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Abstract

In this paper, we develop local discontinuous Galerkin (LDG) methods for the fourth order nonlinear Cahn–Hilliard
equation and system. The energy stability of the LDG methods is proved for the general nonlinear case. Numerical exam-
ples for the Cahn–Hilliard equation and the Cahn–Hilliard system in one and two dimensions are presented and the
numerical results illustrate the accuracy and capability of the methods.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider numerical methods in a bounded domain X 2 Rd (d 6 3) for the Cahn–Hilliard
equation
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ut ¼ r � ðbðuÞrð�cDuþW0ðuÞÞÞ; ð1:1Þ

and the Cahn–Hilliard system
ut ¼ r � ðBðuÞrxÞ;
x ¼ �cDuþ DWðuÞ;

�
ð1:2Þ
991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

.1016/j.jcp.2007.08.001

rresponding author. Tel.: +1 401 863 2549; fax: +1 401 863 1355.
ail addresses: xiayh@mail.ustc.edu.cn (Y. Xia), yxu@ustc.edu.cn, y.xu@math.utwente.nl (Y. Xu), shu@dam.brown.edu (C.-W.

rrent address: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, PR China.

mailto:xiayh@mail.ustc.edu.cn
mailto:yxu@ustc.edu.cn
mailto:y.xu@math.utwente.nl
mailto:shu@dam.brown.edu


Y. Xia et al. / Journal of Computational Physics 227 (2007) 472–491 473
where fDWðuÞgl ¼
oWðuÞ
oul

and c is a positive constant. Here b(u) is the non-negative diffusion mobility and W(u)
is the homogeneous free energy density for the scalar case (1.1). For the system case (1.2), B(u) is the symmet-
ric positive semi-definite mobility matrix and W(u) is the homogeneous free energy density.

We develop a class of local discontinuous Galerkin (LDG) methods for these nonlinear equations. Our pro-
posed schemes are high order accurate, nonlinear stable and flexible for arbitrary h and p adaptivity. The
proof of the energy stability of the scheme is given for the general nonlinear solutions.

The Cahn–Hilliard equation was originally propose by Cahn and Hilliard [8] to study the phase separation
in binary alloys. The Cahn–Hilliard system was proposed by Morral and Cahn [27] to model three-component
alloys. When a single homogeneous system composed of two or three components at high temperature is rap-
idly cooled to a temperature h below the critical temperature hc, the phase separation happens. The Cahn–Hil-
liard equations have been adopted to model many other physical situations, e.g. interface dynamics in multi-
phase fluids.

There have been many algorithms developed and simulations performed for the Cahn–Hilliard equations,
using finite element methods [2–4,6,7,15–17,20], discontinuous Galerkin methods [9,21,31], multi-grid method
[23–25] and finite difference methods [19,22,30].

Here we should mention the difference between our LDG method and the discontinuous Galerkin
methods in [9,21,31]. The discontinuous Galerkin method considered in [9] refers to a discontinuous
Galerkin discretization in time, hence is different from our approach of using a local discontinuous Galer-
kin discretization for the spatial variables. The discontinuous Galerkin method in [31] used the standard
C0 finite element shape functions instead of the discontinuous basis functions in our LDG method which
are allowed to be completely discontinuous across element interfaces. In [21], a discontinuous Galerkin
method which is in the DG family known as the interior penalty method [1] was developed for the con-
stant mobility case (i.e. b(u) = constant). Stability was proved in [21,31], but only for the constant mobility
case. Our LDG method does not contain mesh dependent stabilization coefficients as in [21]. Moreover,
we prove stability for quite general nonlinear cases, for any orders of accuracy on arbitrary triangulations
in any space dimension.

The discontinuous Galerkin (DG) method is a class of finite element methods, using discontinuous, piece-
wise polynomials as the solution and the test space. It was first designed as a method for solving hyperbolic
conservation laws containing only first order spatial derivatives, e.g. Reed and Hill [28] for solving linear equa-
tions, and Cockburn et al. [12,11,10,13] for solving nonlinear equations. It is difficult to apply the DG method
directly to the equations with higher order derivatives. The idea of the LDG method is to rewrite the equations
with higher order derivatives into a first order system, then apply the discontinuous Galerkin method on the
system. The design of the numerical fluxes is the key ingredient to ensure stability.

