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Abstract

An efficient O(N) cluster Monte Carlo method for Ising models with long-range
interactions is presented. Our novel algorithm does not introduce any cutoff for in-
teraction range and thus it strictly fulfills the detailed balance. The realized stochas-
tic dynamics is equivalent to that of the conventional Swendsen-Wang algorithm,
which requires O(N2) operations per Monte Carlo sweep if applied to long-range
interacting models. In addition, it is shown that the total energy and the specific
heat can also be measured in O(N) time. We demonstrate the efficiency of our algo-
rithm over the conventional method and the O(N logN) algorithm by Luijten and
Blöte. We also apply our algorithm to the classical and quantum Ising chains with
inverse-square ferromagnetic interactions, and confirm in a high accuracy that a
Kosterlitz-Thouless phase transition, associated with a universal jump in the mag-
netization, occurs in both cases.
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1 Introduction

Systems with long-range interactions exhibit more involved phase diagrams
and richer critical phenomena than those with only nearest-neighbor interac-
tions. One of the most prominent examples is the Ising model with long-range
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interactions, whose Hamiltonian is defined as

− βH =
∑

i<j

βJijσ
z
i σ

z
j , (1)

where σz
i = ±1, Jij is the coupling constant between the ith and jth sites

(i, j = 1, 2, · · · , N), and N is the total number of spins. Among the models
described by Eq. (1), the one-dimensional chain with algebraically decaying
interactions has been studied most intensely so far. The interaction Jij for the
model is written as

Jij =
1

r1+α
ij

, (2)

where α is the parameter characterizing the range of interaction. (Note that α
should be positive to assure the energy convergence.) In spite of the extremely
simple form of its Hamiltonian, the model is known to exhibit various critical
behavior with respect to the parameter α: When α is sufficiently large, the sys-
tem belongs to the same universality class as the nearest-neighbor model, i.e.,
no finite-temperature phase transitions [1,2]. At α = 1, however, the system
exhibits a Kosterlitz-Thouless phase transition at a finite temperature [3,4,5].
In the regime 1/2 < α < 1, the critical exponents of the system changes con-
tinuously as α is decreased [6]. Finally, when α is equal to or smaller than
1/2, the system shows the critical exponents of the mean-field universality [6].
Such rich and nontrivial phenomena associated with the long-range interac-
tions have attracted much interest and many researches have been done both
theoretically and numerically.

On numerical researches of long-range interacting spin models, however, the
standard Monte Carlo techniques encounter a serious problem, i.e., quadratic
increase of CPU time per Monte Carlo sweep as the system size increases. This
is simply because there are NC2 ≈ N2 different pairs of spins to be consid-
ered in an N -spin system. For unfrustrated spin models, the cluster methods,
such as the Swendsen-Wang [7] or Wolff [8] algorithms, are the methods of
choice, since they almost completely eliminate correlations between succeeding
spin configurations on the Markov chain. Unfortunately, the cluster algorithms
share the same difficulty with the single spin flip update. In 1995, however,
Luijten and Blöte introduced a very efficient cluster algorithm [9]. What they
focused was that, on average, only O(N) among O(N2) bonds contribute to
cluster construction. By employing a rejection-free method based on binary
search on a cumulative probabilities, they succeeded in reducing the num-
ber of operations per Monte Carlo sweep drastically to O(N logN). Recently,
the same strategy has been applied to the quantum Monte Carlo method for
long-range ferromagnetic Ising models in a transverse external field [10].

In the present paper, we propose a still faster cluster Monte Carlo algo-
rithm for long-range interacting ferromagnets. Our method is based on the
extended Fortuin-Kasteleyn representation of partition function [11,12] and
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an extremely effective technique for integral random number generation, so-
called Walker’s method of alias [13,14]. As the method of Luijten and Blöte,
the proposed algorithm does not introduce any cutoff for interaction range and
realizes the identical stochastic dynamics with the original O(N2) Swendsen-
Wang method. The CPU time per Monte Carlo sweep is, on the other hand,
merely proportional to N instead of N logN or N2, and is an order of magni-
tude shorter than that of Luijten and Blöte for sufficiently large systems. In
addition to its speed, our algorithm has several advantages: First, it is quite
robust, that is, it works efficiently both for short-range and long-range inter-
acting models as it stands. Second, the calculation of the total energy and the
specific heat are also possible in O(N) time without any extra cost. Third,
our Monte Carlo algorithm is straightforwardly extended for quantum models,
such as the transverse-field Ising model, the Heisenberg model, etc.

The organization of the present paper is as follows: In Sec. 2, we briefly review
the Swendsen-Wang cluster algorithm and its O(N logN) variant by Luijten
and Blöte. In Sec. 3, we present our new algorithm in detail. We also show
how the total energy and the specific heat are calculated in O(N) time, and
the extension of the O(N) algorithm to the transverse-field Ising model. In
Sec. 4, a benchmark test of our new algorithm is presented. As an application
of the O(N) algorithm, the Kosterlitz-Thouless transition of the Ising chain
with inverse-square interaction is investigated in Sec. 5. Especially, we confirm
the universality between the classical and quantum Ising models in a high
accuracy. Section 6 includes a summary and discussion, followed by appendices
on some technical details about Walker’s method of alias.

