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Abstract

The Finite Volume Particle Method (FVPM) is a mesh-free method for fluid dynamics
which allows simple and accurate implementation of boundary conditions and retains the
conservation and consistency properties of classical finite volume methods. In this article,
the FVPM is extended to viscous flows using a consistency-corrected Smoothed Particle
Hydrodynamics (SPH) approximation to evaluate velocity gradients. The accuracy of the
viscous FVPM is improved by a higher-order discretisation of the inviscid flux combined
with a second-order temporal discretisation. The higher-order inviscid FVPM is validated
for a 1-D shock tube problem, in which it demonstrates an enhanced shock capturing abil-
ity. For two-dimensional simulations, a small arbitrary Lagrange-Euler correction to fully
Lagrangian particle motion is beneficial in maintaining a favourable particle distribution
over long simulation times. The viscous FVPM is validated for two-dimensional Poiseuille,
Taylor-Green and lid-driven cavity flows, and good agreement is achieved with analytic or
reference numerical solutions. These results establish the viability of FVPM as a tool for

mesh-free simulation of viscous flows in engineering.
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Viscous flow; Incompressible flow

1 Introduction

Mesh-free methods have become increasingly widespread in computational mod-
elling of fluid mechanics. These methods represent the fluid as a set of disconnected
particles or points rather than as a mesh of nodes with pre-defined connectivity, and
usually allow the particles to have Lagrangian motion. Mesh-free methods are par-
ticularly attractive for problems that would otherwise be complicated by the use of

a mesh, such as moving boundary or free surface problems.

Smoothed Particle Hydrodynamics (SPH), introduced independently by Gingold
and Monaghan [1] and Lucy [2], is probably the most widely used mesh-free
method for fluid dynamics. SPH is a fully Lagrangian technique which was orig-
inally developed for problems in astrophysics, but recently has seen application
in engineering computations, particularly for free surface problems, e.g. [3]. Nu-
merous extensions to the basic SPH method have been proposed in the literature.
Cummins and Rudman [4] introduced an incompressible extension of SPH based
on a pressure projection method. Viscous flows have been computed with SPH by
Takeda et al. [S] and Morris et al. [6], and more recently by Sigalotti et al. [7]. A

recent review of SPH is given by Monaghan [8].
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In standard SPH, particle interactions are implemented in a symmetric formulation
which ensures conservation. However, the SPH interpolation and gradient oper-
ations do not yield exact results even for zero-order polynomials. Liu et al. [9],
Randles and Libersky [10], Bonet and Lok [11], and others have proposed alterna-
tive versions which ensure at least first-order consistency, but consequently sacrifice
the conservation property. Another family of particle methods ensures conservation
through a formulation based on interparticle fluxes. These include hybrid Riemann-
SPH methods proposed by Monaghan [12] and Vila [13], the moving least-squares
particle hydrodynamics method (type III) of Dilts [14,15], the smooth volume inte-
gral conservation method of Ismagilov [16], and the Finite Volume Particle Method
(FVPM) introduced by Hietel et al. [17]. These methods have a similar basis, but

differ in the details of their algorithms. In this article we focus on the FVPM.

In FVPM, the fluid is represented by a set of particles, which in turn are associated
with normalised, overlapping, compactly supported kernel functions. The particles
are viewed as discrete volumes to which the integral form of the governing equa-
tions apply. Particle interactions are defined in terms of a flux, which is weighted
depending on the overlap of the kernel supports. The FVPM equations are very
similar to those of conventional Finite Volume Methods (FVMs), and the method
inherits many of the desirable properties of the FVM. In contrast to the standard
SPH method, the FVPM is conservative regardless of the variation in the particle
smoothing lengths. The finite volume-based formulation of the method facilitates
a natural introduction of boundary conditions, without the need for fictitious parti-
cles, by imposing the appropriate constraints on the boundary fluxes. In addition,
the use of upwind numerical flux functions eliminates the need for empirically de-
termined artificial viscosity coefficients in shock-capturing simulations. Both the

implementation of boundary conditions and the need for artificial viscosity coeffi-
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cients are problematic and undesirable characteristics of the standard SPH method.

Recent development of the FVPM has been performed by various authors. Schick
[18] introduced adaptivity to the method via anisotropic kernel functions and vari-
able kernel supports. Lamichhane [19] computed solutions to a one dimensional
moving boundary problem. Keck [20] and Keck and Hietel [21] extended the FVPM
to incompressible flows using a projection technique, and computed solutions to an
inviscid vortex advection problem. Teleaga [22] modelled an oscillating cylinder in

inviscid crossflow using an arbitrary Lagrangian-Eulerian approach.

To date, the FVPM has been limited to inviscid flow and first-order accuracy. How-
ever, viscous effects are important in many flows of practical interest, and first-
order accuracy is often insufficient for practical computations. In this article, we
present a higher-order spatial and temporal discretisation of the method for invis-
cid flow, and the method is subsequently extended to the solution of viscous flows.
The higher-order discretisation is validated for an inviscid compressible flow test
case containing discontinuities. The viscous implementation of the method is vali-

dated for three well-known incompressible flow test cases.