The first LDG method was constructed by Cockburn and Shu in [14] for solving nonlinear convection dif-
fusion equations containing second order spatial derivatives. Their work was motivated by the successful
numerical experiments of Bassi and Rebay [5] for the compressible Navier–Stokes equations. Yan and Shu
developed a LDG method for a general KdV type equation (containing third order spatial derivatives) in
[36], and they generalized the LDG method to PDEs with fourth and fifth order spatial derivatives in [37].
Levy et al. [26] developed LDG methods for nonlinear dispersive equations that have compactly supported
traveling wave solutions, the so-called ‘‘compactons’’. More recently, Xu and Shu [32–35] further developed
the LDG method to solve many nonlinear wave equations with higher order derivatives, including the general
KdV-Burgers type equations, the general fifth order KdV type equations, the fully nonlinear K(n,n,n) equa-
tions, the generalized nonlinear Schrödinger equations, the coupled nonlinear Schrödinger equations, the
Kuramoto–Sivashinsky equations, the Ito-type coupled KdV equations, the Kadomtsev–Petviashvili equa-
tion, and the Zakharov–Kuznetsov equation. A common feature of these LDG methods is that stability
can be proved for quite general nonlinear cases. DG and LDG methods also have several attractive properties,
such as their flexibility for arbitrary h and p adaptivity and their excellent parallel efficiency.

The paper is organized as follows. In Section 2, we present and analyze the local discontinuous Galerkin
methods for the Cahn–Hilliard system. In Section 2.1, we review the properties of the Cahn–Hilliard equation
and the Cahn–Hilliard system. In Section 2.2, we present the local discontinuous Galerkin methods for the
Cahn–Hilliard system. We prove a theoretical result of the energy stability for the nonlinear case. Section 3
contains numerical results for the nonlinear problems which include the Cahn–Hilliard equation and the
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Cahn–Hilliard system for one-dimensional and two-dimensional cases. The numerical results demonstrate the
accuracy and capability of the methods. Concluding remarks are given in Section 4.

2. The LDG method for the Cahn–Hilliard system

2.1. Properties of the Cahn–Hilliard system

We consider the model for phase separation of a multi-component alloy with N P 2 components in
bounded domain X 2 Rd (d 6 3). The system of nonlinear diffusion equations is given by
ut ¼ r � ðBðuÞrxÞ; ð2:1aÞ
x ¼ �cDuþ DWðuÞ; ð2:1bÞ
ou

om
¼ BðuÞ ox

om
¼ 0; on oX; ð2:1cÞ

uðx; 0Þ ¼ u0ðxÞ: ð2:1dÞ
Here x = (x1, . . .,xd), u, x 2 (L2(X))N, fDWðuÞgl ¼
oWðuÞ
oul

, oX is the boundary of X and m is the normal vector to
oX. B(u) is the N · N symmetric positive semi-definite mobility matrix and has the form
fBðuÞgnp � BnpðuÞ :¼ bnðunÞ dnp �
XN

q¼1

bqðuqÞ
 !�1

bpðupÞ

0@ 1A; ð2:2Þ
where dnp is the Kronecker delta.
For g = (g1, . . .,gN), n = (n1, . . .,nN) 2 (L2(X))N and S = (s1, . . ., sN)T, P = (p1, . . .,pN)T with sl, pl 2 (L2(X))d,

l = 1, . . .,N, we set
fggl ¼ gl;
og
om

� �
l

¼ ogl

om
; frggl ¼ rgl; fDggl ¼ Dgl; g � n ¼

XN

l¼1

glnl;

m � S ¼ ðm � s1; � � � ; m � sN ÞT; r � S ¼ ðr � s1; � � � ;r � sNÞT; S � P ¼
XN

l¼1

sl � pl:
The concentration of the lth component of the alloy is denoted by ul and so the constraints
ðaÞ 0 6 ul 6 1; ðbÞ
XN

l¼1

ul ¼ 1; ð2:3Þ
are satisfied.
The chemical potential x can be defined as the variational derivative of the Ginzburg–Landau free energy
EðuÞ :¼
Z

X

c
2
jruj2 þWðuÞ

� �
dx; ð2:4Þ
i.e. xl ¼ dE
dul

. The gradient energy coefficient c > 0 and
WðuÞ :¼ W1ðuÞ �
1

2
uTAu; ð2:5Þ
is the homogeneous free energy density. Here, A is a constant N · N symmetric matrix taking into account the
interaction between different components. The term W1(u) represents the entropy of the system and is usually
taken to be of the form
W1ðuÞ :¼ h
XN

l¼1

ul ln ul; ð2:6Þ
with the absolute temperature h > 0. In the deep quench limit h! 0, we take
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W1ðuÞ :¼
0 when u satisfies the constraints ð2:3Þ;
1 otherwise:

�
ð2:7Þ
From the boundary conditions (2.1c) we have
d

dt

Z
X

udx ¼ 0;
d

dt
EðuÞ 6 0: ð2:8Þ
Hence, the total mass of each component is conserved and the free energy E decays for the system.

Remark 2.1. The scalar Cahn–Hilliard equation (1.1) is a special case of the Cahn–Hilliard system (2.1).

