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Abstract

The Osher-Chakrabarthy family of linear flux-modification schemes is considered.
Improved lower bounds on the compression factors are provided, which suggest the
viability of using the unlimited version. The LLF flux formula is combined with
these schemes in order to obtain efficient finite-difference algorithms. The resulting
schemes are applied to a battery of numerical tests, going from advection and Burg-
ers equations to Euler and MHD equations, including the double Mach reflection and
the Orszag-Tang 2D vortex problem. Total-variation-bounded behavior is evident in
all cases, even with time-independent upper bounds. The proposed schemes, how-
ever, do not deal properly with compound shocks, arising from non-convex fluxes,
as shown by Buckley-Leverett test simulations.
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1 Introduction

The study of hyperbolic conservation laws, as described by

∂tu+ ∂xf(u) = 0 , (1)

is a classical topic in Computational Fluid Dynamics (CFD). We have noted
here by u a generic array of dynamical fields, and we will assume strong
hyperbolicity, so that the characteristic matrix

A(u) = ∂f/∂u (2)

has real eigenvalues and a full set of eigenvectors.

As it is well known, the system (1) admits weak solutions, so that the com-
ponents of u may show piecewise-smooth profiles. Standard finite-difference
schemes, like the Lax-Wendroff [1] or MacCormack [2] ones, produce spurious
overshots and oscillations at non-smooth points which can mask the physical
solutions, even leading to code crashing. These deviations do not diminish
with resolution, in analogy with the Gibbs phenomenon found in the Fourier
series development of discontinuous functions.

This difficulty was overcome in the pioneering work of Godunov [3]. On a
uniform computational grid xj = j△x, equation (1) can be approximated by
the semi-discrete equation

∂tuj = − 1

∆x
(hj+1/2 − hj−1/2) , (3)

where the interface flux hj+1/2 is computed by an upwind-biased formula from
the neighbor grid nodes. In the scalar case, one can define the total variation
of a discrete function as

TV (u) =
∑

j

| uj − uj−1| . (4)

In the case of systems, the total variation is defined as the sum of the total
variation of the components. Godunov scheme is total-variation-diminishing
(TVD), meaning that TV (u) does not increase during numerical evolution. It
is obvious that TVD schemes can not develop spurious oscillations: monotonic
initial data preserve their monotonicity during time evolution. Moreover, the
TVD property can be seen as a strong form of stability: any blow-up of the
numerical solution is excluded, as far as it would increase the total variation.
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Godunov scheme is the prototype of the so-called upwind-biased schemes,
which require either the exact or some approximate form of spectral decom-
position of the characteristic matrix (2). This makes them both computation-
ally expensive and difficult to extend to the multidimensional case. A much
simpler alternative is provided by the local Lax-Friedrichs (LLF) scheme (Ru-
sanov scheme [4])

hj+1/2 =
1

2
[fj+1 + fj − λj+1/2 (uj+1 − uj) ] , (5)

where λ is the spectral radius of the characteristic matrix and we have taken

λj+1/2 = max(λj , λj+1) . (6)

The LLF scheme is the prototype of the so-called centered schemes, which
deserve a revived interest nowadays in view of multidimensional applications.
It clear from (3, 5) that the LLF scheme, like the Godunov one, is only first-
order accurate in space. Second-order accuracy can be obtained following the
Harten modified-flux approach [5], which was soon extended to very-high ac-
curacy (up to 15th order) by Osher and Chakrabarthy [6]. The basic idea is
to replace the lower order TVD flux hj+1/2 by a modified flux fj+1/2, obtained
by some interpolation procedure involving a higher number of nodes.

All these high-resolution schemes require some form of flux-correction limiters
in order to ensure the TVD property. As a consequence, accuracy is reduced to
(at most) first order at non-sonic critical points, where the limiters come into
play. In order to circumvent this problem, one can relax the TVD condition,
demanding instead that the total variation is bounded, that is

TV (u) ≤ B , (7)

where the upper bound B is independent of the resolution, but could depend
on the elapsed time. Even if we are ready to relax the stronger TVD require-
ment, keeping the bound (7) is important from the theoretical point of view.
One major advantage of total-variation-bounded (TVB) schemes is that there
is a convergent (in L1

loc) subsequence as ∆x → 0 to a weak solution of (1).
If an additional entropy condition is satisfied, then the proposed scheme is
convergent (see for instance Ref. [7]).