2 Governing equations

The Navier-Stokes equations in conservation form can be written as

ou
o TV (F-G)=0, (1)

where U = ( )T is the vector of conserved variables, p represents the

p pu pk

fluid density, u = ( is the fluid velocity vector, and £ = e + |u|?/2 is the

’LLU’U))
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total energy of the fluid, comprising internal and kinetic energies. F represents the

inviscid flux vector

pu

pu@u+pl | (2)

b
pu E+—>
< P

where p is the fluid pressure and I is the identity tensor. The viscous flux vector G

1S

G = . 3)

As they are not required for the test cases presented in this article, the viscous
contributions to the energy equation are omitted for brevity. 7 is the viscous stress

tensor, given in two dimensions by

ou 2 ou Ov
Q,U%—gﬂ(v‘w M(a—‘*‘%)
T = Y , 4)
ou Ov ou 2
M(a—yﬂL%) M%—yi(V'u)

where 1 is the dynamic viscosity. This system of equations is supplemented by
an equation of state of the form p = p(p,e). For the compressible flow results

presented in this paper, the ideal gas equation of state is used:

p=(y—1pe, (5)
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where 7 is the ratio of specific heats. The corresponding sound speed is
a= /10y - De. ©)

Incompressible fluids are modelled using the weakly compressible approach, which
was introduced to SPH by Monaghan [3]. The method involves a stiff equation of
state which causes pressure to react strongly to density variations in the flow. The

equation of state, due to Kirkwood [23], is

()]
Y Po

where py is a reference density, ag is a reference speed of sound, and v = 7 is the
usual choice for liquids. A high value of ag can be chosen to ensure an acceptably
low Mach number, but also results in shorter time steps and greater computational
cost, due to the Courant stability criterion. When Eq. (7) is used, the energy equa-

tion is decoupled from the momentum and continuity equations.

3 The Finite Volume Particle Method

The FVPM was originally derived by Hietel ef al. [17]. The derivation of the
method for inviscid flow is presented briefly here, closely following Teleaga [22].
In FVPM, the fluid is represented by a set of N particles. These particles are defined

by compactly supported, overlapping test functions ) of the form

W;
wi (X, t) = <N 117

: 8
YW, (8)

where W; = W (x — x; (t), h) is a compactly supported kernel function for par-

ticle 7, centred at x;. The compact support radius is 2/ in keeping with the SPH
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convention. In regions of high particle density, the denominator in Eq. (8) is high,
resulting in lower values of the test function. Thus the denominator normalises the
kernel function to ensure that the test functions form a partition of unity, i.e.

N

d_ti(x,t) =1. ©)

i=1
Each particle is associated with a volume

Vi = [ 4 dx, (10)
/

and a discrete value of any field variable ¢

1
i = Vig/wi dx, (11)

which is the integral average of ¢ weighted by the test function. ¢; is associated

with the particle barycentre b;, defined as

1
b, = ViQ/X@Z)i dx. (12)

To derive the FVPM, Eq. (1), without the viscous flux G, is multiplied by the test

function v; and integrated over the fluid domain €2:

/ (%—g v F(U)) i dx = 0. (13)
Q

Integration by parts yields

s
F(U) V¢, +U ) dx
Q/ < ot

_ /F(U)wi do, (14)
o0

d
%/Uwidx_
Q
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where ¢ is the boundary coordinate. The last integral on the RHS is non-zero only
if the support of the test function intersects the domain boundary 0f2. Expanding

0v; /Ot and V); in terms of IV, we obtain

N
O =3 (%-T;i —%;-Ty), (15)
ot =
N
Vi => (T;i —Ty), (16)
7=1

where x is the particle velocity and

VW,
Tij = iy (17)
E:k:1[@%

In FVPM, the particle velocity is arbitrary. Obvious choices are x = 0 for a fully
Eulerian method, and x = u for a fully Lagrangian method. Using the expanded
terms, we can re-write Eq. (14) as

d N

S U) =3 [{F(U) - U-%JT;,

Jj=1¢

~[F(U) = U %] Dy }dx — [ F(U); do. (18)
o0

If U varies only slightly around the average U on the intersection of i and j we can

write Eq. (18) as

d

ar (ViU;) ~ —

-

[F(0)-U-%| / (Ty; — Tji) dx — / F(U); do

<
Il
—

=34y [F(0) - U-%] ~ [ (U}, do, (19)

M-

Il
—

J

where X is the average particle velocity of particles i and j, and the geometric

coefficient 3;; is defined as

ﬁz‘j = Yijg — Vji> (20)
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and

Q

3;; are geometric coefficients which weight the interaction of a pair of particles, and
are evaluated using numerical integration in the overlap region between each pair
of particles. Their value depends on the test function overlap and the surrounding
particle distribution. Introducing F(U;, U;) to denote a numerical approximation

to the inviscid flux F(U) — U - %, the semi-discrete form of the FVPM can be

written as
d N
7 (V;U;) == 8, [F(U, Uy)) — BLF7, (22)
=1

where 3 is the geometric coefficient for the particle-boundary interaction and F?
is an approximation for the boundary flux. Following Keck [20,21], the boundary

coefficient for particle ¢ is

N
Bl == By (23)
j=1

Conditions are imposed on the inviscid flux to satisfy the appropriate boundary
conditions. For a solid wall boundary, the convective flux is zero, which leaves
only the pressure term in the inviscid flux. Following Teleaga [22], the inviscid
boundary flux for a particle ¢ is based on a zero-order extrapolation of the particle

pressure to the wall:

0
b _
Fi= | pma | @)
0
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where n;;, is the unit normal vector at the boundary pointing out of the domain.

The appearance of the particle volume in Eq. (22) means that an additional equation
is required for the rate of change of the particle volume. This can be obtained by
differentiating Eq. (10) with respect to time, yielding

d N

%Vi = Jz::l [vig - %5 — Y50 - %] - (25)
First order temporal accuracy is achieved if the transient term in Eq. (22) is discre-
tised using, for example, an explicit Euler approach. First order spatial accuracy is
obtained if the numerical flux function F is computed on the basis of a zero order
extrapolation of the discrete particle values to the particle interfaces. This combina-

tion has been used in FVPM work, and throughout this paper we refer to it simply

as the first-order version of the method.

