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Abstract

We study model reduction techniques for frequency avegaiginadiative heat transfer. Espe-
cially, we employ proper orthogonal decomposition in comaltion with the method of snapshots
to devise an automated a posteriori algorithm, which h@peduce significantly the dimension-
ality for further simulations. The reliability of the sugate models is tested and we compare the
results with two other reduced models, which are given byafty@oximation using the weighted
sum of gray gases and by an frequency averaged version aftiealfedSP,, model. We present
several numerical results underlining the feasibility of approach.
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1 Introduction

The simulation of industrial high temperature processgaires to take into account heat conduction
and convection as well as heat transfer via radiation, eagsimulation of gas turbine combustion
chambers [24, 23], combustion in car engines or cooling obtagkass melt [4, 26]. Since the ra-
diation field is dependent on time and space as well as ondrexyuand the angular direction, a
simulation using a full radiative heat transfer model is paiationally expensive; if the simulation is
part of an optimization problem, it becomes infeasible 2,9, 19, 21, 20]. In order to decrease the
dimensionality, several simplified models have been d@eslpamong them the Rosselaiy, and
SP,, equations that replace directed radiation by a directimtependent radiative flux [17, 11]. The
discretization with respect to frequencies is done by feegy band models; the so—called grey model
is a model with just one band. Another possibility to reddeehigh dimensional discrete phase space
is to use adaptive discretization techniques [9].

Realistic simulation of the cooling of glass or combustias to take into account that some frequency—
dependent properties of the material show rapid variatemes on small frequency intervals; these



rapid variations are also observed in experimental datagbr precision simulations [17, 23]. The
frequency band models require a high number of narrow bamdssblve rapid variations, causing
extreme demands on processing time and memory storageefairttulation. Here, we will discuss
and compare different strategies that try to work aroundelkfficulties, while still providing results

of high precision.

Most approximate models which are employed to reduce thebeumf frequency bands are either
derived using asymptotic analysis, like in [12] where thecsdledfrequency averagedP,, equations
are derived, or using fitting techniques combined with agipnations, like in the so-calledieighted
sum of grey gasdd.7].

Here, we discuss an a posteriori method for automated fregusveraging based gmoper orthogo-
nal decompositiorfPOD) with respect to the frequency variable. This methoslidely discussed in
literature during the last two decades. The original cohgeps back td?earson[18]. The method

is also known as Karhunen—Loéve decomposition [8, 13] imcjpal component analysis [7]. It pro-
vides an optimally ordered, orthonormal basis in the lesgiares sense for a given set of theoretical,
experimental or computational data [3]. POD falls into tlemeral category of projection methods
where the dynamical system is projected onto a subspace ofigjinal phase space. In combination
with Galerkin projection it provides a powerful tool to dexisurrogate models for high—dimensional
or even infinite dimensional dynamical systems, since thsace is composed of basis functions
inheriting already special characteristics of the ovegalltion. This is in contrast to standard finite
element discretizations where the choice of the basisifumets in general independent of the system
dynamics.

This paper is organized as follows. In the remaining parthef introduction, we will present the
well-knownSP; equations on which we build our new model reduction methqargper orthogonal
decomposition with respect to the frequency variable thadihe subject of our paper. In the second
section, we focus on POD, deriving it frofP; band models, discussing its implementation and nu-
merical results. The third section deals with two other nhogl@uction techniques, i.e. the frequency
averagedP,, model and the weighted sum of grey gases. Here, we presefitsthtgvo dimensional
simulations for the former model. Finally, section 4 consathe comparison of all three discussed
models and conclusions are given in section 5.

1.1 TheSP, equations

The SP; equations form the basis of our reduced models. Followingarview over the used
notation, a short introduction into the frequency—depeah@ad band formulation &3P, is given in
this subsection; for details, the reader is referred toritreductory sections of [9].

1.1.1 Notation

The physical model is described usihfpr time, z for spatial coordinates; the temperature is denoted
by T', the radiation intensity by. (For theSP,, models that include theP; model as their most basic
case, the intensity is replaced by direction—-independadiition fluxesp by integrating/ over all
directions.) The model further depends on the followinggitsl parameterss is a scatterings an
absorption coefficient;. denotes the thermal conductivity, the convective heat transfer coefficient.
pm 1S the densityg,,, the specific heat capacity. The refractive index of the mradgudenoted by, .



