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Abstract

The purpose of this study is to propose a high-accuracy and fast numerical method
for the Cauchy problem of the Laplace equation. Our problem is directly dis-
cretized by the method of fundamental solutions (MFS). The Tikhonov regular-
ization method stabilizes a numerical solution of the problem for given Cauchy data
with high noises. The accuracy of the numerical solution depends on a regulariza-
tion parameter of the Tikhonov regularization technique and some parameters of
MFS. The L-curve determines a suitable regularization parameter for obtaining an
accurate solution. Numerical experiments show that such a suitable regularization
parameter coincides with the optimal one. Moreover, a better choice of the parame-
ters of MFS is numerically observed. It is noteworthy that a problem whose solution
has singular points can successfully be solved. It is concluded that the numerical
method proposed in this paper is effective for a problem with an irregular domain,
singular points, and the Cauchy data with high noises.
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1 Introduction

Many kinds of inverse problems have recently been studied in science and en-
gineering. The Cauchy problem of an elliptic partial differential equation is a
well known inverse problem. The Cauchy problem of the Laplace equation is
an important problem which can be applied to inverse problem of electrocar-
diography [12]. Onishi et al. [9] proposed an iterative method for solving the
Cauchy problem of the Laplace equation. This method reduces the original
inverse problem to an iterative process which alternatively solves two direct
problems. This method, called the adjoint method in the papers [7], [10], can
solve various inverse problems by applying many kinds of numerical methods
for solving partial differential equations, such as the finite difference method
(FDM), the finite element method (FEM), and the boundary element method
(BEM). The convergence of this method for the Cauchy problem of the Laplace
equation has been obtained [6].

The method of fundamental solutions (MFS) is effective for easily and rapidly
solving the elliptic well-posed direct problems in complicated domains. Mathon
and Johnston [13] first showed numerical results obtained by the MFS. The
papers [11], [14] discuss some mathematical theories on the MFS. Both of
the BEM and the MFS are well known boundary methods, which discretize
original problems based on the fundamental solutions. The MFS does not
require any treatments for the singularity of the fundamental solution, while
the BEM requires singular integrals. The MFS is a true meshless method, and
can easily be extended to higher dimensional cases.

Wei et al. [4] applied the MFS to the Cauchy problems of elliptic equations.
This method uses the source points distributed outside the domain. The ac-
curacy of numerical solutions depends on the location of the source points.
They numerically showed the relation between the accuracy and the radius of
a circle where the source points are distributed. But, the relation between the
accuracy and the number of source points has not clearly been given, yet.

Many researchers have solved the Cauchy problem by various methods. How-
ever, to our knowledge, the conventional methods cannot solve a problem
whose solution has singular points (see [8] for example).

In this paper, we use the MFS to directly discretize the Cauchy problem of
the Laplace equation. This problem is an ill-posed problem, where the solution
has no continuous dependence on the boundary data. Namely, a small noise
contained in the given Cauchy data has a possibility to affect sensitively on
the accuracy of the solution. The problem is discretized directly by the MFS
and an ill-conditioned matrix equation is obtained. A numerical solution of the
ill-conditioned equation is unstable. The singular value decomposition (SVD)
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can give an acceptable solution to such an ill-conditioned matrix equation. The
SVD was successfully applied to the MFS for solving a direct problem [15].
Even though we apply the SVD, we still cannot obtain an acceptable solution
for the case of the noisy Cauchy data. We use the Tikhonov regularization
to obtain a stable regularized solution of the ill-conditioned equation. The
regularized solution depends on a regularization parameter. Then, we need to
determine a suitable regularization parameter to obtain a better regularized
solution. Hansen [1] suggested the L-curve as a method for finding the suitable
regularization parameter. It is known that the suitable parameter is the one
corresponding to a regularized solution near the “corner” of the L-curve. We
can find the corner of the L-curve as a point with the maximum curvature [5].

Under the assumption of uniform distribution of the source and the colloca-
tion points, we will numerically indicate that a suitable regularized solution
obtained by the L-curve is optimal in the sense that the error is minimized. We
will respectively show the accuracy and the optimal regularization parameter
against a noise level. We will also mention influence of the total numbers of the
source and the collocation points on accuracy. We will show that our method
is effective for a problem whose solution has singular points. It is noteworthy
that such kind of problems can also successfully be solved.