Hietel et al. [17] and Teleaga [22] have shown that the FVPM enforces global

conservation, 1.€.

d

N
. (Z V;U,»> — / F do, (26)
i=1 a0

provided that the numerical flux function F and the geometric coefficients satisfy
certain conditions. The numerical flux function must satisfy the symmetry condi-

tion

f(UZ, UJ) = —f(UJ,UZ), 27

which is typically the case for numerical flux functions developed for finite volume

methods. The geometric coefficients must satisfy the following two conditions:
=t e8)

10
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N
Z Bi; =0. (29)

Condition (28) ensures that particle interactions are symmetric, and condition (29)
is analogous to the requirement in the conventional FVM that the faces of a finite
volume form a closed surface. Condition (29) is difficult to satisfy in practice be-
cause errors are introduced by numerical integration of Eq. (20). Violation of the
conditions has been shown to result in unphysical oscillations in shock tube re-
sults [20,22,24]. While it is possible to use highly accurate numerical integration to
compute the coefficients, this would be prohibitively expensive in terms of compu-
tational effort. Correction procedures have been proposed by Keck [21] and Teleaga
[22], which allow conditions (28) and (29) to be satisfied without resort to highly
accurate numerical integration. The correction of Teleaga [22] is used for the re-
sults presented in this paper, and the geometric coefficients [3;; are computed using
a Gaussian quadrature procedure. 6 integration points are used in each particle
overlap region, where D is the number of space dimensions. Numerical experi-
ments on the problems considered in this paper have shown us that less than 6”
points yields inaccurate results, even if a correction procedure is employed. Ad-
ditional properties of the FVPM are discussed in [17,20,22] and also by Junk and

Struckmeier [25], who proved that the method is Lax-Wendroff consistent.

Several choices are available for the kernel function. Teleaga [22] has used both
piecewise linear and quadratic kernel functions, and Schick [18] has investigated
the use of anisotropic kernels with non-circular supports. The kernel employed in

this paper is a parabolic function, defined for SPH purposes by Fulk and Quinn

11
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[26]:

W(x —x;(t),h) = : (30)

0, otherwise

This choice of kernel function was motivated by numerical experiments in 1-D,
which showed that this kernel was less sensitive to the number of integration points

used for numerical computation of the geometric coefficients by Eq. (21).

4 Viscous extension of the FVPM

In the literature to date, the FVPM has been limited to inviscid flows. However,
in many flows of practical interest, viscous effects play an important role. In this
section, the extension of the FVPM to viscous flows is presented. In the viscous
test cases presented later in this paper, we have found that the accuracy of the
first-order FVPM becomes marginal at higher Reynolds numbers, where the flows
are increasingly convection-dominated. A higher-order discretisation of the invis-
cid fluxes has been developed, in combination with a two stage predictor-corrector
scheme for the transient terms, and has been found to improve the accuracy of the
method at higher Reynolds numbers. The details of the higher-order inviscid flux

and temporal discretisations are presented in this section also.

4.1 Higher-order inviscid flux discretisation

The FVPM for inviscid compressible flow, in previous versions, has been limited

to first-order accuracy in space. The flux between a pair of particles has been com-

12
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puted using a zero-order reconstruction of particle values to the particle-particle
interface. In conventional FVMs, higher orders of accuracy are obtained by using
linear reconstruction of particle values to the element interfaces for the purposes of
computing the inviscid fluxes, an approach introduced by van Leer [27]. In the cur-
rent work, the FVPM is extended to a higher order of accuracy using this approach.
This requires that the gradients of velocity, density and pressure (and temperature,
where required) are computed within each particle. Similar techniques are used
in Dissipative Particle Dynamics (DPD) for mesoscopic simulations, to determine
field values at the interfaces of Lagrangian Voronoi cells [28] or at molecular parti-
cles which exist only in an overlap band near the interfaces between Voronoi cells
of the larger mesoscale particles [29]. The latter method in particular has some
similarity with FVPM in its exploitation of a particle overlap region, although the

motivation is quite different.

As in conventional finite volume discretisations [30—32], the linear reconstruction
¢(x) should be defined so that the discrete particle value ¢; is recovered exactly in
Eq. (11). Inserting the barycentre-centred linear reconstruction ¢ (x) = ¢; + V¢, -

(x — b;) into Eq. (11) for the discrete particle value,

%/[gb,;—Fqui (% — by)] (x) dx 31)
'O
1 Vo
=V Q/ Gas(x) dox+ 7 Q/ x$(x) dx — b Q/ (%) dx] (32)
=6+ 2 [Viby — Vib] (33)
~ 6. (34)

This shows that the sufficient condition to obtain the correct discrete value from the

linear reconstruction is that the reconstruction be centred at the barycentre.

13
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In the case of linear reconstruction, Barth [30] and Barth and Jespersen [33] have
specified that the method used to determine the gradients should determine the gra-
dient of a linearly varying field exactly. Finite volume methods commonly use a lin-
ear least squares reconstruction to satisfy this requirement on unstructured meshes
[30]. The current approach uses the consistency corrected SPH gradient approxi-
mation of Bonet and Lok [11], which ensures that the gradient of a linearly varying
field variable ¢ is reproduced exactly, even if the particles are disordered:
N —~

Vo ~ jZl Vi (¢ — 6i) VS;(bi), (35)
where S;(x) = S(x — by, q) denotes the SPH kernel function, with smoothing
length q. S is distinct from the FVPM kernel function W. %Sj (b;) is the corrected
gradient of the SPH kernel centred at b; and evaluated at b;:

—1

N
VS;(bi) = | D V;VS;(bi) @ (b — ;)| VSj(by). (36)

j=1
In two dimensions, Eq. (36) requires inversion of a 2 x 2 matrix for each particle.
This matrix may become singular in the unlikely event that a particle and all its
neighbours are collinear. In practical computations we have not found the invert-

ibility of this matrix to be a problem.