An interesting example of such TVB schemes was given by Shu [8], by softening
the flux limiters proposed in Ref. [6]. Although the TVB property is proven for
the schemes presented in [8], based on a linear flux-modification procedure,
a rigorous proof is still unavailable for more complex cases. An important
example is provided by the essentially-non-oscillatory (ENO) methods [9] [10],
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where the TVD property is relaxed in a different way. Numerical evidence
shows that ENO schemes, as well as their weighted-ENO variants [11]-[13],
deserve their name: the TVB property is satisfied in practice, even with time-
independent bounds. An implementation of these high-resolution methods for
the LLF Flux is given in Refs. [14] [15].

In this paper we consider (the unlimited version of) the ’β-family’ of Osher-
Chakrabarthy linear flux-modification algorithms in the semidiscrete frame-
work. The choices of the β parameter are optimized for their use with the
unlimited version, by refining the bounds given in the original paper [6]. As
a lower order TVD flux, we will use the standard LLF one (5). The resulting
high-resolution schemes can then be recast into a compact finite-difference for-
mula. This greatly increases computational efficiency, specially with a view to
three-dimensional applications. We perform a battery of standard tests in one
space dimension, covering advection, Burgers and Euler equations, in order
to show that the TVB property is fulfilled in practice for the selected values
of the β parameter. We are not able, however, of getting the right result for
compound shocks, arising from non-convex fluxes; this is illustrated by the
Buckley-Leverett test simulations. We also consider some multidimensional
tests cases with the Euler and magneto-hydrodynamics (MHD) equations, in-
cluding the double Mach reflection and the Orszag-Tang 2D vortex problem.
Total-variation-bounded behavior is evident in all the proposed cases, even
with time-independent upper bounds.

2 The Osher-Chakravarthy β-schemes

Following Ref. [6], let us consider the centered 2m− 1 order schemes:

∂tuj = −C2mfj + (−1)m−1β(∆x)2m−2Dm
+D

m−1
− (df+

j−1/2 − df−
j−1/2) , (8)

where C2m is the central 2mth-order-accurate difference operator with a stencil
of 2m + 1 grid points, and we have used the standard notation D± for the
elementary difference operators. The flux differences df± are defined as follows:

df+

j+1/2 = fj+1 − hj+1/2 df−
j+1/2 = hj+1/2 − fj , (9)

where hj+1/2 is any (lowest-order) TVD flux. The β parameter in the dissipa-
tive term in (8) is assumed to be positive: a necessary condition for stability.
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The algorithms (8) can be put into an explicit flux-conservative form by re-
placing the lowest order flux hj+1/2 in (3) by [6] [8]

fj+1/2 = hj+1/2 +
m−1
∑

k=−m+1

(

cmk df−
j+k+1/2 + dmk df+

j+k+1/2

)

, (10)

where

dmk = νm
k − (−1)kβ







2m− 2

k +m− 1





 , cmk = −dm−k (11)

(we use here a compact notation), and

νm
0 =1/2 , νm

k = −νm
−k (k 6= 0) (12)

νm
m−1 =(−1)m−1





m







2m

m













−1

(m > 1) (13)

νm+1

k = νm
k + (−1)k

k

m







2m

m− k











(m+ 1)







2m+ 2

m+ 1













−1

. (14)

The TVD property is enforced by limiting the flux differences df± (see [6], [8]
for the details). As a generic example, df+

j+k+1/2 in (10) is replaced by

minmod( df+

j+k+1/2, bdf
+

j+1/2, bdf
+

j−1/2 ), (15)

where b is a compression factor. This replacement introduces a non-linear
component in the linear flux-correction formula (10). The resulting scheme
will be TVD if and only if:

Cj+1/2 ≡ 1 +
m−1
∑

k=−m+1

c m
k

df−
j+k+1/2 − df−

j+k−1/2

df−
j+1/2

≥ 0 (16)

Dj−1/2 ≡ 1 +
m−1
∑

k=−m+1

d m
k

df+

j+k+1/2 − df+

j+k−1/2

df+

j−1/2

≥ 0 . (17)

λj
∆t

∆x
(Cj+1/2 +Dj+1/2) ≤ 1 , (18)

where we have assumed a time discretization based on the forward Euler step,
so that the last condition provides an upper bound on the time step ∆t.
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3 Compression factor optimization

In the original paper [6], the ansatz

β ≤ [ m







2m

m





 ]−1 (19)

was used for getting a sufficient condition from (16, 17), amounting to a simple
constraint on the range of the compression parameter b

0 < b ≤ [ 1 + 2β







2m− 2

m− 1





 ] [
m
∑

j=2

1

2j − 1
]−1 . (20)

Allowing for (20), the upper bound bmax increases with β, which is in turn
bounded by (19). For the third-order scheme (m = 2), the optimal choice
would then be β = 1/12, so that the compression parameter may reach bmax =
4, still preserving the TVD property. This means that, for monotonic profiles,
the flux-correction limiters would act only where the higher order corrections
in neighboring computational cells differ at least by a factor of four. This is not
to be expected in practical, good resolution, simulations of smooth profiles,
even when large gradients appear. This high-compression-factor property can
be at the origin of the robust behavior of these schemes, even in their unlimited
form, as we will see in the numerical applications presented below.

