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Abstract

We present and discuss the development of an unconditionally stable algorithm
used to solve the evolution equations of the Phase Field Crystal (PFC) model. This
algorithm allows for an arbitrarily large algorithmic time step. As the basis for
our analysis of the accuracy of this algorithm, we determine an effective time step
in Fourier space. We then compare our calculations with a set of representative
numerical results, and demonstrate that this algorithm is an effective approach for
the study of the PFC models, yielding a time step effectively 180 times larger than
the Euler algorithm for a representative set of material parameters. As the PFC
model is just a simple example of a wide class of density functional theories, we
expect this method will have wide applicability to modeling systems of considerable
interest to the materials modeling communities.
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1 Introduction

The dynamics of a non-equilibrium system often results in highly complicated
domain structures (microstructures). Typically, as time proceeds, the average
size of these structures grows as a direct consequence of free-energy reduction:
the interface is eliminated resulting in an increase in the size of homogeneous
regions. Traditional non-equilibrium dynamics usually deals with the equi-
librium states that are spatially uniform [1,2,3,4], i.e., the stable phases are
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characterized by homogeneous values for the appropriate intensive thermody-
namic variables. Classic, albeit quite simple, examples of models governing
the evolution of such systems are the Cahn-Hilliard (CH) Equation for con-
served systems [5] and Allen-Cahn (AC) Equation for non-conserved systems
[6]. Examples are found in polymer mixtures [7], alloys [8,9], liquid-crystals
[10,11], and in cosmology [12].

A model that has generated considerable recent interest is the Phase Field
Crystal (PFC) Equation [13,14], which is a conservative form of the famil-
iar, non-conserved, Swift-Hohenberg (SH) Equation [15]. These systems differ
from the CH and AC systems in that the stable phase is periodic. For SH
models, the order parameter is viewed as capturing the inhomogeneities in
a fluid associated with Rayleigh-Bénard convection. In the case of the PFC
model, which is a simple version of more elaborate density functional theories
of liquid/crystal interfaces [16,17], the model captures features at the atomic
scale, and thus contains highly detailed physical information about the sys-
tem’s structure. Such models can describe many of the basic properties of
polycrystalline materials that are realized during non-equilibrium processing.

The equations of motion governing these non-equilibrium phenomena are non-
linear partial differential equations that cannot generally be solved analytically
for random initial conditions. Therefore, computer simulations play an essen-
tial role in our understanding and characterization of non-equilibrium phe-
nomena. The standard Euler integration is known to be unstable for time step
∆t above a threshold fixed by lattice spacing ∆x [18]. In CH and AC systems,
to maintain an interfacial profile, the lattice spacing must be smaller than the
interfacial width ξ, and in PFC and SH systems, ∆x must smaller than the
periodicity selected by the system. Thus, the Euler update is inefficient, and
in practice it is computationally costly to use to evolve large systems. Var-
ious computational algorithms [19,20,21] have been developed by increasing
∆t compared to the simplest Euler discretization. However, these methods
still require a fixed time step, so they eventually become inefficient. Recently,
unconditionally stable algorithms [22,23,24] were developed to overcome this
difficulty for CH and AC Equations. These algorithms are a class of stable
algorithms free of the fixed time step constraint for equations with a mix of
implicit and explicit terms. While these algorithms allow for an increasing
time step in CH systems as time proceeds, only a finite effective time step is
possible for AC systems. A recent study [25], based on this unconditionally
stable algorithm, demonstrated analytically that one can use an accelerated
algorithm ∆t = At2/3 to drive the CH Equation, with the accuracy in corre-
lation controlled by

√
A.

In this manuscript we apply this unconditionally stable algorithm to the PFC
and SH Equations (Section 2). In Section 3 we establish the effectiveness of
this approach through numerical studies of the algorithm, demonstrating that
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the algorithm is both efficient and accurate for solving PFC Equation. Finally,
in Section 4 we provide some concluding remarks.