The widely used cubic spline kernel of Monaghan and Lattanzio [34] is chosen for

S
3

o 3{xEb 3 X b e X 2h g

2| ¢ 41 ¢ q

_ o)1 —b;[\* — b,
Six) =5 —<2— x ) , if1.0 < | =2 < 2.0 :G7)
4 q q
0, otherwise
14
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where o = 2/3,10/(7m), 1/m for space dimensions D = 1,2, 3 respectively. The
SPH kernel support radius 2¢ is chosen to be twice the FVPM particle radius 2h.
This is necessary to ensure an adequate number of neighbours for the SPH oper-
ation. FVPM particles interact with any overlapping particles, but SPH particles
interact when they lie within each other’s support. Therefore, the choice ¢ = 2h
guarantees exactly the same number of neighbours and the same interaction ra-
dius for the SPH gradient evaluation as for the main FVPM operations. Using the
computed gradients at the barycentre of particle 7, the required field variable ¢ is re-
constructed to the point x;; = 1/2 (x; + x;), which, when h; = h;, is the midpoint

of the overlap region between the particles 7 and j:

¢ (xi5);, = ¢ + @iV, - (x5 — by), (38)

where ¢ is a slope limiter function which ensures that the solution is monotone
near discontinuities. In the present work this is used only for the shock tube test
case (section 6.1). The chosen slope limiter function is due to Barth and Jespersen

[33], given by

min (1, wqji_ (X;f"bi)> L if Ve - (x; —b;) > 0

17 1fV¢l . (Xij — bl) =0

where ¢ is the minimum value of ¢ evaluated at particle ¢ and all its neighbours,
and ¢"** is similarly defined. The limiter for particle ¢ is then chosen as ¢; =
min [p;(x;;)] for all particles j in the neighbourhood of i. Finally, the inviscid flux
between particles 7 and j is computed using the limited, reconstructed quantities,

ie. F(Ui(xi;), Uj(xi)).

15
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The formulation of the FVPM allows the use of numerical flux functions developed
for conventional CFD methods. In this work, discretisation of the inviscid fluxes is
performed using the AUSM™ scheme of Liou [35], which can easily be extended
to equations of state other than Eq. (5). The particle motion terms are included
using an ALE-type extension of the scheme, as presented by Luo ef al. [36] and

Smith [37]. In summary, the interface flux is computed from

p 0
pE+p PiX - 0y
i/j

where the interface sound speed is the average a;; = 5 (a; + a;), n;; is the unit vec-
tor 3;;/|5;;|, the interface Mach number is defined as M;; = M™ (M;)+M~ (M),
and the interface pressure is written as p;; = P* (M;) p;+P~ (M;) p;. The relative

particle Mach number is M; = ((u; — %) - n;;)/a;;, and

(.)i/j = . (41)

(e),, otherwise

The Mach number and pressure splittings are defined by

(M +|M|), if [M] > 1
M= (M) = , (42)

+1L (M +1)” + k(M2 — 1), otherwise

16
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with k = 1/8, and

(1 £sign(M)), if |M] > 1
P (M) = . 43)
(M £1)*(2F M) + aM (M?* —1)*, otherwise

with o = 3/16.
4.2 Viscous fluxes

Extension of the FVPM to viscous flows requires that the viscous fluxes be evalu-
ated at each particle-particle interface. In particular, velocity gradients are required
to compute the viscous stresses. These gradients are computed at the interface point
x,; between each pair of particles using the corrected SPH gradient approximation
Eq. (35), centred at x;;. The numerical approximation to the viscous flux G is then

computed using these gradients.

The viscous flux at the boundary G° is obtained using the corrected SPH gradient
approximation for the velocity gradients:
N

vu' x>, (uj - ub) ® VS;(xh), (44)

j=1

with the corrected kernel gradient

-1

VS;(x") = ivjvsj(xb) ® (bj —xb) VS;(x"), (45)

j=1

where x is the midpoint of the boundary segment covered by the particle. u’ is
set to the appropriate boundary value. For example, in the implementation of a

stationary no-slip wall, the velocity gradient would be computed using Eq. (44)
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with u® = 0.

4.3 Temporal discretisation

When the higher-order inviscid flux discretisation is employed, an explicit two-
stage predictor-corrector scheme is used for the discretisation of the transient terms
in Eq. (22). The algorithm follows that described by Hirsch [32] for a scheme based

on linear reconstruction:

N
(VU = (VU = 205 6, [F (UL U) — G, - 4 [ - 6. a6
j=1

(VU™ = (VU)" = ALY 8 [F (U (x3)), Uj (x)) = G|

j=1

-8 [Fh(Ur(x") - 6t (47)

The timestep At is restricted by the CFL stability condition [32]

Amax

where C is the Courant number, and is set to 0.3 throughout this work. A\, =
max(|u| 4 a) is the maximum sound wave speed. The viscous diffusion condition

must also be satisfied for viscous flows [6]

2
At < 0.25Pmin tmin (49)
7

Eq. (49) becomes the dominant timestep restriction at low Reynolds numbers.
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5 Particle motion correction

In some of the numerical examples presented in section 6, fully Lagrangian particle
motion has been problematic due to the development of poor particle distributions,
which in some cases can lead to simulation failure. This is characteristic of Lagan-
gian methods, since the particle distribution can be fully prescribed only for the
initial condition, and is subsequently determined by the flow. Chaniotis et al. [38]
addressed this problem in SPH with a “remeshing” procedure in which the particles
are reinitialised at regular intervals by interpolation onto a regular grid. For moving
particle computations in FVPM, Schick [18] introduced non-Lagrangian particle
motion in an effort to maintain adequate particle spacing for a one-dimensional
problem with a discontinuous velocity field. In this work we propose and demon-
strate a formulation for multidimensional non-Lagrangian motion, henceforth re-

ferred to as particle motion correction.