As far as we are proposing to use the unlimited version, it makes sense to
find the choices of β that maximize the compression factor, going beyond
the ansatz (19). Higher values of bmax can be actually obtained by a detailed
case-by-case study of the original TVD conditions (16, 17). For instance, by
reordering the terms in (17) we get

Dj−1/2 ≡ 1 +
m
∑

k=−m+1

(d m
k−1 − d m

k )
df+

j+k−1/2

df+

j−1/2

≥ 0 , (21)

where we assume d m
k = 0 when |k| ≥ m. A sufficient condition for (21) to

hold is

1 + d m
−1 − d m

0 + b
∑

k 6=0

min(d m
k−1 − d m

k , 0) ≥ 0 , (22)
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which actually refines the former condition (20). The same reasoning shows
that, allowing for (11), a sufficient condition for (18) to hold is:

λj
∆t

∆x
[ d m

−1 − d m
0 + b

∑

k 6=0

max(d m
k−1 − d m

k , 0) ] ≤ 1/2 . (23)

For the simpler non-trivial cases we have (decreasing k order):

d 2

k = ( β − 1

12
,

1

2
− 2β, β +

1

12
) (24)

d 3

k = (
1

60
− β, 4β − 7

60
,

1

2
− 6β, 4β +

7

60
, − 1

60
− β ) . (25)

For m = 2, condition (22) leads then to:

b ≤ 7/2 + 18β (β ≤ 1

12
) (26)

b ≤ 7 + 36β

1 + 12β
(
1

12
≤ β ≤ 7

36
) . (27)

It follows that the optimal values for the third-order scheme are

β =
1

12
, bmax = 5 . (28)

For the fifth-order scheme (m = 3), condition (22) leads instead to:

b ≤ 37 + 600β

16
(β ≤ 1

60
) (29)

b ≤ 37 + 600β

15 + 60β
(
1

60
≤ β ≤ 2

75
) (30)

b ≤ 37 + 600β

7 + 360β
(
2

75
≤ β ≤ 37

600
) . (31)

It follows that the optimal values for the fifth-order scheme are

β =
2

75
, bmax =

265

83
. (32)

Note that the ansatz (19) gives a smaller compression factor bmax = 9/4 and,
more important, the optimal β value in this case is beyond the original bound
1/60. Note also that the values of the compression parameter tend to diminish
with the accuracy order of the algorithm. This suggests that higher-order cases
m > 3 may not be so useful in the unlimited case.
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4 Finite difference version

The linear flux-modification scheme described in the preceding section can be
applied to any lower-order TVD flux. The case of the LLF flux (5) has actually
been considered in [8]. Our objective here is to obtain a scheme which can be
cast as a simple finite-difference algorithm, so that we will take advantage of
the simplicity of the LLF flux (5), which can be written in flux-vector-splitting
(FVS) form:

hj+1/2 = f+

j + f−
j+1 , f±

j ≡ 1

2
[fj ± λj±1/2 uj] . (33)

The FVS form (33), like the original one (5), is just first-order accurate. We
will extend it to higher-order accuracy by means of the Osher-Chakrabarthy
algorithm, as described in the previous sections. The flux differences (9) in
this case get the simple form:

df±
j+1/2 = 1/2 [ fj+1 − fj ± λj+1/2 (uj+1 − uj) ] . (34)

The linear character of this formula allows to get a compact finite-difference
expression for the whole scheme. Allowing for (34), the semi-discrete algorithm
(8) can be written as

∂tuj = −C2mfj + (−1)m−1β(∆x)2m−1Dm
+D

m−1

− (λj−1/2D−uj) , (35)

which amounts to assume a 2mth-order-accurate central difference operator
acting on the flux terms plus a dissipation operator of order 2m depending
on the spectral radius λ. As we will see below, the resulting finite-difference
scheme (35) provides a cost-effective alternative for CFD simulations.