2 Unconditionally stable algorithms for PFC Equation

In this section, we develop a class of unconditionally stable time stepping
algorithms (∆t taken arbitrarily large without the solution becoming unstable)
to the PFC and SH Equations. Although the main purpose of this section is
to study unconditionally stable algorithms for the PFC Equation, we include
a parallel discussion of the SH Equation, as the methodology applies to both
equations with only trivial differences.

2.1 Unconditionally Stable Finite Differences

Both the PFC and SH Equations start from a free energy functional that
describes the configurational cost of periodic phases in contact with isotropic
phases, and can be expressed as

F [φ] =
∫

dx

{

1

2
φ
[

r + (1 +∇2)2
]

φ+
φ4

4

}

, (1)

where the periodic order parameter φ(x, t) has the wave number k0 = 1 in
equilibrium, and r < 0 characterizes the quench depth. For the PFC equa-
tion, r is proportional to the deviation of the temperature from the melting
temperature TM − T .

In the PFC model the order parameter (the density) is conserved, and thus
the equation of motion is in the form of a continuity equation, ∂φ/∂t = −∇· j,
with current j = −M∇(δF/δφ), where M is the mobility. Absorbing M into
the time scale, we obtain the dimensionless form of the PFC Equation

∂φ

∂t
= ∇2 δF

δφ
= ∇2

{[

r + (1 +∇2)2
]

φ+ φ3
}

. (2)

For the SH Equation, on the other hand, the order parameter is not conserved
by the dynamics, and its evolution is postulated to have the the form

∂φ

∂t
= −δF

δφ
= −

[

r + (1 +∇2)2
]

φ− φ3. (3)
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Eq. (3) has a simple dissipative form, where the rate of change of φ is propor-
tional to the gradient (with an an L2 inner product in functional space) of the
free energy.

In order to obtain an unconditionally stable algorithm, we now follow methods
previously developed for the CH and AC Equations [23,24], and work out in
some detail how to semi-implicitly parameterize the equation of motion. We
begin by “splitting” the linear terms in the equation of motion into “forward”
and “backward” pieces, both for Eq. (2):

φt+∆t +∆t∇2
[

(a1 − 1)(r + 1)φt+∆t + 2(a2 − 1)∇2φt+∆t + (a3 − 1)∇4φt+∆t

]

= φt +∆t∇2
[

a1(r + 1)φt + 2a2∇2φt + a3∇4φt + φ3
t

]

, (4)

and for Eq. (3):

φt+∆t −∆t
[

(a1 − 1)(r + 1)φt+∆t + 2(a2 − 1)∇2φt+∆t + (a3 − 1)∇4φt+∆t

]

= φt −∆t
[

a1(r + 1)φt + 2a2∇2φt + a3∇4φt + φ3
t

]

. (5)

The constants a1, a2 and a3 control the degree of splitting. In order to find
the constraints on these parameters that yield an unconditionally stable algo-
rithms, a standard von Neumann linear stability analysis on Eq. (4) and Eq.
(5) may be performed. The procedures are quite similar and the results are
identical for these two equations. We will only show the details for the PFC
model in next subsection.

2.2 Physical versus numerical instabilities

As was found in the analysis of Vollmayr-Lee and Rutenberg [23] for the CH
equation, the PFC equation will be linearly unstable to perturbations for le-
gitimate physical reasons. Specifically, the isotropic phase φ̄ can be metastable
or unstable to the stable periodic (crystalline) phase [14] if the system is an
undercooled liquid. This situation (which is precisely what we are interested
in modeling) is established when r + 3φ̄2 < 0. This physical instability com-
plicates our standard von Neumann stability analysis, as we wish to predict
when our numerical methods will cause an instability that is unrelated to the
physical instability resulting from the thermodynamic.

