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1 Introduction

While discontinuous Galerkin (DG) methods were first pragehis the early 1970’s
in [35] it was not until the more recent development, inéthtn the work of Cock-
burn and Shu [10,11,9,7,12], that these methods maturecipbwerful computa-
tional tool for the solution of systems of conservation lansd the equations of gas
dynamics [13,4]. The extension to problems of viscous gasuhics was initiated
in [3,5] and this again has lead to several related formuhat|28,34,16] for the
compressible Navier-Stokes equations. Many examples antidef details along
these lines can be found in [8,29] and [25].

In spite of these significant advances over the last decasimrdinuous Galerkin
methods still suffer from being perceived as being too esperwhen compared to
more traditional methods such as finite volume methods.i$lpiarticularly true for
viscous problems, where the common solution approach exdbas amixedfinite
element formulation, which was introduced in [3] and extshdo higher order
problems in [38,39]. In recent developments for the DG @iszation of second
order terms [14,15,30], the introduction of auxiliary \&doies is circumvented by
the use oftwo partial integrations, or bynultiple partial integrations for higher
order operators [6].

Apart from this, however, a major computational cost is fbimthe traditional use
of full order integration in the basic implementation, leafto excessive compu-
tational cost for nonlinear problems. Deriving inspiratioom the classic spectral
methods [21] it is natural to consider the use of a nodal b#sigling to a for-
mulation which in spirit shares much with a spectral coltaaformulation in
which the boundary conditions are imposed weakly. Such ousthoften known as
spectral penalty methods, have been developed for the essipte Navier-Stokes
equations in [17-19] and extended to non-tensorial elesriarj20,22].

The main advantages of such a formulation are found in thetegduction to the
standard discontinuous Galerkin formulation for lineaskgems, hence ensuring
the accuracy for smooth problems, and the quadrature fig®agh for nonlinear
problems, leading to a dramatic reduction in the overall gotational cost. Fur-
thermore, the use of a nodal basis with the correct structutee points along the
edges and faces leads to a natural separation of the basisannhdary and inter-
nal degrees of freedom. This becomes particularly benkfmiaschemes using a
high-order basis. As is usually the case, all good thingsesowith a price and in
this case the loss of exact integration opens the posgildlitinstabilities driven
by aliasing. This is, however, a well known phenomenon ansel understood
within the community of spectral methods [21]. We shall retto this concern
briefly later.

One of the limitations of past nodal based formulations areéses has been the



reliance on either cubic or tetrahedral element shapedeWtese suffice in many
cases, for problems with significant geometric flexibilityeds tempted to also use
more general types of elements such as prisms and pyramids.

In this work we explore how one construct such nodal gendemhents, using a
recursive construction, and optimize these for maximunuiemy by minimizing
the Lebesgue constant of the associated multivariate bggrpolynomial. This is
discussed in Section 2 and sets the stage for Section 3 wheedisauss in detail
the use of these general elements in a discontinuous Galsckieme and return
to the issues of aliasing and instabilities caused by thesstall also discuss how
nodal elements can be used with advantage in an alreadyngxsstheme based
on a modal expansion and finally we use the recently develegptlicit space-
time discretization to arrive at the fully discrete exglischeme. In Section 4 we
demonstrate how this general scheme, employing polymorgiaiments and local
time-stepping, can be used with benefit for both linear amdinear wave problems
and, finally, the full three-dimensional compressible MaxBtokes equations. Most
of the tests illustrate the potential for a 4 fold reductioncomputational time
without impacting the accuracy by using the nodal basedagupr for large scale
simulations. Section 5 concludes with a few general remarksoutlook toward
future work.

2 The nodal elements

We will first focus on defining different sets of high order isafinctions for a
given grid cellQ c R¢. We introduce thenonomiabasis{r; },—, . for the space
of polynomials with degree less than or equal thawhere every basis function
could be written as

mi(T) = a3t -...-xgzl with0 < o} + ... + o, < p. (1)

The dimensionV of this space depends on the orgdemd on the spatial dimension
d of the grid cell) and is given by

p+d)!

N = N(p,d) = ( p 2)

.....

_____ ~ using Gram-Schmidt orthogonal-
ization is straight forward. This basis set is characterizgthe property

[ eil@ei(@) di = b, 3)
Q

which holds forarbitrary grid cell shapes. With thisnodal basis we are now
able to define a set afodal basis functions. Given a set of interpolation points
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LMI n (4)

Combining these conditions yields the transformations
Vi=mandV'y =9, )
where we introduce the generalized Vandermonde matmth entries
Vi;=@;i(&), i=1,...,My;j=1,..N. (6)

The inverse of the Vandermonde matrix is not uniquely defiagd/; # N. If
one is interested in avoiding this problem, one has to extieadnodal basis from
dimensionNN to dimensionM;. We refer to Lorcher and Munz [32] for a strategy
to find a basis extensions for non-tensor product interfwolain a cartesian grid.
However, the extension of this approach to the general sasetistraightforward,
as the non-singularity of the Vandermonde matrix is not gogeed. To overcome
this issue a singular value decomposition based strategged to define the fol-
lowing (pseudo) inverse transformations

i=V'aandy =V""¢. 7

Using the pseudo-inverse Vandermonde matrix, conditipis@nly satisfied in the
least squaresense. Thus, if we define the polynomial approximation ofretion

fas
M;

F(@) ~ fr(@) =" f(E;(2) = " f, 8)

j=1
the nodal degree of freedofy = f(é;-) is not the value of the interpolatiof} (z)
at the noder = EJ asy; (é;) # 0;;. Furthermore, the modal approximation

N A A ~
f(&) =~ fu(@) =D f;0;(@)with f =V ' f 9)
=1

is in the general case not equal to the nodal approximation

f1(Z) # fu(Z). (10)

A good measure of the quality of such a polynomial approxiomais given by the
Lebesgue constant, defined as

My

A= max ) [1(7)]. (11)
j=1



With this definition one easily realizes that

1f = fillo < A+ M = oo, (12)

where||.||« is the usual maximum norm angi is the best approximating poly-

.....

-----

.....

following characteristics

¢ the interpolation based on these points is of ogdéar functions defined in the
volume and for functions defined on the grid cell surfacess Gharantees that
the basis separates into boundary and interior components.

