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Abstract

A numerical method in which the Rankine-Hugoniot condition is enforced at the dis-
crete level is developed. The simple format of central discretization in a finite volume
method is used together with the jump condition to develop a simple and yet accu-
rate numerical method free of Riemann solvers and complicated flux splittings. The
steady discontinuities are captured accurately by this numerical method. The basic
idea is to fix the coefficient of numerical dissipation based on the Rankine-Hugoniot
(jump) condition. Several numerical examples for scalar and vector hyperbolic con-
servation laws representing the inviscid Burgers equation, the Euler equations of gas
dynamics, shallow water equations and ideal MHD equations in one and two dimen-
sions are presented which demonstrate the efficiency and accuracy of this numerical
method in capturing the flow features.

Key words: Rankine-Hugoniot jump condition, central scheme, low numerical
diffusion, exact capturing of shocks and contact surfaces
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1 Introduction

Numerical simulation of hyperbolic conservation equations, which model the
physics of gas dynamics, magnetohydrodynamics (MHD) or shallow water
flows, is non-trivial and is still a topic of intense research, despite being at-
tempted for the last five decades, especially by the researchers in Computa-
tional Fluid Dynamics (CFD). The challenge is to device a numerical method
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that is stable, conservative, respects the hyperbolicity, satisfies the entropy
condition, is robust and yet accurate. Since the non-linear hyperbolic partial
differential equations give rise to discontinuities like shock waves, contact lay-
ers, slip surfaces and also develop expansion waves with possible sonic points,
any numerical method developed for such systems must be able to capture
these features with sufficient accuracy without losing robustness.

The numerical methods developed for solving hyperbolic conservation laws
can be broadly classified into central discretization methods and upwind meth-
ods. While the central discretization methods are simpler than the upwind
methods, they often contain tuning parameters which are problem dependent.
Because of this drawback, upwind methods became more popular from 1970’s.
Reviews of these methods are available in several books, for example, by Hirsch
[1,2], Toro [3], Laney [4] and Leveque [5,6]. Of all the upwind methods, the
approximate Riemann solver of Roe [7] is the most popular, as it can capture
steady discontinuities exactly, without any numerical dissipation. However,
this low dissipation comes at the cost of the loss of robustness, leading to
a list of problems like carbuncle shocks, kinked Mach stems and odd-even
decoupling [8], apart from the violation of the entropy condition. Many of
these failures seem to be common to most of the Riemann solvers and, there-
fore, some of the researchers started looking for numerical methods that are
free of Riemann solvers. The reader is referred to the following literature for
some of the numerical methods developed as interesting alternatives : Degond
et al. [12], Nessyahu and Tadmor [9], Kurganov and Tadmor [13], Swanson
and Turkel [10], AUSM family of schemes of Meng-Sing Liou [21,22] and the
references therein etc.,.

Of all the central discretization methods, Lax-Friedrichs method is the sim-
plest (it is also one of the first successful numerical methods for hyperbolic
conservation laws) [15,14]. This simple central discretization method has been
the building block for several improved algorithms developed later. In a finite
volume method, with a staggered grid interpretation of the Lax-Friedrichs
method, the cell-interface flux consists of an average of the fluxes on the left
and right states, augmented by a diffusive flux which represents the numer-
ical dissipation. The coefficient of numerical diffusion in the Lax-Friedrichs
method has a fixed magnitude. In Rusanov’s method [16,6], which is also
called as Local Lax-Friedrichs method (LLF), the dissipation coefficient in the
Lax-Friedrichs method is modified according to the local information (maxi-
mum of the left and right states of a cell-interface) and consists of the spectral
radius of the flux Jacobian matrix. Since the numerical dissipation in either
the basic Lax-Friedrichs method or the LLF is large and unacceptable for
practical problems, higher order accurate formulations in this format were in-
troduced by Nessyahu and Tadmor [9] which are free of Riemann solvers and
complicated flux splittings yet simple and accurate. For further developments
of this method, the reader is referred to the work of Kurganov and Tadmor
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[13] and to the references therein.

For the history of the other classical alternative, the Lax-Wendroff method
[19], and various related second order central schemes, the reader is refer to
the book of Hirsch [2]. One popular central scheme of interest is due to Jame-
son, Schmidt and Turkel(JST) [20] in which spatial discretization is a blend
of second and fourth central differences. A shock sensor is used to switch
over from one type of difference to another. In smooth flows, a linear fourth
difference will operate, damping the high frequencies, while near the large
gradients, the second difference is switched on. Another popular scheme is of
Swanson and Turkel [10] (see also Swanson, Radespiel and Turkel [11]), the
scalar coefficient of numerical dissipation is replaced by a matrix, mimicking
the upwind schemes, still retaining the simpler format of central discretiza-
tion. The method presented in this work is closer in spirit to the first group
of central schemes mentioned above, as the basic building block is the Local
Lax-Friedrichs method and the higher order accuracy is obtained by recon-
struction at the cell-interfaces, as in the Kurganov and Tadmor [13] scheme.
The motive for the present chapter is to develop a simple central discretiza-
tion procedure based on a direct enforcement of Rankine-Hugoniot conditions
on the LLF method and hence to enhance the resolution of discontinuities.

The exact shock capturing feature of Roe scheme [7] (in steady state) is due to
the enforcement of the conservation condition, which is related to the Rankine-
Hugoniot condition. Another scheme which can capture the steady shock waves
with a single interior point is due to Jameson [24] (a sequel to [23]). In this
method too, the Rankine-Hugoniot condition is enforced in the discretization
process, due to the special discrete shock structure being forced in such a way
that entire shock is captured in one cell. The low dissipative nature of these
two methods is owing to the Rankine-Hugoniot (jump) condition being used
in the discretization process, though not enforced directly. Motivated by the
idea of using the Rankine-Hugoniot condition directly in the discretization
process, Raghurama Rao and Balakrishna [25] developed an accurate Relax-
ation Scheme which can capture steady shocks exactly. In this work, the jump
condition is enforced directly in the discretization of the hyperbolic conserva-
tion laws.

