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Shape optimization towards stability in constrained hydrodynamic

systems

Vincent Heuveline ∗ Frank Strauß†

Abstract

Hydrodynamic stability plays a crucial role for many applications. Existing approaches focus
on the dependence of the stability properties on control parameters such as the Reynolds or the
Rayleigh number. In this paper we propose a numerical method which aims at solving shape
optimization problems in the context of hydrodynamic stability. The considered approach allows to
guarantee hydrodynamic stability by modifying parts of the underlying geometry within a certain
flow regime. This leads to a formulation of a shape optimization problem with constraints on
the eigenvalues related to the linearized Navier-Stokes equations. In that context the eigenvalue
problem is generally non-symmetric and may involve complex eigenvalues. To validate the proposed
numerical approach we consider the flow around a body in a channel. The shape of the body is
parameterized and can be changed by means of a discrete number of design variables. It is our aim
to find a design which minimizes the drag force and ensures at the same time hydrodynamic stability
while keeping the volume of the body constant. The numerical results show that a transition from
an unstable design to a stable one is attainable by considering an adequate change of the body
shape. The resulting bodies are long and flat which corresponds to common intuition.

Keywords: shape optimization, hydrodynamic stability, Navier-Stokes equations, eigenvalue
problem

1 Introduction

Hydrodynamic stability plays a crucial role for many applications where fluid flows are unstable in the
sense that small perturbations superimposed on the mean flow can amplify and significantly disturb
the basic state. With respect to the concept of stability several approaches have been devised which
provide rigorous results but allow to depict only some facets of the highly complex physical mechanism
leading to instability. The energy method ensures for example exponential decay in time of the energy
of the system as well as unconditional stability assuming that some control parameters are below a
critical value (see e.g. [17] and references therein). An unconditional stability means that this property
does not depend on the size of the initial perturbation. In many systems the information provided
by the energy method is however quite pessimistic and the stability region which is provided is far
away from the experimentally observed onset of instabilities (see [6]). Methods based on generalized
energy functionals intend to cope with this issue and lead to conditional stability statements [8, 25].
The method of linearized stability provides statements on conditional stability on the basis of a non-
symmetric eigenvalue problem related to the linearized operator of the Navier-Stokes equation (see
e.g. [22]).
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2 V. Heuveline and F. Strauß

All these approaches have in common that they analyze the dependence between the stability prop-
erties and the value of a control parameter, usually the Reynolds number Re in a purely hydrodynamic
system or the Rayleigh number Ra in Bénard convection. In that context prototypical systems are for
example the Couette and the Poiseuille flow, the Rayleigh-Bénard and the Taylor-Couette system. A
comprehensive overview is given in [6, 2].

In this paper we enlarge the class of such problems of stability to the case of shape optimization
problems. We focus on a numerical approach which allows to determine optimal shape in the context
of flow problems in that it minimizes a given cost functional while satisfying stability constraints with
respect to the underlying flow. Since two decades shape optimization in fluids and flow control is
a major research topic (see [4, 9, 10, 19] and references therein). To the knowledge of the authors
this type of problems has not been addressed so far in the context of stability by means of numerical
methods despite their high relevance in many applications. This is mainly due to the fact that both
topics, shape optimization and hydrodynamic stability, are generally highly challenging numerical
problems on their own considering complex flow configurations.

To illustrate and validate numerically the proposed approach we consider the configuration of a flow
in channel around a body whose shape is optimized towards the minimization of the acting drag forces.
The underlying configuration is depicted in Figure 4. For the case of a disk, benchmark computations
with a main emphasis on the efficiency of the underlying numerical solver are summarized in [23].
Stability results for this type of problems can be found in [5, 12]. In our approach the shape of the
body inside the channel is parameterized. The corresponding parameters play the role of the design
variables in the shape optimization problem. It is our aim to find a design which minimizes the drag
forces and ensures linear stability of the hydrodynamic system.

The further contents of this paper are as follows. In Section 2 we discuss the special features of the
considered shape optimization problem particularly the formulation of the linear stability constraints
for the incompressible Navier-Stokes equations in that context. Section 3 introduces the details of
the parameterization of the body inside the channel by means of quadratic as well as cubic spline
approximations. Then, Section 4 outlines the proposed numerical method to solve this type of prob-
lems. The main emphasis is given to the development of a multigrid based Davidson method for the
eigenvalue computation as well as an adequate SQP algorithm in that context. Numerical results for a
benchmark flow problem are presented in Section 5. Finally, Section 6 is dedicated to the conclusions
and we point out possible outcomes and future research topics related to the presented approach.

