letm be the number of desired POD bands
• load simulation dataset and extract samples
• optional:compute time derivatives of simulated data and add samples to the set of samples from

the previous step
• form the sample matrixS with the samples as columns
• compute correlationC matrix asC := ST · S
• compute eigenvectorsvi and eigenvaluesdi of correlation matrixC, sorted so thatdi > di+1

• form the matrixV with thevi as its rows
• compute the full frequency eigenmode matrixẼ asẼ := S · V
• select the firstm columns ofẼ into the eigenmode matrixE: E = Ẽ(:, 1:m)
• optional:normalize the columns ofE so that they all have norm1
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• perform QR factorization onE: Q ·R = E
• store the firstm columns ofQ as the POD basisP := Q(:, 1:m), set

◦ k1 as the column vector of values1/κi

◦K1 as the column vector of values1/κi, repeated into a matrix ofm columns
◦K2 as the column vector of values1/κ2

i , repeated into a matrix ofm columns
• and compute

◦ A := P T · k1

◦ B := P T · (K1 ⊗ P )
◦ G := P T · (K2 ⊗ P )

• save the matricesA, B,G andP as the POD parameter set
end

2.3 Implementation and Numerical Results

Now we present numerical results and compare them to two other reference models. The physical
parameters used for all simulations are given in table 2. Dueto the choice of the scaling coefficients,
the scaled valuesk∗c andh∗c were both identical to1. The frequency dependent absorption coefficients
used are given in figure 1.

Parameter Value Description

kc 1.672 W
m K coefficient of thermal conductivity

hc 5 W
m2 K convective heat transfer coefficient

Table 2: Physical properties

The geometry was the square[−1, 1]× [−1, 1] in scaled coordinates, corresponding to an edge length
of 0.2 m. The material was cooled in the scaled time interval[0, 0.1], corresponding to approximately
thirty minutes of cooling time; the boundary temperature was decreased linearly from an initial tem-
perature of1000 K (that was also the initial temperature of the glass) to400 K. For simulations that
show the good suitability of the POD dataset generated for this cooling scenario, the initial tempera-
ture was modified within the values of800 K, 900 K, 1100 K, and1200 K.

In order to create easily comparable results, all simulations (for the full and several reduced models)
were based on identical numerical settings. The spatial domain was discretized using a25 × 25 grid.
The spatial discretization of the differential equations was accomplished using standard linear finite
elements. The time interval was discretized using an equidistant grid of1250 intervals. The time
discretization was done using a semiimplicit scheme based on a modified implicit Euler’s method.
The semiimplicit approach also simplified the implementation of the highly nonlinearGSP2 model
(discussed in 3.2).

Remark 2.4. For the spatial and temporal discretization described above, a model consisting of283
frequency bands yields a total of25 × 25 × 1250 × 284 ≈ 2 · 108 degrees of freedom. A finer grid,
higher spatial dimension or the use of anSPn model withn > 2, which could be desirable in practical
use, even worsens the size of the problem. These numbers showthat some sort of model reduction is
unavoidable for solving real life problems (especially when optimization problems are considered).
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Figure 1: Absorption curve

2.4 Computed frequency eigenmodes

As outlined in 2.2, computing POD bands consists of taking spectral snapshots from a simulation
using the full model, computing the eigenvalues and eigenvectors of the correlation matrix of these
snapshots, and selecting eigenvectors with the highest eigenvalues to compute the POD bands. For the
snapshots, every15th temporal and every seventh spatial discretization pointwas selected. Based on
a simulation using the full model, POD datasets for1, 2, 3, 4, 6, 8 and10 artificial POD bands were
created. The information content of the first ten eigenmodescomputed from the full model snapshots
are given in table 3. The third column contains the cumulative relative information content of all
modes up to the given index, as difference from total100 %. As one can clearly see, the first mode
dominates all others.

Remark 2.5. Using diagonalized POD, the results obtained after diagonalization can be interpreted as
linear independent frequency eigenmodes of the spectrum with corresponding opacities. Due to the
diagonalization process, these frequency eigenmodes do not couple, as is the case for more conven-
tional frequency band models; however, diagonalized POD produces strongly overlapping “bands”,
so that they should be called “modes” to avoid confusion.