¢ the distribution of the points reflects the possible symresif the grid cell,

¢ the size of the nodal sét/; > N depends on the ordet the dimension/ and
theshapeof the grid cell.

2.1 One-dimensional node distributions

For an intervalp + 1 points have to be chosen. There may be a number of dif-
ferent distributions of the + 1 points with the restriction that the endpoints are
included. For instance, one can choose equidistant (Exgdhebychef-Gauss-
Lobatto points or Legendre-Gauss-Lobatto (LGL) points.diMeose for every side

in 2D and edge in 3D the LGL node distribution, as these aravknfor a good
Lebesgue constamt. An extended discussion of the one-dimensional case can be
found in [23]. Based on the LGL node distribution we define fibiowing warp
function forz € [0; 1]

wp(r) = (&7 = &)y (2), (13)

..........

.....

the equidistant points. According to [25],,(x) is a(p+ 1)th order approximation
to the function which maps the 'bad’ points (E) to the 'goodims (LGL).

2.2 Two-dimensional node distributions

In two space dimensions we split the set of interpolatiomizdi;(p) into two
parts: The set of points that live in the interior of the celtldhe set of points that
live on the surface, name@; (p). The set); (p) is defined such that it contains



p + 1 LGL points for each side of the grid cell surface. This guéeas that the
nodal approximation on the whole surface is of orgder 1 and a separated basis
by polynomial uniqueness. We note that using only theseasarpoints for the
approximation within the volume, the corresponding Vana@nde matrix is non-
singular forp up to a valuep*, which depends on the shape of the grid cell. The
value forp* is 2 and 3 for triangles and quadrilaterals, respectively. Hence, fo
an interpolation withp > p*, additional points in the interior of the grid cell are
needed. The definition of these interpolation points candreedn the following
recursive way

0 for p < 0,
Qf(p) = {fbary} for p= 0, (14)
M3 (p)UQ(p —p* +mp)  forp> 0.

We notice that the interior nodes consist of nested andnkbd’ surface points.
The mappingM,. determines how the point sets are nested and shrunk for every
recursion step, e.g., the mapping for the first recursios= 0 is the identity, as the

first points of the se®? (p) are lying on the real surface of the grid cell and thus will
not be shrunk. A simple approach for the mappings for » > 0 would be one
which yields an equidistant nesting. However, it is well Wmothat the Lebesgue
constant of the corresponding nodal basis is improved, winemode distribution

is more dense close to the boundary of the grid cell. Thusnpyove the nodal set

we propose to use a mapping which yields LGL-type nestinthiswork the warp
function (13) is used to define the following barycentric iag

M. (§) = (€ — Toary) () + Toary, (15)
a(r)=1—2w, (r/7F)
where¢ € Q5 (p), Tpary denotes the barycenter of the grid cell anthe recursion
level. 7 is two times the maximum number of recursions- 2 r,,... We subtract
one from7, if the innermost interpolation point set consists only leé grid cell
barycenter = 2r,,,, — 1. Another approach is to start with the pure equidistant
point distribution and optimize the nodal set with elediatis considerations, as
proposed by Hesthaven [23]. To illustrate these differérategies, we plot the
corresponding node distributions of the= 9 (mop = 0) quadrilateral in figure 1.
The set with a purely equidistant distribution yields a Lsfee constank = 97,
whereas the LGL points with equidistant nesting yields: 44. Using LGL points
and LGL-type nesting yields a Lebesgue constaritlgfiwhich is slightly greater
than A = 17 for the electro-static optimized points. Although the #lestatic
optimized interpolation points yield the best Lebesguestamt, we use the LGL
points with LGL-type nesting in the computations shown fglas these point
sets are easily and straight forward to implement. An imgudrparameter in the
recursion formula (14) is the integes, which can be used to tune the relation
between the interpolation quality and number of points./ker= 0, as considered
up to now, algorithm (14) yields the smallest possible nunolbpoints and thus, the



Fig. 1. Quadrilateral witlp = 9 (= = 0). From left to right: pure equidistant distribution,
LGL points with equidistant nesting, LGL points with LGLgg nesting and optimized
points.

most efficient scheme according to the computational efftotvever, we observed
that in some cases, especially for quadrilaterals, the Liadew more points pays
off in terms of a dramatically improved accuracy. The par@me,p, with 0 <

mp < p* — 1 can be used to control the number of recursions in (14). Eigur
shows the ratio of the overall interpolation poits (p) and the numbenN (p) of

the basis functions as a function of the polynomial degréw® different values of
mop. The plotindicates that for triangles ang, = 0 the number is always optimal.
For quadrilaterals and,, = 0 the number of interpolation points converges to the
optimum with increasing. In all the calculations presented in the following we

3.0

Fig. 2. Ratio of the numbeh{;(p) of interpolation points and the dimensidv(p) of the
polynomial space as a function of the polynomial degrder different parameters,p,
left for triangles and right for quadrilaterals. The limftew p — oo are indicated with a
dashed line.

usemsp = 0 for triangles andryp € {0,1} for quadrilaterals. For this type of
interpolation points the corresponding Lebesgue constaate listed in table 1.

2.3 Three-dimensional node distributions

The definition of the three-dimensional set of interpolatpmints is done analo-
gously to that of the two-dimensional case. Again, the(sép) is split into two



p | My A My A M7 A
tri (map = 0) | quad(map = 0) | quad(mep = 1)

1| 3 1.0 4 1.5 4 1.5
2| 6 1.7 8 3.0 8 3.0
3|10 21 | 12 4.0 13 3.2
4 | 15 38 | 17 4.2 20 5.3
5|21 32 | 24 5.8 28 4.6
6 | 28 46 | 32 7.5 37 4.5
7| 36 6.8 | 40 15.3 48 5.1
8 | 45 7.5 49 14.5 60 7.5
9 | 55 86 | 60 21.0 73 8.0
10| 66 112 | 72 28.6 88 10.8
11| 78 18.8 | 84 61.8 104 14.8
121 91 202 | 97 62.7 121 15.4

Table 1
Lebesgue constants and number of interpolation pointe/; for the two-dimensional in-
terpolation points.

parts, where)? (p, mop) denotes the set of points on the surface. The recursion
algorithm reads as follows

0 for p <0,
Q](p) = {fbary} for p= 0, (16)
M. (QF (p, map)) U Qu(p — p* + 73p) forp > 0.