2 Linear stability and problem formulation

In a bounded domain Ωq ⊂ Rd, where d = 2 or d = 3, we consider a base flow û := {v̂, p̂}, determined
by the stationary Navier-Stokes equations describing viscous, incompressible Newtonian fluid flow,

−ν∆v̂ + v̂ · ∇v̂ +∇p̂ = f in Ωq,
∇ · v̂ = 0 in Ωq,

(1)

where v̂ describes the velocity vector field, p̂ denotes the pressure, ν is the kinematic viscosity and f
is a prescribed volume force. For ease of presentation we assume here that the density ρ ≡ 1. The
subscript q in the notation Ωq describes the parameterization of the underlying computational domain.
We assume q to be a finite-dimensional vector. Furthermore, problem (1) is assumed to have a unique
solution and that for a solution operator S the relation û = S(q) holds. At the boundary ∂Ωq, the
usual non-slip boundary conditions are imposed along rigid parts together with suitable inflow and
free-stream outflow conditions,

v̂|Γrigid
= 0, v̂|Γin = v̂in, ν∂nv̂ − p̂n|Γout = 0. (2)
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Shape optimization towards stability in constrained hydrodynamic systems 3

In our framework we consider the hydrodynamic stability by means of linear stability. This method
relies on the solution of the eigenvalue problem related to the linearization of (1) about û.

A(û)(u) = −ν∆v + v̂ · ∇v + v · ∇v̂ +∇p = λv in Ωq,
∇ · v = 0 in Ωq,

(3)

for nonzero u := {v, p} ∈ V and λ ∈ C, under homogeneous boundary conditions (2). Here,
V ⊂ H1(Ωq)d × L2(Ωq) is a suitable subspace according to the prescribed boundary conditions (2).
Obviously, this eigenvalue problem is non-symmetric and may possess complex eigenvalues. If an
eigenvalue of (3) has Reλ < 0, then the base solution û is unstable, otherwise it is said to be linearly
stable (see e.g. [6]).

The shape of the geometry is described by a spline function representation. Certain parameters of
this representation are taken as design variables. It is important to note that the proposed method
can be used in a very general setup both with respect to the body description as well as the goal
functional. Within this context the shape optimization problem we want to solve is formulated as
follows

minq J(q) = FD(q)
s.t.
Re(λmin(A(S(q)))) ≥ 0,
q ≤ q ≤ q̄,

(4)

where q is a design variable vector consisting of parameters for the description of the body by spline
functions. The vectors q and q̄ are lower and upper bounds for the parameters due to restrictions on
the geometry of the body. The drag force acting on the body B is given by (cf. Fig. 4)

FD =
∫

B

(
ρν
∂ut

∂n
ny − pnx

)
dS,

where ∂S is the surface of the object, n is the normal vector on S with its components nx, ny. The
tangential velocity on S is denoted by ut and the tangent vector is defined by (ny,−nx). During the
design process it turns out that additional constraints on the body B, e.g. volume restriction, are
physically meaningful. They lead to the following optimization problem

minq J(q) = FD(q)
s.t.
Re(λmin(A(S(q)))) ≥ 0,
vol(B) = const,
q ≤ q ≤ q̄.

(5)

3 Shape parameterization

For the description of the shape of the body we use approximations by spline functions consisting of
compositions of quadratic as well as cubic Bézier curves (see e.g. [7]). We focus on the description in
just one quadrant using symmetry properties for the other parts.

3.1 Approximation by quadratic spline functions

A parametric quadratic Bézier curve b : [0, 1] → R2 is defined as linear combination

b(t) =
2∑

j=0

bjB
(2)
j (t)

3



4 V. Heuveline and F. Strauß

with given control points b0, b1, b2 ∈ R2, where bj = (bj,x, bj,y), and Bernstein polynomials

B
(2)
j (t) =

(
2
j

)
tj(1− t)2−j , t ∈ [0, 1].

We assume a symmetric body whose center is the origin of a suitably selected coordinate system. In
each quadrant we construct a spline function consisting of two quadratic Bézier curves. We have for
i = 0, 1

b(t) =
2∑

j=0

b2i+jB
2
j

(
t− ti
ti+1 − ti

)
on t ∈ [ti, ti+1],

where 0 = t0 < t1 < t2 = 1. As fixed control points, we set

b0 = (0, h), b2 = (x1, y1), b4 = (l, 0)

for height h and length l of the body and (x1, y1) is a given point which represents also a grid point
for the numerical solution of the problem. Furthermore, we want to guarantee a smooth connection to
the other quadrants. This means that in b4 we want to have slope infinity and in b0 slope 0. Having
information about the slope m < 0 in the point (x1, y1) we can define two additional control points
b1, b3 as follows

b1 = ((h+mx1 − y1)/m, h), b3 = (l,ml + y1 −mx1)

ensuring the demanded differentiability properties. In this context we usually choose m = −1.0.
Furthermore, the parameters l and h have to be chosen such that b1,x > 0 and b3,y > 0. To guarantee
that the spline is C1 on [t0, t2] we set t1 according to

t1 =
‖b2 − b1‖

‖b3 − b2‖+ ‖b2 − b1‖ ,

where ‖.‖ is the Euclidean norm. In Fig. 1 we show the construction in the first quadrant as well as
the complete object.
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Figure 1: Spline construction in first quadrant (left) and complete object (right).