Section 2 introduces the Cauchy problem. In Section 3, the MFS discretizes
the problem. In Section 4, the singular value decomposition, the Tikhonov reg-
ularization and the L-curve are used to obtain a suitable regularized solution.
In Section 5, numerical experiments confirm that the suitable regularization
parameter by the L-curve coincides with the optimal one that minimizes the
error between the regularized solution and the exact one. The error and the
optimal regularization parameter against the noise level of the Cauchy data
are respectively shown. Then, our interest is how to choose the following three
parameters used in MFS: the numbers of collocation points, the number of
source points, and the radius of a circle where source points are distributed.
A better choice of the parameters is also observed. A problem with an irregu-
lar domain and a problem whose solution has singular points are successfully
solved, respectively. Section 6 concludes the paper.

2 Problem Setting

We consider the Laplace equation −∆u = 0 in a two-dimensional bounded
domain Ω enclosed by the boundary Γ. We prescribe Dirichlet and Neumann
boundary conditions simultaneously on a part of the boundary Γ, denoted by
Γ1, as follows:

u = f,
∂u

∂n
= g on Γ1,

3



where f and g denote given continuous functions defined on Γ1, and n the
unit outward normal to Γ1. Then, we need to find the boundary value u on
the rest of the boundary Γ2 := Γ \ Γ1 or the potential u in the domain Ω.
This problem is called the Cauchy problem of the Laplace equation, and the
boundary data are called the Cauchy data.

Our Cauchy problem is described as follows:

Problem 1 For the given Cauchy data f, g ∈ C(Γ1), find u ∈ C(Γ2) or
u ∈ C2(Ω) ∩ C1(Ω) such that

−∆u = 0 in Ω, (1)

u = f,
∂u

∂n
= g on Γ1. (2)

The Cauchy problem is a well known ill-posed problem. We can show the
instability of the solution to the Cauchy problem of the Laplace equation as
follows: For example, in the case where

Ω = (0, 1)2 = {(x, y) : 0 < x < 1, 0 < y < 1},
Γ = [0, 1]× {0} = {(x, 0) : 0 ≤ x ≤ 1},

f(x, 0) =
1

nk
sin(nx), g(x, 0) = 0 (k > 0),

the solution is given by

u(x, y) =
1

nk
sin(nx) cosh(ny).

Here, we can see that

sup
x∈Γ

|f(x)| → 0, sup
x∈Ω

|u(x)| → ∞,

from which we know that the solution u of the Cauchy problem does not
depend continuously on the Cauchy data f and g.

4



3 Discretization by the Method of Fundamental Solutions

Γ1

Γ2

−∆u = 0

Ω





u = f
∂u

∂n
= g

u = ?

x1

xM

ξ1

ξN

xi

ξj

ξ2

ξN−1

n

Fig. 1. Problem setting and distributions of collocation and source points

The fundamental solution of the Laplace equation in two dimensions is defined
as

ϕ∗(r) := − 1

2π
ln r

for r = |x| =
√
x2 + y2, which is a solution to

−∆ϕ∗ = δ(x).

We distribute the collocation points {xi}Mi=1 ⊂ Γ1 on the boundary where the
Cauchy data are prescribed, and the source points {ξj}Nj=1 ⊂ Ω

c
along a circle

outside the domain (Figure 1). We approximate u by uN :

u(x) ≈ uN(x) :=
N∑

j=1

wjϕj(x), (3)

where the basis function is defined as

ϕj(x) := ϕ∗(|x− ξj|) (4)

and {wj}Nj=1 are expansion coefficients to be determined below. Since the ba-
sis functions (4) have no singular points in Ω, the approximate function uN

satisfies the Laplace equation (1). Substituting (3) into (2) and assuming that
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(2) is satisfied at the collocation points, we have





N∑

j=1

wjϕj(xi) = f(xi),

N∑

j=1

wj

∂ϕj

∂n
(xi) = g(xi),

i = 1, 2, . . . ,M

or in the matrix form:

Aw = b, (5)

where the matrix A = (aij) ∈ R2M×N and the vectors w = (wj) ∈ RN ,
b = (bi) ∈ R2M are defined by

aij :=





ϕj(xi), i = 1, 2, . . . ,M
∂ϕj

∂n
(xi−M), i = M + 1,M + 2, . . . , 2M

, j = 1, 2, . . . , N,

bi :=





f(xi), i = 1, 2, . . . ,M

g(xi−M), i = M + 1,M + 2, . . . , 2M
.