In this work the3D standardshapes, namely tetrahedra, hexahedra, pentahedra
(prisms) and pyramids are considered. The surfaces o$taimglardgrid cells con-
sist of triangles and quadrilaterals. Thus, for the debnitf the surface point set
Q7 (p, mp) we can use the two-dimensional nodal points from the previub-
section. Again, using surface points only yields non-slaginterpolation up to a
polynomial degre® < p < p*. The value ofp* is 3 for the tetrahedrom for the
hexahedron andifor the pentahedron and pyramid, respectively. We notdlhiese
values are independent of the choice of the paramegter Although the number
of surface points increases with greatgp,, the rank of the volume interpolation
does not. We thus use the recursive nesting strategy (16inénediuce an addi-
tional parametetrs, which controls the number of recursions. The mapping

is again used to shrink the new nested surface points in a tyé&-manner (15).
In figure 3 the ratios of the interpolation point; (p) between the optimal number
N(p) for different parameters := (m3p, mop) are plotted. Again for tetrahedra and
7 = (0, 0) the number of interpolation points are always optimal, wehsifor other



grid cell shapes the ratio convergesito for p — oo. Compared to theD case
the convergence for th&D case is slower, however the magnitudes of the ratios are
still reasonable. The corresponding Lebesgue constamtsted in tables 2 and 3.

1 21 41 61 81 101 1 21 41 61 81 101
p p
133[- —=—=—& © © © o
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p p

Fig. 3. Ratio of the numbeb/;(p) of interpolation points and the dimensidn(p) of the
polynomial space as a function of the polynomial degrdéer hexahedron (top left), pen-
tahedron (top right), pyramid (bottom left) and tetrahed(bottom right) and different
parameters = (msp, m2p). The limits forp — oo are indicated with dashed lines.



tetrahedrory | 1 2 3 4 5 6 7 8 9 10 11
My 4 | 10| 20 | 35 56 84 | 120 | 165 | 220 | 286 | 364
m=(0,0)/A | 1.0{ 20| 29| 40| 6.4 | 79 |10.8|17.6| 22.0 | 348 | 36.5
hexahedron/ | 1 2 3 4 5 6 7 8 9 10 11
My 8 | 20| 32| 50 80 | 117 | 160 | 214 | 280 | 358 | 448
7 =(0,0)/A | 1.5|5.0|6.4| 88 |17.0| 20.3| 41.5| 47.6| 103.6| 201.3| 454.2
My 8 | 20| 32| 50 81 | 124 | 172 | 226 | 298 | 389 | 492
7 =(1,0)/A | 1.5|50|6.4| 88 |11.6|35.6| 37.1| 46.6| 103.2| 113.5| 148.2
My 8 | 20| 38| 68 | 104 | 147 | 208 | 280 | 364 | 472 | 592
7 =(0,1)/A | 1.5|5.0| 4.8|15.6| 11.2| 13.0| 30.4| 32.7| 52.0 | 111.6| 323.5
My 8 | 20| 38| 68 | 105 | 154 | 220 | 298 | 394 | 509 | 642
m=(1,1)/A | 15[ 50| 48|156| 89 | 18.1| 13.3| 31.0| 494 | 58.0 | 78.0
My 8 | 20| 32| 51 88 | 136 | 184 | 245 | 336 | 444 | 552
m=(2,0)/A |15[50|64| 7.8 | 9.1 | 140|30.2| 28.3| 40.2 | 56.9 | 124.2
My 8 | 20| 38| 69 | 112 | 166 | 238 | 329 | 438 | 570 | 726
m=(2,1)/A | 15]{50|48| 59| 89 | 11.1|125|20.3| 21.2 | 315 | 61.2

Table 2

Lebesgue constants and number of interpolation poinfd; for the 3D interpolation sets

with different parameters = (m3p, m2p).
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pentahedronp/ | 1 2 3 4 5 6 7 8 9 10 11
My 6 | 15| 26 | 42| 67 | 101 | 141 | 188 | 248 | 322 | 407
m=(0,0)/A | 1.7]3.7|4.4|6.0| 81 |21.4|22.7|423|96.7|112.1| 175.2
My 6 | 15| 26| 43| 72 | 110 | 152 | 205 | 278 | 365 | 458
m=(1,0)/A | 1.7|3.7| 44| 59| 10.0| 11.2| 23.4| 24.2| 61.6| 742 | 167.8
My 6 |15 29| 51| 79 | 116 | 165 | 224 | 296 | 382 | 482
m=(0,1)/A | 1.7]3.7|4.1|9.4| 7.2 | 15.6| 15.0| 34.2| 70.8| 86.8 | 117.6
My 6 | 15| 29| 52| 84 | 125 | 179 | 247 | 329 | 428 | 545
r=(1,1)/A |1.7]37|41|57|100]| 87 | 13.0| 17.2| 33.3| 345 | 60.2
pyramidp 1 2 3 4 5 6 7 8 9 10 11
My 5 | 13| 25| 42| 66 98 | 138 | 187 | 247 | 319 | 403
7=(0,0)/A | 1.5|3.0|42|68| 9.7 | 15.6| 245| 39.7| 71.4| 146.9| 366.2
My 5|13 25|43| 70 | 106 | 150 | 205 | 275 | 359 | 455
m=(1,0)/A |15]3.0|42|53| 7.2 |11.4|20.0|20.8|54.8| 38.6 | 83.6
My 5 13|26 (45| 70 | 103 | 146 | 199 | 263 | 339 | 428
~=(0,1)/A |1.5|/3.0[38|84| 9.0 |13.1|20.2| 32.8| 65.5| 137.7| 360.6
My 5 13|26 |46 | 74 | 111 | 159 | 219 | 292 | 380 | 484
r=(1,1)/A |15[3.0[38(6.0| 7.0 | 95 |129|18.0|27.4| 27.4 | 421

Table 3

Lebesgue constants and number of interpolation poinfg; for the 3D interpolation sets
with different parameters = (w3p, m2p).
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3 Application in discontinuous Galerkin methods