Parameterl Value Description

trer | 18704 s reference time

Tret | 0.1 M reference length

Tt | 1K reference temperature

Lt | D %"Z reference radiation intensity
Kpef | 3 ML reference absorption coefficient

Eerer | 1.672 % reference coefficient of thermal conductivity

hevef | 5~ reference convective heat transfer coefficient

pm | 2514.8 X9 | density

Cm | 1239.6 kgLK specific heat capacity

Table 1: Reference values

The equations presented here use non—dimensional vaiditescaling is given by
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The subscript “ref” is used for the corresponding referevaiees; these are assumed to fulfill the

relations
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The parameter is a reference opacity and given by
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In the following, only the scaled values will be used, withdenoting them explicitly with the stars.
The reference values used in our numerical simulations ediound in table 1. As we assume the

absence of scattering in the medium,ng is given, ans ands™* are zero.

Let Q be a bounded domain, subsetRs, d € {1,2, 3}, representing the geometry of the medium,
and letn be the outward normal ¢ on 992. Let (0, t.,q) be the time interval used in the simulation,

and defing) andX by

Q =0 x (Oytond)a
¥ =00 x (Oatcnd)-



1.1.2 Frequency-dependerftP; equations

The frequency dependefiP; equations that can be derived as an approximation of theafdiative
heat transfer equations under the assumption of an optitatlk, diffusive situation [11], are given

by

& 1
T—-V - (kVT) = | — d 4
Oy V- (k.VT) /VOV <3(U+R)V¢> v (4a)
1 *
Vo> —€V- <mv¢> + k¢ = ATk By (T, v) (4b)
in Q,
he am [, X
ken-VT = —(1T, —T)+ — / (B (Ty,v) — By (T, v)) dv (4c)
€ € 0
€ 1-— 27”1 ¥
m n- V¢ = m (47TBglass (Tb, V) (23) (4d)
onX, and
T(x,0) = To(x), x €N (4e)
as initial condition.
Here,r; andr, are given as
r = 0.2855742 7o = 0.1452082 (5)

(see [11]).B;, is given by the scaled black—body radiation intensity aegdency for a temperature
T- Trcf
Bm(T ' Tref> V)

Iref ’
whereB,,, is the Planck function describing monochromatic black-yhotensity

B (T,v) = (6)

_nZ 2hpv?
Bu(Tow) = B e T ™)

3

In this expressionhp = 6.62608 - 10734 Js is the Planckkp = 1.38066 - 10723 J/K is the
Boltzmann constants,, is the refractive index giving the ratio of the speed of lightacuumc, and
in the mediun

M = 2. ®)
C

For glassyglass = 1.46 is a valid choice; for the surrounding air we sgt. = 1. 1y is the frequency
up to which the glass is opaque and absorbs radiation; thatgmathe rest of the spectrum is given
by 1/k, ando is a scattering coefficient.

Remark 1.1 For a mathematical investigation of system (4) we refer @j,[#&here also an optimal
control problem is considered. During the last years thisi@hproved to be a reliable substitute for
the full radiative heat transfer problem [24, 23, 11].



1.1.3 Frequency-bandP; equations

The frequency ban8P; equations are derived by dividing the frequency space irgcrete bands
[vi—1,vi], 1 = 1,2,..., N and integrating the frequency depend8RY equations over these bands
using a simple quadrature rule,

@:i£i¢d“ (©)

i.e. we use a piecewise constant finite element ansatz wsgieot to the frequency. Under the as-
sumption thak ando are (nearly) constant on the frequency bands

k() = ki, o(v)=o0; for v €vi_1, vi] (10)

we get theSP; frequency band equations with

1
0T -V - (k,NVT) = Ve 11a
t ( ) ;V (3(0i+m)v¢> (11a)
1 Vi
2 *
—e'V - (mV@) + ki = 4R, /V“ alass (1> ) dv (11b)
fori=1,2,..., N inthe interior, and
ken- VT = h_ Lon 5 (T, ) — Bi (T, v)) dv (11c)
€ Jo
1-— 27“1
3(oi + i) V@‘2+WQG mﬁﬂwﬁw—@> (11d)

fori=1,2,..., N on the boundary, and finally
T(l’, 0) = TO(m)

as initial condition.