We can investigate the physical instability by a linear stability analysis on the
equation of motion Eq. (2). We let φ = φ̄+η, where φ̄ is a constant phase and
η is a small perturbation, and linearize the PFC Equation Eq. (2) in η to get
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η̇t = ∇2
[

(r + 3φ̄2) + (1 +∇2)2
]

ηt. (6)

This can be Fourier transformed to find

η̇k,t = −k2
[

(r + 3φ̄2) + (1− k2)2
]

ηk,t. (7)

The physical instability for the above equation occurs for

rk ≡ k2
[

(r + 3φ̄2) + (1− k2)2
]

< 0, (8)

which reduces to r + 3φ̄2 < 0 with k = 1 in the stable phase, as we indicated
above.

Now we can proceed to analyze the numerical stability and determine the
constraints for the splitting parameters. We linearize the general step Eq. (4)
by substituting φ = φ̄+ η and get

ηt+∆t +∆t∇2
[

(a1 − 1)(r + 1)ηt+∆t + 2(a2 − 1)∇2ηt+∆t + (a3 − 1)∇4ηt+∆t

]

= ηt +∆t∇2
[

a1(r + 1)ηt + 2a2∇2ηt + a3∇4ηt + 3φ̄2ηt
]

, (9)

The Fourier transform of the above equation results in

ηk,t+∆t

[

1−∆tk2{(a1 − 1)(r + 1)− 2(a2 − 1)k2 + (a3 − 1)k4}
]

= ηk,t
[

1−∆tk2{a1(r + 1)− 2a2k
2 + a3k

4 + 3φ̄2}
]

. (10)

This can be re-expressed as

ηk,t+∆t[1 + ∆tLk] = ηk,t[1 + ∆tRk]. (11)

Note that rk = Lk − Rk. While we want to avoid numerical instability, the
physical instability is to be expected during the dynamics, and will not lead
to numerical problems. But, as we indicated above, both of the instabilities
will be captured by a general von Neumann stability analysis. One manner of
dealing with this is to recognize that a proper unconditionally stable algorithm
will be stable if and only if rk > 0 and should be unstable if and only if rk < 0.
The von Neumann stability criterion is |ηk,t+∆t| < |ηk,t|. We can express our
restriction on the regime of von Neumann stability as

[1 + ∆tLk]
2> [1 + ∆tRk]

2 for rk > 0

[1 + ∆tLk]
2< [1 + ∆tRk]

2 for rk < 0. (12)
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The above inequalities can be rewritten as

rk [2 + ∆t(Lk +Rk)]> 0 for rk > 0

rk [2 + ∆t(Lk +Rk)]< 0 for rk < 0,

which, dividing by rk can be reduced to a single inequality, 2+∆t(Lk+Rk) >
0, which implies 0 < Lk +Rk for arbitrarily large ∆t, and we obtain

0 < −k2
[

(r + 1)(2a1 − 1) + 3φ̄2 − 2(2a2 − 1)k2 + (2a3 − 1)k4
]

, (13)

which can be satisfied using the mode independent restrictions (and r > −1)

a1 <
1

2
− 3φ̄2

2(r + 1)
, a2 ≥

1

2
, a3 ≤

1

2
. (14)

These are the constraints on the parameters a1, a2 and a3 for unconditionally
stable algorithms for all modes, for quenches in the range −1 < r < −3φ̄2.
With these choices there is no threshold for ∆t in order to maintain numerical
stability. The quantity ∆t is termed the algorithmic time step. We note that
unconditional stability does not mean that the user of such algorithms may
simply take as large a time step as is desired. Indeed, to obtain accurate
physical results, there are additional restrictions on how large ∆t may be.

2.3 Effective time step

To determine how large a time step we may take, and still maintain an ac-
curate solution, we calculate the Fourier space “effective time step”, as will
be described below. We first note that when a1 = a2 = a3 = 1, Eq. (4)
corresponds to the traditional Euler update

φ′

t+∆t − φt

∆tEu
= ∇2

{[

r + (1 +∇2)2
]

φt + φ3
t

}

, (15)

where φ′

t+∆t denotes the field obtained after an Euler update on a previous
field φt, while we use the unprimed φt+∆t to denote the field obtained by
unconditionally stable algorithm on φt throughout.