4 Regularized Solution

4.1 Singular value decomposition

In general, (5) has the case where the exact solution w does not exist in the
conventional sense. As an exact solution, we consider the least square and
least norm solution w0 defined by

‖w0‖ = min
w∈W

‖w‖, W := {ŵ : ‖Aŵ − b‖ = min
w∈R

N

‖Aw − b‖}. (6)

In this paper, we refer the solution w0 as the exact solution to (5).

For the matrix A ∈ R2M×N , the singular value decomposition (SVD) can be
written as follows:

A = UΣV T =
r∑

i=1

σiuiv
T
i ,
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where

U = (u1 u2 · · · u2M ) ∈ R2M×2M , V = (v1 v2 · · · vN) ∈ RN×N ,

Σ = (sij) ∈ R2M×N , sij =




σi (i = j)

0 (i 6= j)
,

UUT = I2M ∈ R2M×2M , V V T = IN ∈ RN×N ,

2M ≥ N, σ1 ≥ · · ·σr > 0, σr+1 = · · · = σN = 0

with the identity matrices I2M and IN . The non-negative values {σi}Ni=1 are
called the singular values of the matrix A. Using the SVD, we can express the
solution to (6) as

w0 =
r∑

i=1

(ui, b)

σi

vi.

In a real problem, the Cauchy data f and g contain some noises. We consider
the following equation instead of (5):

Aw = bδ, bδ = b+∆b (7)

with the noise vector ∆b ∈ R2M . Then, the solution wδ
0 to

‖wδ
0‖ = min

w∈W δ

‖w‖, W δ := {ŵ : ‖Aŵ − bδ‖ = min
w∈R

N

‖Aw − bδ‖} (8)

is quite different from the exact solution w0 to (6) since the solution is dis-
continuous for the Cauchy data. We need to find a good approximation to
w0.

4.2 Tikhonov regularization

In order to obtain a good approximate solution to (8), we consider minimizing
the following functional with a regularization parameter α > 0 according to
the Tikhonov regularization:

Jδ
α(w) := ‖Aw − bδ‖2 + α2‖w‖2. (9)

It is easy to see that the functional Jδ
α is strictly convex for any α > 0. Hence,

Jδ
α has a unique minimum point wδ

α called the regularized solution:

Jδ
α(w

δ
α) = min

w∈R
N

Jδ
α(w).

We know that wδ
α is the solution to

(ATA + α2IN)w
δ
α = ATbδ. (10)
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The equation (10) is uniquely solvable since the matrix (ATA+α2IN) is sym-
metric positive definite. The SVD of wδ

α can be expressed in the form:

wδ
α =

r∑

i=1

γi
(ui, b

δ)

σi

vi

with the filter factor γi := σ2
i /(σ

2
i + α2). Then, substituting wδ

α into (3), we
find the approximate potential uN in Ω ∪ Γ2.

The error between the regularized solution for the noisy data and the exact
solution is decomposed into

wδ
α −w0 = (wδ

α −w0
α) + (w0

α −w0) =
r∑

i=1

γi
(ui,∆b)

σi

vi +
r∑

i=1

(γi − 1)
(ui, b)

σi

vi.

(11)
The first term is the perturbation error due to the relative noise ∆b and the
second term is the regularization error caused by regularization of the exact
b. When 0 < α ≪ 1, we see that γi ≈ 1 for most of i, and the error wδ

α −w0

is dominated by the perturbation error. On the other hand, when α ≫ 1, we
see that γi ≪ 1 and the error wδ

α − w0 is dominated by the regularization
error. In the next subsection, we will consider a useful method for finding a
suitable regularization parameter to minimize both of the perturbation and
the regularization errors.