Remark 1.2 The high number of frequency bands required in applicatmmsse the above system
to be of significant size. One often encounters up to 300 &equ bands, i.e. one has to solve one
nonlinear parabolic PDE coupled with 300 elliptic equasioRorSP,, models withn higher thant,
this problem will be even worse, as new flux variables are egfat each radiation band11].

2 POD and basis—transformation of theSP; equations

After discussingSP; in its frequency—dependent and band variant, we will nowoon a basis—
transformed band variant &fP, which will, in combination with proper orthogonal deconsjimn
(POD), finally lead to the new POD frequency averaged modwt. presentation of the POD equations
for SPy will be followed by details concerning our implementatiordahe numerical results that were
obtained.



2.1 Basis-transformed frequency—ban&P; equations

In section 1.1.3, frequency bands were chosen so that tterplvity of the medium was almost
constant over each band. For realistic spectral data wigje kzariations of the absorption coefficient,
this approach leads to an undesirably high number of redjbamds and thus to a high number of flux
variables; therefore it is important to develop a varianthef frequency bandP; model that allows
to reduce the number of flux variables by representing thesfigctrum using fewer coordinates.

This is done by setting
M
bi = > mijihy, (12)
j=1

whereM < N, in most cased/ < N, thus representing the “natural bandgby “artificial bands”
;. One possibility to find then,; is the application of proper orthogonal decomposition szover
the most important frequency modes; this approach will Isewtised in detail in the next section;
meanwhile;m;; will be treated as given data. However, we will assume tretlatrix P := (m;;); ;

is orthonormal; this allows for simpler notation, Bs' = PT and the matrixP” - P that will appear
in the flux equations i will be just the identity.

Applying the basis transformation to the frequency b&Rd equations of the last chapter, we get

M N
s
oT -V - (k,VT) = V- — Vi, 13a
: (keVT) ; (;MM) %) (13a)
M N ™M Mik N Vi
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As one can see from these equations, all summationsiowefl,..., N} can be done in advance,

giving the vectors
N mi; 1 N
Al = E — 9 ] =pT. <7> 14a
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J
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R



(whereA; = As =: A when scattering is neglected) and the matrices

N =N, j=M
B = Zw — pT. L @ P (14c)
: Kj Ri /) i—1.4i=1
=1 ik i=1,j=
N s ma 1 i=N,j=M
G = " =pT. <7> QRP|, (144d)
(Z Hi(O'i + RZ‘) - RZ‘(O'Z‘ + lii) i=1,j=1

i=1

s

with the matrixP defined as® = (m;;); ;, i € {1,...,N},j € {1,..., M} (for POD, P is the POD
basis matrix) an being the element—wise matrix product. The matrices

1 i=N,j=M 1\ =Na=M
(o) and () (15)
Kki(0i + £i) i=1,j=1 Ki/ i=1j=1
are the concatenation of thé-column—vectorgx; * (o, +#;)~'); and(k; ');, respectively to a matrix
of N rows and}M columns.

Remark 2.1 Assuming that absorption and scattering are independeaaafe and due to the special
structure of the matrice® and G given above, one can apply diagonalization techniques me co
vert these (full) matricesimultaneousiyto diagonal matrices and increase the performance of the
algorithm even more. This is what we cdilagonalized PODIn addition to being more efficient,
diagonalized POD produces frequency bands that do not eamd can thus be interpreted as a
generalization of band—-models (although the frequencyemade linear independent, they overlap
strongly, what is not the case for conventional frequenaydbaodels).

2.2 Computation of an optimal frequency basis using POD

In the discussion of the basis—transfornide} variant above, we left open the details of how to find
a suitable basis. Now we use proper orthogonal decompositith respect to the frequency variable
that will yield an optimal result in the least-squares sense

The problem that has to be dealt with in our context is the tipresvhether it is possible to express
the (discrete) spectr&; := (¢;)}¥, that are encountered in all grid points of the discretizatib

2 x (0,tenq) in time and space using a vectB := (z/zj)j-vil of flux variables with a dimension/
considerably smaller than the numh®rof frequency bands. In the ideal case, the representation
Fy = P - F5 should be exact; as this is not possible in general, we derteatdhe approximation
error ||Fy — P - F»|| in a suitable norm should be minimized for given dimensidhand M .