In the following we will discuss in detail how to constructiaebntinuous Galerkin
(DG) scheme using the nodal elements developed above. Torkatters simple
we restrict the discussion to a scalar conservation lawefdhm

u+ V- fu) =0, (17)

with appropriate initial and boundary conditions in a domfaix [0, 7] € R xRy .
The base of the semi-discrete DG formulation is a local weainfilation, which
is obtained for a grid cell) C 2 by multiplying (17) by a test functiop = ¢()
and integrating ove)

/ (u + ¥ - flu)) ¢ dz = 0. (18)
Q

The usual weak formulation results after spatial integrabiy parts

/ut¢df+/(f(u)-ﬁ)¢ds—/f(u)-%d:ﬁ’:o. (19)
Q 0Q Q

For the DG discretization the exact solutiois next replaced by a piecewise poly-
nomial approximatiom,. As this approximation is in general discontinuous across
grid cell interfaces, the surface flux integrals are not wefined. To get an unique
solution and a stable discretization, the normal fyﬂxﬁ in the surface integral
is replaced with a numerical flux functiayy, which depends on the values from
both sides of the grid cell interface. Independent of theiahof the numerical
flux gz, there are a lot of different ways of how to implement the sdiscrete
DG scheme. The implementations differ in terms of 'evaluatf the integrals’
and 'representation of the approximatiogi. Recently, Hesthaven and Warburton
introduced the nodal DG scheme [24]. In their formulatidre approximation:,

is represented using the nodal basis functiping ;1 .. a,, which are furthermore
chosen as test functions. In this work, we choose a moresiciaapproach, where
we use the modal basis functiofi; },—, . to define the test functions and the
DG polynomial

.....

N
= Zﬁ w;(Z) for ¥ € Q, (20)

with the time dependent modal DQIaj( )}j=1,...~- In standard modal DG imple-
mentations, the evaluation of the integrals is usually deitle Gauss integration.
For instance we get the following approximation for the fusiume integral

(p+1)¢ 9
/f1 Uh Z f1 Uh a@ ()Z )C%

G
= £17 Pil’

(21)

12



wherew; are the Gauss weightg; the Gauss positioni,l the vector of flux eval-
uations ands’"“* the integration matrix with

Op; ,
(KMCP), = 851( Xwii=1,.,N; j=1,.. (p+ 1™ (22)

We note thatu,(;) is evaluated using (20). If we consider a hexahedron with a
p = b approximation, we gefp + 1)? = 216 evaluations with this strategy for the
approximation of the volume integrals. We will show in theingubsection how to
make use of the nodal elements to reduce the computatiomglegity of modal
implementations.

3.1 The modal DG scheme with nodal integration

We first introduce the nodal interpolation of the non-linfhax function according
to (8)

My

filun(T)) = fri(T qu@bz (23)

where the nodal DOF is calculated As = f1 (uh(&)). The evaluation of the DG
polynomial (20) at the nodal points can be done using the &andnde matrix (5)

a, (24)

u=

<

yielding the nodal DOF of the flux qéz = f1(4;). As a next step, the interpolation
of the flux function is inserted into the volume integral antkgrated exactly

&p] &p]
/f1 up) ) di ~ /fl[ e, (%) d,

(25)
:'éip
where we introduced the general stiffness matrix
dp dp _
Vo [ B2 T2y d7 — T . LMy -1
K= [ 5 = [ 5 @ @ = 0T @9

The evaluation of the stiffness matrix can be done with Gawntegration in an
initial phase of the simulation, yielding a quadrature feggroach. The surface
integrals are treated in a similar manner. Comparing coatjmutal complexity we
only need)M; evaluations to calculate the volume integrals. Considefan in-
stance thepy = 5 (= = (1,1)) hexahedron we get/; = 105. Furthermore as
the developed nodal elements support an interpolationarnvtthume and on the
boundary at the same time no additional evaluations of tihgpmial are needed
to calculate the surface integrals. We note that the modal® nodal integra-
tion and the nodal DG [25] are strongly related. In fact thelal®G scheme with

13



nodal integration can be interpreted as a nodal DG schemg nsddal DOF and
the Vandermonde matrix for the calculation of the nodal D@#)(Reducing the
accuracy of quadrature and relying on nodal products whempating nonlinear
fluxes naturally introduces an error, known in spectral méshas aliasing [21].
However, the scheme maintains its full linear accuracy &edobtential for alias-
ing driven instabilities is well understood and can, if negdbe controlled by the
use of a weaknodalfilter (see [25]). In the present work, however, we have not
found any need for this additional stabilization for any loé examples presented
later.

4 Computational examples and validations

In the following we shall present a number of examples ofeasing complexity
to thoroughly validate the developed scheme. The spasabdtinuous Galerkin
scheme is integrated in time using the recently developadespme expansion
(STE) approach [31,15], which allows a consistent arbyttsigh order accurate
local time stepping.

4.1 Linear Wave Propagation

In this subsection the spatial accuracy of the nodal integrapproach for a linear
problem is investigated. We use the linearized Euler equat{LEE) as a model
problem for linear wave propagation

U +V-FU) =0, (27)

with the vector of the conservative variablés= (o, v/,v',w’, p')T and the LEE
fluxesF' := (Fy, Fy, F3)T := (A, U, A, U, A; U)T with the Jacobi matrices

ug po 0 0 0 v9 0 po 0 O wg 0 0 pp O
0 u 0 0 - 0w 0 00 0wy 0 0 0
Al=10 0 u 0 0 |,A= 00%0%,&: 0 0w 0 0],
0 0 0w O 00 0 vy 0 00 0 w 5
0 kpg 0 0 ug 0 0 kpg 0 vy 0 0 0 Kpgwy

(28)
whereUy = (po, uo, vo, wo, po)’ is the background flow. As an example, a pla-
nar wave is initialized such, that it contains only fluctoas in the right moving
characteristic wave with the Eigenvalug+ ¢

U=RW, (29)

14



with W = W sin(k - Z) and the Eigenvector matrix

nq o ns 2PTOO 2’)700
0 —Nn3g N9 % —%
R=|mny 0 —m 2 -2], (30)
—Ng TNy 0 % —7%3
0 0 0 £

with ¢y = 1//<;’;—g. We choose the perturbation of the characteristic variabttor

W = (0.0,0.0,0.0,0.001,0.0)7, the normal vector of the wavé= (1.0, 0.0, 0.0)7,
the wave number vectdr = (r,0.0,0.0)” and the background flow

Up = (1.0,0.0,0.0,0.0, %)T with « = 1.4, resulting inc, = 1.0. The computational
domainQ) := [0.0;2.0]* is split into 8 regular subdomaing;, = 7; + [0.0; 1.0]3,
1=1,...,8 with

#1 = (0.0,0.0,0.0)", Z, := (1.0,0.0,0.0)", &5 := (0.0,1.0,0.0)7,
7, = (0.0,0.0,1.0)", Z5 := (1.0,1.0,0.0)", & := (0.0,1.0,1.0)7, (31)
#7 = (1.0,0.0,1.0)", Zs := (1.0,1.0,1.0)”.