2 Conventional Cluster Algorithms for Ising model with Long-

range Interactions

2.1 Swendsen-Wang Method

In this section, first we briefly review the cluster Monte Carlo method by
Swendsen and Wang [7]. Each Monte Carlo sweep of the Swendsen-Wang
algorithm consists of two procedures, graph assignment and cluster flip. In
the former procedure, one inspects all the bonds sequentially, and each bond
is activated or deactivated with probability

Pij = δσz
i ,σ

z
j
[1− exp(−2βJij)] (3)

and (1−Pij), respectively. Then, after the trials for all the bonds, each cluster
of spins connected by active bonds is flipped at once with probability 1/2, and
a terminate configuration is generated.
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The stochastic process achieved by the Swendsen-Wang algorithm is ergodic.
It is also proved, with the help of the Fortuin-Kasteleyn representation of the
partition function [11,12], that the algorithm satisfies the detailed balance.
The partition function of the Hamiltonian (1) is written as

Z =
∑

c

∏

i<j

eβJijσ
z
i σ

z
j =

∑

c

Nb
∏

ℓ=1

eβJℓσℓ , (4)

where Nb (= NC2) denotes the total number of bonds, ℓ is the bond index,
and Jℓ = Jij and σℓ = σz

i σ
z
j are the coupling constant and the product of the

spin states of the both ends of the bond ℓ, respectively. We first extend the
original phase space of Ising spins {c} (= {(σz

1, σ
z
2 , · · · , σ

z
N)}) to the direct

product of phase spaces of spins {c} and graphs {g}. A graph g is defined by
a set of variables gℓ (ℓ = 1, 2, · · · , Nb), each of which is defined on each bond
(or link). The graph variable gℓ describes whether the ℓth bond is activated
(gℓ = 1) or not (gℓ = 0). By using the extended phase space, the partition
function (4) is expressed as

Z = C
∑

c

∑

g

ω(c, g) (5)

with

ω(c, g) =
Nb
∏

ℓ=1

∆(σℓ, gℓ) Vℓ(gℓ), (6)

where C is a constant and the summation
∑

g runs over 2Nb possible graph
configurations. The weight functions ∆ and Vℓ are defined as

∆(σℓ, gℓ) =











0 if gℓ = 1 and σℓ = −1

1 otherwise
(7)

Vℓ(gℓ) = (e2βJℓ − 1)gℓ, (8)

respectively. The equality between Eqs. (4) and (5) is verified by figuring out
the summation with respect to g in the latter:

∑

g

ω(c, g) =
∑

g

Nb
∏

ℓ=1

∆(σℓ, gℓ)Vℓ(gℓ) =
Nb
∏

ℓ=1

(∆(σℓ, 0)Vℓ(0) + ∆(σℓ, 1)Vℓ(1))

=
Nb
∏

ℓ=1

(1 + δσℓ,1(e
2βJℓ − 1))

= eβ
∑Nb

ℓ=1
Jℓ

Nb
∏

ℓ=1

(e−βJℓ + δσℓ,1(e
βJℓ − e−βJℓ)) = eβ

∑Nb
ℓ=1

Jℓ
Nb
∏

ℓ=1

eβJℓσℓ ,

(9)

and thus C = exp(−β
∑

ℓ Jℓ). From Eq. (5), we can consider ω(c, g) as a weight
of the configuration (c, g) in the extended phase space.
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The Swendsen-Wang method is a procedure to update the spin configuration
dynamically by going through an intermediate graph configuration. Consider
that the initial spin configuration is c. We assign a graph g for the spin con-
figuration c with the following probability:

P (g|c) =
ω(c, g)

∑

g′
ω(c, g′)

=
Nb
∏

ℓ=1

Vℓ(gℓ)∆(σℓ, gℓ)
∑

g′
ℓ

Vℓ(g
′
ℓ)∆(σℓ, g

′
ℓ)
. (10)

That is, for each bond we assign gℓ = 1 with probability

P (gℓ = 1|σℓ) =
Vℓ(1)∆(σℓ, 1)

Vℓ(1)∆(σℓ, 1) + Vℓ(0)∆(σℓ, 0)
= δσℓ,1(1− e−2βJℓ). (11)

This probability turns out to be the same as the one in Eq. (3). The cluster
construction in the Swendsen-Wang algorithm is thus equivalent to assign-
ing graph variables in the Fortuin-Kasteleyn language. The second procedure
(cluster flip) in the Swendsen-Wang algorithm is also represented clearly in
the Fortuin-Kasteleyn representation: Under a given graph configuration g, a
new spin configuration c′ is selected according to probability

P (c′|g) =
ω(c′, g)
∑

c

ω(c, g)
=

Nb
∏

ℓ=1

∆(σ′
ℓ, gℓ)

∑

c

Nb
∏

ℓ=1

∆(σℓ, gℓ)

. (12)

Note that
∏Nb

ℓ=1∆(σℓ, gℓ) takes either 1 or 0, depending on whether all the
active bonds have σℓ = 1, or not. The last equation means that among all
the allowed spin configurations, which have nonzero ω(c, g), for a given g, a
configuration is chosen with equal probability. This is equivalent to flipping
each cluster of spins connected by active bonds independently with probability
1/2.