In the optimization process using quadratic spline approximations the shape will be varied using
different height and length parameters. Possible configurations for various length parameters can be
seen in Figure 2. In the optimization problem bounds on r and h have to be set to ensure physically
sensible solutions.
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Figure 2: Different shapes with constant height (left) and constant volume (right).

3.2 Approximation by cubic spline functions

To increase the space of admissible domains we also consider a description of the shape by cubic
splines. The construction idea is the same as above. In this case the Bézier curve is defined by

b(t) =
3∑

j=0

bjB
(3)
j (t).

For the composition we have for i = 0, 1

b(t) =
3∑

j=0

b3i+jB
3
j

(
t− ti
ti+1 − ti

)
on t ∈ [ti, ti+1].

As control points for the composition of two cubic Bézier curves in the first quadrant we take in this
case

b0 = (0, h), b3 = (x1, y1), b6 = (l, 0)

and further
b1 = (l/6, h), b5 = (l, h/6)

to guarantee differentiability at b0 and b6. For a smooth connection at b3 we further set

b2 = (x1 − l/6, y1 −mh/6), b4 = (x1 + l/6, y1 +mh/6)

with given slope (1 · l,m · h) at b3, where m ∈ [0,−1]. In this context we set t0 = 0, t1 = 1/2 and
t2 = 1. The grid point b3 is not fixed and depends on the choice of coefficients cl and ch,

b3 = (x1, y1) = (cl · l, ch · h).
To avoid conflict with the other control points, we have heuristic constraints on the choice of coeffi-
cients. In our calculations we set

0.5 < cl < 0.8.

For the choice of ch we have more flexibility since shapes with ch > 1 are also feasible. We set e.g.

0.5 < ch < 1.1.

Different shapes are shown in Fig. 3. Now it is also possible to consider a design with zero slope at
the grid point b3 as indicated by the dotted line. The modification of cl and ch leads to an adaptation
of the mesh in each iteration step.
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6 V. Heuveline and F. Strauß

It turns out in Section 5 that it will also be important to consider a volume constraint. The
volume Q is approximated by the area under the control polygon on the interval [0, l]. It yields in
good approximation the volume of the described object.

Q =
6∑

i=1

(bi,x − bi−1,x)(bi−1,y + bi,y)/2

=
((

5
12
− m

6

)
x1 +

(
5
72

+
7m
72

)
l

)
h+

7
12
y1l

=
((

5
12
− m

6

)
cl +

(
5
72

+
7m
72

)
+

7
12
ch

)
lh.
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Figure 3: Construction in the case of cubic spline approximation (left) and different shapes with
constant volume (right).

4 Discretization and solution process

In this section our goal is to describe the overall numerical solution process. In that context we follow
a discretize-then-optimize approach. The proposed scheme relies on the SQP method which in our
framework involves the solution of an eigenvalue problem for the hydrodynamic stability. Both for
the Navier-Stokes equations and for the associated eigenvalue problem the discretization is based on
the finite element method. The efficient solution of the eigenvalue problem is a cornerstone of the
presented optimization solver.

4.1 Solution of hydrodynamic and eigenvalue problem

The starting point to solve (1) is a variational formulation of the Navier-Stokes problem. With the
notation L := L2(Ωq) , Ĥ := H1(Ωq)d , and H := {v∈H1(Ωq)d, v|Γin∪Γrigid

=0} , let

V̂ := Ĥ×L, V := H×L ⊂ V̂ .