4.3 L-curve

To find a suitable regularization parameter, Hansen [1] suggests the L-curve,
which is defined as the continuous curve consisting of all the point (‖Awδ

α −
bδ‖, ‖wδ

α‖) for α > 0:

L := {(‖Awδ
α − bδ‖, ‖wδ

α‖) : α > 0}.

For fixed α > 0, we get wδ
α and then can calculate the residual norm ‖Awδ

α−
bδ‖ and the solution norm ‖wδ

α‖. Thus, the L-curve can be plotted as a set
of all the points of the residual norms as abscissa and the solution norms as
ordinate for all α > 0.

The L-curve is plotted in double logarithm, and displays the compromise be-
tween minimization of the perturbation error and the regularization error in
(11). A suitable regularization parameter is given by the one corresponding to
a regularized solution near the “corner” of the L-curve. The “corner” can be
regarded as the point where the curvature of the L-curve becomes maximum
[3], [5].
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In the case when 2M = N and the Cauchy data f, g have no noises, if A is
non-singular, we can directly solve (5) to obtain a solution with high accu-
racy. However, we cannot guarantee that (5) is always solvable. Even if there
exists the inverse matrix, the solution to (5) for the noisy Cauchy data differs
from the exact solution. On the other hand, the regularized solution by the
Tikhonov regularization is always uniquely determined for α > 0. In the next
section, our numerical experiments will show that the suitable regularization
parameter given by L-curve coincides with the optimal one αopt defined by

‖w0 −wδ
αopt

‖ = min
α>0

‖w0 −wδ
α‖.

5 Numerical Experiments

5.1 Circular domain

We first consider a harmonic function u(x, y) = ex cos y − ey sin x in a unit
disk Ω := {(x, y) : x2 + y2 < 1}. According to the exact potential u, the exact
Cauchy data are given by f = u and g = ∂u/∂n on the fourth part of the
whole boundary Γ, which is defined by

Γ1 := {(x, y) : x2 + y2 = 1, x > 0, y > 0}.

We now assume that the exact potential u is unknown, and identify a boundary
value on the rest of the boundary Γ2 := ∂Ω \ Γ1 from the noisy Cauchy data
f δ = (1 + ε)f and gδ = (1 + ε)g, where ε = ε(x, y) is a uniform random noise
such that −δ ≤ ε(x, y) ≤ δ with the relative noise level of 100δ%.

We distribute uniformly the collocation points {xi}Mi=1 ⊂ Γ1 and the source
points {ξj}Nj=1 ⊂ Ω

c
as follows:





xi = (cos θi, sin θi), θi =
2π(i− 1)

4M
+

π

4M
, i = 1, 2, . . . ,M,

ξj = (R cos θ̂j , R sin θ̂j), θ̂j =
2π(j − 1)

N
+

π

N
, j = 1, 2, . . . , N,

(12)

where R > 1 is the radius of the circle where the source points are distributed.
We adopt the MATLAB code for solving discrete ill-posed problems based on
SVD, made by Hansen [2], [3], to our numerical computations. Due to the
maximum principle, it is sufficient to confirm the boundary error between
the identified potential uN and the exact one u rather than the domain error
in our numerical experiments. We define the maximum relative error on the
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boundary by

e :=
‖uN − u‖∞

‖u‖∞
,

where the maximum norm on the boundary denotes

‖u‖∞ = sup
x∈Γ

|u(x)|, ∀u ∈ C(Γ).

-4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

Fig. 2. Distributions of collocation and source points ((R,M,N) = (3.2, 600, 28))
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Fig. 4. The regularized solutions versus the exact solution (5% noise level)

Table 1
The maximum relative errors for each α

α 2.12× 10−4 2.12× 10−3 2.12× 10−2

error 0.2743 0.0305 0.3382

In the first experiment, the relative noise level of the Cauchy data is assumed to
be 5% (δ = 0.05). We set the parameters (R,M,N) = (3.2, 600, 28). Figure 2
shows the distributions of the collocation and the source points. As we can
see in Figure 3, the corner of the L-curve is located at the point (‖Awδ

