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1 Introduction

While discontinuous Galerkin (DG) methods were first proposed in the early 1970’s
in [35] it was not until the more recent development, initiated in the work of Cock-
burn and Shu [10,11,9,7,12], that these methods matured into a powerful computa-
tional tool for the solution of systems of conservation lawsand the equations of gas
dynamics [13,4]. The extension to problems of viscous gas dynamics was initiated
in [3,5] and this again has lead to several related formulations [28,34,16] for the
compressible Navier-Stokes equations. Many examples and further details along
these lines can be found in [8,29] and [25].

In spite of these significant advances over the last decade, discontinuous Galerkin
methods still suffer from being perceived as being too expensive when compared to
more traditional methods such as finite volume methods. Thisis particularly true for
viscous problems, where the common solution approach is based on amixedfinite
element formulation, which was introduced in [3] and extended to higher order
problems in [38,39]. In recent developments for the DG discretization of second
order terms [14,15,30], the introduction of auxiliary variables is circumvented by
the use oftwo partial integrations, or bymultiple partial integrations for higher
order operators [6].

Apart from this, however, a major computational cost is found in the traditional use
of full order integration in the basic implementation, leading to excessive compu-
tational cost for nonlinear problems. Deriving inspiration from the classic spectral
methods [21] it is natural to consider the use of a nodal basis, leading to a for-
mulation which in spirit shares much with a spectral collocation formulation in
which the boundary conditions are imposed weakly. Such methods, often known as
spectral penalty methods, have been developed for the compressible Navier-Stokes
equations in [17–19] and extended to non-tensorial elements in [20,22].

The main advantages of such a formulation are found in the exact reduction to the
standard discontinuous Galerkin formulation for linear problems, hence ensuring
the accuracy for smooth problems, and the quadrature free approach for nonlinear
problems, leading to a dramatic reduction in the overall computational cost. Fur-
thermore, the use of a nodal basis with the correct structureof the points along the
edges and faces leads to a natural separation of the basis into boundary and inter-
nal degrees of freedom. This becomes particularly beneficial for schemes using a
high-order basis. As is usually the case, all good things comes with a price and in
this case the loss of exact integration opens the possibility for instabilities driven
by aliasing. This is, however, a well known phenomenon and iswell understood
within the community of spectral methods [21]. We shall return to this concern
briefly later.

One of the limitations of past nodal based formulations and schemes has been the
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reliance on either cubic or tetrahedral element shapes. While these suffice in many
cases, for problems with significant geometric flexibility one is tempted to also use
more general types of elements such as prisms and pyramids.

In this work we explore how one construct such nodal general elements, using a
recursive construction, and optimize these for maximum accuracy by minimizing
the Lebesgue constant of the associated multivariate Lagrange polynomial. This is
discussed in Section 2 and sets the stage for Section 3 where we discuss in detail
the use of these general elements in a discontinuous Galerkin scheme and return
to the issues of aliasing and instabilities caused by this. We shall also discuss how
nodal elements can be used with advantage in an already existing scheme based
on a modal expansion and finally we use the recently developedexplicit space-
time discretization to arrive at the fully discrete explicit scheme. In Section 4 we
demonstrate how this general scheme, employing polymorphic elements and local
time-stepping, can be used with benefit for both linear and nonlinear wave problems
and, finally, the full three-dimensional compressible Navier-Stokes equations. Most
of the tests illustrate the potential for a 4 fold reduction in computational time
without impacting the accuracy by using the nodal based approach for large scale
simulations. Section 5 concludes with a few general remarksand outlook toward
future work.

2 The nodal elements

We will first focus on defining different sets of high order basis functions for a
given grid cellQ ⊂ R

d. We introduce themonomialbasis{πi}i=1,...,N for the space
of polynomials with degree less than or equal thanp, where every basis functionπi

could be written as

πi(~x) = x
αi

1

1 · ... · x
αi

d

d with 0 ≤ αi
1 + ... + αi

d ≤ p. (1)

The dimensionN of this space depends on the orderp and on the spatial dimension
d of the grid cellQ and is given by

N = N(p, d) =
(p+ d)!

d!p!
. (2)

Based on the monomial basis{πi}i=1,...,N and the geometry of the grid cellQ the
construction of an orthonormal basis{ϕi}i=1,...,N using Gram-Schmidt orthogonal-
ization is straight forward. This basis set is characterized by the property

∫

Q

ϕi(~x)ϕj(~x) d~x = δij , (3)

which holds forarbitrary grid cell shapes. With thismodal basis we are now
able to define a set ofnodal basis functions. Given a set of interpolation points
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{~ξj}j=1,...,MI
⊂ Q, we can construct the nodal Lagrange basis{ψj}j=1,...,MI

de-
fined by the conditions

ψj(~ξi) = δij ,

u(~x) :=
N∑

j=1

ûjϕj(~x)
!
=

MI∑

i=1

ũiψi(~x).
(4)

Combining these conditions yields the transformations

V û = ũ and V T ψ = φ, (5)

where we introduce the generalized Vandermonde matrixV with entries

Vij = ϕj(~ξi), i = 1, ...,MI ; j = 1, ..., N. (6)

The inverse of the Vandermonde matrix is not uniquely definedasMI 6= N . If
one is interested in avoiding this problem, one has to extendthe modal basis from
dimensionN to dimensionMI . We refer to Lörcher and Munz [32] for a strategy
to find a basis extensions for non-tensor product interpolation on a cartesian grid.
However, the extension of this approach to the general case is not straightforward,
as the non-singularity of the Vandermonde matrix is not guaranteed. To overcome
this issue a singular value decomposition based strategy isused to define the fol-
lowing (pseudo) inverse transformations

û = V −1ũ andψ = V −Tφ. (7)

Using the pseudo-inverse Vandermonde matrix, condition (4) is only satisfied in the
least squaressense. Thus, if we define the polynomial approximation of a function
f as

f(~x) ≈ fI(~x) :=
MI∑

j=1

f(~ξj)ψj(~x) =: ψT f̃ , (8)

the nodal degree of freedom̃fj = f(~ξj) is not the value of the interpolationfI(~x)

at the node~x = ~ξj, asψj(~ξi) 6= δij . Furthermore, the modal approximation

f(~x) ≈ fM(~x) :=
N∑

j=1

f̂jφj(~x) with f̂ = V −1f̃ (9)

is in the general case not equal to the nodal approximation

fI(~x) 6= fM(~x). (10)

A good measure of the quality of such a polynomial approximation is given by the
Lebesgue constantΛ, defined as

Λ := max
~x∈Q

MI∑

j=1

|ψj(~x)|. (11)
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With this definition one easily realizes that

‖f − fI‖∞ ≤ (1 + Λ)‖f − f ∗‖∞, (12)

where‖.‖∞ is the usual maximum norm andf ∗ is the best approximating poly-
nomial of f . As the nodal basis{ψj}j=1,...,MI

depends only on the interpolation
points{~ξi}i=1,...,MI

, we next focus on the construction of nodal sets for different
grid cell shapes which minimize the growth of the Lebesgue constant with orderp.
We restrict the attention to sets of interpolation pointsΩI := {~ξi}i=1,...,MI

with the
following characteristics

• the interpolation based on these points is of orderp for functions defined in the
volume and for functions defined on the grid cell surfaces. This guarantees that
the basis separates into boundary and interior components.

