
Lattice Boltzmann Simulations of 2D Laminar

Flows past Two Tandem Cylinders

Alberto Mussa a, Pietro Asinari a,∗, and Li-Shi Luo b

aDepartment of Energetics, Politecnico di Torino, Torino 10129, Italy
Tel.: +39 (011) 090-4520, Fax: +39 (011) 090-4499

bDepartment of Mathematics & Statistics and Center for Computational Sciences
Old Dominion University, Norfolk, VA 23529, USA

Abstract

We apply the lattice Boltzmann equation (LBE) with multiple-relaxation-time (MRT)
collision model to simulate laminar flows in two-dimensions (2D). In order to simu-
late flows in an unbounded domain with the LBE method, we need to address two
issues: stretched non-uniform mesh and in-flow and out-flow boundary conditions.
We use the interpolated grid stretching method to address the need of non-uniform
mesh. We demonstrate that various in-flow and out-flow boundary conditions can
be easily and consistently realized with the MRT-LBE. The MRT-LBE with non-
uniform stretched grids is first validated with a number of test cases: the Poiseuille
flow, the flow past a cylinder asymmetrically placed in a channel, and the flow past
a cylinder in an unbounded domain. We use the LBE method to simulate the flow
past two tandem cylinders in a unbounded domain with Re = 100. Our results agree
well with existing ones. Through this work we demonstrate the effectiveness of the
MRT-LBE method with grid stretching.

Key words: lattice Boltzmann equation, boundary conditions, grid stretching,
flow past tandem cylinders

1 Introduction

In recent years the lattice Boltzmann equation (LBE) has become a viable
means for computational fluid dynamics (CFD) (cf. [1] and references therein).
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As opposed to conventional CFD methods based on direct discretizations of
the Navier-Stokes equations, the LBE method is derived from the Boltzmann
equation and kinetic theory [2,3]. The kinetic origin of the LBE method dif-
ferentiates it from conventional CFD methods in several ways. In the LBE
method, one deals with the discretized particle velocity distribution functions
{fi} instead of the hydrodynamic variables. Therefore, one must also deal with
the boundary conditions for the distribution functions {fi} instead of that for
the hydrodynamic variables. This kinetic nature of boundary conditions in the
LBE method has some times caused confusions and the boundary conditions
in the LBE is still a topic of active research.

The most popular LBE implementation of the Dirichlet boundary conditions
on the flow velocity u or pressure p is the bounce-back (BB) boundary con-
dition (BC). When the bounce-back boundary conditions applied with the
simple lattice Bhatnagar-Gross-Krook (BGK) equation with one single relax-
ation parameter τ , the exact location where the Dirichlet boundary conditions
for u or p are satisfied depends on the viscosity ν (or the relaxation parameter
τ) [4–8]. This problem in the lattice BGK (LBGK) equation with bounce-back
BCs has generate numerous papers (e.g., [9–15]). Unfortunately, none of these
works provides a rigorous analysis of or a systematic remedy to the prob-
lem due to inaccurate BB-BCs with the LBGK model, in spite of the fact
that this problem can be analyzed [4–7] and removed [16,7,8] by using the
lattice Boltzmann equation with multiple-relaxation-time (MRT) models [17–
20] with improved boundary conditions [16,7,8]. It should also be noted that
asymptotic analysis [21,22] has been used to address this problem in LBE [23].

In addition to flow-solid boundary conditions, LBE implementation of various
inflow and outflow boundary conditions have been considered. Various ap-
proaches have been proposed previously in the context of the LBGK equation
[9,10,13,14]. In flow simulations, boundary conditions only specify the values
of hydrodynamic variables at boundaries. However, hydrodynamic boundary
conditions are insufficient for the lattice Boltzmann equation, because the dis-
tribution functions {fi} have non-equilibrium moments which are not specified
by the values of hydrodynamic variables. Similarly, hydrodynamic initial con-
ditions are insufficient to completely specify the LBE initial conditions but
can be solved by an iterative procedure [24]. In this work we will demonstrate
the inflow and outflow boundary conditions of either Dirichlet or Neumann
type can be easily and consistently realized with the MRT-LBE method.

The LBE method usually employs uniform Cartesian meshes in both two and
three dimensions. To be computationally efficient, non-uniform and adaptive
meshes must be used. To this end, two approaches have been used in the LBE:
the grid refinement [15,25,26] and the interpolated grid stretching [27,2,28].
In grid refinement, Cartesian meshes are used, and grid spacing is divided
by an integer, which is usually a power of 2, to the next refined grid level.
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Interpolations are used at the interface between two connected meshes of dif-
ferent grid spacings, and at solid boundaries [29,8]. With the interpolated grid
stretching method, one can use body-fitted meshes [30,31]. Except at flow-
solid boundaries, interpolations have to be used throughout the entire mesh
where the discretized distribution functions {fi} cannot be propagated exactly
from one grid to another in the advection process. The simple bounce-back
boundary conditions can be used with body-fitted meshes. We will use the
latter approach, i.e., the interpolated grid stretching, in the present work.

In this paper we intend to use the LBE method to simulate laminar flows
past two tandem cylinders in a unbounded domain in two-dimensions (2D).
We shall restrict ourselves to the athermal (or isothermal) LBE models, in
which the internal energy is not a conserved quantity. The main objective
of this work is to investigate the effectiveness of the MRT-LBE with non-
uniformly stretched grids for flow simulations. Implementations of inflow and
outflow boundary conditions with the MRT-LBE method will also be validated
through a number of test cases.

The remainder of this paper is organized as follows. We discuss the LBE
method in Section 2, including descriptions of the MRT-LBE method, the in-
terpolated bounce-back boundary conditions for arbitrary curved boundaries,
inflow and outflow boundary conditions, force evaluation at flow-solid bound-
aries, and non-uniform grid stretching method. To validate the grid stretching
method and inflow and outflow boundary conditions, we provide a number of
test cases in Section 3. These test cases include: the Poiseuille flow, the flow
past a cylinder asymmetrically placed in a channel at the Reynolds number
Re = 20 and 100 [32], and the flow past a cylinder in a unbounded domain. In
Section 4 we present the LBE results for the flow past two tandem cylinders
in a unbounded domain with Re = 100 [33–40]. We will compare our results
with existing ones obtained with conventional Navier-Stokes solvers [33,37,38].
Finally we conclude the paper with Section 5.