This problem is solved by proper orthogonal decompositidn §], which is ara posteriorimethod to
compute this optimal basis. However, being a data basedoshetine solution of the original problem
is necessary in order to compute the suitable basis transfohis is not as bad as it might sound, as
the basis computed from this initial dataset can be used lfwoad range of similar problems, what
is especially important when thinking of applying this mboeduction technique in the context of
optimal control.

The initial solution of the full problem yields via thmethod of snapsho{&5] spectral datss =

(F1,)i, @ € 1, for each grid point in space and time of the discretizatiéxs further processing
consists of algorithms that are computationally expenfivdarge size ofl, the complete set of
spectral information is replaced by a suitable suSset (F ;);,j € J C I, thatis still representative

7



for the whole, such that one still gets the correct dynamid¢eesystem. In order to find a small basis
of a subspace of the span of &ll ;, ¢ € I, that allows the approximate representation ofal] up to
high accuracy, we build theorrelation matrixC' given by

c=5".85, (16)

using the scalar product &". C is positive semidefinite; all eigenvaluégof C are therefore real
and nonnegative. Using appropriate numerical algorithhies eigenvectors; (sorted by decreasing
eigenvalued;) can be computed, combined into a matrixand the frequency eigenmodes malffix
is given by

E=5-V. an

As we demanded in 2.1 that the POD baBishould be orthonormal, this step is followed by an
orthonormalization of the first/ columns ofE, yielding the POD basi®. From this matrix and the
opacity dataset, the vectdrand the matrice® andG can be computed. After optional diagonaliza-
tion of B andG (and corresponding updates foand A) for diagonalized POD, the POD dataset is
complete.

Remark 2.2 It can be shown that the POD basis vectors are ordered in ahaayhie approximation
of the spectral snapshots using the firdtasis vectors is the best approximation that can be obtained
using an arbitrary basis @fvectors [10].

Still, one has to decide how many basis vectors will be sete@r the reduced spectral model. In
terms of a dynamical system, large eigenvalues correspaméin characteristics of the system, while
small eigenvalues give only small perturbations of the alelynamics. The goal is to choogsmall
enough while theelative information contenftl] of the basis defined by

2£=1dk
1(f) i = =2=— 18
(£) S (18)

is near to one. Typically, the magnitude of the eigenval@eesahses very rapidly for the first values, so
that numbers of eight, five and sometimes even less eigamggmtoved to be enough for simulations
with satisfying accuracy; this will also be seen in the pnéston of the computed eigenmodes in 2.4.

The algorithm used to generate the POD parameter set is belew.

Algorithm 2.3. Algorithm for computing the POD coefficient dataset

begin
e let m be the number of desired POD bands
¢ load simulation dataset and extract samples
e optional: compute time derivatives of simulated data and add samplégtset of samples from
the previous step
o form the sample matri$ with the samples as columns
e compute correlatiorC’ matrix asC := S7 - S
e compute eigenvectors and eigenvalued; of correlation matrixC, sorted so thatl; > d;41
o form the matrixV” with thev; as its rows
 compute the full frequency eigenmode mafiasE := S -V
o select the firsin columns off into the eigenmode matrik: £ = E(:,1:m)
e optional: normalize the columns @& so that they all have norm

8



e perform QR factorization o®: Q- R=F
e store the firstn columns of)) as the POD basi$ := Q(:, 1:m), set
o ki as the column vector of valuégx;
o K as the column vector of valuégx;, repeated into a matrix af, columns
o K5 as the column vector of valuégén?, repeated into a matrix af, columns
e and compute
oA:=PT K
oB:=P". (K, ®P)
oG : =Pl . (Ky® P)
e save the matriced, B, G and P as the POD parameter set
end

2.3 Implementation and Numerical Results

Now we present numerical results and compare them to twa ogfierence models. The physical
parameters used for all simulations are given in table 2. tOtlee choice of the scaling coefficients,
the scaled valuek’ andh were both identical ta. The frequency dependent absorption coefficients
used are given in figure 1.