Let us remark here that the choices (28, 32) derived in the previous section are
optimal for a generic choice of the lowest-order TVD Flux. In the LLF case
(5), however, it is clear that the spectral radius can be multiplied by a global
magnifying factor K > 1, while keeping the TVD properties. Allowing for the
finite-difference form (35) of the unlimited version, magnifying λ amounts to
magnify β, that is:

(β, Kλ) ⇔ (Kβ, λ) . (36)

It follows that the values of the compression factor bmax obtained in the previ-
ous section must be interpreted just as lower-bound estimates. In particular,
the equivalence (36) implies that any compression factor bound obtained for
a particular value β0 applies as well to all values β > β0. This agrees with
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the interpretation of the second term in (35) as modelling numerical dissipa-
tion. On the other side, this dissipation term is actually introducing the main
truncation error. We will use then in what follows the β values in (28, 32),
which are still optimal in the sense that they provide the lower numerical error
compatible with the highest lower-bound for the compression parameter.

5 One-dimensional numerical tests

We will test now the behavior of the centered finite-difference scheme (35)
by means of some standard numerical experiments in one space dimension.
We will use here the well-known method-of-lines (MoL) [16] in order to deal
separately with the space and the time discretization. In every case, the time
discretization will be implemented by the following strong-stability-preserving
(SSP), 3rd-order-accurate, Runge-Kutta algorithm [17]:

u∗=E(un)

u∗∗=
3

4
un +

1

4
E(u∗) (37)

un+1=
1

3
un +

2

3
E(u∗∗) ,

where E(u) is the basic Euler step, that is

E(uj) = uj +∆t (∂t uj) , (38)

and ∂t uj is computed by the finite difference formula (35).

5.1 Advection equation

Let us start by the scalar advection equation. This is the simplest linear case,
but it allows to test the propagation of arbitrary initial profiles, containing
jump discontinuities and corner points, departing from smoothness in many
different ways. This is the case of the Balsara-Shu profile [11], which will be
evolved with periodic boundary conditions.

We compare in Fig. 1 the numerical result with the exact solution after a single
round trip, for two different resolutions. The third-order five-points formula
from the proposed class (35) has been used with β = 1/12 in both cases. The
propagation speed in the simulation agrees with the exact one, as expected
for a third-order-accurate algorithm. The smooth regions are described cor-
rectly: even the height of the two regular maxima is not reduced too much
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Fig. 1. Advection of the Balsara-Shu profile in a numerical mesh of either 400 points
(upper panel) or 800 points (lower panel). A third-order scheme (m = 2, β = 1/12)
is used in both cases. The results are compared with the initial profile (dotted line)
after a single round-trip.

by dissipation, as expected for an unlimited algorithm with just fourth-order
dissipation. There is a slight smearing of the jump slopes, as usual for contact
discontinuities, which gets smaller with higher resolution.
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Fig. 2. Same as in Fig. 1, but using a fifth-order scheme (m = 3) with β = 2/75
(upper panel). In the lower panel we show the results after ten round-trips. The
same settings are used in both cases.
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Fig. 3. Advection equation. Time evolution of the total variation. The horizontal
axis corresponds to the exact solution: TV (u) = 8. From top to bottom: m = 3
scheme with 400 points, m = 2 scheme with 800 points, and m = 2 scheme with
400 points. After the initial increase, which depends on the selected method, the
TV tends to diminish. Increasing resolution just reduces the TV diminishing rate.

Concerning monotonicity, it is clear that the total variation of the initial profile
has increased by the riddles besides the corner points and, more visibly, near
the jump discontinuities. By comparing the two resolutions, we see that the
height of the overshots does not change. This means that, as in the case of the
Gibbs phenomenon, there is no convergence by the maximum norm, although
convergence by the L2 or similar norms is apparent from the results. On the
other hand, it is clear that the total variation is bounded for this fixed time,
independently of the space resolution or, equivalently, the time step size. This
is precisely the requirement for TVB.

We show in Fig. 2 the same simulation, in a 400 points mesh, for the fifth-
order method (m = 3, β = 2/75). In the upper panel, corresponding to a
single round-trip, we can see that one additional riddle appears at every side
of the critical points, due to the larger (seven point) stencil. We show also in
the lower panel the results of the same simulation after ten round-trips. The
cumulative effect of numerical dissipation is clearly visible: the extra riddles
tend to diminish. The total variation is not higher than the one after a single
round trip. This statement can be verified by plotting, as we do in Fig. 3, the
time evolution of TV (u) for the different cases considered here. In all cases,
a sudden initial increase is followed by a clear diminishing pattern. These
numerical results indicate that the bound on the total variation is actually
time-independent, beyond the weaker TVB requirement.