In any conservative numerical method (usually a finite volume method), the
interface flux can be written as a sum of an average of the fluxes on the left
and right sides of the interface and a diffusive flux. The average flux, if present
alone, leads to a central discretization. The diffusive flux represents the numer-
ical diffusion or the artificial viscosity. In the central discretization methods de-
veloped earlier, the diffusive fluxes were added explicitly and since the amount
of artificial viscosity to be added was not known a priori, tuning parameters
became necessary. It was in this background that upwind methods became
popular, as they had inherent artificial viscosity and thus did not require tun-
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ing parameters. However, the right amount of artificial viscosity, required to
capture discontinuities accurately and yet make the numerical method satisfy
the entropy condition for avoiding unphysical expansion shocks, is complex
to obtain. These two features actually demand opposite requirements on the
artificial viscosity : the accurate capturing of discontinuities requires as less
artificial viscosity as possible whereas capturing expansion waves with sonic
points without violating the entropy condition requires a finite amount of arti-
ficial viscosity. Many of the upwind methods developed for vector conservation
laws have either too much of artificial viscosity (which makes them robust but
inaccurate) or too little artificial viscosity (which makes them accurate but
less robust). Most of the upwind methods developed so far are either robust
or accurate and it seems difficult to obtain both these features simultaneously.
Another feature of most of the upwind methods is rather sophisticated pro-
cedures of separating the information coming from different sides, especially
for vector conservation laws, leading to quite complicated flux splittings. In
the method proposed here, the simplicity of the central discretization is re-
tained, thereby avoiding the framework of Riemann solvers and complicated
flux splittings, and yet the resolution of the shocks and contact discontinu-
ities is enhanced, by using the Rankine-Hugoniot (jump) condition as a basis
for deriving the diffusive flux. Thus, the numerical method presented in this
work can be considered as a natural extension of both the central and upwind
discretization methods, retaining the advantages of both. Since the Rankine-
Hugoniot condition is used in discretization, and thus the optimum value of
artificial viscosity is enforced, we term this method as the Method of Optimal
Viscosity for Enhanced Resolution of Shocks (MOVERS). The basic idea of
the new method for the scalar Burgers equation is demonstrated in the next
section. In the following sections, this procedure is extended for the vector
conservation laws (Euler equations of Gas Dynamics, shallow water equations
and ideal MHD equations). The idea of enforcing the jump condition at the
discrete level to the vector case is presented with three different variations.
Two of these variants of MOVERS require an entropy fix while the third vari-
ant does not need it as it is based on a novel use of a limiter in switching
over from MOVERS to LLF method. The results for several bench-mark test
problems for scalar and vector conservation laws are presented in the later
sections, followed by some remarks about the MOVERS and its relation to
upwinding strategy, with the conclusions presented in the last section.
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2 Method of Optimal Viscosity for Enhanced Resolution of Shocks
(MOVERS) for scalar hyperbolic conservation law

Consider the one dimensional scalar hyperbolic conservation law

∂u

∂t
+

∂f (u)

∂x
= 0 (1)

An explicit scheme in conservation form on a three point stencil and with a
piecewise polynomial approximation for the conserved variable is given by

un+1
j = un

j − ∆t

∆x
(fn

j+ 1

2

− fn
j− 1

2

) (2)

where ∆t and ∆x are respectively time and space steps, j represents the cell
centroid and j ± 1

2
represent the cell interfaces. In the finite-volume formu-

lation (2), the differences among all the numerical schemes lie essentially in
the definition of numerical flux fI = fj+ 1

2

evaluated at the cell interface. The
upwind flux splitting schemes define the interface flux in terms of split fluxes
of left and right states as

fI = f+
L + f−

R (3)

The interface flux in a central scheme is written in the form

fI =
1

2
(fL + fR) − 1

2
α∆u (4)

where L and R represent the left and right states of the interface, the first
term on the right hand side (average flux) represents the central discretization
of the flux terms and the second term is the diffusive flux, with α being the co-
efficient of numerical diffusion. The interface flux for the upwind method (3)
can also be recast in the form (4) by using the definitions of the split fluxes
f±. Then the coefficient of numerical dissipation α will be fixed as per the
chosen scheme. We can see that the central discretization method is simpler
than the upwind method, but the amount of α required to produce a stable
and accurate scheme is unknown a priori.

The basic idea in this work is to fix α based on a relevant criterion to enhance
the resolution of shocks. Note that α must have the dimension of the wave-
speed, a (u) = ∂g(u)

∂u
(e.g., for the case of Burgers equation, f(u) = u2

2
and

a(u) = u) in (4) as α∆u must represent a diffusive flux. In Local Lax-Friedrichs
method [16], the value of α is taken as the maximum value of the wave-speed
of the left and right states of a cell-interface. This makes the LLF method
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very simple but not so accurate. A better choice will be to use some physically
relevant speed for choosing α. Since the motivation in this work is to enhance
the resolution of the shocks, the most relevant physical speed is the shock
speed (the speed with which a discontinuity travels) which is given by the
Rankine-Hugoniot (jump) condition. Since the contacts also obey the jump
conditions the sense of shock speed mentioned in this paper includes both
shocks and contacts. Here, the Rankine-Hugoniot condition is enforced in the
discretization process, by choosing a relevant expression for α.

2.1 Rankine Hugoniot Condition and Cell Interface Flux

For a shock wave with a left state and right state given by uL and uR, the
Rankine-Hugoniot (jump) condition is given by

∆f = s∆u where ∆f = fR − fL and ∆u = uR − uL (5)

To enforce this jump condition in the numerical method, the best way is to
obtain the interface flux from the same criteria. The jump condition does
not directly give the interface flux, as it describes only the relation between
left and right states of the jump with the shock speed. In the finite volume
method, because of the piece-wise polynomial approximation, a discontinuity
in the conserved variable is present at every cell interface. Let us apply the
above R-H (jump) condition at the cell interface, j + 1

2
.

fj+1 − fj = sj+ 1

2

(uj+1 − uj) (6)

To obtain the interface flux, we split the above R-H condition into two parts
(see [26]). Suppose there is a discontinuity between j and j + 1 moving with
a speed sj+ 1

2

as shown in figure 1.

j−1/2 j+1/2

j−1 j j+1

j+1/2 j+1/2
s− s+

Fig. 1. Shock moving to left or right

This discontinuity can move to the left or right. The jump condition does not
indicate the direction of the shock movement. To distinguish the positive and
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negative speeds, let us split the shock speed into two parts : a positive one
and a negative one.

sj+ 1

2

= s+
j+ 1

2

+ s−
j+ 1

2

(7)

where

s+
j+ 1

2

=
sj+ 1

2

+ |sj+ 1

2

|
2

and s−
j+ 1

2

=
sj+ 1

2

− |sj+ 1

2

|
2

(8)

We have

s+
j+ 1

2

− s−
j+ 1

2

=
1

2
sj+ 1

2

+
1

2
|sj+ 1

2

| − 1

2
sj+ 1

2

+
1

2
|sj+ 1

2

| = |sj+ 1

2

| (9)

Since the left and right moving shocks are separated, we can now split the
Rankine-Hugoniot condition into two parts as

fj+1 − fj+ 1

2

= s+
j+ 1

2

(uj+1 − uj)

fj+ 1

2

− fj = s−
j+ 1

2

(uj+1 − uj)
(10)

and which then leads to

fj+ 1

2

=
1

2
(fj + fj+1) −

1

2
| sj+ 1

2

| (uj+1 − uj) (11)

This is the interface flux obtained from the Rankine-Hugoniot condition. Let
us now consider the cell interface flux (4) obtained from the finite volume
method, given by

fj+ 1

2

=
1

2
(fj + fj+1) −

1

2
αj+ 1

2

(uj+1 − uj) (12)

Comparing this flux (12) with the interface flux obtained from the Rankine-
Hugoniot condition (11), we obtain

αj+ 1

2
=| sj+ 1

2
| (13)

2.2 Wave-speed Evaluation and Update Formula

We can evaluate the value of sj+ 1

2

numerically as
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sj+ 1

2

=






fj+1−fj

uj+1−uj
if uj 6= uj+1

∂f
∂u
|j if uj = uj+1

(14)

Similarly, the flux at the cell interface j − 1
2

can be computed.