• the distribution of the points reflects the possible symmetries of the grid cell,
• the size of the nodal setMI ≥ N depends on the orderp, the dimensiond and

theshapeof the grid cell.

2.1 One-dimensional node distributions

For an interval,p + 1 points have to be chosen. There may be a number of dif-
ferent distributions of thep + 1 points with the restriction that the endpoints are
included. For instance, one can choose equidistant (E) points, Chebychef-Gauss-
Lobatto points or Legendre-Gauss-Lobatto (LGL) points. Wechoose for every side
in 2D and edge in 3D the LGL node distribution, as these are known for a good
Lebesgue constantΛ. An extended discussion of the one-dimensional case can be
found in [23]. Based on the LGL node distribution we define thefollowing warp
function forx ∈ [0; 1]

wp(x) =
p+1∑

j=1

(ξLGL
j − ξE

j )ψE
j (x), (13)

where{ξLGL
j }j=1,...,p+1 are the Legendre-Gauss-Lobatto points,{ξE

j }j=1,...,p+1 de-
note the equidistant points and{ψE

j }j=1,...,p+1 the Lagrange polynomials based on
the equidistant points. According to [25],wp(x) is a(p+1)th order approximation
to the function which maps the ’bad’ points (E) to the ’good’ points (LGL).

2.2 Two-dimensional node distributions

In two space dimensions we split the set of interpolation points ΩI(p) into two
parts: The set of points that live in the interior of the cell and the set of points that
live on the surface, namedΩS

I (p). The setΩS
I (p) is defined such that it contains
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p + 1 LGL points for each side of the grid cell surface. This guarantees that the
nodal approximation on the whole surface is of orderp + 1 and a separated basis
by polynomial uniqueness. We note that using only these surface points for the
approximation within the volume, the corresponding Vandermonde matrix is non-
singular forp up to a valuep∗, which depends on the shape of the grid cell. The
value for p∗ is 2 and 3 for triangles and quadrilaterals, respectively. Hence, for
an interpolation withp > p∗, additional points in the interior of the grid cell are
needed. The definition of these interpolation points can be done in the following
recursive way

ΩI(p) :=





∅ for p < 0,

{~xbary} for p = 0,

Mr(Ω
S
I (p)) ∪ ΩI(p− p∗ + π2D) for p > 0.

(14)

We notice that the interior nodes consist of nested and ’shrinked’ surface points.
The mappingMr determines how the point sets are nested and shrunk for every
recursion stepr, e.g., the mapping for the first recursionr = 0 is the identity, as the
first points of the setΩS

I (p) are lying on the real surface of the grid cell and thus will
not be shrunk. A simple approach for the mappingsMr for r > 0 would be one
which yields an equidistant nesting. However, it is well known that the Lebesgue
constant of the corresponding nodal basis is improved, whenthe node distribution
is more dense close to the boundary of the grid cell. Thus, to improve the nodal set
we propose to use a mapping which yields LGL-type nesting. Inthis work the warp
function (13) is used to define the following barycentric mapping

Mr(~ξ) = (~ξ − ~xbary)α(r) + ~xbary,

α(r) = 1 − 2wp (r/r̃)
(15)

where~ξ ∈ ΩS
I (p), ~xbary denotes the barycenter of the grid cell andr the recursion

level. r̃ is two times the maximum number of recursionsr̃ = 2 rmax. We subtract
one fromr̃, if the innermost interpolation point set consists only of the grid cell
barycenter̃r = 2 rmax − 1. Another approach is to start with the pure equidistant
point distribution and optimize the nodal set with electrostatic considerations, as
proposed by Hesthaven [23]. To illustrate these different strategies, we plot the
corresponding node distributions of thep = 9 (π2D = 0) quadrilateral in figure 1.
The set with a purely equidistant distribution yields a Lebesgue constantΛ = 97,
whereas the LGL points with equidistant nesting yieldsΛ = 44. Using LGL points
and LGL-type nesting yields a Lebesgue constant of21, which is slightly greater
thanΛ = 17 for the electro-static optimized points. Although the electro-static
optimized interpolation points yield the best Lebesgue constant, we use the LGL
points with LGL-type nesting in the computations shown below, as these point
sets are easily and straight forward to implement. An important parameter in the
recursion formula (14) is the integerπ2D which can be used to tune the relation
between the interpolation quality and number of points. Forπ2D = 0, as considered
up to now, algorithm (14) yields the smallest possible number of points and thus, the
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Fig. 1. Quadrilateral withp = 9 (π = 0). From left to right: pure equidistant distribution,
LGL points with equidistant nesting, LGL points with LGL-type nesting and optimized
points.

most efficient scheme according to the computational effort. However, we observed
that in some cases, especially for quadrilaterals, the use of a few more points pays
off in terms of a dramatically improved accuracy. The parameter π2D with 0 ≤
π2D ≤ p∗ − 1 can be used to control the number of recursions in (14). Figure 2
shows the ratio of the overall interpolation pointsMI(p) and the numberN(p) of
the basis functions as a function of the polynomial degreep for different values of
π2D. The plot indicates that for triangles andπ2D = 0 the number is always optimal.
For quadrilaterals andπ2D = 0 the number of interpolation points converges to the
optimum with increasingp. In all the calculations presented in the following we

p

M
I
/N

1 5 9 13 17 21

π2D=2
π2D=1
π2D=0

3.0

1.5

1.0

p

M
I
/N

1 5 9 13 17 21

π2D=3
π2D=2
π2D=1
π2D=0

4.0

2.0

1.0

1.3

Fig. 2. Ratio of the numberMI(p) of interpolation points and the dimensionN(p) of the
polynomial space as a function of the polynomial degreep for different parametersπ2D,
left for triangles and right for quadrilaterals. The limitsfor p → ∞ are indicated with a
dashed line.

useπ2D = 0 for triangles andπ2D ∈ {0, 1} for quadrilaterals. For this type of
interpolation points the corresponding Lebesgue constantsΛ are listed in table 1.