In particle motion correction, the particle motion velocity X; is equal to the fluid

velocity u; plus a correction velocity u:

X; = u; + u,. (50)

The correction velocity is given by

7
" — OR. 1
u; (JAtRz (51
where
S Z (52)
r; = [{Z - Tk

is the average particle spacing in the neighbourhood of 7, where the index k denotes
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the neighbours of i. At is the timestep, and C' is a constant which is set to 1/1000
for the computations presented in this article. H; denotes the number of neighbours
of particle 7. The term 7; / At represents the velocity required for a particle to move
by the average particle spacing 7; in a single timestep At. R; is a dimensionless

function of the inverse of the sum of particle spacings:

1

r 2

where 7;;, and n;; are the distance and unit vector, respectively, from particle ¢ to

RZ':Z
k

particle k.

In FVPM, no particles are located on the boundary or outside the domain. This
leads to a particle deficiency in Eq. (53) for particles near boundaries, which we
remedy by including an additional point in the summation. This point is selected as

the midpoint of the boundary segment that lies inside the particle support.

The crucial feature of this particle motion correction is that it acts as a weak repul-
sion between particles which suppresses particle clumps and voids. This is not a
spurious non-physical force in the field, but rather a simple means of dynamically
controlling particle distribution. In contrast with fully Lagrangian FVPM or SPH,
the motion of the computational particles is slightly decoupled from the physical
fluid motion. The corrected particle motion is accounted for through the x term in
Eq. (19), which makes the scheme an Arbitrary Lagrange-Euler (ALE) method. No
interpolation procedure is required to deal with the modified particle positions. The
particle motion remains close to Lagrangian because of the small value of C'. In the
examples shown in this paper, we have found that the particle motion correction

velocity, U, is typically less than 5% of the maximum velocity in the field.
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(a) (b)
Fig. 1. Instantaneous pressure distribution in shock tube at dimensionless time ¢* = 0.3.

(a): first-order FVPM, (b): higher-order FVPM

6 Results

The extensions to the FVPM presented in sections 4 and 5 are validated in this
section. Firstly, the higher-order spatial and temporal discretisations presented in
sections 4.1 and 4.3 are validated for inviscid flow by means of a 1-D shock tube
test case. The FVPM for viscous flow is validated for Poiseuille flow using both the
first and higher-order versions of the scheme. Finally, validations for Taylor-Green
flow and flow in a lid-driven cavity are presented as examples of more complex

viscous flows.

6.1 Shock tube

The 1-D shock tube is selected as a test case for the inviscid higher-order extension
of the FVPM presented in this paper. This well-known test case is commonly used

to assess the performance of compressible flow algorithms. The problem consists
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of a one-dimensional tube with initial pressure p = p; for x < 0 and p = p, for
x > 0, where p,/p; = 0.25 in this case. The initial velocity is zero everywhere. 400
particles are initially uniformly distributed along the tube, which is of total length
2L, and the smoothing length of all particles is set to h = 0.8 Az, where Ax is the
initial particle spacing. The volume of each particle is initialised using numerical
integration of Eq. (10). The particles are fully Lagrangian — that is, x = u and no
particle motion correction is applied. Results are presented for both the first-order
FVPM and the higher-order extension of the method, as described in sections 4.1
and 4.3. For the higher-order version of the scheme, the slope limiter function of

Eq. (39) is used to prevent oscillations occurring near discontinuities in the solution.

Figure 1 shows the pressure distribution for the first and higher-order methods at
time t* = tag/L = 0.3, where qy is the initial speed of sound in the tube. The
first-order solution requires approximately 12 particles to resolve the shock. The
higher-order extension of the method, on the other hand, shows a greatly enhanced
shock-capturing ability, capturing the shock within approximately 5 particles, and

also predicts the expansion wave more accurately than the first-order scheme.

This test case has also been solved using Eulerian particles, i.e. X = 0. This yielded
a slight improvement in the results near the contact surface, due to the more regular
particle distribution. In the Lagrangian case, the density discontinuity results in a

highly non-uniform particle distribution in this region.

6.2 Poiseuille flow

The viscous implementation of the FVPM is validated for plane Poiseuille flow.

This test case consists of incompressible viscous flow between two infinite station-
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Fig. 2. Non-dimensionalised transient Poiseuille flow velocity profiles at various times
t* = tup/(2d) for Re = 0.0125 with Lagrangian particle motion. (a) First-order and

(b) higher-order version of the scheme.
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Fig. 3. Poiseuille flow with higher-order FVPM: instantaneous variation of L., error with

Az for Eulerian, Lagrangian or corrected particle motion.

ary parallel plates. The flow accelerates from rest under an axial applied body force.
The channel is modelled in the x — y plane, with the z-axis representing the flow
direction and with the plates located at y = +d. The axial velocity u(y,t) in the

channel is obtained from the series solution [6,7]
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where ¢ is a uniform and constant force per unit mass. As t — oo, Eq. (54) ap-

proaches the steady-state solution

u(y) = o (1—%) = I (@2 ) | (55)

where u is the steady state centreline velocity.