Parameter‘ Value ‘ Description

ke | 1.672 2 | coefficient of thermal conductivity

he | 5 m‘Q’K convective heat transfer coefficient

Table 2: Physical properties

The geometry was the squdrel, 1] x [—1, 1] in scaled coordinates, corresponding to an edge length
of 0.2 m. The material was cooled in the scaled time intefvad.1], corresponding to approximately
thirty minutes of cooling time; the boundary temperatureswacreased linearly from an initial tem-
perature ofl000 K (that was also the initial temperature of the glass}@o K. For simulations that
show the good suitability of the POD dataset generated fsrctioling scenario, the initial tempera-
ture was modified within the values 860 K, 900 K, 1100 K, and1200 K.

In order to create easily comparable results, all simutatidor the full and several reduced models)
were based on identical numerical settings. The spatiabifomas discretized using2s x 25 grid.
The spatial discretization of the differential equatioressvaccomplished using standard linear finite
elements. The time interval was discretized using an esfaidti grid of1250 intervals. The time
discretization was done using a semiimplicit scheme based modified implicit Euler's method.
The semiimplicit approach also simplified the implemewptatf the highly nonlineatGSP, model
(discussed in 3.2).

Remark 2.4. For the spatial and temporal discretization described @pb@wnodel consisting &f83
frequency bands yields a total 25 x 25 x 1250 x 284 ~ 2 - 10® degrees of freedom. A finer grid,
higher spatial dimension or the use of#i?, model withn > 2, which could be desirable in practical
use, even worsens the size of the problem. These numberstisdbgome sort of model reduction is
unavoidable for solving real life problems (especially whptimization problems are considered).
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Figure 1: Absorption curve

2.4 Computed frequency eigenmodes

As outlined in 2.2, computing POD bands consists of takingcspl snapshots from a simulation
using the full model, computing the eigenvalues and eigenve of the correlation matrix of these
shapshots, and selecting eigenvectors with the highesvatuies to compute the POD bands. For the
shapshots, everisth temporal and every seventh spatial discretization peat selected. Based on
a simulation using the full model, POD datasets1fp®, 3, 4, 6, 8 and10 artificial POD bands were
created. The information content of the first ten eigenmatesputed from the full model snapshots
are given in table 3. The third column contains the cumudat®ative information content of all
modes up to the given index, as difference from tatdl %. As one can clearly see, the first mode
dominates all others.

Remark 2.5. Using diagonalized POD, the results obtained after diagaaiean can be interpreted as

linear independent frequency eigenmodes of the spectriumasiresponding opacities. Due to the
diagonalization process, these frequency eigenmodestdmaple, as is the case for more conven-
tional frequency band models; however, diagonalized PQidymes strongly overlapping “bands”,

so that they should be called “modes” to avoid confusion.

Results from proper orthogonal decomposition withndk + 1 bands may have completely different
frequency eigenmodes, bitcommon opacity values; for each new POD band, a new opacity is
added, but in general no modes are preserved. Figure 2 skdvetiuency eigenmodes computed for
POD band models consisting df 3, 6 and8 bands. Table 4 shows the opacities computed for the
POD band models, sorted by the count of bands of the modefiisegppear in (which indicates the
importance of the opacity), as specified in the third column.
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mode #| rel. inform. content (%) cum. rel. inform. content (%)

1] 99.162266 100 — 0.837733
2 1 0.764715 100 — 0.073017
3 | 0.063888 100 — 0.009129
4 | 0.007681 100 — 0.001448
5 | 0.001036 100 — 4.116644 - 10794
6 | 2.971880 - 10~ 100 — 1.144763 - 10794
7 1 6.439107 - 107% 100 — 5.008525 - 1079
8 | 2.883304 - 1079 100 — 2.125220 - 10-9
9 | 9.837686 - 10796 100 — 1.141452 - 1079

10 | 7.299206 - 1079 100 — 4.115314 - 10796

Table 3: Information content of POD modes

) Ki first appearance
1 7.2938 1 band model
2 5.2891 2 band model
3 12.9749 3 band model
4 6.3860 4 band model
5 6.4246 6 band model
6 6.9165 6 band model
7 7.9478 8 band model
8 25.3244 8 band model
9 6.2844 10 band model
10 13.4144 10 band model

Table 4: Opacities of the POD models

2.5 Simulation results

The primary goal for the POD model reduction technique isrtvigde a efficient method for high—
quality approximation of the full model. The following figes show the approximation error of POD
with different numbers of bands; in the two plots in figuret& evolution of the mean and maximum
error over time is shown, while the plots in figure 4 show thatisp distribution of the approximation
error for the last time step. It should be observed that 8 IBPADD yields a worse approximation than 6
band POD, while 10 band POD is again better than 6 band POB cahibe attributed to the fact that
POD finds a best approximating subspace, but not the bestaption for the system dynamics.
But there are recent results which allow to account alsohisreffect [16, 15, 22].