2.3 Three-dimensional node distributions

The definition of the three-dimensional set of interpolation points is done analo-
gously to that of the two-dimensional case. Again, the setΩI(p) is split into two
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p MI Λ MI Λ MI Λ

tri (π2D = 0) quad(π2D = 0) quad(π2D = 1)

1 3 1.0 4 1.5 4 1.5

2 6 1.7 8 3.0 8 3.0

3 10 2.1 12 4.0 13 3.2

4 15 3.8 17 4.2 20 5.3

5 21 3.2 24 5.8 28 4.6

6 28 4.6 32 7.5 37 4.5

7 36 6.8 40 15.3 48 5.1

8 45 7.5 49 14.5 60 7.5

9 55 8.6 60 21.0 73 8.0

10 66 11.2 72 28.6 88 10.8

11 78 18.8 84 61.8 104 14.8

12 91 20.2 97 62.7 121 15.4
Table 1
Lebesgue constantsΛ and number of interpolation pointsMI for the two-dimensional in-
terpolation points.

parts, whereΩS
I (p, π2D) denotes the set of points on the surface. The recursion

algorithm reads as follows

ΩI(p) :=





∅ for p < 0,

{~xbary} for p = 0,

Mr(Ω
S
I (p, π2D)) ∪ ΩI(p− p∗ + π3D) for p > 0.

(16)

In this work the3D standardshapes, namely tetrahedra, hexahedra, pentahedra
(prisms) and pyramids are considered. The surfaces of thisstandardgrid cells con-
sist of triangles and quadrilaterals. Thus, for the definition of the surface point set
ΩS

I (p, π2D) we can use the two-dimensional nodal points from the previous sub-
section. Again, using surface points only yields non-singular interpolation up to a
polynomial degree0 < p ≤ p∗. The value ofp∗ is 3 for the tetrahedron,5 for the
hexahedron and4 for the pentahedron and pyramid, respectively. We note thatthese
values are independent of the choice of the parameterπ2D. Although the number
of surface points increases with greaterπ2D, the rank of the volume interpolation
does not. We thus use the recursive nesting strategy (16) andintroduce an addi-
tional parameterπ3D, which controls the number of recursions. The mappingMr

is again used to shrink the new nested surface points in a LGL-type manner (15).
In figure 3 the ratios of the interpolation pointsMI(p) between the optimal number
N(p) for different parametersπ := (π3D, π2D) are plotted. Again for tetrahedra and
π = (0, 0) the number of interpolation points are always optimal, whereas for other
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grid cell shapes the ratio converges to1.0 for p → ∞. Compared to the2D case
the convergence for the3D case is slower, however the magnitudes of the ratios are
still reasonable. The corresponding Lebesgue constants are listed in tables 2 and 3.

p

M
I
/N

1 21 41 61 81 101

π=(0,0)
π=(0,1)
π=(1,0)
π=(1,1)
π=(2,0)
π=(2,1)

1.0

1.2

1.33

2.0

1.6

1.5

p
M

I
/N

1 21 41 61 81 101

π=(0,0)
π=(0,1)
π=(1,0)
π=(1,1)

1.0

1.2

1.25

1.5

p

M
I
/N

1 21 41 61 81 101

π=(0,0)
π=(0,1)
π=(1,0)
π=(1,1)

1.0

1.07

1.25

1.33

p

M
I
/N

1 21 41 61 81 101

π=(0,0)
π=(1,0)
π=(2,0)
π=(3,0)

1.0

1.33

2.0

4.0

Fig. 3. Ratio of the numberMI(p) of interpolation points and the dimensionN(p) of the
polynomial space as a function of the polynomial degreep for hexahedron (top left), pen-
tahedron (top right), pyramid (bottom left) and tetrahedron (bottom right) and different
parametersπ = (π3D, π2D). The limits forp → ∞ are indicated with dashed lines.
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tetrahedron/p 1 2 3 4 5 6 7 8 9 10 11

MI 4 10 20 35 56 84 120 165 220 286 364

π = (0, 0)/Λ 1.0 2.0 2.9 4.0 6.4 7.9 10.8 17.6 22.0 34.8 36.5

hexahedron/p 1 2 3 4 5 6 7 8 9 10 11

MI 8 20 32 50 80 117 160 214 280 358 448

π = (0, 0)/Λ 1.5 5.0 6.4 8.8 17.0 20.3 41.5 47.6 103.6 201.3 454.2

MI 8 20 32 50 81 124 172 226 298 389 492

π = (1, 0)/Λ 1.5 5.0 6.4 8.8 11.6 35.6 37.1 46.6 103.2 113.5 148.2

MI 8 20 38 68 104 147 208 280 364 472 592

π = (0, 1)/Λ 1.5 5.0 4.8 15.6 11.2 13.0 30.4 32.7 52.0 111.6 323.5

MI 8 20 38 68 105 154 220 298 394 509 642

π = (1, 1)/Λ 1.5 5.0 4.8 15.6 8.9 18.1 13.3 31.0 49.4 58.0 78.0

MI 8 20 32 51 88 136 184 245 336 444 552

π = (2, 0)/Λ 1.5 5.0 6.4 7.8 9.1 14.0 30.2 28.3 40.2 56.9 124.2

MI 8 20 38 69 112 166 238 329 438 570 726

π = (2, 1)/Λ 1.5 5.0 4.8 5.9 8.9 11.1 12.5 20.3 21.2 31.5 61.2
Table 2
Lebesgue constantsΛ and number of interpolation pointsMI for the3D interpolation sets
with different parametersπ = (π3D, π2D).
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pentahedron/p 1 2 3 4 5 6 7 8 9 10 11

MI 6 15 26 42 67 101 141 188 248 322 407

π = (0, 0)/Λ 1.7 3.7 4.4 6.0 8.1 21.4 22.7 42.3 96.7 112.1 175.2

MI 6 15 26 43 72 110 152 205 278 365 458

π = (1, 0)/Λ 1.7 3.7 4.4 5.9 10.0 11.2 23.4 24.2 61.6 74.2 167.8

MI 6 15 29 51 79 116 165 224 296 382 482

π = (0, 1)/Λ 1.7 3.7 4.1 9.4 7.2 15.6 15.0 34.2 70.8 86.8 117.6

MI 6 15 29 52 84 125 179 247 329 428 545

π = (1, 1)/Λ 1.7 3.7 4.1 5.7 10.0 8.7 13.0 17.2 33.3 34.5 60.2

pyramid/p 1 2 3 4 5 6 7 8 9 10 11

MI 5 13 25 42 66 98 138 187 247 319 403

π = (0, 0)/Λ 1.5 3.0 4.2 6.8 9.7 15.6 24.5 39.7 71.4 146.9 366.2

MI 5 13 25 43 70 106 150 205 275 359 455

π = (1, 0)/Λ 1.5 3.0 4.2 5.3 7.2 11.4 20.0 20.8 54.8 38.6 83.6

MI 5 13 26 45 70 103 146 199 263 339 428

π = (0, 1)/Λ 1.5 3.0 3.8 8.4 9.0 13.1 20.2 32.8 65.5 137.7 360.6

MI 5 13 26 46 74 111 159 219 292 380 484

π = (1, 1)/Λ 1.5 3.0 3.8 6.0 7.0 9.5 12.9 18.0 27.4 27.4 42.1
Table 3
Lebesgue constantsΛ and number of interpolation pointsMI for the3D interpolation sets
with different parametersπ = (π3D, π2D).
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3 Application in discontinuous Galerkin methods

In the following we will discuss in detail how to construct a discontinuous Galerkin
(DG) scheme using the nodal elements developed above. To keep matters simple
we restrict the discussion to a scalar conservation law of the form

ut + ~∇ · ~f(u) = 0, (17)

with appropriate initial and boundary conditions in a domainΩ×[0, T ] ⊂ R
d×R

+
0 .