In the numerical evaluation of the shock speed as shown above, the denomi-
nator involves the differences of the conserved variables across a cell interface.
When the left and right states of the cell interface are very close, this denomi-
nator can be very small and the shock speed can become nonphysically large.
To avoid this problem, we restrict its numerical value within the minimum
and maximum of the wave-speed in the computational domain.

if sj+ 1

2

> amax then sj+ 1

2

= amax

if sj+ 1

2

< amin then sj+ 1

2

= amin

where a =
∂f (u)

∂u
is the wave-speed

(15)

The cell interface fluxes derived above can now be used in the finite volume
update formula

un+1
j = un

j − ∆t

∆x

[
fn

j+ 1

2

− fn
j− 1

2

]
(16)

Since the coefficient of numerical dissipation is now fixed in such a way that the
Rankine-Hugoniot condition is satisfied in the expressions for the cell interface
fluxes, steady shocks is expected to be resolved accurately by this numerical
method.

The final update formula for the above central scheme, which we name as the
Method of Optimal Viscosity for Enhanced Resolution of Shocks (MOVERS),
for a scalar conservation law is equivalent to that of the approximate Riemann
solver of Roe [7], despite the derivation and implementation being different.
Though the approximate Riemann solver of Roe was derived first for vector
conservation laws, it can be simplified for scalar conservation laws (see [2,3])
and the above comparison illuminates how the present method is both similar
to and yet different from the popular upwind method of Roe. Note that this
method is not based on Roe linearization and will be advantageous for use in
the case of vector conservation laws, as will be seen in the next section. The
numerical method proposed here will be simple and yet accurate and neither
the characteristic decomposition will be used in the approximate Riemann
solvers nor the Roe averages be needed. The coefficient of numerical dissipa-
tion, αj± 1

2

is linearly proportional to the numerical wave-speed and thus the
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dissipation goes to zero when the wave-speed goes to zero. This happens near
the sonic points where the wave-speed changes sign. Zero dissipation leads to
the violation of the entropy condition, resulting in unphysical solutions such as
expansion shocks which violate the entropy condition. To overcome this prob-
lem, Harten’s entropy fix [27], like in the case of Roe’s scheme, was used in
[25]. Alternatively, for a scalar equation we can sense the diverging of waves at
the expansion and locally avoid the R-H condition, taking for α the numerical
value of the local maximum of the wave-speeds. This strategy ensures avoid-
ing of unphysical solutions, while capturing the steady shocks exactly. In the
later sections, we also present a variation of this method in which the entropy
fix is avoided by a novel use of limiter, which can also be used for hyperbolic
scalar conservation laws. In the next section, we extend the MOVERS to the
hyperbolic vector conservation laws.

3 Method of Optimal Viscosity for Enhanced Resolution of Shocks
(MOVERS) for Hyperbolic System of Equations

Consider the hyperbolic system of conservation laws in one dimension, as

∂U

∂t
+

∂F

∂x
= 0 (17)

where U is vector of conserved variables, Ui, i = 1, · · · , n and F is the flux
vector which may have a non-linear functional relationship with U . The hy-
perbolicity can be seen in the quasi-linear form of the above equations, given
by

∂U

∂t
+ A

∂U

∂x
= 0 (18)

where A is the flux Jacobian matrix, ∂F
∂U

(a n × n matrix). The system is
hyperbolic if the eigenvalues of the flux Jacobian matrix A, denoted by λi, i =
1, · · · , n are real and the corresponding eigenvectors are linearly independent.
If the eigenvalues are also distinct, the system is strictly hyperbolic. For a
hyperbolic system, we can diagonalize the matrix as A = RDR−1, where
the diagonal elements of D are the characteristic values or eigenvalues of A.
However, the numerical method presented in this work is not dependent on the
eigenvectors and neither the evaluation of the eigenvectors nor the projection
of the solution on to the space of eigenvectors is required for this scheme, unlike
in the case of Riemann solvers. An explicit scheme in conservation form on a
three point stencil and with piecewise polynomial approximation for conserved
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variable is given by

Un+1
j = Un

j − ∆t

∆x
(F n

j+ 1

2

− F n
j− 1

2

) (19)

where ∆t and ∆x are respectively time step and the grid-spacing, j represents
the cell centroid and j ± 1

2
represent the cell interfaces.

The interface flux is written as in a central scheme in the form

FI =
1

2
(FL + FR) − 1

2
α (UR − UL) (20)

where L and R represent the left and right states of the cell interface. Note
that α is the coefficient of numerical dissipation which will be chosen later
based on the Rankine-Hugoniot condition. The Rankine-Hugoniot condition
is

∆F = s∆U (21)

Note that while conserved variable vector U and the flux vector F are vectors,
the shock speed s is a scalar. Proceeding in the same way as was done for the
scalar case, we can obtain the coefficient of numerical dissipation, based on
enforcing the Rankine-Hugoniot jump condition in the discretization, as

αj+ 1

2

=| sj+ 1

2

| (22)

So far, the situation is similar to that of the scalar case. Now, evaluating s
from the Rankine-Hugoniot condition, ∆F = s∆U , is not straightforward, as
U and F are vectors but s is a scalar. We present three different possibilities of
evaluating the shock speed, leading to three different variations of the Method
of Optimal Viscosity for Enhanced Resolution of Shocks (MOVERS), which
we name as (1) MOVERS-n - with a n-wave approximation for the wave-speed,
(2) MOVERS-1 - with a one wave approximation for the wave-speed and (3)
MOVERS-L - a limiter based central solver which switches over from R-H
condition based dissipation of 1(or n)-wave approximation method to that of
LLF. The first two variants will require an entropy fix, while the last one does
not need it. All the three variants will capture steady discontinuities (shocks
and shear layers) with enhanced resolution, resolving them exactly wherever
appropriate.
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3.1 MOVERS-n

One possibility is to choose s and, therefore, α as diagonal matrices. Thus, in
the relation ∆F = s∆U , since U and F are n × 1 vectors, we can choose s as
a n×n matrix. The simplest of such n×n matrices is a diagonal matrix with
n diagonal elements.




∆F1

∆F2

...

∆Fn




=




s1,j+ 1

2

0 · · · 0

0 s2,j+ 1

2

· · · 0
...

... · · · ...

0 0 · · · sn,j+ 1

2







∆U1

∆U2

...

∆Un




(23)

We can now evaluate the shock speeds as

sm,j+ 1

2

=
∆Fm

∆Um

, m = 1, 2, · · · , n (24)

As an example, let us consider the case n = 3. Then, we obtain




∆F1

∆F2

∆F3




=




s1,j+ 1

2

0 0

0 s2,j+ 1

2

0

0 0 s3,j+ 1

2







∆U1

∆U2

∆U3




(25)

We can now calculate the shock speeds (three of them) as




s1,j+ 1

2

s2,j+ 1

2

s3,j+ 1

2




=




(F1)R−(F1)L

(U1)R−(U1)L

(F2)R−(F2)L

(U2)R−(U2)L

(F3)R−(F3)L

(U3)R−(U3)L




(26)

This is an approximation based on ‘n’ waves for a hyperbolic system with
‘n’ equations (n = 3 in the illustrated example considered above, as in the
case of 1-D Euler equations). The Rankine-Hugoniot condition then becomes
a simple diagonal matrix and can be easily extended from the scalar case to
conservation laws of complex physics involving multiple characteristics such as
the magneto-hydrodynamics equations. We term this method as MOVERS-n,
representing n-waves approximation for the shock speed evaluation.
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3.2 MOVERS-1

A simpler alternative to n-wave approximation to shock speed in MOVERS is a
one-wave approximation. This changes the dissipation from a diagonal matrix
form to a scalar form. One way of choosing a scalar dissipation, satisfying the
Rankine-Hugoniot condition as derived before, is to choose one among all the
n-waves representing the shock speed. A simple guide line for this choice is to
find out which of the n-waves has the maximum possible information. It is still
better if this information also reflects the expected behavior of characteristics
converging at the shocks and diverging in expansion regions. Such a central
Rankine-Hugoniot solver with one-wave approximation for the shock speed is
named as MOVERS-1. To illustrate this idea, we consider the system of Euler
equations in one dimension as follows.