Remark 2.6. From the data presented, it is evident that the POD appraiximi#s worst near the

boundary for low number of bands in the reduced model. Onsore#or this effect is the presence
of boundary layers. In order to show that POD results can baraed without the need for more
complex reduced models, we modified the POD method like m@g [6]. We increased the dataset
used in the proper orthogonal decomposition step by terhgderavatives of the data used so far; this
gives higher priority to faster varying modes, i.e. the kaany layers. The plots in figure 5 show
comparisons between the original 3 band POD results andeilvevariant. It can be seen that both

11
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Figure 2: POD frequency modes

maximum and mean error could be reduced noticeably.

2.5.1 Dependency of the approximation quality on the coolig scenario

Being ana posteriorimethod, POD requires a solution of the full system in ordecdmpute the
POD coefficients. As the full model has extreme demands amagtoand computation time, it is
important for the applicability of POD in real-world probie to know about the sensitivity of the
approximation quality with respect to variations in the lgogp scenario. Optimization problems, for
example, change the boundary temperature fundjan each step of the optimization.

Fortunately, we were able to show that POD gives excelleptaqimations even for modification of
the initial temperature (of the medium and the oven3by200 K. The mean and maximum errors
for 4 and 10 band POD in simulations using the modified inteahperatures are shown in figure 6.
Evidently, the dependency on the cooling profile is only riraaly and the POD datasets computed
for a cooling from1000 K to 400 K can be used over a wide range of modified profiles. In the case
of 4 band POD, the approximation error decreases with dsicganitial temperature, even below
the error for the profile the POD dataset was initially geteztdor. For 10 band POD, the result is

12
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Figure 3: Evolution of the error for POD model

similar, except for an anomaly in the mean error for initahperatures abovi®00 K, which shows
a different temporal evolution than for the other coolingfiles.

3 Other model reduction techniques

In this section, we will shortly present two other well-knomethods for reducing the dimensionality
of the discretization in the frequency domains and comgamtwith the new method we proposed
above. The first method, known agighted sum of grey gasés based on a physical interpretation
of the problem and tries to fit certain parameters to matclsiphl/properties of the cooling medium
[17]. The second model is derived from asymptotical analg§theSP- equations. Model reduction

is performed by analytic integration over the frequency domyielding a single—band model with
opacities that are dependent on temperature [12].

3.1 Weighted Sum of Gray Gases (WSGG)

The WSGG model tries to approximate the full model by sulitigy the medium with a number of
gray media (known as “gray gases” because WSGG was first ingolted for gaseous media). The
opacities and fractions of these gray media are found byrsphfitting problem for the absorptivity
of the medium, a physical property that will be introducetbine

The total absorptivity and emissivity of a homogeneoughisanal medium at temperatureis given

by

A(T,5) = eT,8) = s [ (L= exp(-w)s) B4 T) do. (19)
[b,tot (T) 0

wherel, (v, T') designates the Planck radiation density at frequenicy a black body at temperature

T, andl . is the integral off;, over the whole spectrum.

The model parameters of the weighted sum of gray gases meditleaweighting factors for the linear
combination of the results for the gray gases and the absorpbefficients of these gray gases. These
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Figure 4: Spatial distribution of the error in last time stB®OD model

parameters are found by fitting the total emissivity on a biheharacteristic length in the medium
with the total emissivity of the linear combination of thegrgases; this yields

1 K

Toeor (1) /o (1 — exp(—r(v)s)Ip(v, T) dv ~ Y (1 = exp(rys) e (T), (20)

1
b,tot k=0

wherev is the frequencyi(v) is the frequency—dependent absorptivity of the real melterj. is the
absorptivity of thek-th gray gas,I" is the temperature andis a length—parameter. The, are the
weighting factors and may depend on the temperature of tlitume whereas the, are assumed to
be temperature—independent. In order to find appropridteesdora;, andxy, a (highly nonlinear)
least—squares fit is done using a set of temperatlifes: = 1,...,#7, and a set of path length
parameters,,n = 1,...,, #s, suited to the problem.