The base of the semi-discrete DG formulation is a local weak formulation, which
is obtained for a grid cellQ ⊂ Ω by multiplying (17) by a test functionφ = φ(~x)
and integrating overQ

∫

Q

(
ut + ~∇ · ~f(u)

)
φ d~x = 0. (18)

The usual weak formulation results after spatial integration by parts
∫

Q

utφ d~x+
∫

∂Q

(
~f(u) · ~n

)
φ ds−

∫

Q

~f(u) · ~∇φ d~x = 0. (19)

For the DG discretization the exact solutionu is next replaced by a piecewise poly-
nomial approximationuh. As this approximation is in general discontinuous across
grid cell interfaces, the surface flux integrals are not welldefined. To get an unique
solution and a stable discretization, the normal flux~f · ~n in the surface integral
is replaced with a numerical flux functiong~n, which depends on the values from
both sides of the grid cell interface. Independent of the choice of the numerical
flux g~n, there are a lot of different ways of how to implement the semi-discrete
DG scheme. The implementations differ in terms of ’evaluation of the integrals’
and ’representation of the approximationuh’. Recently, Hesthaven and Warburton
introduced the nodal DG scheme [24]. In their formulation, the approximationuh

is represented using the nodal basis functions{ψj}j=1,...,MI
, which are furthermore

chosen as test functions. In this work, we choose a more ’classic’ approach, where
we use the modal basis functions{φj}j=1,...,N to define the test functions and the
DG polynomial

uh(~x, t) :=
N∑

j=1

ûj(t)ϕj(~x) for ~x ∈ Q, (20)

with the time dependent modal DOF{ûj(t)}j=1,...,N . In standard modal DG imple-
mentations, the evaluation of the integrals is usually donewith Gauss integration.
For instance we get the following approximation for the firstvolume integral

∫

Q

f1(uh)
∂ϕ

∂x1
(~x) d~x ≈

(p+1)d∑

j=1

f1(uh(~χj))
∂ϕ

∂x1
(~χj)ωj,

=: K1,GP f̄
1
,

(21)

12



whereωj are the Gauss weights,~χj the Gauss positions,̄f
1

the vector of flux eval-
uations andK1,GP the integration matrix with

(K1,GP )ij :=
∂ϕi

∂x1
(~χj)ωj, i = 1, ..., N ; j = 1, ..., (p+ 1)d. (22)

We note thatuh(~χj) is evaluated using (20). If we consider a hexahedron with a
p = 5 approximation, we get(p + 1)d = 216 evaluations with this strategy for the
approximation of the volume integrals. We will show in the next subsection how to
make use of the nodal elements to reduce the computational complexity of modal
implementations.

3.1 The modal DG scheme with nodal integration

We first introduce the nodal interpolation of the non-linearflux function according
to (8)

f1(uh(~x)) ≈ f1,I(~x) :=
MI∑

i=1

f̃1,i ψi(~x), (23)

where the nodal DOF is calculated asf̃1,i = f1(uh(~ξi)). The evaluation of the DG
polynomial (20) at the nodal points can be done using the Vandermonde matrix (5)

ũ = V û, (24)

yielding the nodal DOF of the flux as̃f1,i = f1(ũi). As a next step, the interpolation
of the flux function is inserted into the volume integral and integrated exactly

∫

Q

f1(uh)
∂ϕj

∂x1
(~x) d~x ≈

∫

Q

f1,I(~x)
∂ϕj

∂x1
(~x) d~x,

=: K1f̃
1
,

(25)

where we introduced the general stiffness matrix

K1 :=
∫

Q

∂ϕ

∂x1

(~x)ψT (~x) d~x =
∫

Q

∂ϕ

∂x1

(~x)ϕT (~x) d~xV −1 =: K1,MV −1. (26)

The evaluation of the stiffness matrix can be done with Gaussintegration in an
initial phase of the simulation, yielding a quadrature freeapproach. The surface
integrals are treated in a similar manner. Comparing computational complexity we
only needMI evaluations to calculate the volume integrals. Considering for in-
stance thep = 5 (π = (1, 1)) hexahedron we getMI = 105. Furthermore as
the developed nodal elements support an interpolation in the volume and on the
boundary at the same time no additional evaluations of the polynomial are needed
to calculate the surface integrals. We note that the modal DGwith nodal integra-
tion and the nodal DG [25] are strongly related. In fact the modal DG scheme with
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nodal integration can be interpreted as a nodal DG scheme using modal DOF and
the Vandermonde matrix for the calculation of the nodal DOF (24). Reducing the
accuracy of quadrature and relying on nodal products when computing nonlinear
fluxes naturally introduces an error, known in spectral methods as aliasing [21].
However, the scheme maintains its full linear accuracy and the potential for alias-
ing driven instabilities is well understood and can, if needed, be controlled by the
use of a weakmodalfilter (see [25]). In the present work, however, we have not
found any need for this additional stabilization for any of the examples presented
later.

4 Computational examples and validations

In the following we shall present a number of examples of increasing complexity
to thoroughly validate the developed scheme. The spatial discontinuous Galerkin
scheme is integrated in time using the recently developed space-time expansion
(STE) approach [31,15], which allows a consistent arbitrary high order accurate
local time stepping.