For our h-refinement tests we introduce the parameter 1. For a givenn, we
first split every sub domaif; into n? regular hexahedral elements. To generate
the hybrid mesh, we furthermore split the hexahedra in theaioi: = 1 into
tetrahedra, in the domains= 2, 3,4 into prisms and in the domaih= 8 into
pyramids. We illustrate the different hexahedra splitsing figure 4 (please note
that the front pyramid is blanked for better visualizatiargnse). Fomn = 1 the
hybrid prototype mesh consists 2f grid cells.

(a) 6 tetrahedra (b) 2 pentahedra (c) 6 pyramids

Fig. 4. Visualization of the different hybrid meshes.

In table 4 the experimental order of convergence for this ¢ase is plotted for
p = 3 andp = 4. These results suggest that the order of the STE-DG dizatitn

isp + 1 in spaceandtime. As expected, for the linear problem the results did not
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n  Nbcells | Nb DOF Ly(p’) EOC |NbDOF  Ly(pe) EOC

p=3 p=4

1 21 420 5,03E — 5 - 9.408 3,51E —6 -
2 168 3360 2,21E -6 45| 75.264 1,22E—7 4,8
3 567 11.340 4,22E -7 4,1| 19.845 1,68FE —38 4,9

4 1344 26.880 1,22FE —7 4,1| 47.040 4,06FE —9 4.9
Table 4
Experimental order of convergence for= 3 andp = 4.

change when we increased the interpolation ofder when we changed the grid
points via the parameters To further investigate the behavior of the discretization
for different polynomial approximations, five configuratgowere tested. In the first
configuration a fixed grid witi® hexahedral grid cells was used. We plot in figure
5 the L, error norm of the pressuyé for polynomial ordep = 1 up top = 8 with
tena = 20.0. For the next configurations the hexahedral base grid waseusplit
into tetrahedra, prisms or pyramids, according to figureedulting in48, 16 and

48 grid cells, respectively. In the last configuration the hglgrid with n = 1 was
used, resulting i1 grid cells. Please note that for the first four configuratithres
time steps do not differ over the computational domain, thagocal time stepping
STE-DG scheme reduces to a global time stepping schemeoBuabhfiguration
five due to the different grid cell types and their differemtspheres, the scheme
runs in local time stepping modus. It is interesting to coragar this test case the

10°

10° =
10°E
310_7; N he_xahedra
< E 37 W pr|sm3
| o
oF —-——+—-—- tetrahedra
10 g— - — - — - pyramidS
- ——-e——- hybrid

[y
' <
©

mEanL |

[EEN
o
[N
S}
i \HHHI
-
e
<

-11 1 1 1 1 1 1
10 2 3 4 5 6 7

polynomial order

(=Y

Fig. 5. Double logarithmic plot of., error versus the polynomial order for different ele-
ment types and grids.
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performances of the different grid cells. First of all compg the number of grid
cells in the different configurations and thus the number &fDfigure 5 shows
that the error norms do not differ much, thus uncovering @gapapproximation
behavior of the hexahedral grid cells compared to the otfpest Furthermore if
we compare the CPU time for the whole calculation, the hedwat@iscretization
succeeds again, as they allow larger time steps, resulttitigei following ranking
of this performance test: hexahedra (rel. CPU time 1), prisms (rel. CPU time
~ 4), tetrahedra (rel. CPU time~ 10) and pyramids (rel. CPU time = 20).
Several investigations indicate that this trends even trakel for non-linear prob-
lems, especially for the Navier-Stokes equations.

4.2 The Euler equations

In the following test, the influence of the recursion paranet= (73p, mop) and
the influence of different interpolation orders is inveatgd. Based on the results
from the linear test case, we consider in this subsectiondelinear Euler equa-
tions

U +V-FU) =0, (32)

with the vector of the conservative variables= (p, pv1, pvs, pvs, pe)t and the
Euler fluxesF := (Fy, Iy, F3)T:

p U
puiv + oy p
Fl(U) = [ pvovi +dyp | > l=1,2,3. (33)

P U3V 4 O3 p

pev+ pu

Here, we use the usual nomination of the physical quantitie® = (vy, vo, v3)7,
p, ande denote the density, the velocity vector, the pressure, l@dpecific total
energy, respectively. Here the adiabatic exponert 2 with the specific heats
¢y, ¢, depend on the fluid, and are supposed to be constant for shigtee system
is closed with the equation of state of a perfect gas:

p=pRT =(k—1)ple—-0-7), and e=_—-0-0+¢,T. (34)

l\DlH

1
2

with the specific gas constaft = ¢, — ¢,. The considered test case is a three
dimensional variation of the isentropic vortex convectoroblem of Hu and Shu
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[26]

F(fv t) = Fvortez X (f - fO - 170 : t) )

_ (1)
Su — Umaz exp (1 gro) ) ’

2T

T k-1 (6_@)2 (35)

If we choose the rotational axis of the vort&x,:.. = (0.,0.,1.)7 andpy, = py =

R =1, then the standard two dimensional problem is recoveredotiotest prob-
lem we chose the background fldwy, o¢,po) = (1.,1.,1.,1., %), k = 1.4, the
rotational axis of the vortex, ... = (1., —0.5, 1.)T, the initial center of the vortex
%y = (0.5,0.5,0.5)T, the amplitude of the vortex,,., = 0.1, the halfwidth of the
vortexr, = 1.0 and the endtime of the simulatiap,;, = 4.0. The computational
domainQ) := [0.0, 5.0]® with exact boundary conditions prescribed. The solution to
this problem at time = 2.0 with 63 p = 5 hexahedra is shown in figure 6. The re-
sults of tests withp = 6 trial functions with different parametersand/or different
interpolation orderg are listed in tables 5 - 8.