5.2 Burgers equation

Burgers equation provides a simple example of a genuinely non-linear scalar
equation. A true shock develops from smooth initial data. We will compute
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Fig. 4. Burgers equation: evolution of an initial sinus profile. The numerical solu-
tion (point values) is plotted versus the exact solution (continuous line), for 100
points and 200 points resolution (left and right panels, respectively) and for the
(m = 2, β = 1/12) and the (m = 3, β = 2/75) schemes (upper and lower panels,
respectively).

here the evolution of an initial sinus profile, with fixed boundary conditions.
We plot in Fig. 4 the numerical solution values versus (the principal branch of)
the exact solution, at the time where the shock has fully developed. We com-
pare 100 points with 200 points resolution (left and right panels, respectively),
and also the 3rd-order and 5th-order schemes described previously (upper and
lower panels, respectively). Concerning the resolution effect, we can see here
again that the spurious oscillations affect mainly the points directly connected
with the shock, in a number depending on the stencil size but independent of
the resolution.

These conclusions are fully confirmed by a second simulation, obtained by
adding a constant term to the previous initial profile, that is

u(x) =
1

2
+ sin(

x π

5
) , (39)

with periodic boundary conditions. We can see in Fig. 5 that a shock again
develops, but it does no longer stand fixed: it propagates to the right. Note
that the plot shown corresponds to t = 7. We can confirm in this case that
both the number of spurious riddles and the magnitude of the overshots do
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Fig. 5. Same as in the previous figure, but now for a moving sinus profile. The
numerical solution (point values) is plotted versus the exact solution (continuous
line), for 100 points and 200 points resolution (left and right panels, respectively)
and for the (m = 2, β = 1/12) and the (m = 3, β = 2/75) schemes (upper and
lower panels, respectively).

not increase with resolution, although it is larger in this case than in the static
shock one. We can confirm also that these effects increase with the order-of-
accuracy of the scheme: the larger stencil adds one more riddle at every side
and slightly larger overshots.

These results clearly indicate convergence in the L1 or similar norms (but of
course not in the maximum norm). Let us actually perform a convergence test
by considering the initial profile [18]

u(x, 0) = 1 +
1

2
sin(π x) , (40)

which is smooth up to t = 2/π. We show in Table 1 the errors at time t = 0.3,
where the shock has not yet appeared. The first group of values corresponds
to the third-order method, and this is confirmed by the data both in the L1

and the L∞ norms. The second group of values corresponds to the fifth-order
method, but only third-order accuracy is obtained from the numerical values.
This is because we keep using the third-order Runge-Kutta algorithm (37) for
the time evolution. In order to properly check the space discretization accu-
racy, we include a third group of values, obtained with the same algorithm, but
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with a much smaller time step in order to lower the time discretization error:
the leading error term is then due to the space discretization and the expected
fifth order accuracy is confirmed by the numerical results, although the L∞

norm shows a slightly decreasing convergence rate for the higher resolution
results.

Nx L1 error L1 order L∞ error L∞ order

160 7.22579 E-6 2.998 5.17334 E-5 2.981

320 9.04719 E-7 2.999 6.55306 E-6 2.994

640 1.13182 E-7 3.000 8.22735 E-7 2.998

1280 1.41486 E-8 1.03006 E-7

160 1.44981 E-6 3.017 9.57814 E-6 2.981

320 1.79043 E-7 3.005 1.21318 E-6 2.997

640 2.23035 E-8 3.003 1.51957 E-7 2.999

1280 2.78216 E-9 1.90041 E-8

160 7.09726 E-8 4.88 8.6567 E-7 4.97

320 2.41410 E-9 4.76 2.76804 E-8 3.98

640 8.92936 E-11 4.91 1.75192 E-9 3.48

1280 2.95859 E-12 1.36890 E-11

Table 1
Burgers problem. Norm of the errors and convergence rate at t = 0.3 for the initial
profile (40). The first group of values corresponds to the m = 2 method with ∆t =
0.6∆x. The second group corresponds to them = 3 method with the same time step.
The third group corresponds again to the m = 3 method, but with ∆t = 0.06∆x.

5.3 Buckley-Leverett problem

A more demanding test, still for the scalar case, is provided by the Buckley-
Leverett equation which models two-phase flows that arise in oil-recovery prob-
lems [7]. This equation contains a non-convex (s-shaped) flux of the form

f(u) =
4u2

4u2 + (1− u)2
. (41)

Non-convex fluxes can lead to compound shock waves which are shocks adja-
cent to a rarefaction wave with wave speed equal to the shock speed at the
point of attachment.
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Fig. 6. Buckley-Leverett’s problem. The continuous line corresponds to the LLF
first-order algorithm, with 10.000 points, as a replacement for the exact solution.
The crosses line corresponds to the third-order algorithm (m = 2, β = 1/12) with
200 points, converging towards a different solution.