Remark 3.1 As we just outlined, the coefficients of WSGG models are foypa nonlinear least
squares fit; being an a priori method, the fit requires no data & previous full-model simulation, as
was the case for the POD method, and so far, WSGG seems taltfecaigtly easier in its application.
However, the choice of the parameters pathlengthn = 1....,#s, and temperatur&,,, n =
1,...,#T, thatis used is crucial for the quality of the fit, and withanl knowledge of the problem
geometry, macroscopic properties of the radiation field tengperatures encountered in the cooling
process, it is not clear how to choose these parameter ajgigdp The advantage of an a priori
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Figure 6: Dependency of approximation error on cooling aden

method is turned into a disadvantage, because one has tbteheuristic strategies in order to get
WSGG coefficients that lead to good approximation of coolirbaviour.

Four datasets for ten gray gases each were computed, vahgngptical pathlengths used in the
nonlinear fit, as given in table 5. The grid consisted of apipnately 1000 equally distributed grid
points for the first three fits, approximatedp0 points for the last fit. All fits were computed over
the temperature range frof%0 K to 1000 K. The fitting points were equally distributed, using a
grid size of50 K (the size of the optimization problem depends on the teatpes grid size; no finer
temperature grid was chosen to keep the computational®effoa reasonable level ®10 variables).

Relatively good fit results were only obtained using the tast datasets, indicating that the optical
pathlengths used in the first two fits were too small. The lasskt gives the best results.

For each of the four datasets simulations were run and sesaihpared to the solution of the full
system. The results are given in figure 7, given as evoluti@mror in time and spatial distribution of
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dataset#( pathlength intervalm| grid size[m| # of grid points

1| [0.0001,0.01] 0.00001 991
2 | [0.002,0.2] 0.0002 991
3| 0.002, 1] 0.001 999
4| 0.01,0.5] 0.001 491

Table 5: WSGG fit parameters

Simulation error (all WSGG datasets)
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Figure 7: Approximation error for WSGG model

error at the last time step. Note that no results are availflthe first dataset, as the corresponding
simulation failed to converge. The error graphs show sintihaviour, the mean error increasing
over time, with the fourth dataset giving the best resultepagh the fit was done over a subset of the
fit points for the third dataset.

3.2 Frequency averagedP,—equations

Another possibility to derive reduced models in the fregquyetiomain is by integrating the frequency
dependent fluxes with respect to the frequen@nalytically, thus defining a new state variable and
producing a frequency averaged single band model. Thigis by theGSP, model discussed in [12],
where the following equations are derived for homogeneoedian Given the auxiliary functions

dw [ B(v,T)
w(T) = d 21
ity = 2 [ 2R v 21)
for n = 1,2, 3 (not correlated to the in GSP,,) and variables
4 1+ 3r9
- . 22
T T "y (22)
6 1-— 27’1
- _. 23
Qa2 51— 47’37 ( )
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where the parameters, 7, andrs are moments of the reflectivity of the medium that depend o1
and are, in our case for,.s := 1.46, given as

ry := 0.2855741980

ro 1= 0.1452081942

rg := 0.08373343569,

the equations i) are given by
or

5 =V (RVT) + viw, (24)
/ T)
—e2v-<f3( VW>+W: T), 25
whereas the boundary conditions Brare
V1 X .
ekn- VT = h(T, — T) + ax / (B W, T) - B (w,T)| av, (26)
0
4 (T
W+ < are Jil )> 0. VW = fi(T) + aol 1 (Th) — £1(T)). 27)
3 A
The initial condition of the differential-algebraic paddilb system is given as usual by
T(z,0) = Ty(x). (28)

In this notation,P(%") means that the corresponding Planckian has to be complitepths refractive
index of air (that is]l) instead of glassi{y,ss). In this GSP, model, the new variabl® is defined as

W(z,t) = é/m % dv: (29)

thus, for space—independentiV is a absorptivity—scaled flux.