α −
bδ‖, ‖wδ

α‖) with the regularization parameter α = 2.1195 × 10−3. Figure 4
shows the regularized solutions on the boundary for α = 2.1195×10−4, 2.1195×
10−3, 2.1195× 10−2, 0. We can see that the solution is quite unstable if α = 0,
that is, if the regularization is unapplied. Comparing the other solutions for
α = 2.1195 × 10−4, α = 2.1195 × 10−3, 2.1195 × 10−2, we can confirm that
α = 2.1195 × 10−3 is a suitable regularization parameter to obtain a better
approximate solution (Table 1).
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Fig. 5. Maximum relative error against regularization parameter

From Figure 5, we can see that the maximum relative error reaches a minimum
at α = 10−2.673 ≈ 2.12×10−3, which coincides with the suitable regularization
parameter obtained by the L-curve. Hence, we know that the optimal regu-
larization parameter can be given as the one corresponding to a regularized
solution at the corner of the L-curve.
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Fig. 6. (a) Maximum relative error and (b) the optimal regularization parameter
against relative noise level

Figure 6 (a) shows the maximum relative error e for the optimal regularized
potential against the relative noise level δ. The regression line in the interval
[−9, 0] is expressed by log10 e = 0.37951 log10 δ − 0.22672. For the optimal

12



regularized potential uN , we have e = O(δ0.38) for δ ≥ 10−9. Figure 6 (b)
indicates the optimal regularization parameter αopt against the relative noise
level δ and the regression line in the interval [−9, 0] given by log10 αopt =
1.0186 log10 δ− 1.2434. From this numerical result, we can obtain the relation
αopt = O(δ) for 10−9 ≤ δ ≤ 1.

After setting the parameters (R,M,N), we can obtain a suitable regularized
solution based on the Tikhonov regularization and the L-curve. Now, our
problem is how to choose suitable parameters (R,M,N).

Figure 7 shows the maximum relative error against the number of colloca-
tion points. We know from this result that we need to take sufficiently many
collocation points to obtain accurate solutions.
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Fig. 7. Maximum relative error against number of collocation points
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Fig. 8. Contour line of the maximum relative error against (N,R) (M = 600); (a)
(N,R) ∈ [10, 60] × [2, 12], (b) (N,R) ∈ [24, 30] × [3, 3.4]
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Figure 8 shows the contour line of the maximum relative error e against (N,R)
for the fixed number of collocation points M = 600. Through this result, we
know that the maximum relative error is roughly independent of the number
of source points N for the fixed radius R of the circle where source points
are distributed, and becomes large for large R. As a result, we know that the
parameters R ≈ 3.2 and N ≥ 25 will yield a better regularized solution.

5.2 Irregular domain

As the next example, we assume the exact solution as same as the one in the
previous example in an irregular domain enclosed by the boundary

x(θ) = r(θ) cos θ, y(θ) = r(θ) sin θ, 0 ≤ θ < 2π

with the Cassini oval

r(θ) = r(θ; a, b) = a

√
cos 2θ +

√
(b/a)4 − sin2 2θ, 0 ≤ θ < 2π (13)

in the polar coordinates with a = 1, b = 1.01. It is easy to show that the unit
outward normal to the boundary is expressed as

n(θ) =


r′(θ) sin θ + r(θ) cos θ√

(r′(θ))2 + r(θ)2
,
−r′(θ) cos θ + r(θ) sin θ√

(r′(θ))2 + r(θ)2


 .

We distribute collocation and source points along the boundary and the circle
(R cos θ, R sin θ) uniformly as similar as (12). Figure 9 shows the domain, the
unit outward normal, the collocation and the source points for example.
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0

0.5

1

1.5

2

Fig. 9. Domain and distribution of points ((R,M,N) = (2, 40, 10))
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The relative noise level of the Cauchy data is assumed to be 10% (δ = 0.1). Let
(R,M,N) = (2, 5200, 30). The optimal regularization parameter can be found
as α = 2.3493 × 10−2 by using the L-curve. Figure 10 shows the regularized
solution on the boundary with respect to the optimal regularization parameter.
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 3.5

0

PSfrag replacements
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π/2 π 3π/2 2π

u
| Γ

regularized
exact

Fig. 10. The regularized solution uN versus the exact u (10% noise level;
(R,M,N) = (2, 5200, 30))

From the result, it is concluded that even if the boundary of the domain is
complicated and the noise level of the Cauchy data is higher, the regularized
solution is in very good agreement with the exact one.