In the case N = 2, assuming that A11 = A22, B11 = B22, defining u :¼ u2 � u1, x :¼ x2 � x1,
b(u) = B22 � B12 and hc = A22 � A12, we obtain that (u,x) satisfies the equation
ut �r � ðbðuÞrxÞ ¼ 0; x ¼ �cDuþW0ðuÞ; ð2:9Þ

i.e.
ut �r � ðbðuÞrð�cDuþW0ðuÞÞÞ ¼ 0; ð2:10Þ

with the homogeneous free energy
WðuÞ ¼ h
2
ð1þ uÞ ln 1þ u

2

� �
þ ð1� uÞ ln 1� u

2

� �� �
þ hc

2
ð1� u2Þ: ð2:11Þ
This is the Cahn–Hilliard equation with a logarithmic free energy which satisfies the constraint |u| 6 1.
We can also define u :¼ u2 and w :¼ x2�x1

2
, then we obtain the same Eq. (2.10) with another homogeneous

free energy
WðuÞ ¼ h
2
ðu ln uþ ð1� uÞ lnð1� uÞÞ þ hc

2
uð1� uÞ; ð2:12Þ
which satisfies the constraint 0 6 u 6 1.
The Ginzburg–Landau free energy of Eq. (2.10)
EðuÞ :¼
Z

X

c
2
jruj2 þWðuÞ

� �
dx; ð2:13Þ
also satisfies
d

dt
EðuÞ 6 0: ð2:14Þ
2.2. The LDG method for the Cahn–Hilliard system

In this section, we consider the local discontinuous Galerkin method for the Cahn–Hilliard system (2.1)
with N components in X 2 Rd with d 6 3. Although we do not address the numerical results in three dimen-
sions in this paper, the LDG methods and the energy stability results of this paper are valid for all d 6 3.

2.2.1. Notation

Let T h denote a tessellation of X with shape-regular elements K. Let C denote the union of the boundary
faces of elements K 2 T h, i.e. C ¼ [K2T hoK, and C0 = CnoX.

In order to describe the flux functions we need to introduce some notations. Let e be a face shared by the
‘‘left’’ and ‘‘right’’ elements KL and KR. For our purpose ‘‘left’’ and ‘‘right’’ can be uniquely defined for each
face according to any fixed rule, see, e.g. [36] for more details of such a definition. Define the normal vectors mL

and mR on e pointing exterior to KL and KR, respectively. If w is a function on KL and KR, but possibly dis-
continuous across e, let wL denote ðwjKL

Þje and wR denote ðwjKR
Þje, the left and right trace, respectively.

Let PpðKÞ be the space of polynomials of degree at most p P 0 on K 2 T h. The finite element spaces are
denoted by
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V N
h ¼ fu : ujK 2 ðPpðKÞÞN ; 8K 2 T hg;

RN
h ¼ fU ¼ ð/1; . . . ;/N Þ

T
: /ljK 2 ðPpðKÞÞd ; l ¼ 1 . . . N ; 8K 2 T hg:
Note that functions in V N
h and RN

h are allowed to be completely discontinuous across element interfaces.

2.2.2. The LDG methods
To define the local discontinuous Galerkin method, we rewrite (2.1) as a first order system:
ut ¼ r � S; ð2:15aÞ
S ¼ BðuÞP; ð2:15bÞ
P ¼ rð�qþ rÞ; ð2:15cÞ
q ¼ cr �W ; ð2:15dÞ
W ¼ ru; ð2:15eÞ
r ¼ DWðuÞ; ð2:15fÞ
where we use the notations which are defined in Section 2.1.
To simplify the notation, we still use u, S, P, q, W and r to denote the numerical solution. The local dis-

continuous Galerkin method to solve the system (2.15) is as follows: Find u, q, r 2 V N
h and S, P, W 2 RN

h , such
that, for all test functions q, u, n 2 V N

h and H, U, ! 2 RN
h ,
Z

K
ut � qdK ¼ �

Z
K

S � rqdK þ
Z

oK

dm � S � qds; ð2:16aÞZ
K

S �HdK ¼
Z

K
ðBðuÞPÞ �HdK; ð2:16bÞZ

K
P �UdK ¼ �

Z
K
ðr� qÞ � ðr �UÞdK þ

Z
oK
ðbr � bqÞ � ðm �UÞds; ð2:16cÞZ

K
q � udK ¼ �c

Z
K

W � rudK þ c
Z

oK

dm �W � uds; ð2:16dÞZ
K

W � !dK ¼ �
Z

K
u � ðr � !ÞdK þ

Z
oK
bu � ðm � !Þds; ð2:16eÞZ

K
r � ndK ¼

Z
K
ðDWðuÞÞ � ndK: ð2:16fÞ
The ‘‘hat’’ terms in (2.16a)–(2.16f) in the cell boundary terms from integration by parts are the so-called
‘‘numerical fluxes’’, which are functions defined on the edges and should be designed based on different guid-
ing principles for different PDEs to ensure stability. The motivation for choosing the numerical fluxes is sim-
ilar to that for the LDG method for the heat equation ut = uxx. Eventual symmetric treatment, such as an
alternating choice of the fluxes for a quantity and its derivative, is used as a guideline.