We will perform first a simulation with the initial data

u(x) =











0 0 ≤ x < 1− 1/
√
2

1 1− 1/
√
2 ≤ x < 1

(42)

so that the inflexion point in the flux (41) lies inside the interval spanned by
the data.

The exact solution in this case is well approximated by a very-high-resolution
(10.000 points) simulation using the first-order LLF algorithm, as displayed
in Fig. 6 (continuous line). We see a right-propagating compound shock wave,
consisting of a shock followed by a rarefaction wave, which propagates in the
same direction. The results for our third-order algorithm, represented by the
crosses line in Fig. 6, fail to reproduce correctly the rarefaction wave, which
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Fig. 7. Same as in the previous figure, but now for two different dynamical ranges,
which avoid the flux inflexion point. In the left panel, an ordinary rarefaction wave
appears, which is correctly modelled by the third-order algorithm. In the right panel,
a simple shock appears, well captured by the third-order algorithm.
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is replaced by an spurious intermediate state, resulting into a slower shock
propagation speed.

In order to single out the problem, we have performed simulations for the
same flux (41) but with a dynamical range that avoids the inflexion point
either from below or from above. The results are plotted in Fig. 7, where we see
either an ordinary rarefaction wave (left panel) or a simple shock (right panel),
but no compound shock. In both cases, the third-order algorithm (m = 2,
β = 12) is able to model correctly the dynamics. This results indicate that the
problem with compound shocks can be triggered by the presence of overshots
at the connection point between the shock and the associated rarefaction wave,
which can break the compound structure. The TVD character of the LLF flux
prevents this problem to arise, as it is clearly shown in Fig. 6 (continuous line).

5.4 Euler equations

Euler equations for fluid dynamics are a convenient arena for testing the pro-
posed schemes beyond the scalar case. In the ideal gas case, we can check the
numerical results against well-known exact solutions containing shocks, con-
tact discontinuities and rarefaction waves. We will deal first with the classical
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Fig. 8. Sod shock tube problem. Density and speed profiles (left and right panels,
respectively), for the (m = 2, β = 1/12) and the (m = 3, β = 2/75) schemes (upper
and lower panels, respectively).
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Sod shock-tube test [19] with a standard 200 points resolution.

We plot in Fig. 8 the gas density and speed profiles (left and right panels,
respectively). Looking at the 3rd-order scheme results (upper panels), we see
that both the rarefaction wave and the shock are perfectly resolved, whereas
the contact discontinuity is smeared out. As a consequence, the main overshots
are just besides the shock, specially visible in the speed profile, where the jump
is much higher. Concerning the 5th-order scheme (lower panels), the contact
discontinuity is slightly better resolved. This is however at the price of extra
riddles and more visible overshots, so that the 3rd-order scheme seems to be
more convenient.

A more demanding test is obtained when assuming a discontinuity in the initial
speed, as in the Lax test [20]. As we see in Fig. 9, we get the same behavior
than for the Sod test case. The main difference is that the density jump at
the contact discontinuity is much higher: the smearing of the density profile
there is more visible, in contrast with the sharp shock profile nearby. Note
also that some speed overshots are greater than the ones arising in the Sod
test case (we have kept here the same 200 points resolution for comparison).
The third-order algorithm seems to be more convenient again in this case.
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Fig. 9. Lax shock tube problem. Density and speed profiles (left and right panels,
respectively), for the (m = 2, β = 1/12) and the (m = 3, β = 2/75) schemes (upper
and lower panels, respectively).
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6 Multidimensional tests

The results of this paper can be extended to a multidimensional case in a
simple way. The semi-discrete equation (3) can be written in a rectangular
grid as follows:

∂tui,j = − 1

∆x
(fi+1/2,j − fi−1/2,j) − 1

∆y
(fi,j+1/2 − fi,j−1/2), (43)

and the numerical flux can be computed by applying (10) to every single
direction. Note however that the restriction (23) on the time step must be
extended in this case to

λj ∆t (
1

∆x
+

1

∆y
) [ d m

−1 − d m
0 + b

∑

k 6=0

max(d m
k−1 − d m

k , 0) ] ≤ 1/2 . (44)

In the finite-difference version (35), the extension to the multidimensional
case amounts to replicate the right-hand-side difference operators for every
single direction: no cross-derivative terms are required. This multidimensional
extension allows to deal with some MHD tests, which add more complexity
to the dynamics, clearly beyond the simple tests considered in the previous
section.

6.1 The Orszag-Tang 2D vortex problem

As a first multi-dimensional example, let us consider here the Orszag-Tang vor-
tex problem [21]. This is a well-known model problem for testing the transition
to supersonic magnetohydrodynamical (MHD) turbulence and has become a
common test of numerical MHD codes in two dimensions.