2 Numerical method

2.1 Multiple-relaxation-time lattice Boltzmann method

We will use the lattice Boltzmann equation with the multiple-relaxation-time
(MRT) collision model [17,18,20],

f(xj + cδt, tn + δt) = f(xj, tn) − M
−1 · Ŝ ·

[
m −m(eq)(ρ, u)

]
(xj, tn), (1)
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where ρ and u are the macroscopic density and velocity respectively, the bold-
face symbols such as f denote Q-tuple vectors, and Q is the number of discrete
velocities:

f := (f0, f1, . . . , fQ−1)
T,

f(xj + cδt) := (f0(xj), f1(xj + c1δt), . . . , fQ−1(xj + cQ−1δt))
T,

m := (m0, m1, . . . , mQ−1)
T,

m(eq) := (m
(eq)
0 , m

(eq)
1 , . . . , m

(eq)
Q−1)

T,

where T denotes the transpose operator.

We will use the nine velocity model (D2Q9 model), of which the discrete
velocities are: c0 = (0, 0), ci = (±1, 0)c and (0, ±1)c, for i = 1–4, and
ci = (±1, ±1)c, for i = 5–8, where c := δx/δt, and δx and δt are the lattice
constant (or grid spacing) and time step size, respectively [2,3,18].

With the following specific order of the moments [18]:

m := (ρ, e, ǫ, ux, qx, uy, qy, pxx, pxy)
T,

where ρ is the fluid density (zeroth-order velocity moment), u the velocity
(first-order moments), pxx and pxy are the stresses (second-order moment)
and q is related to the heat flux (third-order moments), the transform matrix
M is given by [18]:

M =




1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1




. (2)

The matrix M maps the distribution functions to its moments:

m = M · f , f = M
−1 · m. (3)

The labeling of the discrete velocity set {ci} is uniquely defined by the rows 4
and 6 in M corresponding to cix and ciy, respectively. For the construction of
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M and detailed description of the moments, we refer readers to the work by
d’Humières et al. [18,20].

The diagonal matrix Ŝ of relaxation rates {si} is given by:

Ŝ = diag(0, s2, s3, 0, s5, 0, s7, s8, s9), (4)

where the relaxation rates s8 = s9 = sν = 1/τ determines the dimensionless
viscosity of the model:

ν =
1

3

(
τ − 1

2

)
cδx, (5)

where c := δx/δt. Since the parameter τ is dimensionless, then the physical
viscosity is proportional to a scaling factor, depending on the adopted grid
size and time step (diffusion scaling is assumed). Other relaxation rates s2, s3

and s5 = s7 = sq are usually determined by linear stability of the model [18].
In addition, the no-slip boundary conditions will also determine the choice of
s5 = s7 [7,8].

In Eq. (1), the equilibria for the non-conserved moments for the D2Q9 model
are:

e(eq) = −2δρ + 3j ·j, ε(eq) = δρ − 3j ·j, (6a)

q(eq)
x = −jx, q(eq)

y = −jy, (6b)

p(eq)
xx = j2

x − j2
y , p(eq)

xy = jxjy. (6c)

where δρ is the density fluctuation, ρ = ρ̄ + δρ and ρ̄ = 1, j := (jx, jy) =
(ρ̄ux, ρ̄uy) = (ux, uy) is the flow momentum. Here the approximation for
incompressible flows has been used [41], i.e., the coupling between the density
fluctuation δρ and the flow velocity u is neglected in m(eq). Note that the
equilibria of the conserved moments (ρ and j := ρu) are equal to the conserved
moments themselves. The above equilibria m(eq) are equivalent to the following
equilibrium distribution functions:

f
(eq)
i = wi

{
δρ +

(ci ·u)

RT
+

1

2

[
(ci ·u)2

(RT )2
− u·u

RT

]}
, (7)

where T is the temperature of the flow (assumed constant), R is the specific
gas constant and RT represents the internal energy of the fluid, which is a
constant for isothermal flows considered here. In the LBE model we use here,
RT = c2/3 [2,3,18]. For the D2Q9 model, the coefficients w0 = 4/9, wi = 1/9
for ‖ci‖ = 1, i =1–4, and wi = 1/36 for ‖ci‖ =

√
2, i =5–8.
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2.2 No-slip boundary conditions for curved boundaries

We will use the interpolated bounce-back (IBB) boundary conditions (BCs)
to model the no-slip fluid-solid boundary conditions with curved boundaries
[29]. The bounce-back boundary conditions are based on the intuitive picture
that a particle reverses its momentum when colliding with a solid wall at the
rest. If the wall is moving with a certain velocity uw, a particle colliding with
the wall should also gain additional momentum from the wall. Based on this
intuitive picture, as illustrated in Fig. 1, if the wall is located one half grid
spacing beyond the last node rA in flow domain, then a particle with velocity
c1 at node rA and time tn collides with the wall at rw, reverses its momentum,
and returns to rA. Therefore, when the boundary location is not precisely
located at δx/2 beyond the last flow node, interpolations or other means must
be used to reconstruct the distribution functions at the desirable nodes in flow
domain.

(a) q = 1/2

u ue e �
	�

u
rC rB rA rsrw

wall

δx/2 �δx
� -

(b) q < 1/2

u ue e u
�
	�

�
	�

e
rC rB rA rsrwrD

wall

qδx
�δx

� -

e� -c3 c1

(c) q ≥ 1/2

u ue e u

δx
� - qδx

� -

�
	�rC rB rA rsrwrD

e

wall

Fig. 1. Illustration of the bounce-back (BB) boundary conditions (BCs). (a) q = 1/2,
the “perfect” BB-BCs without interpolation. (b) q < 1/2, the BB-BCs with inter-
polations before the collision with the wall located at rw. (c) q ≥ 1/2, the BB-BCs
with interpolations after the collision with the wall.

The flow nodes adjacent to a solid boundary have links connecting these nodes
to their neighboring solid or boundary nodes beyond the flow domain. These
links intersect with the boundary so that part of them lie inside the flow
domain and part of them are outside, as illustrated by the link between rA

and rs in Fig. 1. Define the parameter q as the fraction of a link between a
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flow node and a boundary node which lies in flow domain as

q :=
‖rA − rw‖
‖rA − rs‖

, (8)

as depicted in Fig. 1, then one has to treat the following two scenarios sepa-
rately:

• When q < 1
2
, fi(rD) can be constructed from the fi’s in the nearby nodes

before the bounce-back collision, so that fı̄(rA) is obtained after the bounce-
back collision with the wall located at rw;

• When q ≥ 1
2
, fı̄(rA) is obtained with fı̄(rD) after the bounce-back collision

and fı̄ at other nearby nodes;

where cı̄ := −ci is assumed to be the bounced back particle velocity.