3.2.1 MOVERS-1 for 1-D Euler Equations

The Euler equations has three values of the shock speed as in the equation (26).
For the n-wave approximation(MOVERS-n) each of the diagonal elements
becomes the co-efficient of dissipation for each of the equations in the system
which makes α a matrix. However, here we approximate with a single wave as a
representation of multiple waves and hence seek a scalar dissipation coefficient.

To choose a single wave, we use a criterion based on suitability of the numeri-
cal wave-speed to represent the actual physical requirements for a shock wave
and an expansion wave. The characteristics must converge on to the shock
wave and must diverge at an expansion wave. Since the coefficient of numer-
ical diffusion represents a wave-speed, it is preferable for it to mimic these
properties. We also consider the amount of information carried by each of the
terms while choosing the single wave, as the best term will carry the maximum
information. Numerical experiments for the 1-D shock tube problem and the
quasi 1-D nozzle problem have shown that out of all the three components in
(26), the third coefficient (for the energy equation) has the desirable proper-
ties. The mass wave does not represent merging of characteristics at shocks
while the momentum wave, the second component of (26) can lead to problem
of denominator becoming zero for equal left and right flux (for a steady dis-
continuity) even when a Riemann problem persists. The energy term also has
information of all the primitive variables and responds to all the flow features.

The plot of Wave speed for quasi 1D nozzle flow shown in figure 2a changes
sign at two points (at X ≈ 1.5 and X ≈ 2.1) where an expansion and a shock
occur, respectively. It can be seen that wave speeds diverge at X = 1.5 and
converge at X = 2.1, indicating that the choice of the third component (corre-
sponding to energy equation) for the wave speed in the 1-wave approximation
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is the desired choice. The wave speed behavior for the unsteady flow in shock
tube(figure 2b) also shows the same behavior, by a sign change from negative
to positive for an expansion at (X ≈ −4.5) and changing sign from positive
to negative at the shock at (X ≈ +4.5).

(a)
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Fig. 2. Plot of Wavespeed (α) Vs Distance(X) for (a) quasi 1D converging diverging
nozzle steady flow (b) for Sod’s shocktube problem

.

Therefore, the third component in (26) is chosen as the scalar coefficient of
numerical dissipation for all the three equations. Thus, we can write




s1,j+ 1

2

s2,j+ 1

2

s3,j+ 1

2




=




(F3)R−(F3)L

(U3)R−(U3)L

(F3)R−(F3)L

(U3)R−(U3)L

(F3)R−(F3)L

(U3)R−(U3)L




(27)

This effectively means choosing a scalar numerical dissipation coefficient based
on Rankine-Hugoniot condition as a representative numerical wave speed

sj+ 1

2

=
(F3)R − (F3)L

(U3)R − (U3)L
(28)

even for a system of equations.

For system of equations representing ideal MHD flow, we again choose the
energy term for the same reasons as described for Euler equations and for
shallow water equations, we choose the momentum equation which has the
maximum information.
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3.3 MOVERS-L

The variants of the new scheme proposed here, namely MOVERS-1,n require
entropy fix to avoid unphysical expansion shocks near the sonic points. An-
other variant MOVERS-L, in which the numerical dissipation is switched from
that in the Local Lax-Friedrichs method to the numerical dissipation based
on the Rankine-Hugoniot condition, based on a limiter, is presented here. The
co-efficient of numerical diffusion of this hybrid scheme is written as

α = αMOV ERS + φ (r) [αLLF − αMOV ERS ] (29)

where αLLF is the local maximum of the spectral radius of the flux Jacobian
matrix and αMOV ERS is the corrected wave speed obtained using MOVERS-
n(or 1) (see the expressions (33) to (36) in the following subsection), using the
R-H condition. Here, φ is a standard limiter. This is to enforce the MOVERS to
work only at the discontinuities while reverting to the dissipative (entropy con-
dition satisfying) Local Lax-Friedrichs method elsewhere. We use the minmod
limiter suggested by Yee [45] as defined below

φj+ 1

2

(
rj+ 1

2

)
= minmod

(
1, r+

j , r−j+1

)
(30)

The ratio of solution differences are defined as

r+
j =

Uj − Uj−1

Uj+1 − Uj
and r−j =

Uj+1 − Uj

Uj − Uj−1
(31)

If the denominator in the above expression is small (when Uj ≈ Uj+1), then
we modify r to prevent numerical overflow as

r+
j = sign (Uj+1 − Uj)

Uj − Uj−1

δ
if |Uj+1 − Uj| < δ (32)

where δ is a small parameter. The same approach is used for r−j also. The
limiter based Central Rankine-Hugoniot Solver, MOVERS-L, therefore, can
capture steady discontinuities exactly and still avoid expansion shocks.

For a second order accurate version of MOVERS-L, as the left and right states
of a cell interface are obtained by reconstruction, the scheme switches from a
second order accurate LLF method in smooth regions to second order accurate
MOVERS in high gradient regions. Two kinds of limiters will be operating in
this case - one the standard limiter used for second order reconstruction of
conserved variables as seen in equations (38,39) of section 3.6. This makes
the scheme first order accurate at high gradients and retains second order
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accuracy in smooth regions. The other limiter(29,30) is specific to this scheme
for switching over from MOVERS-n(or 1) to LLF method (here we use only
minmod limiter for a convex combination). For practical applications, since
second order accurate LLF method is used in smooth regions, the solution is
not degraded by the limiter in these regions.

3.4 Wave-speed correction

In both MOVERS-n(and 1), while calculating the wave-speeds (expressions
(26) and (28) respectively), if the denominator ∆U becomes small, the con-
dition refers to an isentropic case and we assign the minimum in the char-
acteristic speed spectrum of the flux Jacobian as the wave speed. When
there is a steady shock (s = 0), since the discrete update formula Un+1

j =

Un
j − ∆t

∆x

[
F n

j+ 1

2

− F n
j− 1

2

]
approximates the Euler equations in a consistent and

stable manner, all the above representative numerical wave speeds of (26)
and (27) reduce to the speed of the shock, which is zero in the steady case.
Thus any version of the Central Rankine-Hugoniot Solver, MOVERS, will
capture steady shocks exactly, without any numerical dissipation. Because of
the form of the dissipation we have assumed, even when there is a steady
contact discontinuity, this algorithm will capture it exactly, without numer-
ical dissipation (which is demonstrated in the section on results). This low
dissipative algorithm is employed only close to the discontinuities. Elsewhere,
when the denominator ∆U is too small, the evaluated value of s can be non-
physically high. We use a wave speed correction algorithm to bring the wave
speeds to physically admissible values. The wave speed correction algorithm is
a min-max wave speed limiter with the absolute values of discrete wave speed
being restricted within the spectrum of characteristic values (eigenvalues) of
the hyperbolic system while still retaining the same direction of the computed
uncorrected discrete wave speed.