We now define the spatial Fourier transform of φk,t =
∫

dx e−ik·x φt(x). In
Fourier space, writing k2 ≡ |k|2, the Euler update becomes

φ′

k,t+∆t − φk,t

∆tEu
= −k2

{[

r + (1− k2)2
]

φk,t + (φ3)k,t
}

, (16)
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where (φ3)k,t =
∫

dx e−ik·x φ3
t (x).

In Fourier space, the unconditionally stable algorithms Eq. (4) can be written
in a form that is analogous to Eq. (16):

φk,t+∆t − φk,t

∆tPFC
eff (k,∆t)

= −k2
{[

r + (1− k2)2
]

φk,t + (φ3)k,t
}

, (17)

where we define k-dependent effective time step by

∆tPFC
eff (k,∆t) ≡ ∆t

1 + ∆tk2[(r + 1)(1− a1) + 2k2(a2 − 1) + k4(1− a3)]
(18)

For SH Equation, the effective time step is

∆tSHeff (k,∆t) ≡ ∆t

1 + ∆t[(r + 1)(1− a1) + 2k2(a2 − 1) + k4(1− a3)]
. (19)

∆teff (k,∆t) is an effective time step for a mode k, corresponding to an al-
gorithmic time step ∆t. Of particular interest in the case of periodic systems
is the dominant mode (the lattice spacing in the PFC model), which, for the
scaling choices made in Eq. (2) and Eq. (3) is simply k0 = 1. Using the param-
eters employed in the simulations shown in the next section of r = −0.025,
a1 = 0.45, a2 = 0.5, a3 = 0.5, we obtain the dominant effective time step for
both equations

∆teff (k0,∆t) =
∆t

1 + 29∆t/800
. (20)

As ∆t = ∞, we obtain the maximum dominant effective time step ∆teff (k0,∞) =
800/29 ≈ 27.6. We see that a large algorithmic time step ∆t does not al-
ways translate into a significant amount of system evolution, as the effective
time step always remains less than 28 for these parameter choices, no mat-
ter how large the algorithmic time step becomes. Thus, this value provides
us with a useful bound on our exploration of just how large an algorith-
mic time step to take, and still obtain accurate results. For example, if we
take algorithmic time steps that yields an effective time step ∆teff (k0,∆t) =
∆teff (k0,∞)/2 = 400/29, then we find ∆t = 800/29. We demonstrate in the
next section that this algorithm, when applied to the PFC Equation, real-
izes a significant speedup compared to the traditional Euler algorithm, while
maintaining a controlled level of accuracy.
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Fig. 1. Snapshots of simulations of the PFC model. Time increases from left to right.
The first row shows the field obtained using the Euler algorithm with ∆tEu = 0.015.
The second to bottom rows show the fields obtained employing the unconditionally
stable algorithms, when using algorithmic time steps of ∆t = 3, ∆t = 10, and
∆t = 30.

3 Numerical results

The simulations were performed in two-dimensions. Fig. 1 shows typical snap-
shots of simulations for the PFC model with parameters φ̄ = 0.07, ∆x = 1.0,
and Lsys = 128 with random initial conditions which corresponds to the liquid
state. For comparison, all the simulations start with the same initial condi-
tion. In the Figure white regions indicate φ = φ̄, red φ = φ̄ + 0.2 and blue
φ = φ̄−0.2. The top row was obtained using the Euler algorithm ∆tEu = 0.015
at time steps n = 30000, n = 60000, n = 90000, and n = 160000. The second
and lower rows were obtained using the unconditionally stable algorithm with
(moving down) ∆t = 3, ∆t = 10, and ∆t = 30. For illustration and com-
parison purposes, we show the system snapshots at the same energy density

8



0.1 1 10 100 1000 10000
∆t

0.001

0.01

0.1

1

E
rr

or

Fig. 2. A measure of the error
√

〈(φeu − φun)2〉/〈(φeu − φ̄)2〉 versus the algorithmic
time step ∆t.

as the top row — from left, the energy density E = 0.002374, E = 0.002360,
E = 0.002357, and E = 0.002350 from the first to fourth column, respectively.
We immediately see that, for the times and energies selected, there are no vis-
ible differences between the Euler update simulation and the unconditionally
stable algorithm with ∆t = 3. However, there are visible differences between
the Euler update and the simulations with ∆t > 3. We now wish to make
these qualitative observations more quantitative.