It turns out that we can take the simple choices such that
bS je ¼ SL; bqje ¼ qR; brje ¼ rR; cW je ¼WL; buje ¼ uR: ð2:17Þ
We remark that the choice for the fluxes (2.17) is not unique. In fact the crucial part is taking bS and bq, br from
opposite sides and cW and bu from opposite sides.

Remark 2.2. For the scalar Cahn–Hilliard equation
ut ¼ r � ðbðuÞrð�cDuþW0ðuÞÞÞ; ð2:18Þ

the LDG scheme becomes: Find u, q, r 2 V 1

h and s, p, w 2 R1
h, such that, for all test functions q, u, n 2 V 1

h and
g, /, w 2 R1

h
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Z
K

utqdK ¼ �
Z

K
s � rqdK þ

Z
oK
dm � sqds; ð2:19aÞZ

K
s � gdK ¼

Z
K

bðuÞp � gdK; ð2:19bÞZ
K

p � /dK ¼ �
Z

K
ðr � qÞr � /dK þ

Z
oK
ðr̂ � q̂Þm � /ds; ð2:19cÞZ

K
qudK ¼ �c

Z
K

w � rudK þ c
Z

oK
dm � wuds; ð2:19dÞZ

K
w � wdK ¼ �

Z
K

ur � wdK þ
Z

oK
ûm � wds; ð2:19eÞZ

K
rndK ¼

Z
K

W0ðuÞndK: ð2:19fÞ
The numerical fluxes are
ŝje ¼ sL; q̂je ¼ qR; r̂je ¼ rR; ŵje ¼ wL; ûje ¼ uR: ð2:20Þ
2.2.3. Energy stability

We will prove the theoretical results of the energy stability for the general nonlinear system case with the
choice of the fluxes in the previous section.

Proposition 2.1 (Energy stability). The solution to the schemes (2.16) and (2.17) with the boundary conditions

(2.1c) satisfies the energy stability
d

dt

Z
X

c
2

W �W þWðuÞ
� �

dx 6 0:
Proof. Choosing the test function n ¼ �ut 2 V N
h in (2.16f), we obtain
�
Z

K
r � ut dK ¼ �

Z
K
ðDWðuÞÞ � ut dK: ð2:21Þ
For Eq. (2.16e), we choose the test function as ! = cW and then take the time derivative to obtainZ Z Z Z Z

2c

K
W t �W dK ¼ �c

K
ut � ðr �WÞdK þ c

oK
but � ðm �WÞds� c

K
u � ðr �W tÞdK þ c

oK
bu � ðm �W tÞds:

ð2:22Þ

Also we can choose the test function in Eq. (2.16e) as ! = cWt and combine with Eq. (2.22), then we obtain
c
Z

K
W t �W dK ¼ �c

Z
K

ut � ðr �WÞdK þ c
Z

oK
but � ðm �WÞds: ð2:23Þ
For (2.16a), (2.16b), (2.16c) and (2.16d), we take the test functions
q ¼ r� q; H ¼ �P; U ¼ S; u ¼ ut:
Then we have
Z
K

ut � ðr� qÞdK ¼ �
Z

K
S � ðrðr� qÞÞdK þ

Z
oK

dm � S � ðr� qÞds; ð2:24Þ

�
Z

K
S � P dK ¼ �

Z
K
ðBðuÞPÞ � P dK; ð2:25ÞZ

K
P � S dK ¼ �

Z
K
ðr� qÞ � ðr � SÞdK þ

Z
oK
ðbr � bqÞ � ðm � SÞds; ð2:26ÞZ

K
q � ut dK ¼ �c

Z
K

W � ðrutÞdK þ c
Z

oK

dm �W � ut ds: ð2:27Þ
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Summing up Eqs. (2.21)–(2.27), we obtain
Z
K
ðcW �W t þ ðDWðuÞÞ � utÞ þ

Z
K
ðBðuÞPÞ � P dK

¼ �c
Z

K
utðr �WÞdK � c

Z
K

W � ðrutÞdK þ c
Z

oK
but � ðm �WÞdsþ c

Z
oK

dm �W � ut ds

�
Z

K
S � ðrðr� qÞÞdK �

Z
K
ðr� qÞ � ðr � SÞdK þ

Z
oK

dm � S � ðr� qÞdþ
Z

oK
ðbr � bqÞ � ðm � SÞds

¼ �c
Z

oK
ðm �WÞ � ut dsþ c

Z
oK
but � ðm �WÞdsþ c

Z
oK

dm �W � ut ds�
Z

oK
ðr� qÞ � ðm � SÞds

þ
Z

oK

dm � S � ðr� qÞdsþ
Z

oK
ðbr � bqÞ � ðm � SÞds:
By the boundary conditions (2.1c), we take cW ¼ 0, bS ¼ 0, û ¼ uin, q̂ ¼ qin and r̂ ¼ rin at the domain bound-
ary, where uin means the value taking from the inside of the boundary element.