4.1 Linear Wave Propagation

In this subsection the spatial accuracy of the nodal integration approach for a linear
problem is investigated. We use the linearized Euler equations (LEE) as a model
problem for linear wave propagation

Ut + ~∇ · ~F (U) = 0, (27)

with the vector of the conservative variablesU = (ρ′, u′, v′, w′, p′)T and the LEE
fluxes ~F := (F1, F2, F3)

T := (A1 U,A2 U,A3 U)T with the Jacobi matrices

A1 =




u0 ρ0 0 0 0

0 u0 0 0 1
ρ0

0 0 u0 0 0

0 0 0 u0 0

0 κp0 0 0 u0




, A2 =




v0 0 ρ0 0 0

0 v0 0 0 0

0 0 v0 0 1
ρ0

0 0 0 v0 0

0 0 κp0 0 v0




, A3 =




w0 0 0 ρ0 0

0 w0 0 0 0

0 0 w0 0 0

0 0 0 w0
1
ρ0

0 0 0 κp0 w0




,

(28)
whereU0 := (ρ0, u0, v0, w0, p0)

T is the background flow. As an example, a pla-
nar wave is initialized such, that it contains only fluctuations in the right moving
characteristic wave with the Eigenvalueu0 + c0

U = RW, (29)
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with W = Ŵ sin(~k · ~x) and the Eigenvector matrix

R =




n1 n2 n3
ρ0

2c0

ρ0

2c0

0 −n3 n2
n1

2
−n1

2

n3 0 −n1
n2

2
−n2

2

−n2 n1 0 n3

2
−n3

2

0 0 0 ρ0

2c0

ρ0

2c0




, (30)

with c0 =
√
κp0

ρ0

. We choose the perturbation of the characteristic variablevector

Ŵ = (0.0, 0.0, 0.0, 0.001, 0.0)T , the normal vector of the wave~n = (1.0, 0.0, 0.0)T ,
the wave number vector~k = (π, 0.0, 0.0)T and the background flow
U0 = (1.0, 0.0, 0.0, 0.0, 1

κ
)T with κ = 1.4, resulting inc0 = 1.0. The computational

domainΩ := [0.0; 2.0]3 is split into 8 regular subdomainsΩi = ~xi + [0.0; 1.0]3,
i = 1, ..., 8 with

~x1 := (0.0, 0.0, 0.0)T , ~x2 := (1.0, 0.0, 0.0)T , ~x3 := (0.0, 1.0, 0.0)T ,

~x4 := (0.0, 0.0, 1.0)T , ~x5 := (1.0, 1.0, 0.0)T , ~x6 := (0.0, 1.0, 1.0)T ,

~x7 := (1.0, 0.0, 1.0)T , ~x8 := (1.0, 1.0, 1.0)T .

(31)

For ourh-refinement tests we introduce the parametern ≥ 1. For a givenn, we
first split every sub domainΩi into n3 regular hexahedral elements. To generate
the hybrid mesh, we furthermore split the hexahedra in the domain i = 1 into
tetrahedra, in the domainsi = 2, 3, 4 into prisms and in the domaini = 8 into
pyramids. We illustrate the different hexahedra splittings in figure 4 (please note
that the front pyramid is blanked for better visualization purpose). Forn = 1 the
hybrid prototype mesh consists of21 grid cells.

(a) 6 tetrahedra (b) 2 pentahedra (c) 6 pyramids

Fig. 4. Visualization of the different hybrid meshes.

In table 4 the experimental order of convergence for this test case is plotted for
p = 3 andp = 4. These results suggest that the order of the STE-DG discretization
is p + 1 in spaceand time. As expected, for the linear problem the results did not
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n Nb cells Nb DOF L2(p
′) EOC Nb DOF L2(ρe) EOC

p = 3 p = 4

1 21 420 5, 03E − 5 - 9.408 3, 51E − 6 -

2 168 3360 2, 21E − 6 4,5 75.264 1, 22E − 7 4,8

3 567 11.340 4, 22E − 7 4,1 19.845 1, 68E − 8 4,9

4 1344 26.880 1, 22E − 7 4,1 47.040 4, 06E − 9 4,9
Table 4
Experimental order of convergence forp = 3 andp = 4.

change when we increased the interpolation orderp̃ or when we changed the grid
points via the parametersπ. To further investigate the behavior of the discretization
for different polynomial approximations, five configurations were tested. In the first
configuration a fixed grid with23 hexahedral grid cells was used. We plot in figure
5 theL2 error norm of the pressurep′ for polynomial orderp = 1 up top = 8 with
tend = 20.0. For the next configurations the hexahedral base grid was further split
into tetrahedra, prisms or pyramids, according to figure 4, resulting in48, 16 and
48 grid cells, respectively. In the last configuration the hybrid grid with n = 1 was
used, resulting in21 grid cells. Please note that for the first four configurationsthe
time steps do not differ over the computational domain, thusthe local time stepping
STE-DG scheme reduces to a global time stepping scheme. But for configuration
five due to the different grid cell types and their different in-spheres, the scheme
runs in local time stepping modus. It is interesting to compare for this test case the

polynomial order

L
2(

p’
)

1 2 3 4 5 6 7 8
10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

hexahedra
prisms
tetrahedra
pyramids
hybrid

Fig. 5. Double logarithmic plot ofL2 error versus the polynomial order for different ele-
ment types and grids.
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performances of the different grid cells. First of all comparing the number of grid
cells in the different configurations and thus the number of DOF, figure 5 shows
that the error norms do not differ much, thus uncovering a superior approximation
behavior of the hexahedral grid cells compared to the other types. Furthermore if
we compare the CPU time for the whole calculation, the hexahedral discretization
succeeds again, as they allow larger time steps, resulting in the following ranking
of this performance test: hexahedra (rel. CPU timet = 1), prisms (rel. CPU time
t ≈ 4), tetrahedra (rel. CPU timet ≈ 10) and pyramids (rel. CPU timet ≈ 20).
Several investigations indicate that this trends even holdtrue for non-linear prob-
lems, especially for the Navier-Stokes equations.

4.2 The Euler equations

In the following test, the influence of the recursion parameter π = (π3D, π2D) and
the influence of different interpolation orders is investigated. Based on the results
from the linear test case, we consider in this subsection thenon-linear Euler equa-
tions

Ut + ~∇ · ~F (U) = 0, (32)

with the vector of the conservative variablesU = (ρ, ρv1, ρv2, ρv3, ρe)
T and the

Euler fluxes~F := (F1, F2, F3)
T :

Fl(U) =




ρ vl

ρ v1vl + δ1l p

ρ v2vl + δ2l p

ρ v3vl + δ3l p

ρ evl + p vl




, l = 1, 2, 3. (33)

Here, we use the usual nomination of the physical quantities: ρ, ~v = (v1, v2, v3)
T ,

p, ande denote the density, the velocity vector, the pressure, and the specific total
energy, respectively. Here the adiabatic exponentκ = cp

cv
with the specific heats

cp, cv depend on the fluid, and are supposed to be constant for this test. The system
is closed with the equation of state of a perfect gas:

p = ρRT = (κ− 1)ρ(e−
1

2
~v · ~v), and e =

1

2
~v · ~v + cvT. (34)

with the specific gas constantR = cp − cv. The considered test case is a three
dimensional variation of the isentropic vortex convectionproblem of Hu and Shu
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[26]

~r(~x, t) = ~rvortex × (~x− ~x0 − ~v0 · t) ,

δv =
vmax

2π
exp




1 −
(
|~r|
r0

)2

2


 ,

~v(~x, t) = ~v0 + δv · ~r,

T

T0

= 1 −
κ− 1

2

(
δv

co

)2

,

ρ(~x, t) = ρ0

(
T

T0

) 1

κ−1

,

p(~x, t) = p0

(
T

T0

) κ
κ−1

.