To study the accuracy, we compare simulations at the same energy density
E = 0.002374 (the first column in Fig. 1). We compute a measure of the error:
√

〈(φeu − φun)2〉/〈(φeu − φ̄)2〉, where φeu(x) denotes the fields obtained using
Euler algorithm and φun(x) denotes the fields obtained using the uncondi-
tionally stable algorithm. Fig. 2 shows a plot of the error versus a range of
algorithmic time steps ∆t. Fig. 2 indicates that, unsurprisingly, the accuracy
increases as we decrease the algorithmic time step ∆t. When ∆t ≤ 3, the error
is below 5%. On the other hand, the error behavior in Fig. 2 for a large algo-
rithmic time step tends to saturate, mirroring the saturation in the effective
time step ∆teff for the dominant mode k0 = 1.

Fig. 3 shows a comparison between the dominant effective time step ∆teff (k0,∆t)
in Eq. (20) and a numerical estimate of the same quantity. The numerical es-
timate is obtained by calculating ttotEu/nun, where ttotEu is the total time needed
to reach the final state (a crystalline state without dislocations) using Euler
algorithm and nun is the number of computer steps needed to reach the same
state using unconditionally stable algorithms. We find good agreement for
∆t ≤ 3, while for ∆t > 3, the separation between the analytic and numerical
expressions increases. While the agreement at small times steps in unsurpris-
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Fig. 3. A comparison between the theoretical dominant effective time step (solid
line) and the numerical estimate of the same quantity (circle).

ing, the curve provides a useful metric for the optimum algorithmic time step
of ∆t ≈ 3, for the chosen parameters. When ∆t = 3, the ratio of the number
of time steps needed to achieve a particular energy using the unconditionally
stable versus Euler algorithm is approximately 180 (the ratio of the dominant
mode effective time step to the Euler time step). This is a substantial speedup,
and requires minimal analysis to implement the technique.

4 Conclusions

In this paper, we have presented an unconditionally stable algorithm applica-
ble to finite difference solutions of the the PFC Equation. We have demon-
strated that a fixed algorithmic time step driving scheme may provide signif-
icant speedup, with a controlled level of accuracy, when compared with Euler
algorithm. For the representative parameters chosen, a speedup of a factor of
180 was obtained. The analytical results and the numerical results are con-
sistent with an effective time step analysis. Although this algorithm allows
arbitrarily large algorithmic time steps, caution is indicated, as taking too
large an algorithmic time step will yield inaccuracies with little improvement
in the overall speedup of the calculation. This saturation in the speedup results
from the details of how the system’s energy evolution (and its corresponding
microstructural evolution) is governed by the effective time step, which sat-
urates as the algorithmic time step increases. Thus, there is little advantage
in too large an algorithmic time step. A method for obtaining a reasonable
value for the algorithmic time step ∆t is suggested, in which a few test cases
are run with different values of ∆t to see which one offers a good speedup
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and maintains the desired accuracy. The analytic form of the effective time
step provides a useful guide for deciding how large a time step to select when
trading off the obtainable speedup versus the loss of accuracy.

We expect the methodology developed in this paper could find extensive ap-
plications in a wide class of non-equilibrium systems. For example, it can be
straightforwardly applied to the Swift-Hohenberg Equation, given its similar-
ity with the Phase Field Crystal model. Additionally, the method also will
apply to systems where there is a dominant mode realized at late times, such
as is found in diblock co-polymers. This method should allow researchers to
dramatically improve the computational efficiency associated with modeling
the dynamics of materials systems.
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