To reconstruct the distribution functions fı̄(rA) entering the flow domain from
boundary nodes, we can use either the linear interpolations:

fı̄(rA, tn+1) = (1 − 2q)fi(rA, tn+1) + 2qf ∗
i (rA, tn), q < 1/2, (9a)

fı̄(rA, tn+1) =
(2q − 1)

2q
f ∗

ı̄ (rA, tn) +
1

2q
f ∗

i (rA, tn), q ≥ 1/2, (9b)

or the quadratic interpolations:

fı̄(rA, tn + δt)= q(1 + 2q)f ∗
i (rA, tn) + (1 − 4q2)f ∗

i (rA − ciδt, tn)

+q(2q − 1)f ∗
i (rA − 2ciδt, tn), 0 < q < 1/2, (10a)

fı̄(rA, tn + δt)=
1

q(1 + 2q)
f ∗

i (rA, tn) +
(2q − 1)

q
f ∗

ı̄ (rA, tn)

+
(1 − 2q)

(1 + 2q)
f ∗

ı̄ (rA − ciδt, tn), 1/2 ≤ q < 1, (10b)

where f ∗
i denotes the post-collision distribution function. It must be stressed

that q = 0 and q = 1 are singular cases. When q = 1/2, both the linear
and quadratic interpolated bounce-back boundary conditions reduce to the
original bounce-back boundary conditions:

fı̄(rA, tn+1) = f ∗
i (rA, tn).

While the bounce-back boundary conditions are the most often used, they are
also misunderstood or misinterpreted very often. By no means the intuitive
picture illustrated in Fig. 1 should be taken literally. The precise location
where the no-slip boundary conditions are satisfied is model dependent. For
the incompressible Poiseuille flow with its boundaries parallel to a lattice axis,
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it can be shown analytically that the no-slip boundary location is precisely
one half lattice spacing beyond the last flow node if and only if the following
relation is satisfied [5,7]:

sq = 8
(2 − sν)

(8 − sν)
, (11)

where sν = s8 = s9 = 1/τ is the relaxation rate for pxx and pxy which also
determines the shear viscosity ν given by Eq. (5) and sq = s5 = s7 is the relax-
ation rate for q = (qx, qy). Obviously, such a relationship cannot be satisfied
by the lattice BGK equation with the single-relaxation-time collision model,
therefore the no-slip boundary location depends on the relaxation parameter
τ in lattice BGK models [7,42,8].

2.3 Inflow and outflow boundary conditions

The inflow and outflow boundary conditions used in the LBE simulations are
either the Dirichlet or Neumann types for the hydrodynamic variables p (or
ρ) and u. In an athermal LBE model of Q velocities in d dimensions, we
have (d + 1) conserved variables, i.e., ρ and ρu, among all Q moments. The
hydrodynamic boundary conditions for ρ and ρu do not specify the boundary
conditions for the remaining (Q−d) non-conserved or kinetic moments, which
are important in the LBE. We will discuss how to consistently treat these
kinetic moments in the boundary conditions.

The Dirichlet boundary conditions for either velocity u or pressure p can
be realized by the procedures described bellow. Assume a 2D computational
domain is covered by a rectangular uniform mesh without stretching, with
nodes labeled by index (i, j), i ∈ {1, 2, . . . , Nx} and j ∈ {1, 2, . . . , Ny}, and
the streamwise direction is along the x-axis. As an example, we will use the
inlet velocity boundary conditions at the left of the mesh to illustrate the
proposed boundary conditions. The velocity u(i = 1, j) = uin(j) is imposed
at the inlet i = 1. While the velocity u(i = 1, j) = uin(j) at i = 1 remained
intact, all other moments are copied from the line i = 2 adjacent to the inlet.
These moments are then transformed to the distribution functions f(i = 1, j),
which are used as the boundary conditions at the inlet. Thus the velocity
boundary condition at the inlet i = 1 can be written as

f(i = 1, j) = M
−1 ·m∗(i = 2, j)|u=uin

, (12)

where m∗ denotes the post-collision moments. Similarly, the pressure bound-
ary condition p(i = 1, j) = pin(j) can be realized as

f(i = 1, j) = M
−1 · m∗(i = 2, j)|ρ=ρin

, (13)

where ρin = pin/c
2
s. In the proposed boundary boundary conditions described
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above, all the non-equilibrium moments are generated in the flow domain
through the evolution process consistent with the flow, only the hydrody-
namic variables, either u or ρ, relevant to specific boundary conditions are
imposed at the boundary. Therefore, as the flow develops, non-equilibrium
(non-conserved) moments and the equilibrium moments which are not imposed
by given boundary conditions at the boundary are expected to consistently
evolve according to flow dynamics. In the proposed boundary conditions, no
interpolations or extrapolations are needed. For simulations in this work, we
usually use the velocity boundary conditions at the inlet, and the constant
pressure boundary condition at the outlet:

ρout = constant.

We will compare the proposed boundary conditions described above with the
non-equilibrium bounce-back boundary conditions [14], in which the velocity
boundary conditions u(i = 1, j) = uin(j) at the inlet is realized as:

fk̄(i = 1, j) =fk(i = 2, j) − f
(eq)
k (i = 2, j) + f

(eq)

k̄
(i = 2, j)|

u=uin(j)

=fk(i = 2, j) − 3wkck · [u(i = 2, j) + uin(j)], (14)

where fk̄ is the distribution function corresponding to the discrete velocity ck̄,
and ck̄ := −ck is an incoming discrete particle velocity with respect to the
boundary at i = 1, i.e., those velocities with positive x component (ck̄x > 0)
hence {fk̄(i = 1, j)} are the incoming distribution functions. In the above
derivation, we have assumed the incompressible LBE model [41] with the
equilibria of Eq. (7). Similarly, when the pressure boundary condition p(i =
1, j) = pin(j) is imposed at the entrance, or equivalently ρ(i = 1, j) = ρin(j)
through ρ = p/c2

s, the non-equilibrium bounce-back boundary conditions are

fk̄(i = 1, j) =fk(i = 2, j) − wk[ρ(i = 2, j) − ρin(j)] − 6wkck · u(i = 2, j).
(15)

Another way of implementing a constant pressure p = pout (ρ = ρout = pout/c
2
s)

at the outlet i = Nx is to impose equilibrium distributions:

fk(i = Nx, j) = f
(eq)
k (ρ = ρout, u = u(i = Nx − 1, j)). (16)

With the MRT-LBE, the inflow and outflow boundary conditions discussed
above are particularly easy to implement. After advection and collision, the
moments at i = 2 are copy to i = 1, then either the velocity u or the den-
sity ρ are reset according to given boundary conditions, while the rest of the
moments are remained intact. The moments {mi} are transformed back to
the distribution functions {fi}, which carry the information imposed by the
boundary conditions to flow domain. This differs from the approach that sets
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the distribution functions {fi} to their equilibria {f (eq)
i } with the specified

values of hydrodynamic variables at the boundaries [9] or that uses extrapo-
lations to obtain non-equilibrium distribution functions [10,13]. The proposed
approach will be tested numerically in Section 3.1.