(35)

If we choose the rotational axis of the vortex~rvortex = (0., 0., 1.)T andρ0 = p0 =
R = 1, then the standard two dimensional problem is recovered. For our test prob-
lem we chose the background flow(ρ0, ~v

T
0 , p0) = (1., 1., 1., 1., 1

κ
), κ = 1.4, the

rotational axis of the vortex~rvortex = (1.,−0.5, 1.)T , the initial center of the vortex
~x0 = (0.5, 0.5, 0.5)T , the amplitude of the vortexvmax = 0.1, the halfwidth of the
vortexr0 = 1.0 and the endtime of the simulationtend = 4.0. The computational
domainΩ := [0.0, 5.0]3 with exact boundary conditions prescribed. The solution to
this problem at timet = 2.0 with 63 p = 5 hexahedra is shown in figure 6. The re-
sults of tests withp = 6 trial functions with different parametersπ and/or different
interpolation orders̃p are listed in tables 5 - 8.

Fig. 6. 3D isentropic vortex. Isosurfaces of density (ρ = 0.99977, 99989, 99998).
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Interpolation order ( p̃) and π Nb Int points L2(ρ) CPU time/EU

p̃ = 6, π = (0, 0) 117 1, 9654E − 05 100%

p̃ = 6, π = (1, 0) 124 1, 7455E − 05 107%

p̃ = 6, π = (0, 1) 147 1, 8112E − 05 120%

p̃ = 6, π = (1, 1) 154 1, 6055E − 05 121%

p̃ = 6, π = (2, 0) 136 1, 7399E − 05 110%

p̃ = 6, π = (2, 1) 166 1, 5832E − 05 125%

p̃ = 7, π = (0, 0) 160 1, 7586E − 05 127%

p̃ = 8, π = (0, 0) 214 1, 6336E − 05 154%

p̃ = 7, π = (4, 2) 512 1, 4770E − 05 255%

Gauss Legendre points 637 1, 4665E − 05 403%

Table 5
Results for different types of integration points forp = 6 hexahedra. The domainΩ is
subdivided into8 hexahedra.

Interpolation order ( p̃) and π Nb Int points L2(ρ) CPU time/EU

p̃ = 6, π = (0, 0) 98 2, 8744E − 04 100%

p̃ = 6, π = (1, 0) 106 2, 8256E − 04 109%

p̃ = 6, π = (0, 1) 103 1, 7078E − 04 107%

p̃ = 6, π = (1, 1) 111 1, 6332E − 04 110%

p̃ = 7, π = (0, 0) 138 2, 7298E − 04 127%

p̃ = 8, π = (0, 0) 187 1, 5537E − 04 181%

p̃ = 7, π = (1, 1) 159 1, 0978E − 04 136%

Gauss Jacobi points 588 9, 8771E − 05 425%

Table 6
Results for different types of integration points forp = 6 pyramids. The domainΩ is
subdivided into6 pyramids.

The general observation is, that if we increase the number ofinterpolation points,
then the error norm decreases and the CPU time increases. We also compared the
nodal integration to the standard Gaussian integration, where we chose73 = 343
tensor product Jacobi Gauss points for the volume integralsand72 = 49 tensor
product Jacobi Gauss points for each of the surface integrals. Although the results
with standard Gauss cubature are slightly more accurate, comparing CPU times
clearly confirms that the nodal type integration is more efficient.
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Interpolation order ( p̃) and π Nb Int points L2(ρ) CPU time/EU

p̃ = 6, π = (0, 0) 101 1, 4853E − 05 100%

p̃ = 6, π = (1, 0) 110 1, 4235E − 05 109%

p̃ = 6, π = (0, 1) 116 1, 2260E − 05 114%

p̃ = 6, π = (1, 1) 125 1, 2250E − 05 118%

p̃ = 7, π = (0, 0) 141 1, 4210E − 05 127%

p̃ = 8, π = (0, 0) 188 1, 2925E − 05 154%

p̃ = 7, π = (0, 1) 165 1, 1562E − 05 141%

Gauss Jacobi points 588 1, 1006E − 05 424%

Table 7
Results for different types of integration points forp = 6 prisms. The domainΩ is subdi-
vided into8 hexahedra which are further subdivided into2 prisms, yielding16 grid cells.

Interpolation order ( p̃) and π Nb Int points L2(ρ) CPU time/EU

p̃ = 6, π = (0, 0) 84 1, 414E − 04 100%

p̃ = 7, π = (0, 0) 120 1, 4386E − 04 113%

p̃ = 8, π = (0, 0) 165 1, 3945E − 04 135%

Gauss Jacobi points 539 1, 3790E − 04 399%

Table 8
Results for different types of integration points forp = 6 tetrahedra. The domainΩ is
subdivided into6 tetrahedra.

4.3 Compressible Navier-Stokes equations

The three dimensional unsteady compressible Navier-Stokes equations with a source
term reads as

Ut + ~∇ · ~F (U) − ~∇ · ~F v(U, ~∇U) = S, (36)

with the vector of the conservative variablesU , the non-linear Euler fluxes~F :=
(F1, F2, F3)

T and the diffusion fluxes~F v := (F v
1 , F

v
2 , F

v
3 )T :

F v
l (U, ~∇U) =




0

τ1l

τ2l

τ3l

τljvj − ql




, l = 1, 2, 3. (37)
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The viscous stress tensor is given by

τ := µ(~∇~v + (~∇~v)T −
2

3
(~∇ · ~v)I), (38)

and the heat flux by~q = (q1, q2, q3)
T with

~q := −k~∇T, with k =
cpµ

Pr
, (39)

Here, the viscosity coefficientµ and the Prandtl numberPr depend on the fluid,
and are supposed to be constant for this test. If we choose

S = α




cos(β) (d k − ω)

cos(β)A+ sin(2β)αk (κ− 1)

cos(β)A+ sin(2β)αk (κ− 1)

cos(β)A+ sin(2β)αk (κ− 1)

cos(β)B + sin(2β)α (d kκ− ω) + sin(β)
(

d k2µκ
Pr

)




, (40)

with β := k(x1 + x2 + x3) − ωt, A = −ω + k
d−1

(
(−1)d−1 + κ (2 d− 1)

)
and

B = 1
2
((d2 + κ(6 + 3 d)) k − 8ω), the analytical solution to (36)+(40) is given by

U =
(
sin(β)α+ 2, sin(β)α+ 2, sin(β)α+ 2, sin(β)α+ 2, (sin(β)α+ 2)2

)T
.