For pairs u = {v, p} and φ = {φv, φp} ∈ V̂ , we define the semilinear form

a(u;φ) := ν(∇v,∇φv) + (v · ∇v, φv)− (p,∇ · φv) + (φp,∇ · v),
and the right-hand side f(φ) := (f, φv) . Then, with a solenoidal extension v̂in ∈ V̂ of the inflow data
vin , we consider a solution û = {v̂, p̂} ∈ V +{v̂in, 0} of the problem

a(û;φ) = f(φ) ∀φ ∈ V. (6)

6



Shape optimization towards stability in constrained hydrodynamic systems 7

We assume that the reference solution û is (locally) unique, that is, the Fréchet derivative a′(û; ·, ·)
is coercive. The variational formulation of the corresponding eigenvalue problem uses the derivative
form

a′(û;ψ, φ) := ν(∇ψv,∇φv) + (v̂ · ∇ψv, φv) + (ψv · ∇v̂, φv)− (ψp,∇ · φv) + (φp,∇ · ψv),

and the bilinear form
m(ψ, φ) := (ψv, φv),

for arguments ψ = {ψv, ψp} and φ = {φv, φp} ∈ V . Then, the eigenvalue problem associated to the
solution û determines u = {v, p} ∈ V \{0} by

a′(û;u, φ) = λm(u, φ) ∀φ ∈ V. (7)

The ’primal’ eigenfunctions are usually normalized by m(u, u) = ‖u‖2 = 1 . For the following discus-
sion, we assume that the eigenvalue of interest λ has geometrical multiplicity one. The case of higher
geometrical multiplicity requires some obvious changes. Associated to the primal eigenfunction u ,
there is a ’dual’ eigenfunction u∗ = {v∗, p∗} ∈ V \{0} corresponding to λ that is determined by the
’dual’ eigenvalue problem

a′(û;φ, u∗) = λm(φ, u∗) ∀φ ∈ V. (8)

In order to solve (6), (7) and (8) numerically by a Galerkin finite element method, the infinite
dimensional spaces H and L are replaced by finite dimensional finite-element-spaces of functions which
are piecewise mapped polynomials on a triangulation Th. The considered meshes are supposed to be
shape regular and geometrically conforming (see [3]). They consist of curvilinear quadrilateral (or
hexahedral) elements {K} covering the domain Ω̄q. For simplicity, we consider only affine meshes
where each K ∈ Th is affine equivalent to the reference element K̂ := (0, 1)d, i.e. K = FK(K̂) with FK

affine and orientation preserving. The considered trial and test spaces Xh ⊂ X consist of continuous,
piecewise polynomial vector functions (so-called Qk elements) for all unknowns,

X2,1
h :=

{
(ph, vh) ∈ C(Ω̄q)1+d / ph|K ◦ FK ∈ Q1(K̂); vh|K ◦ FK ∈ Q2(K̂)

}
. (9)

Here, Qr(K̂), r = 1, 2, is the space of tensor-product polynomials of degree r on the reference element
K̂, i.e.

Qr(K̂) := span
{
xiyjzk : 0 ≤ i, j, k ≤ r

}
, (10)

where k = 0 when d = 2.
The corresponding finite element subspaces are denoted by

Lh ⊂ L, Ĥh ⊂ Ĥ, Hh ⊂ H, V̂h := Lh×Ĥh, Vh := Lh×Hh,

and v̂in
h ∈ Ĥh is a suitable interpolation of the boundary function v̂in . Then, the discrete Navier-

Stokes problem determines ûh := {v̂h, p̂h} ∈ Vh+{v̂in
h , 0} by

a(ûh;φh) = f(φh) ∀φh ∈ Vh. (11)

The associated discrete primal and dual eigenvalue problems seek uh = {vh, ph} and u∗h = {v∗h, p∗h}
in V \{0} and λh ∈ C , such that

a′(ûh;uh, φh) = λhm(uh, φh) ∀φh ∈ Vh, (12)
a′(ûh;φh, u

∗
h) = λhm(φh, u

∗
h) ∀φh ∈ Vh, (13)

7



8 V. Heuveline and F. Strauß

The eigenfunctions are usually normalized by m(uh, uh) = m(uh, u
∗
h) = 1 . The equation (6) has

saddle-point structure due to the specific coupling of the pressure and the velocity. Therefore, the
discretization must fulfill the so-called Babŭska-Brezzi (BB) condition which particularly guarantees
a stable approximation of the pressure and avoids the occurrence of spurious pressure modes (see e.g.
[1]). One important advantage related to the choice of X2,1

h for the discretization is that this condition
is automatically fulfilled and does not necessitate any additional stabilization terms (see e.g. [1]).

The resulting nonlinear algebraic system of the hydrodynamic problem (1) is solved implicitly in
a fully coupled manner by means of a damped Newton method. The involved Jacobian is directly
derived from the analytical derivative of the variational system. The occurring linear subproblems are
solved by the Generalized Minimal Residual Method (GMRES) preconditioned by means of multigrid
iteration. Two specific features characterize the scheme: varying orders of the FEM ansatz on the
mesh hierarchy and Vanka-type smoothers adapted to higher order discretization. We refer to [13] for
more details.

The solution of the eigenvalue problem is a highly tedious task since the appearing problems are
non self-adjoint. The considered approach for the eigenvalue computation uses a scheme which couples
the Jacobi-Davidson method ([21, 24]) with a multigrid process (for more details see [12, 14]). This
method shows to be highly efficient as compared to standard algebraic techniques. The overall solution
process is implemented as part of the HiFlow project [11].