Summing up over K, with the numerical fluxes (2.17) and the above specific choice of the fluxes at the
boundary, we get
Z

X
ðcW �W t þWðuÞtÞdxþ

Z
X
ðBðuÞPÞ � P dx ¼ 0:
Because B(u) is semi-positive, we have the energy stability
d

dt

Z
X

c
2

W �W þWðuÞ
� �

dx 6 0: �
Remark 2.3. Proposition 2.1 is also true for the LDG scheme (2.19) and (2.20) for the scalar Cahn–Hilliard
equation (2.18). The proof goes along the same line and is simpler. We thus omit the details.
3. Numerical results

In this section, we perform numerical experiments of the local discontinuous Galerkin method applied to the
Cahn–Hilliard equation and system. Time discretization is by the third order TVD Runge–Kutta method [29].
We have chosen Dt suitably small so that spatial errors dominate in the numerical results. This is not the most
efficient method for the time discretization to our LDG scheme. However, we will not address the issue of time
discretization efficiency in this paper. All the computations were performed in double precision. We have verified
with the aid of successive mesh refinements, that in all cases, the results shown are numerically convergent.

3.1. Numerical results for the Cahn–Hilliard equation

3.1.1. One space dimension

In this section, we give the numerical test results for the one-dimensional Cahn–Hilliard equation.

Example 3.1. We consider
ut ¼ �ðbðuÞðcuxxx � ðW0ðuÞÞxÞÞx; ð3:1Þ

with WðuÞ ¼ 3

2
ð1� u2Þ, b(u) = 1 and c = 4 in X = (0, 4p) and periodic boundary conditions. We take the exact

solution
uðx; tÞ ¼ e�t sinðxÞ � e0:5t sinð0:5xÞ: ð3:2Þ

The L2 and L1 errors and the numerical orders of accuracy at time t = 0.5 with uniform meshes in [0, 4p] are
contained in Table 1. We can see that the method with Pk elements gives (k + 1)th order of accuracy in both L2

and L1 norms.
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Example 3.2. We consider
Table
Accura

J

P0

10
20
40
80

P1

10
20
40
80

P2

10
20
40
80

P3

10
20
40
80

Unifor
ut ¼ �ðbðuÞðcuxxx � ðW0ðuÞÞxÞÞx; ð3:3Þ

with WðuÞ ¼ 1

2
ð1� u2Þ, b(u) = 1 � u2 and c = 0.01 in X = (0,1). The initial condition is
u0ðxÞ ¼
cos

x�1
2ffiffi
c
p
� �

� 1 if x� 1
2

		 		 6 p
ffiffi
c
p

2
;

�1 otherwise:

(
ð3:4Þ
The boundary conditions are taken as
ux ¼ bðuÞuxxx ¼ 0 ð3:5Þ

at both ends. We note that u0(x) is in H1(X) and not in H2(X). Elliot and Garcke [18] proved existence of a
solution with the property that u 2 L2(0,T;H2(X)) for arbitrary initial data u0 2 H1(X). Our numerical tests
verify their conclusion that the numerical solution appears to spread to the stationary C1([0, 1]) solution:
usteadyðxÞ ¼
1
p 1þ cos

x�1
2ffiffi
c
p
� �h i

� 1 if x� 1
2

		 		 6 p
ffiffiffi
c
p
;

�1 otherwise:

(
ð3:6Þ
The L2 and L1 errors and the numerical orders of accuracy for the stationary solution usteady at time t = 0.1
with uniform meshes in [0,1] are contained in Table 2. We can see that the method with Pk elements gives
(k+1)th order of accuracy in both L2 and L1 norms, for k 6 1 when the regularity of the solution is still
enough.

In Fig. 1, we show the numerical results at t = 0.1 using P1 elements on the uniform mesh with 80 cells. With
fewer cells, our scheme yields the similar results comparing with the numerical calculations performed by Bar-
rett el al. [3].