The detailed balance condition of the Swendsen-Wang method is thus repre-
sented in a concrete form:

P (c′|c)ω(c) =
∑

g

P (c′|g)P (g|c)ω(c) =
∑

g

ω(c, g)ω(c′, g)

ω(g)
. (13)

Since the most right-hand side of Eq. (13) is symmetric under the exchange
of initial and terminal spin states c and c′, the detailed balance is satisfied
automatically.
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2.2 O(N logN) Method by Luijten and Blöte

It has turned out that the Swendsen-Wang cluster algorithm works quite well
for wide variety of systems without frustration. Especially, it removes almost
completely the so-called critical slowing down near the continuous phase tran-
sition point. Since there is no constraint about the range of interactions in its
construction, the Swendsen-Wang algorithm is also applicable to long-range
interacting systems without any modification. However, since the number of
bonds Nb is NC2 = O(N2) in such systems, the number of operations required
for one Monte Carlo sweep is proportional to N2, which is significantly more
expensive than those for the nearest-neighbor models.

A nifty solution for reducing drastically the number of operations from O(N2)
to O(N logN) was devised by Luijten and Blöte [9]. What they noticed is
separating the activation probability Pℓ into the two parts:

Pℓ = pℓ δσℓ,1 (14)

pℓ = 1− exp(−2βJℓ). (15)

If one chooses candidate bonds with probability pℓ and then activate them
with probability δσℓ,1 afterward, the probability Pℓ is realized eventually. For
choosing the candidates bonds, one could use a more efficient method than
the exhaustive search, since pℓ is independent of the spin state σℓ and prede-
termined statically at the beginning of the Monte Carlo simulation. Indeed, it
is seen that the number of candidate bonds are typically much smaller than
Nb. The average number of candidate bonds is evaluated as

Nb
∑

ℓ=1

pℓ =
1

2

N
∑

i=1

∑

j 6=i

(1− e−2βJij ) ∼
1

2

N
∑

i=1

∫ N1/d

1
dr rd−1(1− e−2βJ(r))

∼ βN
∫ N1/2

1
dr rd−1J(r).

(16)

Here we assume the translational invariance and that Jij depends only on the
distance, i.e., Jij = J(rij). If J(r) decays faster than r−d, which is equivalent to
the condition of energy convergence for the ferromagnetic models, the integral
in the last expression converges to a finite value in the thermodynamic limit.
Thus, at a fixed temperature, the number of candidate bonds increases as N
instead of N2.

For choosing candidate bonds, Luijten and Blöte adopted a kind of rejection-
free method, which is based on the binary search of cumulative probability
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tables. Let us define

q(0)m = pm
m−1
∏

ℓ=1

(1− pℓ) (q
(0)
1 = p1) (17)

C(0)
m =

m
∑

ℓ=1

q
(0)
ℓ (C

(0)
0 = 0 and C

(0)
Nb+1 = 1) (18)

where q(0)m is the probability that the mth bond is eventually chosen as a
candidate after the failure for the first, second, · · · , and (m − 1)th bonds,
and C(0)

m is the cumulative probability of q(0)m . When an uniform real random

variable U (∈ [0, 1)) is generated, U satisfies C
(0)
m−1 ≤ U < C(0)

m with probability
q(0)m . The first candidate bond m can then be directly chosen by searching the
first element larger than U . After the mth bond is activated or deactivated
depending on its spin state σm, one can continue the same procedure using
the tables

q(m)
n = pn

n−1
∏

ℓ=m+1

(1− pℓ) (q
(m)
m+1 = pm+1) (19)

C(m)
n =

n
∑

ℓ=m+1

q
(m)
ℓ (C(m)

m = 0 and C
(m)
Nb+1 = 1). (20)

In practice, one does not have to prepare C(m)
n for all m’s, since C(m)

n is readily
expressed in terms of C(0)

m and q(0)m as

C(m)
n =

pm

q
(0)
m

(C(0)
n − C(0)

m ). (21)

In other words, comparing C(m)
n to a random number U (U ∈ [0, 1)) is equiv-

alent to comparing C(0)
n to C(0)

m + (q(0)m /pm)U .

Besides an initial table setup, which requires O(Nb) operations, searching an
element in the table can be performed very quickly by using the binary search
algorithm. The number of operations required for each search is O(logNb) =
O(logN), which is significantly smaller than O(Nb) for the naive sequential
search. Since the average number of candidate bonds is O(N), a whole Monte
Carlo sweep is accomplished by O(N logN) operations on average.