Fig. 6. 3D isentropic vortex. Isosurfaces of denspy= 0.99977, 99989, 99998).
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Interpolation order (p) and 7w Nb Int points La(p) CPU time/EU
p=06,7=(0,0) 117 1,9654E — 05 100%
p=6,7=(1,0) 124 1,7455E — 05 107%
p=6,7=(0,1) 147 1,8112F — 05 120%
p=6,7=(1,1) 154 1,6055E — 05 121%
p=6,1=(20) 136 1,7399E — 05 110%
p=6m=(21) 166 1,5832F — 05 125%
p=7177=(0,0) 160 1,7586E — 05 127%
p=8,71=(0,0) 214 1,6336E — 05 154%
p=T7=(4,2) 512 1,4770E — 05 255%

Gauss Legendre points 637 1,4665E — 05 403%

Table 5
Results for different types of integration points fer= 6 hexahedra. The domaia is
subdivided int®® hexahedra.

Interpolation order (p) and = Nb Int points L2(p) CPU time/EU
p=06,7=(0,0) 98 2,8744F — 04 100%
p=6,m=(1,0) 106 2,8256E — 04 109%
p=6,7=(0,1) 103 1,7078FE — 04 107%
p=6,7=(1,1) 111 1,6332E — 04 110%
p=177=(0,0) 138 2, 7298 — 04 127%
p=38,m=(0,0) 187 1,5537E — 04 181%
p=7,7=(11) 159 1,0978E — 04 136%

Gauss Jacobi points 588 9,8771E — 05 425%
Table 6

Results for different types of integration points fer= 6 pyramids. The domaifi is
subdivided intd6 pyramids.

The general observation is, that if we increase the numbeatefpolation points,
then the error norm decreases and the CPU time increasedst\Vecanpared the
nodal integration to the standard Gaussian integratioerevtve chos&?® = 343
tensor product Jacobi Gauss points for the volume integnady? = 49 tensor
product Jacobi Gauss points for each of the surface inegkithough the results
with standard Gauss cubature are slightly more accuratepaong CPU times
clearly confirms that the nodal type integration is more effit
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Interpolation order (p) and 7w Nb Int points La(p) CPU time/EU
p=06,7=(0,0) 101 1,4853F — 05 100%
p=6,7=(1,0) 110 1,4235E — 05 109%
p=6,7=(0,1) 116 1,2260F — 05 114%
p=6m=(11) 125 1,2250F — 05 118%
p=7171=(0,0) 141 1,4210E — 05 127%
p=38,m=(0,0) 188 1,2925F — 05 154%
p=7m=(01) 165 1,1562F — 05 141%

Gauss Jacobi points 588 1,1006 E — 05 424%

Table 7
Results for different types of integration points for= 6 prisms. The domaif is subdi-
vided into8 hexahedra which are further subdivided i@tprisms, yieldingl6 grid cells.

Interpolation order (p) and = Nb Int points L2(p) CPU time/EU
p=6,7m=(0,0) 84 1,414FE — 04 100%
p=1m=0,0) 120 1,4386E — 04 113%
p=8,m=(0,0) 165 1,3945E — 04 135%

Gauss Jacobi points 539 1,3790F — 04 399%
Table 8

Results for different types of integration points for= 6 tetrahedra. The domaift is
subdivided intd5 tetrahedra.

4.3 Compressible Navier-Stokes equations

The three dimensional unsteady compressible Navier-Stdeations with a source
term reads as

U +V-FU)-V-FUVU) =85, (36)

with the vector of the conservative variablgs the non-linear Euler fluxes' :=
(Fy, F3, F3)T and the diffusion fluxeg™ := (Fy, FY, F2)T:

T11

F'(U,VU) = Toy L 1=1,2,3. (37)

T31

TijV; — Qi
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The viscous stress tensor is given by

—

- 2 o
7= p(Vi+ (Vi) — g(v D)), (38)
and the heat flux bY: (ql, g2, Q3)T with

§:=—kVT, with k= %, (39)

Here, the viscosity coefficient and the Prandtl numbé&?r depend on the fluid,
and are supposed to be constant for this test. If we choose

cos(f) (dk — w)
cos(B) A+ sin(26)ak (k — 1)
S =« cos(3) A+ sin(26)ak (k — 1) ; (40)
cos(B) A+ sin(268)ak (k — 1)
cos(f) B + sin(2f3)a (d kk — w) + sin(B) (%)

with 3 == k(z) + 22 + 23) —wt, A = —w + ((—1)d_1 +r(2d— 1)) and
B = $((d*+ k(6 + 3d)) k — 8w), the analytical solution to (36)+(40) is given by

U= (sin(ﬁ)a + 2,sin(f)a + 2,sin(B)a + 2, sin(F)a + 2, (sin(5) o + 2)2)T .
(41)
For our test we choose the coefficients= 1.4, Pr = 0.72, p = 0.0001, R =
287.14 anda = 0.5, w = 10.0, £ = 7 with the dimension of the problemh = 3.
We solve this problem with the recently developed modal $X&scheme for
compressible Navier-Stokes equations [15], with the alppesented nodal modi-
fications. The main building block of this discretizatioraisew weak formulation,
where integration by parts is used twice, circumventingrteéed for resorting to
a mixed first order system and thus circumventing the neeadditional auxil-
iary variables. For the numerical fluxes we choose appradrReemann solvers
for both, the hyperbolic part and the parabolic part. For the appnation of the
Euler flux we choose the HLLC flux [37] and for the approximatad the viscous
fluxes the recently developed dGRP flux [14], [15], [30], whaan be interpreted
as a natural extension of the classiterior penaltyflux [33] for the Laplace equa-
tion to the viscous terms of the compressible Navier-Stekpmtions. The results
of a convergence test with the hybrid grids from example 4elliated in table 9
forp = 4 andp = 5 with 7 = (0,0), where we used,,,; = 1.0 and periodic
boundary conditions. The results indicate that the optiarder of convergence
EOC = p+ 1, for p odd and even, is achieved.