The advantages connected with this combined approach are mainly twofold. On the one hand, it
allows in the context of nested iteration a better control of the best available eigenpair approximate
at a given level. Especially, as opposed to the pure multigrid approach, eigenmodes which do not
exist on the coarse levels can be nevertheless recovered on finer grids. On the other hand, the ability
to change the size of the projection space for the Rayleigh matrix allows to adaptively balance the
multigrid and algebraic components. Algorithm 1 sketches the Jacobi-Davidson method combined
with the multigrid scheme. The maximal basis size is denoted by nB. The starting block vectors
for the right (resp. left) eigenvectors are denoted by V1 (resp. W1). The matrices A and M in the
Algorithm 1 correspond to the stiffness and mass matrix in the equation (12).

Algorithm 1 (MJD(nB,W1,V1))

for k = 1 to kmax : do

• Step 1. Compute Rayleigh matrix: Hk := WH
k MVk.

• Step 2. Compute the smallest left/right eigenpair {λk, yk, y
∗
k} of Hk.

• Step 3. Compute left/right Ritz vectors xk := Vkyk and x∗k := Wky
∗
k.

• Step 4. Compute residuals rk := (λkM −A) xk and r∗k := (λkM −A) x∗k.

• Step 5. If convergence exit.

• Step 6. Multigrid step MG(tk, rk) and MG∗(t∗k, r
∗
k).

If dim(Vk) < nB then
set Wk+1 := [Wk, t

∗
k] and Vk+1 := [Vk, tk]

else
set Wk+1 := [x∗k, t

∗
k] and Vk+1 := [xk, tk].

• Step 7. Biorthogonalize(Wk+1,Vk+1).

Furthermore, a posteriori estimates in terms of the cell residuals accomplish simultaneous control
of the error in the linearization and the error in the resulting eigenvalues. From these error estimates
cell-wise error indicators are obtained that can guide the mesh refinement process [15, 16].

8



Shape optimization towards stability in constrained hydrodynamic systems 9

4.2 Solution of optimization problem

To solve the optimization problems (4) and (5) an active-set SQP method is considered using a BFGS
update (see e.g. [20]). In each iteration step a quadratic subproblem is constructed and its solution
yields a new iterate. The SQP approach can be interpreted as a Newton’s method applied to the KKT
optimality conditions of this quadratic subproblem. The inequality constraints are treated using an
active set strategy. In that framework an inequality constraint appears in the Lagrange formulation
as an equality constraint if the bound is reached at the current design point and neglected otherwise.
Hence in each iteration step only subproblems with equality constraints are solved. Here we want to
sketch the algorithm for the example of an active stability constraint. We define the Lagrange function
for (4) as follows

L(q, µ) = J(q)− µRe{λmin(A(S(q)))}.
To simplify notation we denote

Re(λmin(q)) := Re{λmin(A(S(q)))}.
The KKT conditions are given by

∂L(q, µ)
∂q

= 0,
∂L(q, µ)
∂µ

= 0

resulting in ( ∇J(q)− µ∇Re(λmin(q))
Re(λmin(q))

)
=

(
0
0

)
.

The Jacobian of this system is given by

J (q, µ) =
( ∇2

qqL(q, µ) −∇qRe(λmin(q))T

∇qRe(λmin(q)) 0

)

such that a Newton iteration yields in our case the following quadratic subproblem in iteration step k
(

B(k)(q(k)) −∇qRe(λ(k)
min(q

(k)))T

∇qRe(λ(k)
min(q

(k))) 0

)(
p(k)

µ(k+1)

)
=

(
−∇qJ

(k)(q(k))
−Re(λ(k)

min(q
(k)))

)
,

where B(k)(q(k)) represents an adequate approximation of the Hessian of the Lagrangian ∇2
qqL(k). In

our case this approximation is determined by the BFGS formula. The derivatives with respect to drag
and eigenvalues are calculated by finite differences. This requires an additional function evaluation
for each design variable. For the design variable vector we have the update

q(k+1) = q(k) + τ (k)p(k),

where the parameter τ (k) can be chosen by means of a line search method to ensure the feasibility of
the newly computed solution. This may require many additional function evaluations. In practice the
step size is determined heuristically to guarantee that the iterates stay within the feasible domain.

Remark. In order to obtain a feasible solution in case of violation of the inequality constraints
the original optimization problem can be regularized in the following way

minq FD(q) + ασ
s.t.
Re(λmin(A(S(q)) + σI) ≥ 0,
q ≤ q ≤ q̄,

(14)

9



10 V. Heuveline and F. Strauß

where σ plays the role of a shift coefficient with respect to the spectrum of A(S(q)) and α describes
the regularization parameter. For the considered numerical experiments in Section 5 it turns out that
this regularization is not needed.