sj+1/2 =






|Fj+1−Fj

Uj+1−Uj
| if Uj 6= Uj+1

λmin,j+1/2 if Uj = Uj+1

(33)

sj+ 1

2

= λmax if |sj+ 1

2

| ≥ λmax (34)

sj+ 1

2

= λmin if |sj+ 1

2

| ≤ λmin (35)

With these corrections, the steps to update the vector conservation laws in-
volve computation of representative numerical wave speeds at all the points
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in the domain and correction of such wave speeds to make them lie within the
bounds of spectral radius. Here, λmax and λmin refer to the local maxima and
minima of the magnitudes of characteristic speeds defined by the eigenvalues
of the flux Jacobian matrix. As an example, for the Euler equations in one
dimension, we define

λmax = Max(max(|u|, |u − a|, |u + a|)R, max(|u|, |u− a|, |u + a|)L)

λmin = Max(min(|u|, |u − a|, |u + a|)R, min(|u|, |u − a|, |u + a|)L)
(36)

since the eigenvalues in this case are u− a, u and u + a with u being the fluid
velocity and a representing the sound speed.

3.5 Entropy Correction

The numerical diffusion of the two variants MOVERS-n( and 1) take to low
values at the expansive sonic points where wave speeds change the sign. To
avoid any expansion shocks, just like Harten’s entropy correction[27] with
using the maxima of the characteristic speeds as given in (37).

sj =
s2

j + δ2

2δ
if sj < δ & sj = sj otherewise (37)

where δ = κλmax and κ is a fractional numerical value from 0 to 1. As Local
Lax-Friedrichs method is a good alternative to low dissipative schemes like
Roe scheme or MOVERS in the regions of expansion fans with sonic points,
it is also used as an entropy fix [6]. In the numerical experiments done in this
work, it was found that reducing the numerical dissipation of the LLF method
by half(i.e., κ = 0.5) works reasonably well avoiding expansion shocks and
other non-smoothness. Since, this entropy correction adds numerical diffusion
everywhere, loss of accuracy in shocks can be expected. A suitable correction
to this scheme can then be to retain sufficient entropy in all regions, especially
at the sonic points except the weak solution. This becomes the motivation for
the limiter based variant of the scheme MOVERS-L.

3.6 Second Order Accurate Schemes

The second order accurate schemes are constructed by assuming piecewise
linear approximation for the conserved variables, as

U(x, tn) =
[
Un

j + (Ux)
n
j (x − xj)

]

[xj−1/2,xj+1/2]
, xj±1/2 = xj ±

∆x

2
(38)
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where Un
j is the computed cell average, and (Ux)

n
j are approximations to the

exact derivatives, Ux(x, tn), evaluated from the computed cell averages. The
non-oscillatory behavior of the scheme depends on the appropriate choice of
approximate derivatives, and we use the one parameter family of minmod
limiter for this purpose.

(Ux)j = minmod
(
β

Uj − Uj−1

∆x
,
Uj+1 − Uj−1

2∆x
, β

Uj+1 − Uj

∆x

)
, 1 ≤ β ≤ 2(39)

The numerical values of fluxes and the primitive variables required for the
update are computed at the cell interfaces from the above reconstruction pro-
cedure. Several benchmark problems of gas dynamics, shallow water flows and
ideal magneto-hydrodynamics are solved and results are presented in the next
section.

4 Results and Discussion

4.1 Results with MOVERS for Burgers equation

MOVERS is first tested for the inviscid Burgers equation in one dimension,
given by

∂u

∂t
+

∂f (u)

∂x
= 0 where f (u) =

1

2
u2 (40)

The test case used models a shock wave and an expansion fan [4]. The results
with the Local Lax-Friedrichs method are also presented for comparison, in fig-
ure (3). The shock wave is captured exactly with MOVERS and the expansion
fan is captured well along with a Harten’s entropy fix.

The results obtained with MOVERS for the 2-D Burgers equation, given by

∂u

∂t
+

∂f1 (u)

∂x
+

∂f2 (u)

∂y
= 0 with f1 (u) =

1

2
u2 and f2 (u) = u (41)

are shown in the figure (4). This test case is taken from [28]. The shock is
again captured exactly.
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Fig. 3. 1D Burgers equation solution : First order accurate results with MOVERS
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Fig. 4. 2D Burgers equation solution with first order accurate MOVERS using 32x32
points: Velocity Contour plot

4.2 Results with MOVERS for Euler equations

The Euler equations in one dimension are given by

∂U

∂t
+

∂F

∂x
= 0 (42)

where
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U =




ρ

ρu

ρE




and F =




ρu

p + ρu2

pu + ρuE




(43)

where U is the vector of conserved variables and F is the flux vector, with ρ
representing the density, u the fluid velocity, p the pressure and E the total
energy, defined by E = p

ρ(γ−1)
+ 1

2
u2. This system of equations is hyperbolic,

with the eigenvalues given by λ1 = u − a, λ2 = u and λ3 = u + a. The
quasi-1D and multi-dimensional forms of the Euler equations are given in [3].
Numerical solution of inviscid compressible flows for the 1-D case of steady
contact discontinuity in a shock tube, the quasi-one dimensional nozzle flow
[29], oblique shock reflection, supersonic flow over a ramp in a channel [30],
supersonic flow over a forward-facing step in a channel [31], double Mach
reflection [31], shear flow of Mach 3 over Mach 2 [32] and hypersonic flow across
a half-cylinder [33] are obtained using MOVERS-n. The results consistently
show high accuracy of the new solver in capturing flow features. It is worth
noting that this is achieved without any Riemann solvers and complicated flux
splittings, in a simple format of a central scheme.
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Fig. 5. Steady contact discontinuity in a shock tube with first order accurate
MOVERS-n, with and without entropy fix; Density plot
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Fig. 6. Nozzle flow : Density plot with first order accurate MOVERS-n
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MOVERS−n with entropy fix
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Fig. 7. Horizontal Shear flow (Mach 3 flow over Mach 2 flow), Mach contours with
MOVERS-n (first order) on a 20x20 grid
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Fig. 8. Oblique Shock Reflection, Density contours (0.9:0.1:2.7) with MOVERS-n

on grids (a) 60x20 (b) 120x40 and (c) 240x80

The results with MOVERS-n for the steady contact discontinuity in a shock
tube (Fig. 5) and quasi 1-D nozzle flow (Fig. 6) show clear resolution of the
flow and slip surface is captured exactly for a shear flow of Mach 3 over
Mach 2 (Fig. 7). The two dimensional oblique shock reflection problem (Fig.
8) on crude, medium and fine grids, show a consistent improvement in the
resolution of the solutions. The trend persists for unsteady problems as well,
as depicted in figures 9, 10 and all the flow features are captured with high
accuracy. Stagnation line pressure and Mach number plots for steady hyper-
sonic flow over half-cylinder in figure 11 effectively highlight the improvement
in solution over the LLF scheme. Cp distribution for two cases of transonic
flow over NACA0012 aerofoil [42] are presented in figures 12-14. The solutions
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(a) I order solution

0 0.5 1 1.5 2 2.5 3
0

0.5

1

(b) II order solution

0 0.5 1 1.5 2 2.5 3
0

0.5

1

Fig. 9. Density contours at time=4 with MOVERS-n using structured mesh of
(240x80) points for Mach 3 flow over a forward-facing step in channel

(a) I order solution
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Fig. 10. Density contours at time=0.2 with MOVERS-n using structured mesh of
(240x60) points for Double Mach Reflection due to Mach 10 shock moving through
a 30o wedge

without any entropy correction resolve the shock accurately but for mild non-
smoothness elsewhere. However, with an entropy fix using φ = 0.25 in (37)
the shocks are diffusive.