Results from proper orthogonal decomposition withk andk+1 bands may have completely different
frequency eigenmodes, butk common opacity values; for each new POD band, a new opacity is
added, but in general no modes are preserved. Figure 2 show the frequency eigenmodes computed for
POD band models consisting of1, 3, 6 and8 bands. Table 4 shows the opacities computed for the
POD band models, sorted by the count of bands of the model theyfirst appear in (which indicates the
importance of the opacity), as specified in the third column.
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mode # rel. inform. content (%) cum. rel. inform. content (%)
1 99.162266 100 − 0.837733
2 0.764715 100 − 0.073017
3 0.063888 100 − 0.009129
4 0.007681 100 − 0.001448
5 0.001036 100 − 4.116644 · 10−04

6 2.971880 · 10−04 100 − 1.144763 · 10−04

7 6.439107 · 10−05 100 − 5.008525 · 10−05

8 2.883304 · 10−05 100 − 2.125220 · 10−05

9 9.837686 · 10−06 100 − 1.141452 · 10−05

10 7.299206 · 10−06 100 − 4.115314 · 10−06

Table 3: Information content of POD modes

i κi first appearance
1 7.2938 1 band model
2 5.2891 2 band model
3 12.9749 3 band model
4 6.3860 4 band model
5 6.4246 6 band model
6 6.9165 6 band model
7 7.9478 8 band model
8 25.3244 8 band model
9 6.2844 10 band model
10 13.4144 10 band model

Table 4: Opacities of the POD models

2.5 Simulation results

The primary goal for the POD model reduction technique is to provide a efficient method for high–
quality approximation of the full model. The following figures show the approximation error of POD
with different numbers of bands; in the two plots in figure 3, the evolution of the mean and maximum
error over time is shown, while the plots in figure 4 show the spatial distribution of the approximation
error for the last time step. It should be observed that 8 bandPOD yields a worse approximation than 6
band POD, while 10 band POD is again better than 6 band POD. This can be attributed to the fact that
POD finds a best approximating subspace, but not the best approximation for the system dynamics.
But there are recent results which allow to account also for this effect [16, 15, 22].

Remark 2.6. From the data presented, it is evident that the POD approximation is worst near the
boundary for low number of bands in the reduced model. One reason for this effect is the presence
of boundary layers. In order to show that POD results can be enhanced without the need for more
complex reduced models, we modified the POD method like proposed in [6]. We increased the dataset
used in the proper orthogonal decomposition step by temporal derivatives of the data used so far; this
gives higher priority to faster varying modes, i.e. the boundary layers. The plots in figure 5 show
comparisons between the original 3 band POD results and the new variant. It can be seen that both
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Figure 2: POD frequency modes

maximum and mean error could be reduced noticeably.

2.5.1 Dependency of the approximation quality on the cooling scenario

Being ana posteriori method, POD requires a solution of the full system in order tocompute the
POD coefficients. As the full model has extreme demands on storage and computation time, it is
important for the applicability of POD in real–world problems to know about the sensitivity of the
approximation quality with respect to variations in the cooling scenario. Optimization problems, for
example, change the boundary temperature functionTb in each step of the optimization.

Fortunately, we were able to show that POD gives excellent approximations even for modification of
the initial temperature (of the medium and the oven) by± 200 K. The mean and maximum errors
for 4 and 10 band POD in simulations using the modified initialtemperatures are shown in figure 6.
Evidently, the dependency on the cooling profile is only marginal, and the POD datasets computed
for a cooling from1000 K to 400 K can be used over a wide range of modified profiles. In the case
of 4 band POD, the approximation error decreases with decreasing initial temperature, even below
the error for the profile the POD dataset was initially generated for. For 10 band POD, the result is
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Figure 3: Evolution of the error for POD model

similar, except for an anomaly in the mean error for initial temperatures above1000 K, which shows
a different temporal evolution than for the other cooling profiles.