(41)
For our test we choose the coefficientsκ = 1.4, Pr = 0.72, µ = 0.0001, R =
287.14 andα = 0.5, ω = 10.0, k = π with the dimension of the problemd = 3.
We solve this problem with the recently developed modal STE-DG scheme for
compressible Navier-Stokes equations [15], with the abovepresented nodal modi-
fications. The main building block of this discretization isa new weak formulation,
where integration by parts is used twice, circumventing theneed for resorting to
a mixed first order system and thus circumventing the need foradditional auxil-
iary variables. For the numerical fluxes we choose approximate Riemann solvers
for both, the hyperbolic part and the parabolic part. For the approximation of the
Euler flux we choose the HLLC flux [37] and for the approximation of the viscous
fluxes the recently developed dGRP flux [14], [15], [30], which can be interpreted
as a natural extension of the classicinterior penaltyflux [33] for the Laplace equa-
tion to the viscous terms of the compressible Navier-Stokesequations. The results
of a convergence test with the hybrid grids from example 4.1 are listed in table 9
for p = 4 andp = 5 with π = (0, 0), where we usedtend = 1.0 and periodic
boundary conditions. The results indicate that the optimalorder of convergence
EOC = p+ 1, for p odd and even, is achieved.

We list the average CPU time per element update and per degreeof freedom (CPU/EU/DOF)
for the 3D compressible Navier-Stokes equations withp = 6 Ansatz functions (84
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n Nb cells Nb DOF L2(ρe) EOC Nb DOF L2(ρe) EOC

p = 4 p = 5

2 168 5.880 6, 13E − 3 - 9.408 3, 80E − 3 -

4 1344 47.040 1, 91E − 4 5,0 75.264 9, 36E − 5 5,3

8 10752 376.320 4, 32E − 6 5,5 602.112 1, 54E − 6 5,9

16 86016 3.010.560 1, 22E − 7 5,1 4.816.896 2, 38E − 8 6,0
Table 9
Experimental order of convergence forp = 4 andp = 5 with π = (0, 0) andtend = 1.0.

DOF/Element) in table 10. Based on the investigations in subsection 4.2, we chose
for every grid cell type the most efficient combination (in terms of accuracy versus
cpu time) of the parametersπ and the interpolation order̃p. All CPU times were
measured on one processor of a Intel Xeon Dual Core CPU with 2.66GHz. An
equivalent measurement for a6th order compact finite difference scheme with4th
order Runge-Kutta time integration, [2], on the same CPU yields∼ 56, 0µs.

Interpolation order ( p̃) and π Element type CPU time/EU/DOF [µs]

p̃ = 6, π = (1, 1) hexahedron 39, 9

p̃ = 7, π = (1, 1) pyramid 43, 1

p̃ = 6, π = (0, 1) prism 31, 5

p̃ = 6, π = (0, 0) tetrahedron 27, 7

Table 10
CPU times for the 3D compressible Navier-Stokes equations with (p = 6) STE-DG dis-
cretization (7th order in space and time).

4.3.1 Polygonal meshes

In this section preliminary results for a DG discretizationwith polygonal meshes
are shown. We propose to apply the recursion based algorithmto define efficient
sets of interpolation points for polygonal grid cells. Numerical investigations in-
dicate that for a general grid cell the shape dependent parameterp∗, which is the
maximal possible interpolation order with surface points only, has the value ’num-
ber of sides minus one’, which we choose for all grid cell types (2D and 3D) dis-
cussed in this work. Starting from a triangle mesh the corresponding dual mesh is
constructed and used as polygonal mesh, figure 7a. The primaltriangle mesh is no
longer needed as it is only used to construct the dual mesh. The resulting polygonal
mesh contains elements with4 sides up to element with7 sides. For the distribution
of the interpolation points two different strategies are used for an approximation
with p = 3. For the first strategy we directly use the recursion algorithm (14) with
a fixed recursion parameterπ2D for all elements. If we chooseπ2D = 0, test con-
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Fig. 7. Primal and dual mesh (h = 0.1) and detailed view of the interpolation grid
(h = 0.025) with p = 3 (π2D = 0) interpolation.

figuration A shown in figure 7b, the resulting interpolation grid is only distributed
at grid cell boundaries, as all grid cells have at least4 sides. Similar to the discus-
sion above it is favorable for non-linear problems to use more interpolation points,
i.e. increasing the recursion parameterπ2D. In figure 8a the recursion parameter is
set toπ2D = 3, test configuration B, for all grid cells. In this extreme case where
quadrilaterals (4 sides, 3 recursive defined interior pointlayers) and heptagons (7
sides, 0 recursive defined interior point layers) arise, theresulting point distribution
is non-uniform and seems to be not well suited. To circumventthis, our second
strategy is tofix the number of recursions for every grid cell type, thus introducing
the recursion parameterπ2D independently for every grid cell type. In figure 8b the
interpolation grid for a fixed recursion numberrmax = 1, test configuration C, with
a second order inner point distribution is shown, corresponding to the parameter
π2D = 2 for quadrilaterals andπ2D = 5 for heptagons. To validate this discretiza-
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0.46 0.48 0.5 0.52 0.54
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(a) configuration B
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0.48
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0.52
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(b) configuration C

Fig. 8. Detailed view of the interpolation grid (h = 0.025) for p = 3 approximation with
π2D = 3 or rmax = 1.

tions the compressible Navier-Stokes equations with a source term are considered,
where we used the reduced two dimensional version of the previous example with
the same parameters, excepting the parameterk which we changed fromπ to 2π
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and the dimension d from3 to 2. For the grid refinement, four different regular
triangle grids with typical mesh sizeh are constructed and then converted to polyg-
onal meshes, similar to 7a. The pre-computation of the surface and volume integral
matrices is done on sub triangles with standard Gaussian integration. In table 11
the results for configuration A and the results for the reference computation on the
primal triangular grid withtend = 0.5 and exact boundary conditions are shown.
We notice first that the expected order of convergence is achieved. Considering effi-
ciency, the results on the primal mesh are more accurate, whereas the CPU time for
configuration A istCPU = 378s and the CPU time for the primal configuration is
tCPU = 594s. The reasons for the CPU time advantage is, that the resulting polyg-
onal configuration has only about half the DOF and allows larger (explicit) time
steps. To account for the non-linearity of the Navier-Stokes fluxes, computations

h Nb cells L2(ρe) EOC Nb cells L2(ρe) EOC

triangular configuration configuration A

0,2 62 2, 44E − 3 - 42 1, 28E − 2 -

0,1 226 1, 92E − 4 3,7 134 1, 31E − 3 3,3

0,05 896 1, 07E − 5 4,3 489 7, 16E − 5 4,2

0,025 3595 6, 42E − 7 4,1 1878 4, 77E − 6 3,9
Table 11
Experimental order of convergence forp = 3 (10 DOF per grid cell) for reference test on
primal triangular mesh and for test configuration A.

with configuration B and C are performed and corresponding results are listed in
table 12. We notice that the accuracy of the solution is improved, approaching the
quality of the primal configuration solution. As expected, the results of configura-
tion C are more accurate compared to the results of configuration B. Considering
the efficiency of the computations, the CPU time for test B istCPU = 380s and
for test CtCPU = 398s showing a large potential for DG discretizations on polyg-
onal meshes compared to traditional triangular meshes. In future future works we

h Nb cells L2(ρe) EOC L2(ρe) EOC

configuration B configuration C

0,2 42 9, 55E − 3 - 5, 17E − 3 -

0,1 134 7, 22E − 4 3,7 4, 25E − 4 3,6

0,05 489 3, 38E − 5 4,4 2, 64E − 5 4,0

0,025 1878 1, 84E − 6 4,2 1, 64E − 6 4,0
Table 12
Experimental order of convergence forp = 3 (10 DOF per grid cell) for test configuration
B and C.

will investigate the influence of different node distribution strategies and recursion
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parameters for polygonal meshes and furthermore investigate the applicability of
the recursion algorithm (16) with ’p∗ = number of sides minus 1’ for polyhedral
meshes in three dimensions.