The results of the n-wave solver are compared with Roe’s Solver in figures (15)
and (16). The solution for ramp in channel flow problem is shown in figure 17
indicates the high accuracy resolution with MOVERS-n using unstructured
grid computation. The results presented demonstrate the accuracy of this
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Fig. 11. Results along stagnation line for Mach 6 flow across half cylinder using
structured mesh of 45x45 points with first order accurate MOVERS-n
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Fig. 12. Pressure co-efficient distribution on NACA0012 airfoil for Mach 0.85 flow
at 1◦ angle of attack with MOVERS-n

version of the Central Rankine-Hugoniot Solver (MOVERS-n) in capturing the
flow features accurately. The steady shocks aligned with grid lines are captured
exactly, without any numerical dissipation. With the use of an entropy fix, the
expansion fans are captured well.
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Fig. 13. Pressure co-efficient distribution on NACA0012 airfoil for Mach 0.85 flow
at 1◦ angle of attack with MOVERS-n (a) without entropy fix (b) with entropy fix
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Fig. 14. Pressure co-efficient distribution on NACA0012 airfoil for Mach 0.8 flow at
1.25◦ angle of attack with MOVERS-n(a) without entropy fix (b) with entropy fix
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Fig. 15. Comparison of first order accurate solutions of Roe’s scheme and
MOVERS-n for supersonic flow over ramp in channel
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Fig. 16. Comparison of first order accurate solutions of (a) Roe’s scheme with (b)
MOVERS-n for Mach 6 flow across half cylinder
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Fig. 17. Supersonic flow over a ramp in a channel: Pressure contours with
MOVERS-n using unstructured mesh of 7503 points
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4.3 Results with MOVERS-n for Shallow Water Equations

The one-dimensional form of shallow water equations in differential form can
be written as

Ut + F (U)x = S (44)

where

U =




h

hu


 , F =




hu

hu2 +
1

2
gh2


 , S =




0

−ghBx


 (45)

The system is hyperbolic with eigenvalues λ1 = u −
√

gh and λ2 = u +
√

gh
for the one dimensional flux Jacobian matrix, given by

F
′

(U) =




0 1

−u2 + gh 2u


 (46)

The non-homogeneous (source) term S is very common and quite often rep-
resents the water bed beneath. Numerical solution with MOVERS-n for some
bench mark problems are presented below.

1D Dam-Break problem on a variable Depth River-bed

This is a test case [34] with variable river-bed and so the system of equations is
not homogeneous, which means that a source term is present in the equation.
For this test case, the river-bed is defined as

B(x) =






0.125(cos(10(π(x − 1
2
)) + 1)) if 0.4 ≤ x ≤ 0.6

0 otherwise

and we have the following initial conditions

u(x) = 0
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h(x, 0) =





1 − B(x) if 0 ≤ x ≤ 1
2

0.5 − B(x) if 1
2

< x ≤ 1

The presence of discontinuity at x = 0.5 is like a barrier separating two river
heights. Reflection boundary conditions are taken into consideration assuming
walls at x = 0 and x = 1. Results presented in figure (18) shows all the flow
features being captured well by MOVERS-n.
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(b) Velocity
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Fig. 18. Dam-break flow with bottom topography on 100 grid points using first
order accurate MOVERS-n at time 0.1 sec

4.3.1 1D Steady State Trans-critical flow with Shock

In this benchmark test case [35] we study the convergence towards steady flow
over a hump. We consider the system with initial conditions

u(x, 0) = 0

h(x, 0) + Z(x) = H0

where H0 is the constant water level downstream provided by the boundary
condition. We test our scheme to this steady state flow where the bathymetry
is non-trivial and is given by

Z(x) =





0.2 − 0.05(x − 10)2 if 8 ≤ x ≤ 12,

0 otherwise

in a channel of length L = 25m and H = 2m, CFL = 0.5. In this test case we
impose an upstream boundary condition for the discharge as q = 0.18m2/s and
the downstream boundary condition for the water level is H0 = 0.33m. The
final water level at time 200 seconds computed with mesh size ∆x = 0.125m
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and residue for computation are compared with LLF method and displayed
in the figure (19).
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(b) Residue
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Fig. 19. Transcritical steady flow with hydraulic jump on 120 points at t=200 sec-
onds: first order accurate MOVERS-n compared with that of LLF

The numerical simulation of several rapidly varying two-dimensional flows are
presented in the following sub-section.

4.3.2 2D Partial Dam Break Problem

This problem corresponds to a partial breach [36]. Consider a 2D partial dam-
break problem with an unsymmetrical breach. The computational domain is
defined in a 200 m long and 200 m wide channel. The non-symmetrical breach
or sluice gates are 75-m wide, and the thickness is 10 m. (see figure 20). A dam
is assumed to fail instantaneously or the sluice gates are assumed to be opened
instantly. The initial upstream water depth is h1 = 10m and downstream water
depth is ho = 5m. A grid of 40×40 cells is used for this problem. This test
case is similar to the shock tube problem for the Euler equations.

The Numerical results displaying 3D views of the water surface elevation after
dam failure and velocity contours at time t=7.2 seconds are presented in figure
(21). At the instant the dam breaks, water is released through the breach,
forming a positive wave that propagates downstream and a negative wave
that moves upstream.

This problem corresponds to a partial breach [36] and detailed in figure 20.
The Numerical results displaying 3D views of the water surface elevation after
dam failure and velocity contours at time t=7.2 seconds are presented in figure
(21) and that for steady oblique hydraulic jump compared with LLF scheme
is depicted in figure (22). The efficacy of the scheme in resolving all the flow
features is demonstrated. Figure 23 presents the surface height plot variation
for the oblique jump.
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Fig. 20. Problem Sketch for partial dam breach

4.4 Results with MOVERS-n for Ideal Magneto-Hydrodynamic Equations

The one-dimensional ideal MHD equations are given by

∂

∂t




ρ

ρu1

ρu2

ρu3

Bx

By

Bz

E




+
∂

∂x




ρu1

ρu2
1 + p +

1

2
B2 − B2

x

ρu1u2 − BxBy

ρu1u3 − BxBz

0

Byu1 − u2Bx

Bzu1 − u3Bx

u1(E + p +
1

2
B2) − Bx(u1Bx + u2By + u3Bz)




= 0(47)

Since the magnetic field in the flow direction is constant, both time and space
derivatives of Bx are zero. The seven eigenvalues of the Jacobian matrix (see
[37]) are

λ1 = u − cf , λ2 = u − cA, λ3 = u − cs, λ4 = u,

λ5 = u + cf , λ6 = u + cA, λ7 = u + cs

(48)

Several standard problems in one and two dimensions are solved with the
scheme MOVERS-n and results are presented here.
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Fig. 21. Solution of partial dam break problem using first order accurate MOVERS-n

at time 7.2 seconds with 40x40 points

4.4.1 (A) 1D Coplanar Problem

This 1D MHD problem with the initial Riemann conditions is given by [37].
The initial conditions [ρ, u1, u2, p, By] on the left(x ≤ 0) are [1, 0, 0, 1, 1] and
on right(x ≥ 0) are [0.125, 0, 0, 0.1,−1].