A barotropic fluid (γ = 5/3) is considered in a doubly periodic domain
[0, 2π]2, with uniform density ρ and pressure p. A velocity vortex given by
v = (− sin y, sinx), corresponding to a Mach 1 rotation cell, is superimposed
with a magnetic field B = (− sin y, sin 2x), describing magnetic islands with
half the horizontal wavelength of the velocity roll. As a result, the magnetic
field and the flow velocity differ in their modal structures along one spatial
direction.

In Fig. 10 (left panel) the temperature, T = p/ρ, is represented at a given time
instant (t = 3.14). The figure clearly shows how the dynamics is an intricate
interplay of shock formation and collision. The numerical scheme, with m = 2
and β = 1/12 seems to handle the Orszag-Tang problem quite well. In Fig. 10
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Fig. 10. Temperature at t = 3.14 in the Orszag-Tang vortex test problem. In this
simulation the grid has 200 × 200 mesh points. In the left panel the third-order
scheme (m = 2, β = 1/12) has been used while in the right panel the result is for a
a second order scheme built from the Roe-type solver and the MC limiter.

(right panel) we plot the results for the same problem using a second order
scheme built from the Roe-type solver and the monotonized-central (MC)
symmetric limiter [22]. The results with both methods are qualitatively very
similar.

6.2 Torrilhon MHD shock tube problem

We now consider the MHD shock tube problem described by Torrilhon [23]
to investigate dynamical situations close to critical solutions. We will assume
again a barotropic fluid with γ = 5/3. The initial conditions for the compo-
nents of the magnetic field (B2, B3) are (cos θ, sin θ), with θ = 0 for x ≤ 0.
Depending on the angle θ between the left and right transverse components of
the magnetic field, different types of solutions are found. Regular r-solutions
consist only of shocks or contact discontinuities. Critical c-solutions appear
in the coplanar case, where the angle θ is an integer multiple of π. These
solutions can contain also non-regular waves, such as compound waves.

We consider the situation for an almost co-planar case, θ = 3. Analytically,
this has a regular r-solution, but the numerical solution is attracted towards
the nearby critical solution for θ = π. Fig. 11 shows the density profile plotted
together with the correct r-solution (solid black line) and the co-planar c-
solution (dashed line). The r-solution has, from left to right, a rarefaction, a
rotation, a shock, a contact discontinuity, a shock, a rotation and a rarefaction.
The discrepancies among the different solutions are mainly in the interval
[−0.35,−0.1].
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Fig. 11. Plot of the density ρ at t = 0.4 for the almost co-planar problem with θ = 3.
In this simulation 5000 mesh points have been used. The dashed line represents the
critical c-solution while the solid black line is the correct r-solution. Both solutions
differ clearly in the interval [−0.35,−0.1]. The numerical simulation lies between
the two.

Fig. 12. Same as Fig. 11, but enlarging the interval where the discrepancies show up.
In addition to the exact regular and critical solutions, we plot, from top to bottom,
the simulations for schemes using LLF with minmod limiter, LLF with MC limiter,
the unlimited m = 2 algorithm, a Roe solver with MC limiter and the unlimited
m = 3 algorithm.

This interval is magnified in Fig. 12. The solid black line is the correct r-
solution while the dashed line represents the critical c-solution. We see that
the solutions with m = 2 and m = 3 tend to the correct solution although
they keep some remnant from the c-solution. For comparison purposes we have
also represented the numerical solution obtained with other schemes. We have
used a second order LLF scheme and a second order Roe solver with either
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the minmod or the MC slope limiters.

The LLF scheme with the minmod limiter gets too close to the c-solution,
even for this high-resolution simulation. The situation improves by replacing
the minmod limiter by the MC one, but still gets farther from the right solution
than the schemes proposed in this paper. Only the combination of a Roe-type
solver with the MC limiter improves the results of the third-order scheme
(m = 2), but not those of the fifth-order scheme (m = 3). This problem
provides one specific example in which the fifth-order scheme seems to be more
convenient than the third order one: the extra riddles are actually compensated
by a clear improvement in the solution accuracy.