3 Other model reduction techniques

In this section, we will shortly present two other well–known methods for reducing the dimensionality
of the discretization in the frequency domains and compare them with the new method we proposed
above. The first method, known asweighted sum of grey gases, is based on a physical interpretation
of the problem and tries to fit certain parameters to match physical properties of the cooling medium
[17]. The second model is derived from asymptotical analysis of theSP2 equations. Model reduction
is performed by analytic integration over the frequency domain, yielding a single–band model with
opacities that are dependent on temperature [12].

3.1 Weighted Sum of Gray Gases (WSGG)

The WSGG model tries to approximate the full model by substituting the medium with a number of
gray media (known as “gray gases” because WSGG was first implemented for gaseous media). The
opacities and fractions of these gray media are found by solving a fitting problem for the absorptivity
of the medium, a physical property that will be introduced below.

The total absorptivity and emissivity of a homogeneous, isothermal medium at temperatureT is given
by

α(T, s) = ǫ(T, s) =
1

Ib,tot(T )

∫

∞

0
(1 − exp(−κ(ν)s))Ib(ν, T ) dν, (19)

whereIb(ν, T ) designates the Planck radiation density at frequencyν for a black body at temperature
T , andIb,tot is the integral ofIb over the whole spectrum.

The model parameters of the weighted sum of gray gases model are the weighting factors for the linear
combination of the results for the gray gases and the absorption coefficients of these gray gases. These
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Figure 4: Spatial distribution of the error in last time step, POD model

parameters are found by fitting the total emissivity on a lineof characteristic length in the medium
with the total emissivity of the linear combination of the gray gases; this yields

1

Ib,tot(T )

∫

∞

0
(1 − exp(−κ(ν)s)Ib(ν, T ) dν ≈

K
∑

k=0

(1 − exp(κks))αk(T ), (20)

whereν is the frequency,κ(ν) is the frequency–dependent absorptivity of the real material, κk is the
absorptivity of thek-th gray gas,T is the temperature ands is a length–parameter. Theαk are the
weighting factors and may depend on the temperature of the medium, whereas theκk are assumed to
be temperature–independent. In order to find appropriate values forαk andκk, a (highly nonlinear)
least–squares fit is done using a set of temperaturesTn, n = 1, . . . ,#T , and a set of path length
parameterssn, n = 1, . . . , ,#s, suited to the problem.

Remark 3.1. As we just outlined, the coefficients of WSGG models are foundby a nonlinear least
squares fit; being an a priori method, the fit requires no data from a previous full–model simulation, as
was the case for the POD method, and so far, WSGG seems to be significantly easier in its application.
However, the choice of the parameters pathlengthsn, n = 1. . . . ,#s, and temperatureTn, n =
1, . . . ,#T , that is used is crucial for the quality of the fit, and withoutany knowledge of the problem
geometry, macroscopic properties of the radiation field andtemperatures encountered in the cooling
process, it is not clear how to choose these parameter appropriately. The advantage of an a priori

14
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Figure 5: Evolution of the approximation error for enhancedmethods
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Figure 6: Dependency of approximation error on cooling scenario

method is turned into a disadvantage, because one has to resort to heuristic strategies in order to get
WSGG coefficients that lead to good approximation of coolingbehaviour.

Four datasets for ten gray gases each were computed, varyingthe optical pathlengths used in the
nonlinear fit, as given in table 5. The grid consisted of approximately 1000 equally distributed grid
points for the first three fits, approximately500 points for the last fit. All fits were computed over
the temperature range from550 K to 1000 K. The fitting points were equally distributed, using a
grid size of50 K (the size of the optimization problem depends on the temperature grid size; no finer
temperature grid was chosen to keep the computational efforts to a reasonable level of110 variables).

Relatively good fit results were only obtained using the lasttwo datasets, indicating that the optical
pathlengths used in the first two fits were too small. The last dataset gives the best results.

For each of the four datasets simulations were run and results compared to the solution of the full
system. The results are given in figure 7, given as evolution of error in time and spatial distribution of
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dataset # pathlength interval[m] grid size[m] # of grid points
1 [0.0001, 0.01] 0.00001 991
2 [0.002, 0.2] 0.0002 991
3 [0.002, 1] 0.001 999
4 [0.01, 0.5] 0.001 491

Table 5: WSGG fit parameters
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Figure 7: Approximation error for WSGG model

error at the last time step. Note that no results are available for the first dataset, as the corresponding
simulation failed to converge. The error graphs show similar behaviour, the mean error increasing
over time, with the fourth dataset giving the best results, although the fit was done over a subset of the
fit points for the third dataset.