3.2.1 Implementation and numerical results

The GSP, equations can be rewritten substituting the functigns. € {1, 2, 3}, to take a form that
allows for easier comparison with tl%#,, equations. The equations on the dom@iare then given

by
orT

e 2117
5 = V(VT) + Z VW (30)
el
p!
> i€ J(4) = 4 P;
AV | S gw | ewi = ST 2 viel, (31)
5 3 —~ Kj
2ieit) jed(i)
whereas the boundary conditions are
h a a
kn-VT:Z(Tb—T)Jr%(Péb)—Pé ) (32)
P!
Z:J'EJ(Z') f-c_% 4 .
Wi + ve 7]3]( n-VW,-:?(L- Viel. (33)
2jeit) wr
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In this notation,P; are the Planck integrals, given by

Vit1
(1) = [ BT . (34)
the parameters, v andJ; are given by
PN (35)
|2 spy, GSP,
BNER- .
1732 SPy, GSPy
P.
_ [ Zieo s o @7
ZjEJ(i) [% + g ) %Pj%,_ﬂpj SPy, GSPy ’
and the index setéand.J are given by
. {1,. .o ,n} SPl, SP2
I= {{1} GSP, (38)
~ i} SP1, SPs
J@) = {{1,...,n} asp, (39)
It should be noted that the quotients
P} P/
Yje w 2jesty v
— and ——; (40)
Yjest 7y 2jett) 7y

reduce tox 2 and s, respectively, forSP; andSP,, asJ(i) = {i}. Because of the significant
effort the computation of all Planck integral derivatiijé causes, this substitution is essential for
an efficient implementation of the non—averaged models,atride same time the most significant
bottleneck of theGSP> model. In our implementation, we used a semiimplicit diszegion that
computed the flux equations based on the temperatures fpréfious step.

While the WSGG model reduction (and POD model reduction we lpesented so far) was done
on theSP; equations for simplicity, the frequency—averaged modeélicéon was implemented for
the SP, equations, a&SP; is identical to the Rosseland approximation and therefobrauzh lower
accuracy thaP; [12, 17]. In order to compare approximation quality and nrioa effort of GSP4

to POD, aSP,—based variant of POD was also implemented (the differeot®B; andSP, are only
marginal, as can be seen from the equations in the previdsestion, so that there should arise no
need for a detailed discussion$P,—based POD).

The first plot in figure 8 shows the approximation error of Slt,—based POD implementation.
In general, the approximation is not quite as good asStey, as theSP, model yields solutions
with higher variance in space, which is harder for POD to apipnate (as was already seen for
boundary layers above). The second plot in figure 8 showsdfresponding error foGGSP,. The
approximation is significantly worse.
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Figure 8: Approximation error d#P, andGSPy model

4 Comparison of the three frequency averaging techniques

When comparing the numerical effort of WSGG and POD, botthods show advantages and disad-
vantages. POD requires a solution of the full 283-band systa the other hand, WSGG requires
only a parameter fit, which is, although highly nonlineampuitationally cheaper. The WSGG calcu-
lations were done using a WSGG model consisting of ten greggyao that there were no advantages
in computation time on the side of WSGG, because ten was ladgshighest numbers of bands used
for POD. On the other hand, POD achieves much better resdtkyng as the number of artificial
frequency bands is high enough. For POD models consistimgsefthan six bands, relatively large
temperature errors were encountered at the boundary of éd@um; this seems to indicate that the
first frequency bands describe the spectrum in the core aht#aium, whereas frequency bands cor-
responding to radiation modes with lower eigenvalues take of the boundary effects. The WSGG
model end temperature errors differ fundamentally fromRED errors. While POD has large errors
at the boundary and gives good results for the core of the urmeéiven for low number of bands,
WSGG shows low errors at the boundary and large errors indtee ¢

Further, it is interesting to investigate whetli& P, or POD lead to better approximation; in order to
be as fair as possible, a single band POD should be used iodimparison. Even single band POD
performs significantly better tha@dSP5, and even POD with six bands still outperfor@sP- with
respect to both, accuracy and CPU time requirements.

5 Conclusion

In this paper, we presented a new model reduction methodrfarating temperature and radiation
in hight temperature processes. We showed that, using éwsnmethod, significantly better results
can be obtained with similar or less numerical effort (if th# solution of the system required for
POD is not taken into account, as this is necessary only amdeélee POD models generated can be
used for many simulations). POD does not require speciaheagng knowledge, as is the case for
WSGG; POD can be used as a fully automatic black box algorftirmodel reduction, requiring no
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user interaction at all. Even more interesting, POD was alde to outperforn(zGSP,, which has a
much stronger theoretical background.
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