Example 3.3. We consider the Cahn–Hilliard equation (3.3) with b(u) = 1 or b(u) = 1 � u2 and c = 10�3 in
X = (0, 1). We take the free energy
1
cy test for the Cahn–Hilliard equation (3.1) with the exact solution (3.2)

L1 error Order L2 error Order

2.69E�01 – 8.30E�01 –
1.23E�01 1.12 4.00E�01 1.06
6.00E�02 1.04 1.97E�01 1.02
2.98E�02 1.01 9.82E�02 1.01

5.11E�02 – 2.23E�01 –
1.25E�02 2.03 5.54E�02 2.01
3.12E�03 2.00 1.39E�02 2.00
7.79E�04 2.00 3.47E�03 2.00

4.86E�03 – 2.28E�02 –
6.06E�04 3.00 3.89E�03 2.88
7.57E�05 3.00 3.09E�04 2.97
9.46E�06 3.00 4.95E�05 2.99

3.83E�04 – 1.19E�03 –
2.40E�05 3.99 1.23E�04 3.96
1.51E�06 4.00 7.66E�06 4.00
9.44E�08 4.00 4.82E�07 3.99

m meshes with J cells at time t = 0.5.



Table
Accura

J

P0

10
20
40
80

P1

10
20
40
80

Unifor
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WðuÞ ¼ h
2
ð1þ uÞ ln 1þ u

2

� �
þ ð1� uÞ ln 1� u

2

� �
 �
þ 1

2
ð1� u2Þ; ð3:7Þ
with h = 0 (the deep quench limit) or 0.3. The initial condition is
u0ðxÞ ¼

1 if 0 6 x 6 1
3
� 1

20
;

20 1
3
� x

� 
if x� 1

3

		 		 6 1
20
;

�20 x� 41
50

		 		 if x� 41
50

		 		 6 1
20
;

�1 otherwise:

8>>>><>>>>: ð3:8Þ
The boundary conditions are taken as (3.5).

We use P1 elements and a uniform mesh with 80 cells. The results include both h = 0 (the deep quench limit)
and h = 0.3 for constant and degenerate mobility b(u) = 1 or b(u) = 1 � u2. The simulations are stopped when
the obtained profiles do not change for a long time. The numerical results compare very well with numerical
calculations performed by Barrett el al. [3]. From the numerical results in Fig. 2, we have the following
observation:

� For the constant mobility b(u) = 1, the ‘‘bump’’ is swept away quickly. This is due to the fact that mobility
is positive in the pure phases. The results are shown in the cases (a) and (b) of Fig. 2.
� For the degenerate mobility b(u) = 1 � u2 with logarithmic free energy (3.7), the time scale of the diffusion

is greatly increased. The result is shown in the case (c) of Fig. 2.
� For the degenerate mobility b(u) = 1 � u2 and the quench limit free energy, the ‘‘bump’’ does not lose mass.

As h goes to zero, the minima of the free energy W(u) in (3.7) converge to u = ±1 (see Fig. 3). This implies
that the diffusion through the bulk becomes smaller for lower temperature. The result is shown in the case
(d) of Fig. 2.

3.1.2. Two space dimensions

In this section, we present the numerical results for the two-dimensional Cahn–Hilliard equation.

Example 3.4. We consider the Cahn–Hilliard equation
ut ¼ r � ðbðuÞrð�cDuþW0ðuÞÞÞ; ð3:9Þ

with
WðuÞ ¼ 600ðu ln uþ ð1� uÞ lnð1� uÞÞ þ 1800uð1� uÞ; bðuÞ ¼ 1; c ¼ 1:
The initial condition is
2
cy test for the Cahn–Hilliard equation (3.3) with the stationary solution (3.6)

L1 error Order L2 error Order

1.85E�01 – 6.94E�02 –
1.44E�01 0.37 4.44E�02 0.64
6.83E�02 1.07 2.08E�02 1.09
2.97E�02 1.19 8.67E�03 1.26

7.55E�02 – 2.42E�02 –
1.45E�02 2.38 3.86E�03 2.64
4.06E�03 1.83 8.11E�04 2.25
9.07E�04 2.16 1.96E�04 2.04

m meshes with J cells at time t = 0.1.
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Fig. 1. The numerical solution of Eq. (3.3) with the initial condition (3.4) and the boundary conditions (3.5) at t = 0.1 using P1 elements
on the uniform mesh with 80 cells.
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Fig. 2. The solution of Eq. (3.3) with the initial condition (3.8) and the boundary conditions (3.5) at different time T with P1 elements on
the uniform mesh with 80 cells.
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u0ðxÞ ¼
0:71 x 2 X1;

0:69 x 2 X2;

�
ð3:10Þ
where the square domain
X ¼ ð�0:5; 0:5Þ � ð�0:5; 0:5Þ; X1 ¼ ð�0:2; 0:2Þ � ð�0:2; 0:2Þ; X2 ¼ X� X1:
The boundary conditions are
ou
om
¼ bðuÞrx � m ¼ 0; on oX: ð3:11Þ
We use the P0 and P1 elements on the uniform meshes with 40 · 40 and 80 · 80 cells, respectively. The con-
tours at t = 8 · 10�5 are shown in Fig. 4. We can see that the solution structure is well resolved even for the
coarser mesh. The numerical results compare very well with the numerical calculations performed by Wells
et al. [31].