5.3 Problems with singular points

We consider two problems whose solutions have singular points.

We first assume the exact solution

u(x, y) = log
√
(x− 0.2)2 + y2 − log

√
(x+ 0.2)2 + y2

in the annulus domain

Ω = {(x, y) : 0.52 < x2 + y2 < 1}

with the outer and the inner boundaries

Γout = {(x, y) : x2 + y2 = 1}, Γin = {(x, y) : x2 + y2 = 0.52}.

The exact solution u has two singular points at (x, y) = (−0.2, 0), (0.2, 0).

We now assume that the exact potential u is unknown. From the Cauchy data
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given on the fourth part of the outer boundary Γout, defined by

Γ1 := {(x, y) : x2 + y2 = 1, x > 0, y > 0},

we identify a boundary value on the rest of the boundary (Γout \ Γ1) ∪ Γin.

We distribute uniformly the collocation points {xi}Mi=1 ⊂ Γ1. The source points
{ξj}Nj=1 ⊂ Ω

c
are uniformly distributed along two circles whose centers are 0

and radii are Rout and Rin, respectively.

In the first case, the exact Cauchy data is assumed to be given. Let (Rout, Rin,M,N) =
(3.2, 0.4, 600, 60) (Figure 11). Figure 12 shows the identified solution on the
outer and the inner boundaries. We can see that the identified solution is in
very good agreement with the exact one in spite of the solution with singular
points.
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Fig. 11. Domain and distribution of points ((Rout, Rin,M,N) = (3.2, 0.4, 600, 60))
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Fig. 12. The regularized solution uN versus the exact u (no noise)

In the second case, the relative noise level of the Cauchy data is assumed to
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be 5% (δ = 0.05). Let (Rout, Rin,M,N) = (3.2, 0.2, 5200, 30) (Figure 13). The
optimal regularization parameter can be found as α = 6.3932× 10−3 by using
the L-curve. Figure 14 shows the regularized solution on the outer and the
inner boundaries with respect to the optimal regularization parameter. From
this result, we know that the regularized solution is acceptable.

-4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

Fig. 13. Domain and distribution of points ((Rout, Rin,M,N) = (3.2, 0.2, 5200, 30))
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Fig. 14. The regularized solution uN versus the exact u (5% noise level)

As another example, we assume that the exact solution is given by

u(x, y) =
x

x2 + y2

in the same domain as above. The Cauchy data with 5% noise level are pre-
scribed on the same part of the boundary as above. Let (Rout, Rin,M,N) =
(3.2, 0.05, 5200, 30). Figure 15 shows the regularized solution on the outer and
the inner boundaries with respect to the optimal regularization parameter
α = 1.5088× 10−3. The accuracy of the regularized solution is quite good.
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Fig. 15. The regularized solution uN versus the exact u (5% noise level)

6 Conclusions

We consider using MFS as the numerical method for the Cauchy problem of
the Laplace equation. Since MFS is a messless method, we can easily treat
a complicated boundary. This paper proposes a direct method instead of an
iterative one. The Tikhonov regularization can find a stable solution. The L-
curve automatically gives a suitable regularization parameter, which coincides
with the optimal one shown in the numerical experiments. Hence, after setting
the parameters (R,M,N) the optimal regularized solution can be obtained
quickly and automatically. Moreover, our numerical method can successfully
solve even a problem whose solution has singular points.

The following is the guideline for choosing better parameters (R,M,N): The
collocation points should be distributed as many as possible compared with
the source points. There is no value increasing the number of source points
N . It is enough for N ≈ 30 to obtain a better solution. The radius of the
circle where source points are distributed should be small like R ≈ 3, since
the stability is more important than the accuracy in this inverse problem.

In conclusion, the numerical method proposed in this paper is applicable for
solving a problem in a complicated domain with the Cauchy data that contains
large noises even with a noise level of 10%. This method is also effective for
solving even a problem with singular points.
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