200 grid points are used in a domain of [-50,50]. The CFL number is chosen as
0.75 and the results given are at t = 10 with Bx = 0.75 and γ = 2. The results
are shown for the domain [-30:30] in figures (24, 25) in comparison with LLF
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Fig. 22. Solution of oblique jump problem using first order accurate MOVERS-n

compared with LLF method
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Fig. 23. Solution of oblique jump problem using first order accurate MOVERS-n

and HLLC [38], which is a Riemann solver and well known for its accuracy.
The results here are deliberately given for a very coarse grid for this problem to
compare the schemes. MOVERS-n is seen to capture the discontinuities much
better than LLF while it improves even over the HLLC scheme, although being
simpler. When the grids are made finer with 800 points and the results are
shown in the figure 26 where the results are in close agreement with HLLC
Riemann solver.

4.4.2 (B) Riemann problem with Seven Discontinuities

This is a one dimensional problem which involves all the three components
of velocity and magnetic field. It was suggested by Ryu et al. [39]. The
spatial interval considered is (−1, 1) on the x-axis. The initial conditions
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(b) Pressure
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Fig. 24. Numerical Simulation of Ideal MHD problem (A) with I order accurate
MOVERS-n and 200 points at time=10
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(b) By Magnetic field
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Fig. 25. Numerical Simulation of Ideal MHD problem (A) with I order accurate
MOVERS-n and 200 points at time 10

[ρ, u1, u2, u3, p, By, Bz] on the left(x ≤ 0) are [1.08, 1.2, 0.01, 0.5, 0.95, 3.6, 2.0]
and on right(x ≥ 0) are [1, 0, 0, 0, 1, 4, 2].

Fast shocks, rotational discontinuities and slow shocks propagate from each
side of the contact discontinuity. The rotation of the magnetic field across
the initial discontinuity generates two rotational discontinuities. All the above
features are seen to be captured by the scheme using 500 points (figures 27,28)
with the solution falling close to a HLLC scheme but is much better than
LLF method (not shown). In this problem, due to the complex interaction of
multiple waves, more amount of numerical diffusion is used for entropy fix.
The MOVERS-n predictions merge with that of HLLC with fine grid of 1500
points (29).
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Fig. 26. Numerical Simulation of Ideal MHD problem (A) with I order accurate
MOVERS-n on 800 points at time 10
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Fig. 27. Numerical Simulation of Ideal MHD problem (B) with I order accurate
MOVERS-n at time 0.4 on 500 points

4.4.3 (C) Orszag Tang Vortex Problem

This is a problem of evolution of a compressible vortex system [40] involving
interaction between several shock waves traveling at different speeds. The
computational domain is [0, 2π]× [0, 2π] with periodic boundary conditions in
both x and y directions using a uniform grid of 288 × 288 points. The initial
conditions are

ρ(x, y, 0) = γ2, p(x, y, 0) = γ, vx(x, y, 0) = −siny

vy(x, y, 0) = sinx, Bx(x, y, 0) = −siny, By(x, y, 0) = sin2x

Value of γ is taken as 5/3.

The solutions for 1-D ideal MHD equations shown in figures (24-28) are com-
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(b) Bz-magnetic field
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Fig. 28. Numerical Simulation of Ideal MHD problem (B) with I order accurate
MOVERS-n at time 0.4 on 500 points
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Fig. 29. Numerical Simulation of Ideal MHD problem (B) with I order accurate
MOVERS-n at time 0.4 on 1500 points

pared with Local Lax Friedrichs Scheme (not shown) which is very dissipative
and the HLLC Solver which is known to be very accurate. The solutions ob-
tained with MOVERS-n are, as expected, comparable with the HLLC solutions
although the former scheme is much simpler and free of Riemann solvers. The
solution for 2D-ideal MHD equations for the Orszag Tang Vortex System in
figures (30-33) are very accurate and are comparable with reported results
[40].

4.5 Results with MOVERS-1 for Euler equations

The solutions for 1-D steady contact discontinuity problem, Sod’s shock tube
test case, quasi 1-d nozzle flow, supersonic flow over a step in a wind tun-
nel and hypersonic flow across half cylinder are given below. The solutions
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Fig. 30. Numerical Simulation of Orszag-Tang Vortex System with first order accu-
rate MOVERS-n at time=1
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Fig. 31. Numerical Simulation of Orszag-Tang Vortex System with first order accu-
rate MOVERS-n at time=1

are as good as MOVERS-n solutions or even better than some of them. As
mentioned before, the choice of one of the three wave speeds (corresponding
to the energy equation and which uses the maximum possible information)
is made based on reasons mentioned in section (3.2). The shock solution of
the quasi-1d nozzle flow consistently contains a maximum of only two points
which is currently possible only by highly accurate Riemann solvers such as
Roe scheme when only first order scheme is used. The solution for shear flow
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Fig. 32. Numerical Simulation of Orszag-Tang Vortex System with first order accu-
rate MOVERS-n at time=3
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Fig. 33. Numerical Simulation of Orszag-Tang Vortex System with first order accu-
rate MOVERS-n at time=3

problem with MOVERS-1 variant is almost identical to that of n-variant (fig-
ure 7) and hence is not reproduced here. The scheme is used to solve flow over
a forward-facing step in wind tunnel and the slip lines starting at the Mach
stem from right above the step are clearly seen in figure (36). The computation
with unstructured mesh is also found accurate as evident in the solution for
hypersonic flow across a half cylinder presented in figure (37).
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Fig. 34. Density plot with first order accurate MOVERS-1 for (a) Steady 1D contact
(b) Sod’s 1D shock tube problem

It is found that the residue for the second order solution does not fall to very
low values for this version of MOVERS. However, instead of calculating the
wave speed at the interface directly with the immediate neighboring points as
in equation (33), if the wave speeds are calculated at every cell center [18] as

sj =






Fj+1−Fj−1

Uj+1−Uj−1
if Uj−1 6= Uj+1

λmin,j if Uj−1 = Uj+1

(49)

sj = sign(sj)λmax,j if |sj| ≥ λmax,j (50)

sj = sign(sj)λmin,j if |sj| ≤ λmin,j (51)

and the interface wave speed is then taken to be the maxima of left and right
states, the residual of the second order accurate scheme falls to much lower
values. With such a change in computing the interface flux, the solutions agree
closely with the parent methods MOVERS-(n,1) presented and hence only the
convergence plots are given here in figure (38).

4.6 Results with MOVERS-L

The results for MOVERS-L, a limiter based Central Rankine-Hugoniot Solver
in which the dissipation switches from the one in the MOVERS-1(or n) to
that in the LLF method, obtained with a minmod Limiter, are presented in
figures from 39 to 43. Steady discontinuities are resolved accurately and all
features of the flow are captured well, as can be seen from the results. Note
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Fig. 35. Density plot with first order accurate MOVERS-1 for Quasi 1-D nozzle flow
(a) 50,100 points (b) 200,500 points
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Fig. 36. Supersonic flow over forward-facing a step in channel : Density contours
with MOVERS-1 on 240x80 grid

that the high resolution is achieved here without the use of an entropy fix,
based only on the flow variables.