3 New O(N) Cluster Algorithm

3.1 Formulation of O(N) Method

The factor logN in the method of Luijten and Blöte is due to the fact that
they use the binary search algorithm in looking for a next candidate. This
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factor might be removed if one can use some O(1) method instead of the bi-
nary search. Walker’s method of alias [13,14] has been known as such an O(1)
method to generate integral random numbers according to arbitrary probabil-
ity distribution for a long time (Appendix A), and is a potential candidate for
the replacement. Unfortunately, for the Walker method one can not use the
smart trick presented in Eq. (21) for reducing the number of tables. It means
that one has to prepare a table of length O(Nb) for each m before starting
the simulation. The total amount of memory storage for storing all the tables
is thus O(N2

b) = O(N4), which is not acceptable in practice. In the follow-
ing, we present a different approach based on the extended Fortuin-Kasteleyn
representation, which solves the storage problem and enables us to use the
efficient O(1) method by Walker with reasonable storage requirement, O(Nb)
(or O(N) for systems with translational invariance).

Our central idea is assigning a nonnegative integer to each bond instead of a
binary (active or inactive). The integer to be assigned is generated according
to the Poisson distribution. The probability that a Poisson variable takes an
integer k is given by

f(k;λ) =
e−λλk

k!
, (22)

where λ is the mean of the distribution. Note that f(0;λ) = e−λ and therefore

∞
∑

k=1

f(k;λ) = 1− e−λ, (23)

which is equal to pℓ in Eq. (15), if one puts λ to be 2βJℓ. That is, if one
generates an integer according to the Poisson distribution with λ = 2βJℓ, it
will take a nonzero value with probability pℓ. Thus conventional procedure in
activating bonds in the Swendsen-Wang algorithm can be modified as follows:
Generate a Poisson variable for each bond with a mean 2βJℓ, then activate
the bond only when the variable is nonzero and the spins are parallel. At first
glance, it seems that the situation is getting worse, since a Poisson random
number, instead of a binary, is needed for each bond. At this point, however, we
leverage an important property of the Poisson distribution: the Poisson process
is that for random events and there is no statistical correlation between each
two events. It allows us to realize the whole distribution by calculating just
one Poisson random variable with the the mean λtot =

∑

ℓ λℓ. The following
identity clearly represents the essence:

Nb
∏

ℓ=1

f(kℓ;λℓ) = f (ktot;λtot)
(ktot)!

k1!k2! · · · kNb
!

Nb
∏

ℓ=1

(

λℓ

λtot

)kℓ

, (24)

where ktot =
∑

ℓ kℓ. This identity is verified in a straightforward way by sub-
stituting Eq. (22) in both hands. The left-hand side of Eq. (24) is the prob-
ability that kℓ is assigned to each bond. The right-hand side, on the other
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hand, stands for the probability of generating a single Poisson number ktot
and then distributing kℓ events to each bond with the weight proportional
to λℓ. Distributing each event can be carried out in a constant time using
Walker’s method of alias. Since generating a Poisson number with the mean
λtot takes only O(λtot) time on average, the number of operations of the whole
procedure is also proportional to λtot = 2β

∑

ℓ Jℓ, which is O(N) for energy
converging models.

Before closing this section, let us describe our O(N) algorithm in terms of an
extended Fortuin-Kasteleyn representation. Introducing a configuration k =
(k1, k2, · · · , kNb

) instead of g = (g1, g2, · · · , gNb
) in the original representation,

the partition function is expressed as

Z =
∑

c

∑

k

Nb
∏

ℓ=1

∆(σℓ, kℓ)Vℓ(kℓ) =
∑

c

Nb
∏

ℓ=1

∞
∑

kℓ=0

∆(σℓ, kℓ)Vℓ(kℓ) (25)

with

∆(σ, k) =











0 if k ≥ 1 and σ = −1

1 otherwise
(26)

Vℓ(k) =
e−βJℓ(2βJℓ)

k

k!
. (27)

The original partition function is easily recovered by performing the summa-
tion over kℓ’s first.

3.2 Procedure in Concrete

One Monte Carlo sweep of the O(N) algorithm is described as follows.

(1) Generate a nonnegative integer k according to the Poisson distribution
with the mean λtot.

(2) Repeat the following procedure k times:
(2-a) Choose a bond ℓ with probability

Jℓ
∑Nb

ℓ′=1 Jℓ′
(28)

by using Walker’s method of alias.
(2-b) If σℓ = 1 then activate bond ℓ. If the bond is already activated, just

do nothing.
(3) Flip each cluster with probability 1/2.
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For a system with translational invariance, step (2-a) in the above procedure
can be replaced by

(2-a’) Choose a site i with probability 1/N , then choose another site j with
probability

Jij
∑

j′ 6=i Jij′
. (29)

In this way, the size of tables for the modified probability and alias number
in the Walker method (see Appendices A and B for details) can be reduced
from O(N2) down to O(N).