4.3.2 Boundary Layer Instability

We consider in this example the evolution of a Tolmien-Schlichting wave in a sub-
sonic compressible boundary layer. The computational domain Ω extends from
x1 = 337.0 to x1 = 890.0 andx2 = 0.0 to x2 = 22.35. We choose subsonic
inflow and outflow boundary conditions and atx2 = 0.0 isothermal wall conditions
with Tw = 296.0K. The initial solution of the computation is obtained from a sim-
ilarity solution with Mach numberM∞ = 0.8 andT∞ = 280.0K. The Reynolds
numberRe := ρ∞v1δ1

µ(T∞)
= 1000, based on the displacement thickness at the inflow

δ1. Usingδ1 as the reference length, we getδ1 = 1.0 at the inflow and the boundary
layer thicknessδ99 = 2.95 andδ99 = 4.8 at the inflow and outflow, respectively.
The temperature dependence of viscosityµ is modeled using Sutherland’s law

µ(T ) = µ(T∞)T 3/2 1 + Ts

T + Ts

, (42)

with µ(T∞) = 1.735 10−5 kg
ms

andTs = 110.4K.
The inflow atx1 = 337.0 is superimposed with a forcing term, composed of the
eigenfunction of the Tolmien-Schlichting wave with the fundamental frequency
ω0 = 0.0688. For a detailed description of the similarity solution and the eigen-
function we refer to Babucke et al. [1]. The computational domain was subdivided
in 48 × 22 regular quadrilaterals and discretized withp = 6 (π2D = 1) STE-
DG scheme, resulting in29568 DOF. The endtime of the simulation was set to
tend

T0

= 37, whereT0 = 2π
ω0

≈ 92, to ensure a periodic solution. To analyze our re-
sults we apply a discrete Fourier analysis using one period of the forcing frequency
T0 from t

T0

= 36 to t
T0

= 37. We plot the maximal amplitude ofv1 with respect to
x2 as a function ofx1 in figure 9. For comparison, corresponding results obtained
with a 6th order compact finite difference code with330 × 150 grid points and 4th
order Runge Kutta time integration [1] are included, showing good agreement. We
furthermore plot the amplification rateαi of the velocityv1 based on the maximal
amplitude in figure 9. Again, the result is in good accordanceto the reference result
[1] and the predictions of linear stability theory.

4.3.3 Flow past a Sphere atRe = 300

We consider in this example a sphere with radiusr = 1 centered at~x0 = (0, 0, 0)T .
We solve the 3D unsteady compressible Navier-Stokes equations with Mach num-
ber M = 0.3 and Reynolds numberRe = 300 based on the diameter of the
sphere. The computational domain extends fromx1 = −20.0 to x1 = 100.0 and
x2, x3 = ±30.0. The grid consists of≈ 160.000 tetrahedra, where the wake of the
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Fig. 9. Maximum amplitudes ofv1 (left). Amplification rateαi of u1 based on maximum
amplitude (right).

sphere is resolved withh ≈ 0.4. The surface of the sphere is discretized using tri-
angles withh ≈ 0.1. To capture the right geometry of the sphere, tetrahedra with
curved boundary surfaces are used. We plot the cut of the gridon a cut plane with
~nplane = (0, 1, 0)T in figure 10. For the calculation thep = 3 STE-DG scheme was

(a) total grid (b) zoomed grid

Fig. 10. Visualization of the grid for the sphere example.

used, resulting in≈ 3.000.000 DOF. A contour plot of the velocity magnitude, fig-
ure 11, shows that the boundary layer is resolved within 1-2 tetrahedral elements.
In figure 12 the structure of the vortices are shown using theλ2 vortex detection
criterium. We list in table 13 the resulting force coefficients, the corresponding
oscillating amplitudes and the Strouhal numberStr. For comparison results from
Tomboulides [36] and Johnson and Patel [27], obtained within an incompressible
simulation, are listed as well. In figure 13 we plot the drag coefficientCd and the
lateral force coefficientCl versus timet.
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(a) velocity magnitude (b) pressure

Fig. 11. Contour plot of the instantaneous velocity magnitude |~v| = 0.0...0.3478 and pres-
surep = 0.688...0.762.

Fig. 12. Isometric view ofλ2 isosurface.

Cd ∆Cd Cl ∆Cl Str

0.673 0.0031 −0.065 0.015 0.135

Tomboulides [36] 0.671 0.0028 − − 0.136

Johnson&Patel [27] 0.656 0.0035 −0.069 0.016 0.137

Table 13
Force coefficients and Strouhal number.
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Fig. 13. Drag and lateral force coefficient.
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5 Conclusion

Part one of this paper deals with a framework for efficient polynomial interpola-
tion on polymorphic grid cells, i.e. the definition of a nodalinterpolation basis.
In our framework, for non simplex grid cells the number of nodal basis functions
is higher than the number of modal basis functions. We showedthat one way to
get a reasonable Vandermonde matrix is to use the singular value decomposition
framework to build a least squares inverse. The properties of these Vandermonde
matrices (and the corresponding interpolation) solely depend on the position of the
interpolation points. We consider in this paper only interpolation points with a sym-
metric distribution, points which support an interpolation of orderp in the volume
of the grid cell and simultaneously an interpolation of the same order on each of
the faces of the grid cell. We therefore introduced a simple construction guideline,
which is based on a recursive algorithm starting from a givensurface points distri-
bution. Using a set of 1D points, we can successive define points for 2D faces, and
consequently define points for 3D volumes.

In the second part of the paper we introduced a novel integration framework for
modal discontinuous Galerkin schemes, which could be easily implemented in an
existing Gauss integration based modal DG code. Borrowing from nodal meth-
ods a mixed modal-nodal DG scheme was constructed. As an example the nodal
based integration was combined with the recently developedspace-time expansion
discontinuous Galerkin scheme yielding an efficient high order discretization on
arbitrary unstructured grids for unsteady flow problems.
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