3.2 Frequency averagedSPn–equations

Another possibility to derive reduced models in the frequency domain is by integrating the frequency
dependent fluxes with respect to the frequencyν analytically, thus defining a new state variable and
producing a frequency averaged single band model. This is done by theGSP2 model discussed in [12],
where the following equations are derived for homogeneous media. Given the auxiliary functions

fn(T ) :=
4π

n+ 2

∫

∞

ν1

B(ν, T )

κn(ν)
dν (21)

for n = 1, 2, 3 (not correlated to then in GSPn) and variables

α1 :=
4

5
·
1 + 3r2
1 − 4r3

(22)

α2 :=
6

5
·
1 − 2r1
1 − 4r3

, (23)
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where the parametersr1, r2 andr3 are moments of the reflectivity of the medium that depend onnglass

and are, in our case fornglass := 1.46, given as

r1 := 0.2855741980

r2 := 0.1452081942

r3 := 0.08373343569,

the equations inQ are given by

∂T

∂t
= ∇ · (k∇T ) + ∇2W, (24)

−ǫ2∇ ·

(

f ′3(T )

f ′1(T )
∇W

)

+W = f1(T ), (25)

whereas the boundary conditions onΣ are

ǫkn · ∇T = h(Tb − T ) + απ

∫ ν1

0

[

B(air)(ν, Tb) −B(air)(ν, T )
]

dν, (26)

W +

(

4α1ǫ

3
·
f ′2(T )

f ′1(T )

)

n · ∇W = f1(T ) + α2[f1(Tb) − f1(T )]. (27)

The initial condition of the differential–algebraic parabolic system is given as usual by

T (x, 0) = T0(x). (28)

In this notation,P (air) means that the corresponding Planckian has to be computed using the refractive
index of air (that is,1) instead of glass (nglass). In thisGSP2 model, the new variableW is defined as

W (x, t) :=
1

3

∫

∞

ν1

φ(x, ν, t)

κ(ν)
dν; (29)

thus, for space–independentκ,W is a absorptivity–scaled flux.

3.2.1 Implementation and numerical results

TheGSP2 equations can be rewritten substituting the functionsfn, n ∈ {1, 2, 3}, to take a form that
allows for easier comparison with theSPn equations. The equations on the domainΩ are then given
by

∂T

∂t
= ∇(k∇T ) +

∑

i∈I

∇2Wi (30)

−ǫ2β ∇







∑

j∈J(i)

P ′

j

κ3
j

∑

j∈J(i)

P ′

j

κj

∇Wi






+Wi =

4π

3

∑

j∈J(i)

Pj

κj

∀i ∈ I, (31)

whereas the boundary conditions are

k n · ∇T =
h

ǫ
(Tb − T ) +

απ

ǫ
(P

(a)
0,b − P

(a)
0 ) (32)

Wi + γǫ

∑

j∈J(i)

P ′

j

κ2
j

∑

j∈J(i)

P ′

j

κj

n · ∇Wi =
4π

3
δi ∀i ∈ I. (33)
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In this notation,Pi are the Planck integrals, given by

Pi(T ) =

∫ νi+1

νi

B(ν, T ) dν, (34)

the parametersβ, γ andδi are given by

β =

{

1
3 SP1

3
5 SP2, GSP2

(35)

γ =

{

2
3 · 1+3r2

1−2r1
SP1

4
5 · 1+3r2

1−4r3
SP2, GSP2

(36)

δi =







∑

j∈J(i)
Pj,b

κj
SP1

∑

j∈J(i)

[

Pj

κj
+ 6

5 · 1−2r1

1−4r3

Pj,b−Pj

κj

]

SP2, GSP2

, (37)

and the index setsI andJ are given by

I =

{

{1, . . . , n} SP1, SP2

{1} GSP2
(38)