The plane Poiseuille flow has been simulated for Reynolds numbers (based on uy
and 2d) of Re = 0.0125 and Re = 200 using both the first-order and higher-order
versions of FVPM. Incompressible flow is modelled using the weakly compress-
ible equation of state Eq. (7). The peak Mach number in all cases is specified as
M = 0.1 by setting the numerical speed of sound a, appropriately. The choice of
Re = 0.0125 coincides with the value used for Poiseuille flow computations pre-
sented in the SPH literature [6,7]. The particles are initially arranged in a regular
Cartesian pattern. No fictitious wall particles are required to compute the Poiseuille
flow problem using FVPM. The initial particle volumes are computed using numer-
ical integration of Eq. (10) and the smoothing length of all particles is » = 0.7Ax,

where Az is the initial particle spacing.

The transient evolution of the w velocity profile across the channel for both the
FVPM and the series solution is shown in Figure 2 for Re = 0.0125. In this case,
25 particles are distributed across the channel width, and the particle motion is
Lagrangian. At t* = tug/(2d) = 0.0125, the solution is close to steady state. At
such a low Reynolds number, the discretisation of the inviscid fluxes has little or no

effect on the velocity profiles, and good agreement between the FVPM and series
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Fig. 4. Non-dimensionalised transient Poiseuille flow velocity profiles at various times
t* = tup/(2d) for Re = 200 with corrected particle motion. (a) First-order and (b) high-

er-order version of the scheme.

solution is achieved using both the first and higher-order versions of the scheme.

To assess the error properties of the scheme for Poiseuille flow at Re = 0.0125,
the flow was computed with 10, 25, 50 and 100 particles across the channel width,
with the higher order extensions described in section 4.1. A dimensionless L, error

norm was computed as follows:

ufh (1) — e (1)

Lo (t*) = max | — : (56)
Uo

where u' (t) and u™™ (t) are the analytic and FVPM velocities respectively. Fig-
ure 3(a) shows the instantaneous L., etror as a function of the particle spacing Az
for time t* = 1 x 1072. The order of convergence is slightly less than 2 for both the

Eulerian and Lagrangian cases.

Poiseuille flow has also been simulated at the higher Reynolds number of Re = 200

using FVPM. At this Reynolds number, the dimensionless time ¢* required to reach
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(a) Lagrangian particle motion (b) Corrected particle motion

Fig. 5. Particle positions for Poiseuille flow at Re = 200 and t* = 46.

a steady state i1s much greater than for the Re = 0.0125 case, and consequently the
particle displacement from the initial distribution is much greater at the onset of
steady state. For Lagrangian particle motion at t* = 46, the particle distribution is
shown in Figure 5(a). In principle, such a particle distribution should not develop
for Poiseuille flow, since the transverse velocity, and hence transverse particle mo-
tion, should be identically zero. However, numerical errors result in transverse drift
of particles. A slight deviation from streamwise alignment of the particles is suf-
ficient to result in a poor particle distribution, and ultimately simulation failure.
This phenomenon has also been observed in SPH computations performed by the
present authors for Poiseuille flow. The corrected particle motion described in Sec-
tion 5 improves this situation, and the resulting particle distribution at t* = 46 is

shown in Figure 5(b).

In addition to the particle distribution problem experienced for Poiseuille flow at
Re = 200, we have experienced problems with inaccurate evolution of the parti-
cle volumes for moving particles. This problem is characterised by variations in
the particle volume even in regions where the particle spacing is uniform. This

behaviour influences the density and pressure fields, and can result in simulation
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failure. As a remedy for this problem, we periodically re-compute the volume of
each particle using Eq. (10) rather than the volume evolution equation Eq. (25). For

the results presented here, the volumes are re-computed every 20 timesteps.

The transient evolution of the streamwise velocity profile is shown in Figure 4 for
corrected particle motion and the higher Reynolds number of Re = 200, with 25
particles distributed across the channel width. For this computation, the solution is
close to steady-state at t* = 68.2. In this case, the inviscid flux discretisation has
a significant impact on the accuracy of the results. The first-order version of the
method is extremely diffusive and fails to produce accurate velocity profiles. On
the other hand, the higher-order version of the method produces velocity profiles

that are in good agreement with the series solution at all times.

The variation of L, error with initial particle spacing is shown in Figure 3(b) for
time ¢* = 10 . In this case, slightly higher convergence rates are observed than in

the Re = 0.0125 case, and the effect of the particle motion on accuracy is minimal.

6.3 Taylor-Green flow

Taylor-Green flow is used to assess the error behaviour of the method for a more
complex incompressible, viscous, two-dimensional flow. This flow field consists

of a periodic array of decaying vortices, and is defined by the following analytical

solution:
2 2 2,

e = o (5) 0 ()

L L

2 2 2,
v(@y,8) =uosin (%) cos (%y) e (58)
1 4 4

==} fon (1) e (52)] ®
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Fig. 6. Decay of maximum velocity for Taylor Green flow at Re = 100. FVPM solution

with 3600 particles moving with corrected particle motion vs. analytic solution.

where uy is the peak initial velocity and L is the length of the domain side.