3.3 Total Energy and Specific Heat Measurement

Measuring the total energy is also costly for long-range interacting models.
In Ref. [15], Krech and Luijten proposed a method based on the fast Fourier
transform. In this section, however, we show that the total energy and the
specific heat are also calculated in O(N) time in the present algorithm. Indeed,
the both quantities are obtained free of charge during Monte Carlo sweeps.

Let us consider the expression for the energy in the extended Fortuin-Kasteleyn
representation. Differentiating the partition function (25) with respect to the
inverse temperature, we obtain

E = −
∂

∂β
ln
[

∑

c

∑

k

W (c, k)
]

=

∑

c

∑

k

∑

ℓ

(Jℓ − kℓ/β)W (c, k)

∑

c

∑

k

W (c, k)

= Jtot −
1

β

〈

∑

ℓ

kℓ

〉

MC
,

(30)

where Jtot =
∑

ℓ Jℓ, and 〈· · · 〉MC denotes the Monte Carlo average of an ob-
servable in the present O(N) algorithm. Thus, in order to calculate the to-
tal energy, nothing more than the information one uses during Monte Carlo
sweeps is needed. It also applies to the the specific heat. Differentiating the
right-hand side of Eq. (30) once again, one obtains the following expression

C = −
β2

N

dE

dβ

= −
β2

N

[

1

β2

〈

∑

ℓ

kℓ

〉

MC
−
〈(

Jtot −
1

β

∑

ℓ

kℓ

)2〉

MC
+
〈

Jtot −
1

β

∑

ℓ

kℓ

〉2
]

=
1

N

[

〈(

∑

ℓ

kℓ

)2〉

MC
−
〈

∑

ℓ

kℓ

〉2

MC
−
〈

∑

ℓ

kℓ

〉

MC

]

(31)
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for the specific heat, which is not simply a variance of of energy (30) but has an
extra term 〈

∑

ℓ kℓ〉MC. We note that the expressions for the total energy (30)
and the specific heat (31) have a close relation with those for the quantum
Monte Carlo method in the continuous imaginary-time path integral or the
high-temperature series representations [16].

3.4 Quantum Cluster Algorithm for transverse-field Ising Model

The O(N) Monte Carlo algorithm can be extended quite naturally to quantum
spin systems with long-range interactions. In this section, as a simplest exam-
ple, we present a quantum cluster algorithm for the long-range Ising model in
a transverse external field. Application to other quantum spin models, such
as the Heisenberg or the XY models, is also straightforward.

The Hamiltonian of the transverse-field Ising model with long-range interac-
tions is defined as

H = −
∑

i<j

Jijσ
z
i σ

z
j −

N
∑

i=1

Γσx
i , (32)

where Γ denotes the strength of transverse external field, and σx
i and σz

i are
the Pauli operators at site i. According to the standard prescription [17], we
start with dividing the Hamiltonian (32) into two parts, bond terms Hb =
−
∑

i<j Jijσ
z
i σ

z
j and site terms Hs = −

∑N
i=1 Γσ

x
i . The partition function is

then expanded as

Z = Tr e−βH = lim
M→∞

∑

φ1

〈φ1|
(

e−
β
M

Hb e−
β
M

Hs

)M
|φ1〉

= lim
M→∞

∑

φ1,··· ,φM

M
∏

m=1

e−
β
M

Em〈φm|e
− β

M
Hs|φm+1〉,

(33)

where M is the number of Suzuki-Trotter slices along the imaginary-time axis.
In Eq. (33), we inserted the identities

∑

φm
|φm〉〈φm| between the operators.

The basis set {φm} is chosen so that {σz
i } are diagonalized (and so is Hb),

and Em ≡ 〈φm|Hb|φm〉. We impose the periodic boundary conditions in the
imaginary-time direction: φM+1 = φ1. Expanding the exponential operators
of the site Hamiltonian to the first order, we obtain the following discrete
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imaginary-time path integral:

Z = lim
M→∞

∑

φ1,··· ,φM

M
∏

m=1

e−
β
M

Em〈φm|
N
∏

i=1

[

1 +
βΓ

M
(σ+

i + σ−
i )

]

|φm+1〉

= C lim
M→∞

∑

φ1,··· ,φM

M
∏

m=1

[

∏

i<j

e
βJij
M

σ
(m)
i σ

(m)
j

][ N
∏

i=1

e
1
2
ln βΓ

M
σ
(m)
i σ

(m+1)
i

]

= C lim
M→∞

∑

φ1,··· ,φM

exp
[ M
∑

m=1

∑

i<j

βJij

M
σ
(m)
i σ

(m)
j

+
M
∑

m=1

N
∑

i=1

1

2
ln

βΓ

M
σ
(m)
i σ

(m+1)
i

]

,

(34)

where σ±
i = (σx

i ± iσy
i )/2 are the spin ladder operators, σ

(m)
i ≡ 〈φm|σ

z
i |φm〉,

and C is a constant. Thus, the partition function of the transverse-field Ising
chain of N sites is represented by that of a two-dimensional classical Ising
model of M ×N sites, where the interactions are long-ranged along one axis
(real space direction) and short-ranged along the other axis (imaginary-time

direction). The coupling constants in both directions are βclJ
(space)
ij = βJij/M

and βclJ
(time) = 1

2
ln(βΓ/M), respectively, where βcl is a fictitious inverse tem-

perature of the mapped system. The O(N) cluster algorithm presented in the
previous subsection is then applied to this classical Ising model straightfor-
wardly.