2.4 Force evaluation at flow-solid boundaries

Two methods to compute hydrodynamic forces on a flow-solid boundary in
the lattice Boltzmann simulations are used. The first method is to compute
the pressure and stresses at the flow-solid boundary and then to integrate the
forces over the entire boundary. For arbitrary curved boundaries, the hydrody-
namic forces at boundary can be obtained by interpolating either the pressure
and velocity fields from flow nodes to boundary locations [30,31,43–45], or the
distribution functions to compute the local stresses.

The second method is the momentum exchange algorithm [46,43] which is
only applicable to the LBE method. The momentum exchange algorithm is
directly related to the bounce-back boundary conditions: for a particle distri-
bution function f ∗

i (rA, tn) at a flow node rA adjacent to a boundary node rs

is bounced back as fı̄(rA, tn+1) after colliding with the wall, as illustrated in
Fig. 1. Consequently the hydrodynamic force δF due to this flow-wall inter-
action is:

δF (rw, tn+1/2) = [fı̄(rA, tn+1) + f ∗
i (rA, tn)]ci,

where ci points from a flow node to a boundary node. For a body of volume Ω
and boundary ∂Ω, let B(rk) be the set of the flow notes {rk} next to ∂Ω which
have at least one link ci intersecting with ∂Ω. The the total hydrodynamic
force on the body is simply given by:

F =
∑

rk∈B

∑

ci∩∂V 6=0

[fı̄(rb, tn+1) + f ∗
i (rb, tn)]ci. (17)

The momentum exchange algorithm is simple to implement, its accuracy and
efficiency have been validated previously [46,43,47]. Therefore it is the method
to be used in the present work.

2.5 Grid stretching and interpolated LBE

The lattice Boltzmann equation employs a uniform Cartesian mesh with the
grid spacing δx. To use non-uniform mesh, one can use either local grid re-
finement [15,25,26] or grid stretching [27,2,28] and the latter approach is used
in the present work. The fundamental difference between the grid refinement
and grid stretching methods is the following. In the grid refinement, the grid
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spacing δx and the time step size δt are refined consistently, hence the viscosity
ν must be rescaled accordingly to maintain the Reynolds and Mach numbers
fixed throughout the system [15,25,26], interpolations are used to compute
data only at the interface between two meshes of different grid spacing δt. In
the grid stretching approach, the time step size δt remains the same regardless
of the grid spacing ∆x, and δx is the grid spacing with which the advection
process can transfer data from one grid node to its neighboring ones. In this
approach, one can use an arbitrary non-uniform mesh with the finest grid
spacing ∆x = δx. For the nodes with ∆x > δx, interpolations must be use
to compute the values of {fi} on these grid nodes after advection. Because δt

and δx remain the same in the grid stretching approach, the viscosity remains
intact throughout the system.

In this work we will use a very simple grid stretching strategy for a two di-
mensional Cartesian mesh. Surrounding a rectangular uniform fine mesh with
grid spacing δx, the grid spacings are stretched exponentially along both x
and y directions beyond the four boundaries of the fine mesh, as illustrated
by Fig. 2. The stretched grids are given by:

∆xk := xk − x0 = δx exp (∆xk−1/D) , (18a)

∆yk := yk − y0 = δx exp (∆yk−1/D) , (18b)

where D is a characteristic length, index k is only used for the stretched grids,
and x0 and y0 are the coordinates of the boundaries of the fine mesh from
which the grid spacings are stretched, and δx = 1 = ∆x0.

Fig. 2. Illustration of stretched mesh. The shaded part is the fine mesh of the grid
space δx = 1.

With non-uniform Cartesian meshes, interpolations must be used in order to
obtain the values of the distribution functions {fi}, because advection trans-
fers the data off the grid nodes. In the grid stretching approach, we apply
interpolations after the collision step to compute the values of {fi} on a grid
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Fig. 3. Illustration of stretched mesh in one dimension. The grid spacing between
two adjacent disks is ∆x = δx = 1, and that between two circles or a circle and a
disk is ∆x > δx = 1. For nodes indicated by circles, interpolations are necessary to
compute the data {fi} after advection.

node from the nearby off-grid values of {fi}, as illustrated in Fig. 3. The ad-
vection moves {fi} from one grid node to the next when ∆x = δx = 1, as
indicated by the disks in Fig. 3. However, when ∆x > δx = 1, as indicated by
the circles in Fig. 3, the advection moves {fi} to off-grid locations. Therefore
interpolations must be used to reconstruct {fi} on the grid nodes indicated
by circles. For those fi’s moving along lattice lines, i.e., along x- and y-axis,
we use second order interpolations involving three points along a grid line. For
those fi’s moving along diagonal directions, we apply second order interpola-
tions in both x- and y-direction, which involves nine points [27,28,48,49,47].

Clearly, interpolations introduce numerical dissipation. However, so long as the
interpolations are second or higher order, they do not affect the formal order
of accuracy [27,28]. Although interpolations can introduce severe dissipation
in small scales [50], they can be judicially used to enhance computational
efficiency without degrading numerical results [27,28,48,49,47].

3 Validation of the numerical method

In this section we validate our proposed approach to realize Dirichlet boundary
conditions and non-uniform mesh with stretched grids. All the validations are
carried out in two dimensional flows. We first compare our proposed boundary
conditions with the non-equilibrium bounce-back scheme for the Poiseuille flow
and the results are presented in Section 3.1. Our second validation test for the
boundary conditions is the flow past a cylinder asymmetrically placed in a
channel with the Reynolds number Re = 20 and 100, corresponding to steady
and unsteady flow, respectively. A uniform mesh is used for this flows and
the results are given in Section 3.2. Our last validation test is the flow past
a cylinder in an unbounded domain with Re = 100. In this case the non-
uniform mesh with stretched grids has to be used. The results are presented
in Section 3.3.

3.1 Poiseuille flow

To validate of the inflow/outflow boundary conditions implemented with the
MRT-LBE, we consider first the steady Poiseuille flow in two-dimensions [51],
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for which the incompressible Navier-Stokes equation admits an analytic so-
lution for the streamwise velocity u(y). In our simulations, the streamwise
direction is along the x-axis and the spanwise direction is along the y-axis.
The computational domain is (x, y) ∈ [0, L] × [0, H ] = Ω, where L and H are
channel length and height, respectively. With constant pressure p0 and p1 im-
posed at the inlet and outlet, respectively, the pressure p and the streamwise
velocity u(y) have the following solutions:

p(x) = p0 −
(p0 − p1) x

L
,

u(y)= Umax

[
1 −

(
2y

H

)2
]
, −H

2
≤ y ≤ H

2
, (19)

where the maximum streamwise velocity along the channel center line is a
constant:

Umax =
H2(p0 − p1)

8Lρν
. (20)

For near incompressible flow, we can assume ρ = 1 in Umax.