We list the average CPU time per element update and per defgreedom (CPU/EU/DOF)
for the 3D compressible Navier-Stokes equations with 6 Ansatz functions§4
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n Nbcells| NbDOF Ly(pe) EOC | NbDOF Ly(pe) EOC

p=4 p=>5

2 168 5880 6,13F —3 - 9.408  3,80F —3 -
4 1344 47.040 1,91E —4 50| 75.264 9,36E —5 5,3
8 10752 | 376.320 4,32E —6 55| 602112 1,54F —6 5,9

16 86016 | 3.010.560 1,22FE —7 51| 4.816.896 2,38F —8 6,0
Table 9
Experimental order of convergence foe= 4 andp = 5 with 7 = (0,0) andt,,q = 1.0.

DOF/Element) in table 10. Based on the investigations irseation 4.2, we chose
for every grid cell type the most efficient combination (imbes of accuracy versus
cpu time) of the parametersand the interpolation order. All CPU times were
measured on one processor of a Intel Xeon Dual Core CPU withGHz. An
equivalent measurement fol6&: order compact finite difference scheme witi
order Runge-Kutta time integration, [2], on the same CPUbgie 56, 0usS.

Interpolation order (p) and 7 Elementtype CPU time/EU/DOF [us]

p==6,m=(1,1) hexahedron 39,9
p="71m=(11) pyramid 43,1
p=67=(0,1) prism 31,5
p=06,7=(0,0) tetrahedron 27,7

Table 10

CPU times for the 3D compressible Navier-Stokes equatiatis (v = 6) STE-DG dis-
cretization {th order in space and time).

4.3.1 Polygonal meshes

In this section preliminary results for a DG discretizatigith polygonal meshes
are shown. We propose to apply the recursion based algotdldefine efficient
sets of interpolation points for polygonal grid cells. Numal investigations in-
dicate that for a general grid cell the shape dependent aeapt, which is the

maximal possible interpolation order with surface pointl/phas the value 'num-
ber of sides minus one’, which we choose for all grid cell &yf2D and 3D) dis-
cussed in this work. Starting from a triangle mesh the cpording dual mesh is
constructed and used as polygonal mesh, figure 7a. The driarajle mesh is no
longer needed as it is only used to construct the dual meshrédulting polygonal
mesh contains elements witlsides up to element withsides. For the distribution
of the interpolation points two different strategies aredufor an approximation
with p = 3. For the first strategy we directly use the recursion alpori{14) with

a fixed recursion parametes, for all elements. If we choose,, = 0, test con-
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(a) primal and dual mesh (b) configuration A

Fig. 7. Primal and dual mesh (= 0.1) and detailed view of the interpolation grid
(h = 0.025) with p = 3 (m2p = 0) interpolation.

figuration A shown in figure 7b, the resulting interpolatiaidgs only distributed
at grid cell boundaries, as all grid cells have at leasides. Similar to the discus-
sion above it is favorable for non-linear problems to useemoterpolation points,
i.e. increasing the recursion parametep. In figure 8a the recursion parameter is
set tomyp = 3, test configuration B, for all grid cells. In this extreme eaghere
guadrilaterals (4 sides, 3 recursive defined interior plaipers) and heptagons (7
sides, 0 recursive defined interior point layers) arisergialting point distribution
is non-uniform and seems to be not well suited. To circumvieis; our second
strategy is tdix the number of recursions for every grid cell type, thus idtrang
the recursion parametes, independently for every grid cell type. In figure 8b the
interpolation grid for a fixed recursion numbey,, = 1, test configuration C, with
a second order inner point distribution is shown, corredpanto the parameter
map = 2 for quadrilaterals and,, = 5 for heptagons. To validate this discretiza-

(a) configuration B (b) configuration C

Fig. 8. Detailed view of the interpolation grid (= 0.025) for p = 3 approximation with
Top = 3 OF Ty = 1.

tions the compressible Navier-Stokes equations with aceci@rm are considered,
where we used the reduced two dimensional version of thequeexample with
the same parameters, excepting the paranietenich we changed fromr to 27
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and the dimension d frord to 2. For the grid refinement, four different regular
triangle grids with typical mesh siZzeare constructed and then converted to polyg-
onal meshes, similar to 7a. The pre-computation of the saediad volume integral
matrices is done on sub triangles with standard Gaussiagration. In table 11
the results for configuration A and the results for the rafeeecomputation on the
primal triangular grid witht.,,, = 0.5 and exact boundary conditions are shown.
We notice first that the expected order of convergence igaeli Considering effi-
ciency, the results on the primal mesh are more accurategati¢the CPU time for
configuration A istcpy = 378s and the CPU time for the primal configuration is
tepy = 594s. The reasons for the CPU time advantage is, that the regydotyg-
onal configuration has only about half the DOF and allowsdafgxplicit) time
steps. To account for the non-linearity of the Navier-Sgotexes, computations

h Nbcells  La(pe) EOC | Nbcells La(pe) EOC

triangular configuration configuration A

0,2 62 2,44F — 3 - 42 1,286 —2 -
0,1 226 1,92E—4 37 134  1,31E—-3 33
0,05 896 1,07 -5 4,3 489 7,16 — 5 4,2

0,025| 3595 6,42F -7 4,1 1878 4,7TE —6 3.9
Table 11
Experimental order of convergence fore= 3 (10 DOF per grid cell) for reference test on
primal triangular mesh and for test configuration A.

with configuration B and C are performed and correspondisglte are listed in
table 12. We notice that the accuracy of the solution is im@do approaching the
guality of the primal configuration solution. As expectdtk tesults of configura-
tion C are more accurate compared to the results of configar8 Considering
the efficiency of the computations, the CPU time for test Bdsy = 380s and
for test Ctopy = 398s showing a large potential for DG discretizations on polyg-
onal meshes compared to traditional triangular meshesitimd future works we

h Nbcells| La(pe) EOC | La(pe) EOC

configuration B configuration C
0,2 42 9,55E — 3 - 9, 17TE — 3 -
0,1 134 | 7,22E—4 3,7 | 4,25E—4 3,6
0,05 489 | 3,38E—5 44 | 2,64E—5 4,0

0,025 1878 | 1,84E—6 42 | 1,64E—6 4,0

Table 12
Experimental order of convergence for= 3 (10 DOF per grid cell) for test configuration
B and C.

will investigate the influence of different node distrilmrtistrategies and recursion
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parameters for polygonal meshes and furthermore inveastiga applicability of
the recursion algorithm (16) witlp* = number of sides minus 1’ for polyhedral
meshes in three dimensions.