Furthermore, it has been shown that one can take the Trotter limit (M → ∞)
in Eq. (34), and perform Monte Carlo simulations directly in the imaginary-
time continuum [18,19]. It is possible because the coupling constant along
the imaginary-time axis J (time) increases as M does. The average number of
antiparallel pairs (or kinks) remains finite even in the continuous-time limit,
and therefore one does not have to take configurations with infinite number
of kinks into account. Specifying the number of kinks by n and its space-
time position by (τp, sp) (p = 1, 2, · · · , n), we obtain the continuous-time path
integral representation of the partition function:

Z =
∑

φ0

[

e−βE0 +
∞
∑

n=1

∑

{sp}

∫ β

0
dτ1

∫ β

τ1
dτ2 · · ·

∫ β

τn−1

dτn Γ
n
n+1
∏

p=1

e−(τp−τp−1)Ep−1

]

, (35)

where τ0 = 0, τn+1 = β, and Ep is the diagonal energy 〈φ|Hb|φ〉 of the spin
configuration between the pth and (p+ 1)th kinks (En = E0). In Fig. 1(a) an
example of path integral configuration is shown.

The cluster algorithm is also defined directly in the Trotter limit. Since the ac-
tivation probability of temporal bond with parallel spins, 1−exp(2βclJ

(time)) =
1− βΓ/M , becomes almost unity for M ≫ 1, the probability of finding n in-

active links (open squares in Fig. 1) in a uniform temporal segment of unit
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Fig. 1. (a) Example of the space-time configuration in the continuous-time path
integral representation. The arrows at the bottom denote φ0. Solid and broken lines
denote the continuously aligned up and down spins, respectively. The open circles
represent the space-time position where an ladder operator is inserted. (b) Possible
graph configuration assigned to spin configuration (a). The open squares represent
the positions where the temporal bond is deactivated, while the filled circle represent
those where a spatial bond is activated. The spatial long-range bonds are activated
only when the spins are parallel at both ends as depicted in (a), where the candidates
connecting antiparallel spins are rejected (x-marks).

imaginary time, which contains M/β Trotter slices, is given by a Poisson dis-
tribution,

M/βCn(1− βΓ/M)(M/β−n)(βΓ/M)n ≈ f(n,Γ). (36)

Similarly, the probability of finding n spatial candidate links (horizontal dashed
lines in Fig. 1) between parallel spins at site i and j in unit imaginary time
is f(n, 2Jij). After all, the overall probability of finding n events in total at
some site or bond is given by f(n,Λ) with

Λ = NΓ + 2Jtot. (37)

Since these events are statistically independent with each other, a series of
events is generated successively by using the exponential distribution for the
temporal interval t between two events:

p(t)dt = Λe−Λtdt. (38)

At each imaginary time, then a site or bond is chosen according to the prob-
abilities Γ/Λ or 2Jij/Λ, respectively. This is again done in a constant time by
using the Walker method. If a site is chosen, the temporal bond is deactivated,
i.e., clusters are disconnected at this space-time position. If a bond is selected
(and if the spins on its ends are parallel), on the other hand, a spatial link is
inserted, i.e., two sites are connected at this imaginary time (horizontal solid
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lines in Fig. 1). At the space-time points where the spin changes its direction
(open circles in Fig. 1), we always deactivate the temporal bond. By repeat-
ing this procedure until the imaginary time β is reached, the whole lattice is
divided into several clusters [Fig. 1(b)]. Finally each cluster is flipped with
probability 1/2 to generate a terminal configuration.

The number of operations per Monte Carlo sweep is proportional to the num-
ber of generated events. Its average is given by βΛ, which is proportional to the
system size N as the O(N) algorithm for classical models. We note that the
O(N) quantum cluster algorithm presented in this section is also formulated
in the same way in the high-temperature series representation [10].

4 Performance Test

In order to demonstrate the efficiency of the present method, we carried out
Monte Carlo simulations for the classical mean-field (or infinite-range) model
of various system sizes (N = 2, 4, · · · , 225). We use the naive Swendsen-Wang
and Luijten-Blöte methods as benchmarks. The coupling constants of the
mean-field model is given by

Jij =
1

N
(39)

for all i 6= j. The denominator N is introduced to prevent the energy density of
the system from diverging in the thermodynamic limit. We choose the mean-
field model as a severest test case for these algorithms, though simpler and
faster algorithms, even exact analytic results, exist for this specific model. The
benchmark test was performed on a PC workstation (CentOS Linux 5.1, Intel
Xeon 3.2GHz, 1MB cache, GNU C++ 4.1.1).