To validate the consistency of the proposed boundary conditions, we impose a
parabolic velocity profile corresponding to p0 at the inlet x/L = 0 and constant
pressure boundary condition at the outlet x/L = 1, as given be Eqs. (12) and
(13), respectively. At the walls, bounce-back boundary conditions are applied.
The system size used in our test is Nx×Ny = 20×21. The initial velocity field
is set to be zero every where. The values of the relaxation rates are: s2 = 1.63,
s3 = 1.14, sq = s5 = s7 = 1.92 and sν = s8 = s9 = 1/τ . These values of s2, s3

and s5 = s7 will be used throughout this study unless otherwise stated. We
vary the values of τ and p1 in such a way that Umax = 0.1c is fixed in our
test. The value of sν = 1/τ used in our test are: 1.0, 1.3, 1.6, 1.85, 1.9, 1.95,
1.98 and 1.99, i.e., ν ∈ [8.375 ·10−4, 1/6]. We compare our proposed boundary
conditions of Eqs. (12) and (13) with the nonequilibrium bounce-back (NEQ-
BB) boundary conditions at the inlet and the equilibrium boundary conditions
at the outlet, given by Eqs. (14) and (16), respectively.

When the system reaches steady state, attained after about 3,000 iterations
for the smallest viscosity ν ≈ 8.375 · 10−4, we measure the velocity along
the channel center and the result is shown in Fig. 4(a). Clearly, the proposed
boundary conditions are more accurate than the nonequilibrium bounce-back
boundary conditions: the velocity Umax obtained with the proposed boundary
conditions varies at the 10−6 digit, while that obtained with the NEQ-BB
boundary conditions is three order of magnitude larger, it varies at the 10−3

digit.

We next quantify the error in the measured viscosity ν∗ in the same tests with
a fixed inflow velocity profile of Umax = 0.1c and varying τ and p1. We measure
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Fig. 4. 2D Poiseuille flow with different implementations of the inflow and out
boundary conditions. (a) The normalized streamwise velocity along the channel
center Uc/Umax, with a fixed τ = 1/1.85. (b) The τ -dependence of the maximum
relative error δν given by Eq. (21) for τ = 1/sν ∈ [1, 1.99].

the relative error in ν:

δν =
|ν∗ − ν|

ν
, (21)

where ν is computed from Eq. (20), and ν∗ is measured from the numerical
simulations with varying τ and p1. The results for δν are showed in Fig. 4(b).
In the range of the relaxation rate sν = 1/τ ∈ [1, 1.99], the error in ν in
the simulations with the NEQ-BB boundary conditions is much larger than
that with the proposed boundary conditions, and the difference is particularly
apparent when τ is close to 2. This simple test clear shows the advantages of
the proposed boundary conditions.

3.2 Flow past a cylinder in a channel

Our second test case to validate our code is the flow past a cylinder asymmet-
rically placed in channel in 2D [32]. This flow has been used as a benchmark
test [32], thus we can compare our results with existing data. The flow con-
figuration is illustrated in Fig. 5. We use an uniform mesh of size Nx × Ny

for the simulations presented in this section. At the inlet, a parabolic veloc-
ity profile with maximum velocity Umax is imposed. At the outlet, a constant
pressure boundary condition corresponding to ρ∞ = 1 is used. At the chan-
nel walls, the bounce-back boundary conditions are applied. At the cylinder
boundary, we use the bounce-back, the first-order and second-order interpo-
lated bounce-back boundary conditions [16,8]. The Reynolds number is defined
by the average inflow velocity Ū = 2Umax/3 and the cylinder diameter D, i.e.,
Re = ŪD/ν = 2UmaxD/3ν.

At Re = 20, the flow is steady and a recirculation bubble is formed behind the
cylinder. The quantities measured are the drag coefficient CD, the lift coeffi-
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Fig. 5. The geometric configuration for the flow past a cylinder asymmetrically
placed in the channel.

cient CL, the recirculation bubble length Lr, and ∆p̄, the pressure difference
between the front and the back of the cylinder normalized by ρ∞Ū2/2. We
use a number of meshes with different resolutions in terms of D/δx and our
results are summarized in Table 1.

Table 1
Flow past a cylinder asymmetrically placed in a channel at Re = 20. The mesh-
size dependence of the drag coefficient CD, the lift coefficient CL and the length of
the recirculating zone Lr/D. BB, I and II denote the bounce-back, and the first-
order and second-order interpolated bounce-back boundary conditions. The results
of Ref. [32] are also included.

D/δx 10 20 30 40 80 NS [32]

BB 6.171 5.816 5.755 5.6855 5.6108

CD I 5.6627 5.5741 5.5631 5.5600 5.5591 5.5700 – 5.5900

II 5.6306 5.5621 5.5574 5.5573 5.5584

BB 0.0354 0.0223 0.0186 0.0164 0.0129

CL I 0.0158 0.0123 0.0117 0.0115 0.0113 0.0104 – 0.0110

II 0.0170 0.0134 0.0125 0.0116 0.0113

BB 0.8953 0.8619 0.8629 0.8531 0.8480

Lr/D I 0.7696 0.8237 0.8322 0.8358 0.8402 0.8420 – 0.8520

II 0.7728 0.8259 0.8344 0.8371 0.8402

BB 6.1549 5.7454 5.7500 5.7856 5.8132

∆p̄ I 5.6975 5.8305 5.7636 5.7823 5.8132 5.8600 – 5.8800

II 5.7947 5.8470 5.7762 5.7836 5.8091

Figure 6 shows the contours of the vorticity ω at the inlet and outlet sections
of the channel. The maximum value of |ω| is about 1.0 and it is generated
within a very thin layer around the cylinder. Away from the cylinder, the
vorticity is rather weak. At the four corners of of the channel, the magnitude
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of ω is about 10−3 at the inlet and about 10−4 at the outlet, indicating that
the proposed inlet/outlet boundary conditions do not generate spurious effects
near the corners.
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Fig. 6. The vorticity contours for the flow past a cylinder asymmetrically placed in
the channel at Re = 20, with the resolution D/δx = 80.

Figure 7 shows the pressure coefficient Cp around the cylinder:

Cp(θ) =
p(θ) − p∞
1
2
ρ∞U2

max

, (22)

where ρ∞ = 1, p∞ = 1/3, Umax = 0.1c, and θ = 0◦ is the stagnation point
in front of the cylinder. In order to compute the pressure coefficient Cp, the
pressure p(θ) at the cylinder surface is extrapolated from mesh points in the
flow domain. With the resolution D/δx = 40, Cp(θ) computed with the bounce-
back boundary conditions around the cylinder shows considerable oscillations,
while the results obtained with the first- and second-order interpolations are
much smoother, as expected. We also note that the results obtained by the
first-order and second-order interpolations are very close to each other, i.e., the
second-order interpolations do not significantly improve the result of Cp(θ).