Remark. The proposed SQP method relies on the differentiability of objective and constraint
functions. For the computation of the Jacobian J the differentiability of the function of the smallest
eigenvalue is needed for the computation of ∇Re(λmin(q)). It has to be noted that this assumption
may not be fulfilled in the case of eigenvalues with multiplicity larger than one (see [18] for details).
During our calculations the authors did not encounter any problems related to this issue. In order
to tackle this kind of problem the proposed scheme should be generalized towards derivative-free or
nonsmooth optimization algorithms.

Finally, we want to summarize the complete algorithm.

Algorithm 2

• Step 1. Introduce suitable function approximation for the geometry and determine initial design
variables q(0) = (q1, . . . , qn), set k := 0.

• Step 2. Create mesh depending on design variable vector q(k).

• Step 3. Solve flow problem to obtain drag force FD(q(k)).

• Step 4. Solve eigenvalue problem to obtain Re(λmin(q(k))).

• Step 5. Determine derivatives of FD(q(k)) and Re(λmin(q(k))) with respect to design variables by
finite differences.

• Step 6. Solve KKT system of the SQP algorithm to obtain direction p(k).

• Step 7. Determine suitable step length τ (k).

• Step 8. Update design variable vector q(k+1) = q(k) + τ (k)p(k).

• Step 9. If termination criterion is reached then STOP else set k := k + 1 and goto Step 2.

Remark. In the previously derived algorithm the major computational costs are related to steps
4 and 5, especially for the computation of the eigenvalues of the linearized Navier-Stokes operator. In
step 5 the derivatives with respect to the different design variables can be computed independently.
For a large number of parameters this step can obviously be fulfilled on a parallel machine where each
process computes the derivative of one of the design variables.

5 Numerical examples

5.1 Configuration setup

We consider the benchmark channel flow around a certain body in two dimensions as described in [23].
In the initial configuration the body is assumed to be a cylinder. Here we want to pursue the approach
to find the optimal shape of the body which minimizes the drag force and guarantees hydrodynamic
stability.

The geometry of the channel is as follows.

10
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Figure 4: Geometry of 2D benchmark configuration.

In the two dimensional case for the considered benchmark, the channel is 2.2m in length and
H = 0.41m in width. The center of the cylinder is located at (0.2m,0.2m) with a diameter of D = 0.1m
such that the configuration is not totally symmetric. The velocity at the inlet is prescribed by

v̂1(0, y) = 4|Vm|y(H − y)
H2

, v̂2(0, y) = 0,

where |Vm| denotes the maximum norm of the velocity at the inlet. The Reynolds number is defined
by

Re =
V̄ D

ν
, V̄ = 2/3|Vm|,

then yielding to a Reynolds number of around 20 for ν = 10−3.

5.2 Parameter studies based on forward simulation

The goal of this section is to determine for which parameters the effect of a transition from unstable
to stable behaviour can be observed. This section has to be understood as a preliminary step in order
to define an adequate problem setup for the shape optimization process considered in our context.

In particular we have to determine the critical Reynolds number leading to unstable flow. It is
closely related to the inflow velocity Vm. If the inlet velocity is too low one always has a stable regime
and an unstable one if the velocity is too high. Calculations show that for the benchmark configuration
(I) the bifurcation point occurs at around Vm = 0.19 m/s. An overview of the obtained bifurcation
points for configurations with different length l and height h of the considered body is shown in Table
1.

Configuration Velocity Vm [m/s]
at bifurcation point

(I) l = 0.05m, h = 0.05m 0.1896
(II) l = 0.08m, h = 0.05m 0.1963
(III) l = 0.08m, h = 0.03m 0.2222
(IV) l = 0.03m, h = 0.05m 0.1830
(V) l = 0.03m, h = 0.08m 0.1530

Table 1: Inflow velocities at which bifurcation point occurs for different configurations.

One clearly observes that for long and flat designs (II,III) the bifurcation point occurs at a larger
velocity than for short and steep designs (IV,V).

11



12 V. Heuveline and F. Strauß

To get an insight of the drag and stability behaviour for the whole feasible domain we first determine
these values for various configurations of l and h for fixed inflow velocity Vm = 0.19 m/s. The
corresponding results are shown in Figures 5 and 6.

Figure 5: Drag force acting on the body assuming different length and height.

For constant h we observe an increase of the drag force for increasing l. The same holds vice versa
for constant l. The smallest value occurs for the smallest values of l and h. Comparing the magnitudes
of the change we notice that the influence of h is much larger as shown in Table 2. Therefore, the
variation of h is more crucial with respect to the drag behaviour.