5 MOVERS and Upwind Interpretation

The results presented in the previous sections show that the Central Rankine
Hugoniot Solver developed in this work, called the Method of Optimal Viscos-
ity for Enhanced Resolution of Shocks (MOVERS), is a very efficient scheme,
capturing the steady discontinuities exactly when aligned with grid lines, and
providing low diffusion solutions otherwise. The motivation with which this
work started was to develop an accurate flow solver based on a simple central
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Fig. 37. Hypersonic (M=6) flow across a semi-cylinder : Pressure contours with
MOVERS-1 using unstructured mesh of 3897 points; (a) mesh (b) I order (c) II
order
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Fig. 38. Convergence History for MOVERS-1 : (a) Supersonic flow (M=2) over a
ramp in channel; (b) Hypersonic flow (M=6) across a semi-cylinder

discretization scheme, taking the Local Lax-Friedrichs method as the building
block. It is worth noting that MOVERS can also be interpreted as an upwind
scheme. An upwind interpretation may give a different perspective on this
new algorithm and may be useful in modifying the existing upwind codes in
a simple way in implementing MOVERS. In the following, an upwind inter-
pretation for n-wave variant is presented. The cases of 1-wave and L variants
can be treated in a similar fashion.

Consider the case of a system of hyperbolic conservation laws in one dimension.

∂U

∂t
+

∂F

∂x
= 0 (52)
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Fig. 39. Steady contact discontinuity in a shock tube with first order accurate
MOVERS-L
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Fig. 40. Quasi 1-D nozzle flow with first order accurate MOVERS-L

Let us introduce a linearization of the flux vector as

F ≈ ÃU + B (53)

where Ã and B are constant matrices. We further simplify by assuming Ã to
be a diagonal matrix.
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Fig. 41. Horizontal Shear flow (Mach 3 flow over Mach 2 flow), Mach contours with
first order accurate MOVERS-L on 40x20 grid
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Fig. 42. Mach 2 flow over Ramp in channel: Density Contours with MOVERS-L
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Fig. 43. Transonic flow across NACA0012 airfoil: Pressure Co-efficient Distribution
obtained with MOVERS-L using O-type mesh with 160x60 points

Ã =




λ̃1 0 · · · 0

0 λ̃2 · · · 0
...

... · · · ...

0 0 · · · λ̃n




(54)

Then the system of conservation laws can be rewritten as

∂U

∂t
+

∂
(
ÃU + B

)

∂x
=

∂U

∂t
+ Ã

∂U

∂x
= 0 (55)
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which is the approximate Riemann problem being solved at the cell interfaces,
with the initial conditions as

U (x, t = 0) =





UL

UR

(56)

Expanding, we obtain

∂Um

∂t
+ λ̃m

∂Um

∂x
= 0, m = 1, · · · , n (57)

The approximate Riemann problem consists of n linear convection equations.
The n wave speeds need to be constants as per the linearization assumption
made and this requirement can be satisfied by taking them as local averages
(not necessarily arithmetic averages), across a cell interface. Now consider the
flux Jacobian matrix for the original conservation laws, given by

A =
∂F

∂U
(58)

which has n eigenvalues, λ1, · · · , λn. If the physical situation presents a shock
wave, then relevant wave speed will be the shock speed, defined by the Rankine-
Hugoniot condition as

∆F = s∆U (59)

Since our aim is to enhance resolution of the shocks, we approximate the wave
speeds by relevant speeds of the shock coming from the jump condition as

λ̃m = |sm,I|, m = 1, · · · , n (60)

leading to

Ã =




|s1,I | 0 · · · 0

0 |s2,I| · · · 0
...

... · · · ...

0 0 · · · |sn,I|




(61)

Here, the subscript I denotes the cell interface. Using the notations ∆U =
UR − UL and ∆F − FR − FL, we can now use the approximate Flux Jacobian
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in the relation

∆F = Ã∆U (62)

and the connection to MOVERS-n has now become apparent, if we use

sm,I =
∆Fm

∆Um
, m = 1, · · · , n (63)

with the wave speed corrections introduced before.

If the evaluated wave speeds are positive

|sm,I | = sm,I , m = 1, · · · , n (64)

Then Ã = Ã and the cell interface flux becomes

FI =
1

2
(FL + FR) − 1

2
Ã (UR − UL)

=
1

2
(FL + FR) − 1

2
(FR − FL)

= FL

(65)

which is the upwind flux for positive wave speeds. If the evaluated wave speeds
are negative

|sm,I | = −sm,I , m = 1, · · · , n (66)

Then

Ã = −Ã (67)

and the cell interface flux becomes

FI =
1

2
(FL + FR) +

1

2
Ã (UR − UL)

=
1

2
(FL + FR) +

1

2
(FR − FL)

= FR

(68)

which is again the upwind flux for negative wave speeds. Thus, MOVERS-n
is also an upwind scheme, similar to the Flux Difference Splitting method of
Roe, but the expressions are simpler and are not based on Roe averages. Then,
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this scheme can be interpreted as an upwind method with the wave speeds
being evaluated based on the Rankine-Hugoniot jump condition, with wave
speed corrections. The interpretation of MOVERS-1(and L) can be done in
a similar way, noting that variant L does not need an entropy fix and is a
combination of LLF and variant 1 or n. It is also important to note that the
upwind interpretation of MOVERS-1 is possible only if we take a very broad
outlook, like treating the Local Lax-Friedrichs method also as upwind scheme.
To go beyond such interpretations, it is important to note that simplicity and
accuracy in capturing flow features like discontinuities are worthy goals to
strive for in developing new algorithms, and this is the motive behind the
work presented in this work.

With the above interpretation, the central Rankine-Hugoniot solvers devel-
oped in this work (MOVERS-n and its variants 1 and L) can be thought of
as an advancement over both the existing central discretization methods (in
capturing the steady discontinuities exactly) and upwind methods (leading
to simplification and being equally accurate and may also be thought of as
uniting the two frameworks.

6 Conclusion

An accurate numerical solver for hyperbolic partial differential equations is
presented here. The new solver is in the framework of central schemes and is
based on the direct discretization of Rankine-Hugoniot condition. The solver is
simple and easily adoptable for any hyperbolic system. For hyperbolic vector
conservation laws, three different variants of the scheme are proposed, viz.,
MOVERS-(n,1 and L). MOVERS-n is based on the propagation of n-waves
while MOVERS-1 is based on an approximation of a single wave, for the
shock speed in the jump condition, to represent the coefficient of numerical
dissipation. MOVERS-L is a hybrid limiter based solver smoothly varying
between Local Lax-Friedrichs method and the MOVERS based on the jump
condition, thus avoiding the need for an entropy fix. These different variants
of the scheme are used to solve various bench-mark test cases of gas dynamics,
shallow water flows and ideal magneto-hydrodynamics. The results show high
accuracy in capturing flow features, with grid-aligned shock waves and contact
discontinuities being resolved accurately. The variants of MOVERS can also
be interpreted as upwind methods but are simpler, with retaining the accuracy
in shock capturing, and one of the variants avoids use of any entropy fix due
to the flow based adaptation of the numerical dissipation.
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