At Re = 100, the flow becomes unsteady and a periodic vortex shedding takes
place. Consequently both the drag and lift coefficients are periodic functions
in time. We measure the Strouhal number St, the maximum drag coefficient
Cmax

D and the maximum lift coefficient Cmax
L with different grid resolutions

indicated by D/δx. Our results are summarized in Table 2.

It is worth the effort to point out that BB boundary condition produces a
very good result for D/δx = 10. This is not systematic: in fact, BB shows
only a first order error decay for D/δx > 10, while I and II interpolations
show better trends. In a convergence study, it may happen that the target
function shows some strange behavior with rough meshes, before reproducing
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Fig. 7. Flow past a cylinder asymmetrically placed in a channel at Re = 20. The
pressure coefficient Cp(θ) around the cylinder surface is computed with three dif-
ferent boundary conditions. The resolution is D/δx = 40. θ = 0◦ is the stagnation
point in front of cylinder.

the expected error decay, once the numerical error are small enough to respect
the asymptotic analysis.

Table 2
Flow past a cylinder asymmetrically placed in a channel at Re = 100. The mesh-size
dependence of the Strouhal number St, the maximum drag coefficient Cmax

D and the
maximum lift coefficient Cmax

L . BB, I and II denote the bounce-back, first-order
interpolation and second-order interpolation boundary conditions, respectively.

D/δx 10 20 40 80 NS [32]

BB 0.2778 0.2930 0.2972 0.2979

St I 0.2947 0.2991 0.2993 0.2995 0.2950 – 0.3050

II 0.2953 0.3000 0.2993 0.2995

BB 3.951 3.329 3.241 3.266

Cmax
D I 3.250 3.205 3.235 3.253 3.2200 – 3.2400

II 3.200 3.198 3.250 3.256

BB 0.974 0.844 0.922 1.007

Cmax
L I 0.566 0.913 1.006 1.030 0.9900 – 1.0100

II 0.601 0.939 1.031 1.033
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3.3 2D Flow past a cylinder in an unbounded domain at Re = 100

The test case we use to validate the grid stretching method is the 2D flow
past a cylinder in unbounded domain. The flow configuration is illustrated in
Fig. 8. We use a computational domain of size L × H . The periodic bound-
ary conditions are applied in the lateral direction y. At the inlet, a constant
velocity U is imposed. At the outlet, a constant pressure corresponding to
ρ̄ = 1 is applied. To minimize effect due to the blockage ratio D/H between
the cylinder diameter D and the domain height H on the flow [52,53], we use
D/H = 1/51. To minimize the effect from outlet boundary conditions, we use
L = 38.5D. The cylinder center is located in the middle of the computational
domain in y-direction, and 13D away from the inlet boundary. With a domain
size of L × H = 38.5D × 51D, non-uniform mesh would greatly enhance the
computational efficiency.

We test the following meshes in our simulations. First, we use a fine mesh
with a height of 3D and width of (4 + 1 + n)D, of which 4D portion is
located upstream to the cylinder front, and nD portion is downstream to
the cylinder back, as illustrated by the shaded area around the cylinder in
Fig. 8. Outside the fine mesh, grid spacing is stretched exponentially in both
directions according to Eqs. (18), with D as the cylinder diameter. We vary
the downstream fraction of the fine mesh by varying n to observe the effect
due to the fine mesh size in streamwise direction. Similarly, we will also fix
the fine mesh length at (4 + 1 + 8)D, and vary the height of the fine mesh
(2m + 1)D. All the measurements are made after 100,000 iterations to ensure
that the system has reached the periodic state.

H

L

x

y

in
le

t

o
u
tl
et

Fig. 8. Computational domain for the flow past a cylinder in unbounded domain.
The shaded area around the cylinder is the fine mesh (without grid stretching).

The results of the Strouhal number St, the mean drag coefficient CD and the
root-mean-square (RMS) lift coefficient C̃L are summarized in Table 3, which
shows the fine-mesh size dependence of St, CD and C̃L by varying the fine-mesh
length in downstream direction the height in lateral direction. The resolution
for the fine mesh is D/δx = 40. Beyond the fine mesh, the grid spacings
are stretched according to Eq. (18). We also include the results obtained by
the LBE with a uniform fine mesh for the entire domain (LBE) and by a

18



Table 3
2D Flow past a cylinder in unbounded domain at Re = 100. The dependence of the
Strouhal number St, the mean drag coefficient CD and the RMS lift coefficient C̃L

on the size of fine mesh in downstream direction (nD) and in the lateral direction
((2m + 1)D). Beyond the fine mesh, the grid spacings are stretched according to
Eq. (18). The results obtained by the LBE with a uniform fine mesh for the entire
domain (LBE) and by a unstructured-grid finite volume Navier-Stokes solver (NS)
[38] are also given in the Table.

The height of fine mesh = 3D

n 1 2 4 8 16 LBE NS [38]

St 0.147 0.154 0.156 0.159 0.159 0.161 0.164

CD 1.1713 1.3099 1.3142 1.3241 1.3243 1.355 1.33

C̃L 5.5 · 10−5 0.249 0.181 0.186 0.188 0.191 0.23

The length of fine mesh = (4 + 1 + 8)D

m 1 2 4 8 16

St 0.1587 0.1587 0.1590 0.1587 0.1587 0.161 0.164

CD 1.3221 1.3224 1.3223 1.3227 1.3232 1.355 1.33

C̃L 0.1841 0.1848 0.1847 0.1853 0.1863 0.191 0.23

unstructured-grid finite volume Navier-Stokes solver (NS) [38] in Table 3. The
grid number cover by the uniform fine mesh is (38.5 × 40) × (51 × 40) =
1540 × 2040 ≈ 3.1 · 106.

The results in Table 3 clearly show the effect of the size of the fine mesh about
the cylinder. Clearly the effect of the fine mesh size diminishes as the fine mesh
size enlarges. The results obtained with stretched grids agree well with that
obtained with the uniform fine mesh, so long as the size of the fine mesh
covering the cylinder is sufficiently large, e.g., (4+ 1+8)D× 5D = 520× 200.
However, if the size of the fine mesh is not large enough, e.g., (4 + 1 + 1)D ×
5D = 520 × 200 for n = 1, the result of C̃L obtained with this mesh is rather
inaccurate, as shown in Table 3. This indicates that one must provide sufficient
grid resolution behind the cylinder where vortex shedding takes place. With
the fine mesh size fixed at (4 + 1 + 8)D × 5D = 520 × 200 for n = 8, the
grid number of the entire mesh with non-uniformly stretched grids is about
0.5 × 106, which is only about 1/16 of the mesh size of the uniform fine grid.
Therefore, the grid stretching method can significantly enhance computational
efficiency. Compared to the results obtained by the Navier-Stokes solver [38],
the largest difference occurs in the RMS lift coefficient C̃L, about 17%. Our
results also be show that the LBE method is second-order accurate [49].