J(i) =

{

{i} SP1, SP2

{1, . . . , n} GSP2
. (39)

It should be noted that the quotients

∑

j∈J(i)

P ′

j

κ3
j

∑

j∈J(i)

P ′

j

κj

and

∑

j∈J(i)

P ′

j

κ2
j

∑

j∈J(i)

P ′

j

κj

(40)

reduce toκ−2 andκ−1, respectively, forSP1 andSP2, asJ(i) = {i}. Because of the significant
effort the computation of all Planck integral derivativesP ′

j causes, this substitution is essential for
an efficient implementation of the non–averaged models, andat the same time the most significant
bottleneck of theGSP2 model. In our implementation, we used a semiimplicit discretization that
computed the flux equations based on the temperatures from the previous step.

While the WSGG model reduction (and POD model reduction we have presented so far) was done
on theSP1 equations for simplicity, the frequency–averaged model reduction was implemented for
theSP2 equations, asGSP1 is identical to the Rosseland approximation and therefore of much lower
accuracy thanSP1 [12, 17]. In order to compare approximation quality and numerical effort ofGSP2

to POD, aSP2–based variant of POD was also implemented (the differencesof SP1 andSP2 are only
marginal, as can be seen from the equations in the previous subsection, so that there should arise no
need for a detailed discussion ofSP2–based POD).

The first plot in figure 8 shows the approximation error of ourSP2–based POD implementation.
In general, the approximation is not quite as good as forSP1, as theSP2 model yields solutions
with higher variance in space, which is harder for POD to approximate (as was already seen for
boundary layers above). The second plot in figure 8 shows the corresponding error forGSP2. The
approximation is significantly worse.
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Figure 8: Approximation error ofSP2 andGSP2 model

4 Comparison of the three frequency averaging techniques

When comparing the numerical effort of WSGG and POD, both methods show advantages and disad-
vantages. POD requires a solution of the full 283–band system; on the other hand, WSGG requires
only a parameter fit, which is, although highly nonlinear, computationally cheaper. The WSGG calcu-
lations were done using a WSGG model consisting of ten grey gases, so that there were no advantages
in computation time on the side of WSGG, because ten was also the highest numbers of bands used
for POD. On the other hand, POD achieves much better results,as long as the number of artificial
frequency bands is high enough. For POD models consisting ofless than six bands, relatively large
temperature errors were encountered at the boundary of the medium; this seems to indicate that the
first frequency bands describe the spectrum in the core of themedium, whereas frequency bands cor-
responding to radiation modes with lower eigenvalues take care of the boundary effects. The WSGG
model end temperature errors differ fundamentally from thePOD errors. While POD has large errors
at the boundary and gives good results for the core of the medium even for low number of bands,
WSGG shows low errors at the boundary and large errors in the core.

Further, it is interesting to investigate whetherGSP2 or POD lead to better approximation; in order to
be as fair as possible, a single band POD should be used in thiscomparison. Even single band POD
performs significantly better thanGSP2, and even POD with six bands still outperformsGSP2 with
respect to both, accuracy and CPU time requirements.

5 Conclusion

In this paper, we presented a new model reduction method for simulating temperature and radiation
in hight temperature processes. We showed that, using this new method, significantly better results
can be obtained with similar or less numerical effort (if thefull solution of the system required for
POD is not taken into account, as this is necessary only once and the POD models generated can be
used for many simulations). POD does not require special engineering knowledge, as is the case for
WSGG; POD can be used as a fully automatic black box algorithmfor model reduction, requiring no
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user interaction at all. Even more interesting, POD was alsoable to outperformGSP2, which has a
much stronger theoretical background.
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radiation in gas turbines, J. Comput. Appl. Math., 170(1):217–239, 2004.

[25] L. SIROVICH, Turbulence and the dynamics of coherent structures. I—III, Quart. Appl. Math.,
45 (1987), pp. 561–590.

[26] G. THÖMMES, R. PINNAU , M. SEAID , T. GÖTZ, A. KLAR, Numerical methods and optimal
control for glass cooling processes, TTSP, 31(4-6):513–529, 2002.

21