Figure 6: Smallest eigenvalues of the linearized Navier-Stokes operator assuming different length and
height of the body.

Concerning the stability behaviour we notice a tendency towards instability for increasing h. For
increasing l, however, we have a slight increase towards stability. This corresponds to the intuition
that long and flat objects yield indeed stability. Again, the influence of h is here larger than that of
l. The corresponding results are summarized in Table 3.

12
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Drag force FD h = 0.035m h = 0.045m h = 0.055m h = 0.065m
l = 0.035m 4.955 6.179 7.664 9.481
l = 0.045m 5.141 6.360 7.832 9.622
l = 0.055m 5.343 6.575 8.058 9.856
l = 0.065m 5.560 6.816 8.329 10.154
l = 0.075m 5.793 7.082 8.638 10.522

Table 2: Drag force for different configurations.

Re(λmin) h = 0.035m h = 0.045m h = 0.055m h = 0.065m
l = 0.035m 0.0387 -0.0007 -0.0373 -0.0728
l = 0.045m 0.0444 0.0075 -0.0267 -0.0596
l = 0.055m 0.0503 0.0150 -0.0178 -0.0493
l = 0.065m 0.0564 0.0220 -0.0098 -0.0403
l = 0.075m 0.0628 0.0289 -0.0023 -0.0324

Table 3: Real part of smallest eigenvalue of linearized Navier-Stokes operator for diff. configurations.

5.3 Shape optimization assuming quadratic spline approximation

We first consider the optimization problem (4) and initially assume that the height h of the body
is fixed at h = 0.05 m and the length l is taken as design variable. This implies that we first allow
volume and surface changes of the bodies. Lower and upper bounds are set on the length parameter
l to avoid physically infeasible solutions.

minl J(l) = FD(l)
s.t.
Re(λmin(l)) ≥ 0,
0.03m ≤ l ≤ 0.08m.

Our starting point is the benchmark configuration (cf. Fig. 7) and we choose an inflow velocity
Vm = 0.195 m/s for which we have an unstable behaviour indicated by the negative real part of the
smallest eigenvalue, Re(λmin) = −0.02036. The value of the drag force in this case is FD = 6.986 N.

Figure 7: Streamlines of eigenfunction associated to the smallest eigenvalue for the initial design,
i.e. l = 0.05m, h = 0.05m, Vm = 0.195m/s. This configuration leads to Re(λmin) = −0.02036 and
FD = 6.986. The function plot corresponds to the first component of the eigenfunction.

Our optimization with respect to the length parameter l and fixed height h yields the optimized
design shown in Fig. 8. The obtained optimal length is l = 0.0785 m. Furthermore, we have

13



14 V. Heuveline and F. Strauß

FD = 7.791. Contrary to our goal to minimize the drag we recognize that the drag force is higher
than for the initial design. This increase, however, is necessary to avoid a violation of the stability
constraint which is now active, Re(λmin) = 5.7 · 10−6.

Figure 8: Streamlines of eigenfunction associated to the smallest eigenvalue for the optimal solution
assuming fixed height h = 0.05m and Vm = 0.195m/s. This setting leads to l = 0.0785m, FD = 7.791
and Re(λmin) = 5.7 · 10−6. The function plot corresponds to the first component of the eigenfunction.

In a next step we consider the height h as additional design variable. In this case we obtain an
optimum at the lower bound of the box constraints for both parameters, l = h = 0.03 m. For the
given inflow velocity this design is stable and the drag reaches its smallest possible value, as is also
obvious from Fig. 5 and 6. It is not surprising that in this situation the optimal solution leads to the
smallest possible volume of the body. In order to avoid this effect we assume a fixed volume of the
body in all further calculations.

Therefore, we repeat our parameter study with variable length l. In the case of the quadratic
spline approximation we use the volume of an ellipsoid, given by Q = πlh, to approximate the volume
of the body. In this case we observe (cf. Fig. 9) a monotone decrease of the drag force with increasing
l and an increase of the real part of the smallest eigenvalue which is equivalent to a tendency towards
a stability of the system.
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Figure 9: Drag force (left) and stability (right) behaviour for shape variations assuming fixed volume
and inflow velocity Vm = 0.19 m/s.

A summary of this result is plotted in Fig. 10 which shows the dependence of the length and the
inflow velocity at which the bifurcation occurs. We observe a monotone increase for longer and flatter
objects.