Example 3.5. In the square domain X = (�0.5, 0.5) · (�0.5,0.5), we consider the Cahn–Hilliard equation (3.9)
with
WðuÞ ¼ 3000ðu ln uþ ð1� uÞ lnð1� uÞÞ þ 9000uð1� uÞ; bðuÞ ¼ uð1� uÞ; c ¼ 1:
The initial condition u0 is a random perturbation of uniform state u = 0.63 with a fluctuation no larger than
0.05. The boundary conditions are taken as (3.11). This example is used in Section 5.3 in [31] (the initial con-
dition is identical in the statistical sense). We use the P1 elements on a uniform mesh with 80 · 80 cells. The
concentration evolution can be categorized in two stages. The first stage is governed by spinodal decomposi-
tion and phase separation (the first four figures in Fig. 5). The second stage is governed by grain coarsening
(from t = 8 · 10�6 onwards). Fig. 5 shows statistically similar patterns in the numerical solution as those in
Wells et al. [31].
3.2. Numerical results for the Cahn–Hilliard system

3.2.1. One space dimension

In this section, we present the numerical experiment results for the one-dimensional Cahn–Hilliard system.

Example 3.6. We consider a ternary system in X = (0,1) by Blowey et al. [7]



Fig. 4. The contours of u(x, t) for Eq. (3.9) with the initial condition (3.10) and the boundary conditions (3.11) when t = 8 · 10�5. P0 and
P1 elements on the uniform mesh with 40 · 40 and 80 · 80 cells.
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ut þ cuxxxx þ hcuxx � BfDW1ðuÞgxx ¼ 0; ð3:12Þ

with
B ¼

2
3
� 1

3
� 1

3

� 1
3

2
3
� 1

3

� 1
3
� 1

3
2
3

0B@
1CA
and
WðuÞ ¼ hðu1 ln u1 þ u2 ln u2 þ u3 ln u3Þ þ hcðu1u2 þ u2u3 þ u3u1Þ:

The boundary conditions are
ux ¼ Buxxx ¼ 0 ð3:13Þ

at both ends.

We first perform a linear stability analysis. We seek a solution of the form
uiðx; tÞ ¼ mi þ
X1
n¼1

cn
i ðtÞ cos npx; i ¼ 1; 2; 3;



Fig. 5. The contours evolution of u(x, t) for Eq. (3.9) at different time from a randomly perturbed initial condition with P1 elements on the
uniform mesh with 80 · 80 cells.
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where m = (m1,m2,m3) is the mean concentration and jcn
i ðtÞj � 1. Note that m1 + m2 + m3 = 1 and

cn
1ðtÞ þ cn

2ðtÞ þ cn
3ðtÞ ¼ 0. Linearizing DW1(u) about mi and substituting into (3.12), we obtain the ordinary dif-

ferential equations
dcn

dt
þ n4p4ccn þ n2p2Hcn ¼ 0; ð3:14Þ
where
cnðtÞ ¼ cn
1; c

n
2

� 
; H ¼

2h
3

1
m1
þ 1

2ð1�m1�m2Þ

� �
� hc � 2h

3
1

2m2
� 1

2ð1�m1�m2Þ

� �
� 2h

3
1

2m1
� 1

2ð1�m1�m2Þ

� �
2h
3

1
m2
þ 1

2ð1�m1�m2Þ

� �
� hc

0B@
1CA:
The solution of (3.14) is given by
cnðtÞ ¼ e�n4p4ct � e�n2p2H tcnð0Þ:

For the growth of one or more of the components u1, u2, a necessary condition is that the eigenvalues of H is
smaller than �cp2. When m2 = m1, we have
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Fig. 6. The positive, negative definite and indefinite regions of H, when m2 = m1.
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det H ¼ ðh=hc þ 6m2
1 � 3m1Þðh=hc � m1Þ

3m2
1ð1� 2m1Þ

h2
c :
We see from Fig. 6 that the two curves h/hc = m1 and h=hc ¼ 3m1 � 6m2
1 define the four regions where x is

positive, negative definite or indefinite.
We take h = 0.2, hc = 1 and c = 5.0 · 10�3. The initial conditions are random perturbations of the uniform

state m with the fluctuation no larger than 0.01. We use P1 elements and a uniform mesh with 80 cells. The
simulations are stopped when the obtained profiles do not change for a long time.