4.3.2 Boundary Layer Instability

We consider in this example the evolution of a Tolmien-Sxtilng wave in a sub-
sonic compressible boundary layer. The computational doflaextends from

1 = 337.0t0o z; = 890.0 andzy = 0.0 to 25 = 22.35. We choose subsonic
inflow and outflow boundary conditions andwat= 0.0 isothermal wall conditions
with 7, = 296.0K . The initial solution of the computation is obtained fromima-s
ilarity solution with Mach numben/,, = 0.8 andT,, = 280.0K. The Reynolds
numberRe := %:5)1 = 1000, based on the displacement thickness at the inflow
01. Usingd; as tiﬁue reference length, we get= 1.0 at the inflow and the boundary
layer thicknesgyy = 2.95 anddgy = 4.8 at the inflow and outflow, respectively.
The temperature dependence of viscogitg modeled using Sutherland’s law

42
o (42)

u(T) = () T

with p(To) = 1.735107°£L andT, = 110.4K.

The inflow atx; = 337.0 is superimposed with a forcing term, composed of the
eigenfunction of the Tolmien-Schlichting wave with the damental frequency
wp = 0.0688. For a detailed description of the similarity solution ahe eigen-
function we refer to Babucke et al. [1]. The computationahdm was subdivided

in 48 x 22 regular quadrilaterals and discretized with= 6 (mp = 1) STE-
DG scheme, resulting iB9568 DOF. The endtime of the simulation was set to
teT—’;d = 37, whereT = f}—’; ~ 92, to ensure a periodic solution. To analyze our re-
sults we apply a discrete Fourier analysis using one pefidtedorcing frequency

T, from Tio = 36 to Tio = 37. We plot the maximal amplitude ef, with respect to

x5 as a function ofr; in figure 9. For comparison, corresponding results obtained
with a 6th order compact finite difference code wii) x 150 grid points and 4th
order Runge Kutta time integration [1] are included, sh@ngood agreement. We
furthermore plot the amplification rate of the velocityv; based on the maximal
amplitude in figure 9. Again, the result is in good accordandée reference result
[1] and the predictions of linear stability theory.

4.3.3 Flow past a Sphere &te = 300

We consider in this example a sphere with radius 1 centered af, = (0,0,0)7.
We solve the 3D unsteady compressible Navier-Stokes emsawith Mach num-
ber M = 0.3 and Reynolds numbeRe = 300 based on the diameter of the
sphere. The computational domain extends from= —20.0 to z; = 100.0 and
To, r3 = £30.0. The grid consists of 160.000 tetrahedra, where the wake of the

25



-1
107 E -0.02
=== ===
- | ==
-0.01
= 5
B B t\fﬁ—_ - ‘M‘E*::_\
3 T = | R N
10° E — 0 o ==
F e —— W, FD | o <
F ’// ——— 20| FD L T~
Wi --F- «pG -
N NN S I JE— L.—
1o 2, DG 001 w,, UST
B | ---T- w,RD
i —1— , DG
E
10° Lev 1 L L L L L 0.02 - - - - - - - - - |
338 413 488 563 638 « 713 788 338 413 488 563 638 X, 713 788

1

Fig. 9. Maximum amplitudes of; (left). Amplification ratea; of u; based on maximum
amplitude (right).

sphere is resolved with ~ 0.4. The surface of the sphere is discretized using tri-
angles withh =~ 0.1. To capture the right geometry of the sphere, tetrahedia wit
curved boundary surfaces are used. We plot the cut of theogradcut plane with
Tipiane = (0,1,0)7 in figure 10. For the calculation the= 3 STE-DG scheme was
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(a) total grid (b) zoomed grid
Fig. 10. Visualization of the grid for the sphere example.

used, resulting inz 3.000.000 DOF. A contour plot of the velocity magnitude, fig-
ure 11, shows that the boundary layer is resolved within éiahedral elements.
In figure 12 the structure of the vortices are shown usingkxtheortex detection
criterium. We list in table 13 the resulting force coeffidenthe corresponding
oscillating amplitudes and the Strouhal numiSeér. For comparison results from
Tomboulides [36] and Johnson and Patel [27], obtained widim incompressible
simulation, are listed as well. In figure 13 we plot the dragffioientC; and the
lateral force coefficient’; versus time.
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2%

(b) pressure

(a) velocity magnitude

Fig. 11. Contour plot of the instantaneous velocity magtet@| = 0.0...0.3478 and pres-
surep = 0.688...0.762.

Fig. 12. Isometric view of\, isosurface.

Cq ACy C AC; Str
0.673 0.0031 —-0.065 0.015 0.135
Tomboulides [36] | 0.671 0.0028 — — 0.136
Johnsoné&Patel [27] 0.656 0.0035 —0.069 0.016 0.137

Table 13
Force coefficients and Strouhal number.
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5 Conclusion

Part one of this paper deals with a framework for efficientypomial interpola-
tion on polymorphic grid cells, i.e. the definition of a nodiaderpolation basis.
In our framework, for non simplex grid cells the number of ablbasis functions
is higher than the number of modal basis functions. We shawatdone way to
get a reasonable Vandermonde matrix is to use the singulae d@composition
framework to build a least squares inverse. The properfitisese Vandermonde
matrices (and the corresponding interpolation) solelyedelpon the position of the
interpolation points. We consider in this paper only intéation points with a sym-
metric distribution, points which support an interpolatiaf orderp in the volume
of the grid cell and simultaneously an interpolation of thene order on each of
the faces of the grid cell. We therefore introduced a simplestruction guideline,
which is based on a recursive algorithm starting from a gauaface points distri-
bution. Using a set of 1D points, we can successive definagfmn2D faces, and
consequently define points for 3D volumes.

In the second part of the paper we introduced a novel integrétamework for
modal discontinuous Galerkin schemes, which could beyeasplemented in an
existing Gauss integration based modal DG code. Borrowiom fnodal meth-
ods a mixed modal-nodal DG scheme was constructed. As anpésahe nodal
based integration was combined with the recently develgpade-time expansion
discontinuous Galerkin scheme yielding an efficient higteordiscretization on
arbitrary unstructured grids for unsteady flow problems.
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