This flow was modelled at Reynolds number 100 (based on uy and L) for particle
resolutions of 20 x 20, 40 x 40, 60 x 60, and 100 x 100 using the higher-order
FVPM scheme only. The smoothing lengths were initialised to h = 0.8 Az, where
Az denotes the initial uniform Cartesian particle spacing, and remained constant
for the duration of the computation. A single vortex cell was modelled in a domain
with periodic boundaries at z = +1/2 and y = £L/2. The velocity and pres-
sure were initialised according to Egs. (57-59) evaluated at ¢ = (. Incompressible
flow was modelled using the weakly compressible equation of state Eq. (7). The
reference sound speed ay was set to 10 ug, and for the purposes of this test case,
the timestep At was set to Azy/ag. The computation was allowed to proceed un-
til the maximum velocity in the domain decayed below w/10. Simulations were
carried out with Eulerian (stationary) particles, fully Lagrangian particle motion

and corrected particle motion. In all these cases the particles were initialised in a
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Fig. 7. Particle positions and velocity vectors near one of the stagnation points for Tay-
lor-Green flow at t* = (0.2. 7(a): Lagrangian particle motion, uniform Cartesian initial dis-
tribution. 7(b): Lagrangian particle motion, randomised initial distribution. 7(c): corrected
particle motion, Cartesian initial distribution.
uniform Cartesian distribution. In a fourth test, particles were initialised in a uni-
form Cartesian arrangement and then randomly shifted by a displacement between
—h/2 and +h/2 (with uniform probability) in both the = and y directions, before
initiating the simulation with fully Lagrangian motion. This additional case was
included to investigate the effect of the initial particle distribution, which is known

to be significant for SPH methods [39].

For Re = 100, with 3600 particles in corrected particle motion, the maximum ve-
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Fig. 8. Transient behaviour of L., error for Taylor-Green flow at Re = 100 with 3600

FVPM particles, for various treatments of particle motion and initial particle distribution.

locity history is shown in Figure 6, showing good agreement between the FVPM
and analytic solutions. Figure 7 shows the particle positions and velocity vectors
at dimensionless time t* = tug/L = 0.2 with Lagrangian and corrected parti-
cle motion. For Lagrangian particle motion from an initial Cartesian distribution,
the particle distribution is highly non-uniform and anisotropic. The situation is im-
proved somewhat for a randomised initial distribution. With corrected particle mo-
tion (Figure 7(c)), a uniform particle spacing is maintained for the duration of the

computation.

The variation of the non-dimensional L., error norm

E () — ma [0 = (1)

(60)
Uo

with time is shown in Figure 8 for the various particle motion formulations and

30



O J oy Ul WN

AU UUOTOTOTOTE B DSBS DEEWWOWWWWWWWWRNNNNRNONNNNONRONONRE PR R R R
OB WNRPOWOVWOJINNEWNRFROWOOJAUEWNROWOW®O-JONUTB®WNRL,OW®OJIAUEWNROW®O-JOU & WNRF O W

initialisations. For Lagrangian particle motion with the uniform Cartesian initial
condition, the computation fails in the early stages. For Lagrangian particle motion
with the randomised initial condition, the simulation does not fail, though the L,
error norm is characterised by large transient fluctuations. This situation is greatly
improved by the use of corrected particle motion, for which the magnitude of the

error is comparable with the Eulerian case.

The dependence of the L., error norm on particle spacing Ax at time t* = 1.5 is
shown in Figure 9 for both Eulerian particles and corrected particle motion. The
convergence is close to second order, and the effect of particle motion on the con-

vergence rate is negligible.

The non-dimensional L error norm

L) J 15[ um o)

N Yo

is shown in Table 6.3 at selected times for comparison with SPH results from the
literature [39]. For Eulerian particles and corrected particle motion, the FVPM L,
values are consistently lower than the results of both SPH variants. For Lagrangian
particle motion, the L, error is consistently lower than the error in incompressible

SPH, but is larger than the error in weakly compressible SPH at later times.

6.4 Lid-driven cavity

Another well-known test case for viscous incompressible flow is the lid-driven cav-
ity. This test consists of a square domain with no-slip walls of length L on all sides.
The wall at y* = y/L = 0.5 moves with a constant tangential velocity u;, caus-

ing the fluid to circulate within the cavity, eventually approaching a steady state. A
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Table 1

Ly (x10?) error norms for Taylor-Green flow at Re = 100 with 3600 particles for FVPM
with Eulerian particles, corrected particle motion and Lagrangian particle motion with ran-
dom initial distribution. Also shown are incompressible SPH (ISPH) and weakly compress-

ible SPH (WCSPH) results from literature [39].

Ly (x10?)
t*
Eulerian Corr. Motion Lagrangian ISPH [39] WCSPH [39]
0.9 0.379 0.271 1.097 4.707 1.747
1.8 0.353 0.262 1.009 2.640 0.807
2.7 0.250 0.185 0.684 1.432 0.309

10°E
107k 1
: 27
10%F
J10°F
10k
10°k
E ——©o—— Eulerian
- ——8a—— Corrected Particle Motion
10-6 . el . IR R
10° 107 10

AX

Fig. 9. Variation of instantaneous L, error with particle spacing at t* = 1.5 for Taylor—
Green flow at Re = 100.

FVM reference solution generated using the OpenFOAM 1.4.1 CFD package [40]
with the PISO algorithm on a 300 x 300 mesh, and the high-resolution numerical

results of Ghia [41], are used for the purposes of validation. Weakly compressible
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(a) Fully Lagrangian motion (b) Corrected particle motion
Fig. 10. Particle positions and velocity vectors in the upper right corner of the lid-driven

cavity at t* = 3.3 and Re = 1000 with Lagrangian and corrected particle motion Eq. (50).

SPH results are also used for comparison. This SPH simulation was carried out with
50 x 50 particles, first order consistency correction [11], and the viscosity model of

Cleary [42].