We perform four experiments with initial data inside the positive, negative definite and indefinite regions,
respectively, by taking m1 = 1/20, 3/20, 1/3, 19/20 (points a, b, c and d in Fig. 6, respectively):

� m1 = 1/20 in the positive definite region.
Fig. 7 shows the time evolution of the ternary system (3.12). As expected, the homogeneous system is stable
and no phase separation happens.
� m1 = 3/20 in the indefinite region.

Fig. 8 shows the time evolution of the ternary system (3.12). Initially, the third phase u3 dominates. For
some time the evolution is in the direction of u1 = u2 with two-phase structure.
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Fig. 7. The evolution of system (3.12) at different time T with m1 = 1/20 when h = 0.2 and hc = 1.
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Fig. 8. The evolution of system (3.12) at different time T with m1 = 3/20 when h = 0.2 and hc = 1.
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� m1 = 1/3 in the negative definite region.
Fig. 9 shows the time evolution of the ternary system (3.12). We observe three phases in the early stages of
the spinodal decomposition.
� m1 = 19/20 in the indefinite region.

Fig. 10 shows the time evolution of the ternary system (3.12). The decomposition process is like a binary
alloy. After the quench, only u1 and u2 are separated and there is no spatial area where u3 is dominant.
3.2.2. Two space dimensions

In this section, we present numerical simulation results for the two-dimensional Cahn–Hilliard system.

Example 3.7. We consider a ternary system in X = (0,1) · (0,1)
ut ¼ r � ðBðuÞrxÞ;
x ¼ �cDuþ DW1ðuÞ � Au

ð3:15Þ
where W1(u) is given by (2.6) and
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Fig. 9. The evolution of system (3.12) at different time T with m1 = 1/3 when h = 0.2 and hc = 1.
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BðuÞ ¼
u1ðu2 þ u3Þ �u1u2 �u1u3

�u1u2 u2ðu1 þ u3Þ �u2u3

�u1u3 �u2u3 u3ðu1 þ u2Þ

0B@
1CA; A ¼ �hc

0 1 1

1 0 1

1 1 0

0B@
1CA:
We take h = 1200, hc = 3600 and c = 1. The initial condition is
u0ðx1; x2Þ ¼

ð0; 0; 1ÞT if 0 6 x1 6
13
16

and x2 > 0:65þ
ffiffi
3
p

8p cosð8px1Þ
or 13

16
6 x1 6

13
16
þ 0:15ffiffi

3
p and x2 > 0:65�

ffiffiffi
3
p
ðx1 � 13

16
Þ

or 13
16
þ 0:15ffiffi

3
p 6 x1 and x2 >

1
2
;

ð0; 1; 0ÞT if 0 6 x1 6
13
16

and x2 < 0:35�
ffiffi
3
p

8p cosð8px1Þ
or 13

16
6 x1 6

13
16
þ 0:15ffiffi

3
p and x2 < 0:35þ

ffiffiffi
3
p
ðx1 � 13

16
Þ

or 13
16
þ 0:15ffiffi

3
p 6 x1 and x2 <

1
2
;

ð0; 1
2
; 1

2
ÞT if 13

16
þ 0:15ffiffi

3
p 6 x1 and x2 ¼ 1

2
;

ð1; 0; 0ÞT otherwise:

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

ð3:16Þ
The boundary conditions are
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Fig. 10. The evolution of system (3.12) at different time T with m1 = 19/20 when h = 0.2 and hc = 1.
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ou

om
¼ BðuÞ ox

om
¼ 0; on oX: ð3:17Þ
We show the contours of u1(x, t), u2(x, t) and u3(x, t) at t = 8 · 10�5 in Fig. 11 using P1 elements on a uniform
mesh with 80 · 80 cells. As expected, the symmetry of the initial data is maintained during the evolution. We
find that the interface of the two components is ‘‘wetted’’ by the third component. This is understood as the
energy required to go directly from the first to the third component is much greater than that required to go
via the intermediate second component. This phenomenon is known as ‘‘wetting’’.

4. Conclusion

We have developed local discontinuous Galerkin methods to solve the Cahn–Hilliard equation and the
Cahn–Hilliard system. The energy stability is proven for the general nonlinear case. Numerical examples
for one-dimensional and two-dimensional cases are given to illustrate the accuracy and capability of the meth-
ods. Although not addressed in this paper, the LDG methods are flexible for general geometry, unstructured
meshes and h–p adaptivity, and have excellent parallel efficiency. The LDG method has a good potential in
solving the Cahn–Hilliard equations and similar nonlinear equations in mathematical physics.



Fig. 11. The contours of u1(x, t), u2(x, t) and u3(x, t) for Eq. (3.15) with the initial condition (3.16) and the boundary conditions (3.17) when
t = 8 · 10�5. P1 elements on the uniform mesh with 80 · 80 cells.
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