19



4 Flows past two tandem cylinders at Re = 100

Our code is written in C++ with a open-source version of the Message Passing
Interface library (MPICH 1.3). The numerical simulations presented in this
work were carried out on cluster computers available to us at the Department
of Computer Science, Old Dominion University (ODU) and Politecnico di
Torino.

4.1 Computational domain, mesh and boundary conditions

The computational domain for flows past two tandem cylinders of equal di-
ameter D is a rectangle of size L × H = (13.5 + s + 25.5)D × 47D, where s
is the dimensionless spacing between two cylinder centers in units of D. The
distance between the inlet boundary to the first cylinder center is 13.5D, and
that between the outlet boundary to the second cylinder center is 25.5D. The
cylinders are situated at the centerline of the domain, as illustrated in Fig. 9.
A rectangular area of size (4.5 + s + 8.5)D × 5D including both cylinders is
covered by a uniform fine mesh, as indicated by the shade rectangle in Fig. 9.
The distance between the front boundary of the fine mesh to the first cylinder
center is 4.5D, and that between the back boundary of the fine mesh to the
second cylinder center is 8.5D. The fine mesh has a height of 5D and it is
placed symmetrically in lateral direction about the domain centerline. The
resolution we use is D/δx = 40. A mesh with s = 4 is depicted in Fig. 10.
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Fig. 9. Schematics of computational domain for the flow past two tandem cylinders.
The shaded area of size (4.5 + s + 8.5)D × 5D is covered a uniform fine mesh. The
grid stretching is applied to the area outside the fine mesh.

The streamwise direction is along the x-axis. The boundary conditions are the
same as for the flow past a cylinder in a unbounded domain, i.e., a constant ve-
locity U is enforced at the inlet, a constant pressure condition corresponding to
ρ = 1 is applied at the outlet, and periodic boundary conditions are applied in
the boundaries in the y direction. Around the cylinders, second-order interpo-
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Fig. 10. Non-uniform mesh for the flow past two tandem cylinders with s = 4. The
finest resolution for the mesh covering both cylinders is D/δx = 40.

lated bounce-back boundary conditions are used to achieve no-slip boundary
conditions.

The Reynolds number of the flow is based on the inlet velocity U and the
cylinder diameter D:

Re =
UD

ν
. (23)

In our simulations, the Reynolds number is fixed at Re = 100. We measure
the Strouhal number,

St =
fsD

U
, (24)

where fs is the vortex shedding frequency; and the drag and lift coefficients,

CD =
FD

1
2
ρU2

, CL =
FL

1
2
ρU2

, (25)

where FD and FL are drag and lift forces, respectively, and ρ = 1 in our cal-
culations. We study the dependence of St, CD and CL on s, the dimensionless
spacing between two cylinders.

4.2 Effect of Mach number

The LB method is a intrinsically compressible method applied to solve incom-

pressible Navier-Stokes equation, somewhat similar to the method of artificial
compressibility [54]. The compressibility, characterized by the Mach number
Ma, affects numerical results obtained by using the LBE method, as noted in
previous studies [55]. To quantify the effect due to finite Mach number, we
conduct a study of Mach number dependence of the drag coefficient CD for
the flow past tandem cylinders at Re = 100.
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In what follows, we will use the resolution D/δx = 40 and s = 4, as described in
the previous Section. The initial conditions are quiescent velocity field u0 = 0

and a constant density field ρ0 = 1. The measurements are taken after an
initial dimensionless run time t′0 = NtU/D = 500, where Nt is the number
of time steps. We vary the inlet speed U and measure the Mach number
dependence of the period T ′, the mean value CD and the oscillating amplitude
∆CD of the drag coefficient for both cylinders. We use U = 0.1c, 0.05c and
0.025c. The results are summarized in Table 4.

Based on the results of the oscillating period T ′ and the mean drag coef-
ficient CD in Table 4, we can see that the errors in both T ′ and CD have
approximately a linear dependence on the Mach number Ma. If Richardson
extrapolation is applied, we can estimate the asymptotic values of T ′ and CD

in the limit of Ma → 0 to be 3.59000 and 1.20834, respectively. For U = 0.1c,
0.05c and 0.025c, the errors of CD compared to its estimated asymptotic value
1.20834 are about 7.4%, 5.7%, and 3.8%, respectively. That is, the computa-
tional time is quadrupled as U is reduced by a factor of four, while the error
is only reduced by about half. The results of the oscillating amplitude of CD,
∆CD, are much less accurate than T ′ and CD, because it is a much smaller
quantity compared to CD. Balancing the computational efficiency and accu-
racy of the results, we will use U = 0.1c for our simulations.

Table 4
The Mach-number dependence of the drag coefficient for the flow past two tandem
cylinders at Re = 100 and s = 4. The grid resolution is D/δx = 40 and the mesh
is described in Section 4.1. The results are measured after an initial run time t′0 :=
NtU/D = 500, where Nt is the number of time steps. The oscillating period of CD,
T ′, is given in the unit of U/D.

U/c Ma Nt ν s8 = s9 T ′ CD ∆CD

0.100 0.1732 200,000 0.04 1.61290 3.36500 1.29770 0.03758

0.050 0.0866 400,000 0.02 1.78571 3.37250 1.27718 0.02526

0.025 0.0433 800,000 0.01 1.88679 3.42875 1.25484 0.02194

4.3 Results and discussions

The initial velocity field is zero every where, and the density field is initialized
as ρ = 1 throughout the system. There would be pressure waves generated
by initial conditions in the system. In order to avoid the influence of pressure
waves caused by unphysical initial conditions, over 2 ·105 iterations are carried
out before any measurements are taken in our simulations. With U = 0.1c
and D = 40δx, Nt =200,000 time steps are equivalent to a dimensionless
time t′ = NtU/D = 500, which is more than 10 turn-over time corresponding
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to the largest domain with s = 10. We ensure that the flow field reaches a
periodic state before taking measurements [49], and compare our results with
the existing ones [33,37,38].

We investigate the dependence of the flow characteristics on the normalized
spacing s between two cylinders, for 2 ≤ s ≤ 10, at Re = 100. With Re = 100,
the flow is expected to be laminar and periodic [33–38] and two-dimensional
[51]. The second cylinder has a synchronization effect on the flow: vortices are
shed with the same frequency from both cylinders, the lift forces on both cylin-
ders are in phase, while the drag forces are in anti-phase. As a consequence,
the Strouhal number is the same for both cylinders and it characterizes the
fluctuation frequency of the flow.