The Reynolds number (based on w; and L) is 1000. The particles are initially ar-
ranged in a regular Cartesian pattern, and the smoothing length is set to h =
0.7Axy, where Az is the initial particle spacing. All particles have zero initial
velocity and uniform initial density and pressure. The initial particle volume is
computed using numerical integration of Eq. (10). Incompressible flow is mod-
elled using the weakly compressible equation of state, Eq. (7). The reference speed
of sound qq is chosen so that the maximum Mach number is less than 0.1 at all
times. Results are presented for both Eulerian particles and corrected particle mo-
tion. Fully Lagrangian simulations failed due to the development of poor particle
distributions, regardless of the initial particle distribution. For moving particles, the

volumes are periodically re-computed as described in Section 6.2.

The steady-state solution is characterised by a downward flow in the upper right
corner of the cavity, and a recirculating region in the centre of the domain. The

steady-state x-velocities at the domain centreline x = 0 are used for the purposes

33



O J oy Ul WN

AU UUOTOTOTOTE B DSBS DEEWWOWWWWWWWWRNNNNRNONNNNONRONONRE PR R R R
OB WNRPOWOVWOJINNEWNRFROWOOJAUEWNROWOW®O-JONUTB®WNRL,OW®OJIAUEWNROW®O-JOU & WNRF O W

6,0’5"“;-—'-‘-‘-'3'—""' =
04 : _;’.,;,,
| .."il!'f
[ v
02 i
7%
| {,&
K3
4 B R
S 0 £
B e
02 4% -
A A FVPM: 50x50
(o —— FVPM: 75x75
N T LR FVPM: 100x100
Foosoxyy, e SPH: 50x50
04 o % o  Ghiaetal
RSN v FVM Reference: 300x300 Mesh
o3,
L YNy
-0.4 -0.2 0 0.2 04 0.6 0.8 1
un,
Fig. 11. « component of velocity along the lid-driven cavity centreline = 0 for

Re = 1000: FVPM with 50 x 50, 75 x 75 and 100 x 100 particles, SPH with 50 x 50
particles, finite volume reference solution with 300 x 300 mesh, and high-resolution result

of Ghia [41]. FVPM particles move with corrected particle motion.

of comparing the FVPM results with the reference solution. Figure 11 shows a
comparison between the velocity profile of Ghia [41], the FVM reference solu-
tion, and the FVPM velocity profiles for particle numbers of 50 x 50, 75 x 75 and
100 x 100. The centreline velocity profile is accurately predicted, and the FVPM
velocity profiles converge towards the reference solutions as the number of parti-
cles is increased. FVPM with 50 x 50 particles is significantly more accurate than

the comparable SPH simulation.

As a further comparison, the non-dimensional total kinetic energy as a function of
time is shown in Figure 12. FVPM results are provided for 50 x 50 particles with
both Eulerian and corrected particle motion. All of the meshfree solutions underes-
timate the total kinetic energy relative to the finite volume solution. However, the

FVPM results are in closer agreement with the finite volume reference solution than
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Fig. 12. Total kinetic energy for lid-driven cavity flow at Re = 1000: finite volume refer-
ence solution with 300 x 300 mesh, FVPM with 50 x 50 particles (Eulerian particles and

corrected particle motion), and SPH with 50 x 50 particles.

the SPH results at similar resolution. There is a small difference in kinetic energy

values between the Eulerian and moving particle FVPM cases.

6.5 Computational cost

For FVPM with moving particles, the most computationally expensive part of the
method is the generation of the geometric coefficients. In the present algorithm,
computation of the coefficients takes 86% of the total computational time. The
barycentre computation, the finite volume element of the algorithm, and the SPH-
based linear reconstruction require 5%, 4% and 0.9% of the total computational
time respectively. Neighbour searching comprises 1.5% of the total computational
effort. Computation of the particle volumes via Eq. (10) requires a negligible frac-

tion of the total time. These proportions remain approximately constant with vary-
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ing particle numbers.

7 Conclusions

A FVPM formulation for viscous flow has been presented and validated for two-
dimensional flows at Reynolds numbers up to 1000. The application to viscous
flows has been facilitated by several developments of the original FVPM. A higher-
order formulation was developed, with an AUSM discretisation for inviscid fluxes.
This was validated for inviscid shock tube flow, in which it showed greater accuracy
than the first-order version. The higher-order extension was found to be a prereq-
uisite for accurate viscous flow solutions at the higher Reynolds numbers (i.e. in
inertia-dominated flows). Secondly, viscous stress was computed in the FVPM us-
ing a consistency-corrected SPH approximation for the velocity gradients. Finally,
a particle motion correction was implemented to prevent the development of poor
particle distributions in Lagrangian mode. Although the departure from purely La-
grangian velocity is small, FVPM in this mode was shown to maintain relatively
uniform particle distribution and to be almost as accurate as the fully Eulerian ver-
sion. The developed FVPM method has exhibited near second-order convergence,

or better, and better accuracy than recent SPH results.

FVPM has a number of particularly attractive features as a mesh-free method, due
largely to its roots in the finite volume method. It requires no fictitious boundary
particles, ensures exact local conservation regardless of particle distribution, and
can readily incorporate classical finite volume techniques such as upwind inviscid
flux discretisations. The present work extends the scope of FVPM to laminar vis-
cous flows at low and moderate Reynolds numbers. However, the method carries a

significant additional cost due to the computation of the geometric coefficients 3;;,
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which requires further investigation. In other further work, the applicability of the

method will be investigated in different classes of flows for which mesh-free meth-

ods are particularly suitable, such as free surface, multiphase and fluid-structure

interaction problems.
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