We confirm that all these algorithms produce the same results, total energy,
specific heat, magnetization density squared, Binder cumulant, etc, within the
error bar in the whole temperature range we simulated. The CPU time spent
for one Monte Carlo sweep at the critical temperature (T = 1) is shown in
Fig. 2. For the naive Swendsen-Wang algorithm, as one expects, the CPU
time grows rapidly as N2. On the other hand, it is clearly seen in Fig. 2 that
the present algorithm has a different scaling, linear to the system size, and
is indeed much faster than the Swendsen-Wang method except for very small
system sizes (N ≤ 4). The present and Luijten-Blöte methods exhibit a similar
scaling behavior, but the former is faster for all the system sizes we simulated.
To see the difference in scaling behavior in detail, we plot the relative speed
of the present algorithm to the latter in the inset of Fig. 2. For N . 105, it
scales as logN , which is consistent with the performance difference between
the Walker and the binary search algorithms. Around the system size N ≈ 105,
however, the results for the present algorithm start to deviate from the N -
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Fig. 2. System size dependence of CPU time per Monte Carlo sweep of the Swend-
sen-Wang (squares), Luijten-Blöte (circles), and the present (diamonds) methods
for the mean-field model at T = 1. The solid and dashed lines indicate the theoret-
ical asymptotic scaling for the Swendsen-Wang (N2) and the present (N) methods,
respectively. The Luijten-Blöte and the present methods both show an anomaly at
N ≈ 105, which is attributed to the occurrence of cache miss. In the inset, the
relative speed of the present algorithm to that of the Luijten-Blöte method is also
shown, where the dashed line indicates a logN scaling.

linear scaling. Those for the Luijten-Blöte method shows a similar anomalous
behavior, but the situation is much worse in this case as seen in the inset
of Fig. 2. We attribute these anomalies to the occurrence of cache miss, for
the spin configuration of N & 105 does not fit the cache memory, whose size
is typically a few MB. The naive Swendsen-Wang method should also suffer
from the same problem, but in the present benchmark test its effect seems to
be hidden under the quadratic growth in the number of operations.

In summary, among the existing three algorithms the present O(N) method
is the fastest except for very small system sizes. Especially, it outperforms
the Swendsen-Wang method by four orders of magnitude at N = 219 and the
Luijten-Blöte method by about factor twenty at N = 225. This efficiency of the
present method enables us to simulate much larger systems or further improve
statistics as compared with the previous Monte Carlo studies, as demonstrated
in the next section.

5 Kosterlitz-Thouless Transition in Ising Chain with Inverse-square

Interactions

In this section, as a nontrivial example, we apply our O(N) cluster algorithm
to the phase transition of the one-dimensional Ising model with inverse-square
interactions [Eq. (2) with α = 1]. As we mentioned in the introduction, among
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Fig. 3. Temperature dependence of magnetization density squared for (a) classical
(Γ = 0) and (b) quantum (Γ = 1) Ising chains with inverse-square interactions.
System sizes are L = 23, 24, · · · , 220 from the top to the bottom. The error bar
of each data point is much smaller than the symbol size. The dashed lines denote
the universal jump relation Eq. (40). The filled diamond indicates the critical tem-
perature obtained from the finite-size scaling analysis (see Fig. 4 below) and the
magnetization density squared just below the critical point.

the models with algebraically decaying interactions, this model is special as
a boundary case, i.e., it has the weakest (or shortest) interactions to trig-
ger a finite-temperature phase transition. What is more, this phase transi-
tion belongs to the same universality class as the Kosterlitz-Thouless tran-
sition [3,4,5], where logarithmic excitations brought by formation of domain
walls compete with the entropy generation. The Kosterlitz-Thouless transition
is characterized by an exponential divergence of the correlation length toward
the critical temperature TKT and a finite jump in the magnetization. Espe-
cially, the amount of the magnetization gap at the critical point is conjectured
to satisfy the following universal relation:

2m2 = TKT, (40)

where m2 = 〈(
∑

i σ
z
i )

2〉/N2, being the square of magnetization density. For
the classical Ising chain with inverse-square interactions, it is confirmed that
a phase transition of Kosterlitz-Thouless universality occurs by an extensive
Monte Carlo study [20].

We perform Monte Carlo simulations by using the O(N) cluster algorithm for
the chain length L = 23, 24, · · · , 220(= 1048576).We impose periodic boundary
conditions. In order to minimize the effect of boundary conditions, we use the
following renormalized coupling constant

J̃ij =
∞
∑

n=−∞

1

(i− j − nL)2
=

π2

L2 sin2 π(i− j)

L

, (41)
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Fig. 4. Scaling plot of magnetization density squared for (a) classical (Γ = 0) and
(b) quantum (Γ = 1) Ising chains with inverse-square interactions. System sizes are
L = 28 (crosses), 210 (x-marks), · · · , 220 (filled diamonds). The error bar of each
data point is much smaller than the symbol size.

in which contribution from all periodic images is taken into account. It reduces
to the bare coupling constant (2) in the thermodynamic limit L → ∞. Mea-
surement of physical quantities is performed for 524288 Monte Carlo sweeps
after discarding 8192 sweeps for thermalization.