We first show in Fig. 11 the dependence of the Strouhal number St on the di-
mensionless spacing s between two cylinders. Our LBE results are compared
with that of Li et al. [33], Sharman et al. [38] and Mizushima & Suehiro [37].
Our results are in very good agreement with the existing ones obtained with
various Navier-Stokes solvers [33,38,37]. The Strouhal number St in Fig. 11
shows a sharp transition somewhere in 3.0 < s < 4.0, which is the most impor-
tant feature of this flow. The transition of St has been predicted previously [35].
The LBE result indicates that the transition occurs between 3.25 < s < 3.5,
while the results of Sharman et al. [38] shows the transition happens when
3.75 < s < 4.0. This discrepancy is due to the multiplicity of stable solutions
in this region, as recently shown by Mizushima and Suehiro [37]. The result of
Mizushima and Suehiro [37] shows a hysteresis of s-dependence of St, as shown
in Fig. 11. As s continues to increase, the value of St increases asymptotically
to the value St ≈ 0.163 for an isolated cylinder in an unbounded domain.
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Fig. 11. Flow past two tandem cylinders at Re = 100. The dependence of the
Strouhal number St on the dimensionless spacing s between two cylinders. The LBE
results are compared with that of Li et al. [33], Sharman et al. [38] and Mizushima
& Suehiro [37]. The dash-dot line indicates the value of St ≈ 0.164 for a single
cylinder in an unbounded domain at Re = 100.
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The sharp transition in the Strouhal number St as s varies is due to an in-
stability caused by the flow detached from the first cylinder then interacting
with the second one. For small cylinder spacing s, the flow separated from the
first cylinder re-attaches on the downstream cylinder and vortexes are shed
only from the latter. As the spacing s between two cylinders increases beyond
certain critical value sc, vortexes are shed from both cylinders, thus two per-
fectly synchronized vortex streets are created in the wake region, as oppose
to one vortex street when s < sc. In Fig. 12 and we show the streamlines and
vorticity field for the flows with s = 2 and 4. Qualitatively, the two tandem
cylinders with s = 2 behave like a single body, there is only one vortex street
generated. When s = 4, there are clearly two vortex streets generated in the
flow.

Fig. 12. Flow past two tandem cylinders at Re = 100 with s = 2 (top row) and s = 4
(bottom row). Instantaneous flow fields: streamlines (left column) and vorticity
contours (right column).

Figure 13 shows the mean drag coefficient CD for both cylinders as functions
of the spacing s between two cylinders. The mean drag coefficient CD for the
upstream cylinder is larger than that for the downstream one for 2 ≤ s ≤ 10.
When s > sc, the value of CD for the first cylinder increases gradually to
CD ≈ 1.33 for an isolated cylinder in an unbounded domain; when s = 10,
it is very close to 1.33. For the second cylinder, the the value of CD is much
smaller than that of the first, indicating that the suction force due to the first
cylinder is rather strong. When s < sc, CD for the first cylinder is much smaller
than the single-cylinder value CD ≈ 1.33, and CD for the second cylinder is
even negative, due to strong suction force induced by the first cylinder. Again,
a sharp transition in CD occurs at s = sc.

Figures 14 and 15 show the root-mean-square (RMS) values of the drag and lift
coefficients, C̃D and C̃L, respectively, compared with the results of Sharman
et al. [38]. The values of C̃D and C̃L all show a sharp increase at s = sc. When
s < sc, both C̃D and C̃L for the first cylinder are considerably smaller than
their corresponding values for a single cylinder in an unbounded domain. Soon
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Fig. 13. Flow past two tandem cylinders at Re = 100. The dependence of the mean
drag coefficient CD on the dimensionless spacing s between two cylinders. (a) CD

for the upstream cylinder. The dash-dot line indicates the value of CD = 1.33 for a
single cylinder in an unbounded domain at Re = 100. (b) CD for the down-stream
cylinder.

after the transition occurs, both C̃D and C̃L exceed their corresponding values
for a single cylinder and reach their maxima at s ≈ 4.0, then gradually decrease
to their respective single-cylinder values. Both C̃D and C̃L for the second
cylinder behave very similar to that for the first one, i.e., they both encounter
a drastic increase at s = sc, reach their maxima at s ≈ 4.0, then gradually
decrease to their respective asymptotic values, which should presumably be
that for a single cylinder in an unbounded domain as s → ∞.
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Fig. 14. Flow past two tandem cylinders at Re = 100. The dependence of the RMS
drag coefficient C̃D on the dimensionless spacing s between two cylinders. (a) C̃D

for the upstream cylinder. The dash-dot line indicates the value of C̃D ≈ 0.0063 for
a single cylinder in an unbounded domain. (b) C̃D for the down-stream cylinder.

Our results shown in Figs. 11, 13–15 quantitatively agree well with the existing
results [33,37,38]. All the global flow features are quantitatively captured by
the LBE simulations. We also notice that there are discrepancies between
our results and the ones obtained by various Navier-Stokes solvers [37,38].
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Fig. 15. Flow past two tandem cylinders at Re = 100. The dependence of the RMS
lift coefficient C̃L on the dimensionless spacing s between two cylinders. (a) C̃L for
the upstream cylinder. The dash-dot line indicates the value of C̃L ≈ 0.23 for a
single cylinder in an unbounded domain. (b) C̃L for the down-stream cylinder.

Compared to the results of Mizushima and Suehiro [37], our results agree
better with that of Sharman et al. [38]. Besides the fundamental difference
in the solution techniques, we note that body-fitted meshes were used by
Sharman et al. [38], and the Cartesian meshes are used in the present work.
Also, the discrepancy between our results and that of Sharman et al. [38]
may be due to the multiplicity of the solutions near the critical spacing sc, as
indicated by Figs. 11 and 13.

5 Conclusions

In this paper we use the lattice Boltzmann equation with multiple-relaxation-
time collision model to simulate laminar flows in two dimensions. For the no-
slip boundary conditions at flow-solid boundaries, we apply the interpolated
bounce-back boundary conditions [29,8]. For the inflow and outflow boundary
conditions, we use a general bounce-back boundary conditions which can be
easily, naturally and consistently realized with the MRT-LBE in particular. To
enhance the computational efficiency of the LBE method with uniform meshes,
we use the grid stretching method to deal with the non-uniform Cartesian
mesh. Even though the techniques we use in the present work are simple and
thus easy to implement, the numerical results demonstrate their effectiveness.

The MRT-LBE with non-uniformly stretched Cartesian mesh has been vali-
dated by using a number of test cases, including the Poiseuille flow, the flow
past a cylinder asymmetrically placed in a channel, and the flow past a cylin-
der in an unbounded domain. The validated code is used to simulate flows
past two tandem cylinders in an unbounded domain at Re = 100 with the
dimensionless spacing between the cylinders 2 ≤ s ≤ 10. Our results agree
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well quantitatively with the existing ones obtained by using the Navier-Stokes
solvers.
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