Concerning the optimization problem we extend the original formulation (4) by an additional
constraint on the volume of the body. We only want to accept designs which leave the volume of the
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Figure 10: Inflow velocity at which bifurcation point occurs in dependence of length.

body constant and its value is taken for the benchmark configuration.

minl J(l, h(l)) = FD(l, h(l))
s.t.
Re(λmin(l, h(l))) ≥ 0,
Vol(Ωq) = const,
0.03m ≤ l ≤ 0.08m,
0.03m ≤ h ≤ 0.08m.

The optimization program yields J = 5.388 and λmin = 0.0675 with l = 0.08 m and h = 0.0312
m. The drag force is in this case reduced by 22.9% compared with the initial setting. Moreover, we
obtain clearly a stable regime since the real part of the smallest eigenvalue is strictly positive. The
optimized design and the first component of the eigenfunction can be seen in Fig. 11.

Figure 11: Streamlines of the eigenfunction associated to the smallest eigenvalue for the optimal
solution assuming fixed volume and Vm = 0.195m/s. This setting leads to l = 0.08m, h = 0.0312m,
FD = 5.388 and Re(λmin) = 0.0675. The function plot corresponds to the first component of the
eigenfunction.

Remark. It is important to notice that a change from unstable behaviour to stable behaviour can
be achieved by modifying alone the design of the object while leaving all other parameters constant.

5.4 Shape optimization assuming cubic spline approximation

Using a cubic spline description of the body as presented in Section 3.2, the design space is enlarged as
compared to the setup in Section 5.3. We therefore expect a further decrease of the objective function.
In this context, we consider five design variables which are the length of the body l, its height h, the

15



16 V. Heuveline and F. Strauß

coefficients for the position of the grid point cl and ch and the slope m in the grid point (see Section
3 for further details). This leads to the design variable vector

q = (l, h,m, cl, ch).

We solve optimization problem (5) with corresponding volume constraint. We consider an initial
design similar to the setup corresponding to Fig. 7, which is represented in this case by q(0) =
(0.05, 0.05,−1.0, 0.7, 0.7). As in Section 5.2 this configuration leads to an unstable solution for the
inflow velocity Vm = 0.195 m/s. The optimal solution obtained by means of the proposed method is
found to be

l = 0.08m, h = 0.03m, m = −1.0, cl = 0.8, ch = 0.656.

As compared to the case of quadratic spline approximation we observe a slight reduction of the drag
force in this situation, since J = 5.361 instead of J = 5.388. The optimized design is also more stable
with the real part of the smallest eigenvalue being Re(λmin) = 0.07793 instead of Re(λmin) = 0.0675.
However, it has to be noted that the volume restriction differs for the cubic spline approximations since
we use an approximation by the area under the control polygon instead of an ellipsoid (see Section
3.2).

The eigenfunction associated to the smallest eigenvalue for the optimized configuration is shown
in Figure 12. Again we have achieved a transition from an unstable design to a stable design only by
solving a shape optimization problem.

Figure 12: Streamlines of eigenfunction of smallest eigenvalue for optimized configuration assuming
fixed volume and Vm = 0.195m/s. This setting leads to q = (0.08, 0.03,−1.0, 0.8, 0.656), FD = 5.361
and Re(λmin) = 0.07793. The function plot corresponds to the first component of the eigenfunction

An overview depicting the different initial and optimized configurations is given in Fig. 13.

6 Conclusion

In this paper we propose a numerical method towards shape optimization for flow problems assuming
constraints with respect to hydrodynamic stability. As an example we consider the flow around a
body in a channel and use parameterizations of this body by quadratic and cubic spline functions.
The goal is to minimize the drag force acting on the body by modifying its shape while ensuring
hydrodynamic stability. The numerical simulations clearly validate the proposed approach and show
that a transition of an unstable design into a stable one can be attained by solely changing the shape
of the body keeping all other parameters constant. The resulting geometries lead to long and flat
bodies which corresponds to common intuition. Moreover, our investigations clearly show that shape
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Figure 13: Initial (dashed) and optimized (solid) configurations for the following settings. Quadratic
spline approximation, fixed height (upper left); Quadratic spline approximation, fixed volume (upper
right); Cubic spline approximation, fixed volume (bottom);

optimization can only partly contribute to the stability behaviour and that the boundary conditions,
e.g. the inflow velocity, play also an important role in that context.

Since this work has a preliminary character several extensions are possible. An important issue is
to investigate other shape parameterizations, especially techniques leading to an increase of flexibility
in the description of the geometry. Concerning the numerical solution of the problem the application
of derivative free and nonsmooth algorithms is envisaged to deal with the possibly nondifferentiable
eigenvalue function. Finally, the highly CPU time demanding computations which are related to the
solution of the underlying problem requires for complex configurations the use of techniques of high
performance computing. In that context further developments towards 3D settings are the object of
current research.
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