6.3 Double Mach reflection problem

This problem is a standard test case for high-resolution schemes. It corre-
sponds to an experimental setting in which a shock is driven down a tube which
contains a wedge. We will adopt here the standard configuration proposed by
Woodward and Colella [24], involving a Mach 10 shock in air (γ = 1.4) at
a 60o angle with a reflecting wall. The air ahead of the shock is stationary
with a density of 1.4 and a pressure of 1. The reflecting wall lies at the bot-
tom of the computational domain, starting at x = 1/6. Allowing for this, the
exact post-shock condition is imposed at the bottom boundary in the region
0 ≤ x ≤ 1/6 and a reflecting wall condition is imposed for the rest. Inflow
(post-shock) conditions are used at the left and top boundaries, whereas an
outflow (no gradient) condition is used for the right boundary.
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Fig. 13. Double Mach reflection. Density plot at t = 0.2. The simulation is made
with the 3rd-order method (m = 2, β = 1/12) with ∆x = ∆y = 1/240. 30 evenly
spaced density contours are shown.
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Fig. 14. Same as Fig. 13, but enlarging the lower right corner. The top panels
correspond to the third-order method (m = 2, β = 1/12), with resolution of either
1/240 (left) or 1/480 (right). The bottom panels show the same for the 5th-order
method (m = 3, β = 2/75). Both the jet near the bottom wall and the weak
shock, generated at the kink in the main reflected shock, are well resolved. A vortex
structure at the bottom of the diagonal contact discontinuity shows up, with more
details appearing when increasing accuracy.

This configuration leads to a complex flow structure, produced by a double
Mach reflection of the shock at the wall. A self-similar flow develops as the
fluid meets the reflecting wall. Two Mach stems develop, with two contact
discontinuities. We have plotted in Fig. 13 the density contours at t = 0.2,
when the main features have fully developed. The more challenging ones are
the jet propagating to the right near the reflecting wall and the weak shock
generated at the second Mach reflection, as seen in the enlarged area in Fig. 14.

Our third-order results agree with the original ones [24] for the corresponding
resolution: both the jet and the weak shock are clearly captured. Increasing
both the resolution and the order-of-accuracy of the numerical algorithm, as
shown in the subsequent panels in Fig. 14, we see more details of the jet
rolling-up. Also, a vortex structure appears near the bottom wall, which starts
affecting the diagonal contact discontinuity arising from the triple point. These
high-resolution features, appearing in the last panel in Fig. 14, agree with the
ones obtained with a WENO method of the same order (but double resolution,
1/960) in Ref. [25]. This also agrees with the results of recent spectral (finite)
volume simulations [26], in which those structures show up gradually, as one is

22



getting more accurate simulations. This is another example in which a higher-
order algorithm can be preferred, as it captures more detailed features of
complex structures for a given resolution.

7 Conclusions and outlook

The numerical experiments presented in this paper provide clear evidence for
a TVB behavior of the proposed schemes. This means that the total varia-
tion growth is uniformly bounded, independently of the resolution, for a fixed
evolution time. Moreover, the experimental pattern is a sudden growth of the
total variation, which provides a time-independent bound for the rest of the
evolution. This growth is confined to the mesh points directly connected with
non-sonic critical points, especially near discontinuities. But the resulting rid-
dles do not spread over smooth regions and the overall features of the solution
are preserved as a result. In the case of compound shocks, however, the nu-
merical simulations actually mystify the physical solution: the spurious riddles
affect the contact point between the shock and the adjacent rarefaction wave,
breaking the compound structure, even if the TVB behavior is still preserved.

The proposed schemes are obtained from the unlimited version of the Osher-
Chakrabarthy [6] linear flux-modification algorithms. The robustness of the
unlimited version is related with the high compression factor of this algorithms
family. We have actually improved the available estimates up to a remarkable
value of b = 5, for the third-order case. This suggests that these estimates
could be even improved by using alternative bound-setting procedures. Un-
fortunately, even in the scalar case, we are not able to prove rigorously the
TVB properties of these methods, although we are currently working in this
direction.

We have combined the unlimited Osher-Chakrabarthy algorithm with the sim-
ple LLF flux formula. As a result, we have been able to derive the compact
finite-difference scheme (35), which is equivalent to the corresponding finite-
volume implementation in the unlimited case. This provides an extremely
cost-efficient algorithm for dealing with the most common problems, even in
presence of interacting dynamical shocks, as we have done in the Orszag-Tang
2D vortex and the double Mach reflection cases. Of course, its use should be
limited to convex-flux problems, where compound shocks do not arise.

The resulting finite-difference formula (35) is similar to the ones obtained
by the ’artificial viscosity’ approach (see for instance ref. [27]). The main
difference is that the spectral radius plays a key role here in the dissipation
term, providing some sort of ’adaptive viscosity’. Even in the most simple
constant-speed case we can still see that the order of accuracy in our case
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is dictated by the dissipation term, in contrast with the extra freedom one
gets in the standard artificial viscosity approach. Moreover, our compression
factor estimates provide specific prescriptions for the value of the dissipation
coefficient.
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