In Fig. 3, we show the temperature dependence of the magnetization density
squared for (a) Γ = 0 and (b) Γ = 1. For the classical system (Γ = 0),
our results coincide quite well with the previous Monte Carlo study [20]. In
both cases, m2 decreases monotonically as the temperature increases. At high
temperatures, m2 vanishes quite rapidly as the system size increases, while it
seems converging to a finite value in the low temperature regime though the
convergence is rather slow. This suggests an emergence of long-range order
at some finite critical temperature. At low temperatures, m2 of the quantum
system is smaller than the classical one. Indeed, m2 < 1 even at T = 0 for
Γ = 1, which is in contrast to the classical case,m2 = 1. This is due to quantum
fluctuations introduced by the transverse external field. In a previous quantum
Monte Carlo study [10], intersections of magnetization curves for different
system sizes at intermediate temperatures have been reported. In the present
study, however, we do not observe such a nonmonotonic behavior regardless of
the system size. We would attribute this discrepancy to a relaxation problem
in the Monte Carlo calculation in Ref. [10], where only a local flip scheme is
used for updating spin configurations.

In order to discuss the critical behavior in detail, next we perform a finite-size
scaling analysis. As is well known, the standard finite-size scaling technique
does not work in the case of the Kosterlitz-Thouless transition, for the cor-
relation length exhibits an exponential divergence. Instead of the ordinary
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finite-size scaling, which depends on an algebraic divergence of the correlation
length, an alternative scaling form for the magnetization has been suggested
from the renormalization group equations [5,21,22]:

2m2

T
− 1 = ℓ−1F (tℓ2), (42)

where F (x) is a scaling function, t = T/TKT − 1, ℓ = log(L/L0), and L0 a
constant. It is confirmed that this finite-size scaling assumption works well for
the two-dimensional XY model [22], in which the helicity modulus, instead of
the magnetization, is the quantity exhibiting a universal jump.

In Fig. 4, we show the scaling plots for Γ = 0 and 1. Both data are scaled
excellently by using the same scaling form (42), where we have only two fitting
parameters, TKT and L0. This strongly supports that the magnetization shows
the universal jump (40) at the critical point. From these scaling plots we
conclude

TKT =











1.52780(9) for Γ = 0

1.38460(25) for Γ = 1
(43)

for the Kosterlitz-Thouless critical temperature. The result for the classi-
cal case is compared with that in the previous Monte Carlo study, TKT =
1.5263(4) [20], which differs slightly beyond the error bar. This tiny discrep-
ancy might be due to the difference in the way of scaling analysis. In Ref. [20]
the magnetization data at low temperatures are first extrapolated to the ther-
modynamic limit, then further extrapolated towards the critical point, whereas
the Monte Carlo data are directly used to estimate the critical temperature
in the present finite-size scaling analysis. Thus, we expect that the present
estimate for TKT is more reliable.

As for the quantum system (Γ = 1), the critical temperature is lower than
the classical one due to the quantum fluctuations. However, the finite-scaling
analysis confirms that the phase transition belongs to the Kosterlitz-Thouless
universality class as in the classical case. The finite-size scaling plots shown
in Fig. 4 suggest that the scaling function itself is universal as well. As Γ is
increased further, TKT decreases monotonically, and it finally vanishes at a crit-
ical transverse field Γc (≈ 2.52 [23]), where a quantum phase transition occurs.
At this point some exotic quantum critical behavior with a nontrivial dynam-
ical exponent z is expected, since the (1+ 1)-dimensional system is extremely
anisotropic, i.e., in real space direction the system has long-range interactions,
whereas the interaction in the imaginary-time direction is still short ranged.
More detailed analyses on the quantum criticality of the transverse-field Ising
model will be presented elsewhere [23].
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6 Summary and Discussion

We presented an O(N) cluster algorithm for Ising models with long-range in-
teractions. The algorithm proposed in the present paper is exact, i.e., it does
not introduce any cutoff for interaction range and thus it strictly fulfills the
detailed balance. Our algorithm is formulated based on the extended Fortuin-
Kasteleyn representation, where bond variables have a nonnegative integral
value instead of a binary number. For each bond, an integer is generated ac-
cording to the Poisson distribution. However, it does not necessarily mean
that each Poisson variable has to be generated one by one. We show that gen-
erating an overall Poisson distribution and ex-post assignment of events, using
Walker’s method of alias, are statistically equivalent to the naive Swendsen-
Wang method. In Sec. 4, we demonstrated the N -linear scaling behavior in
the CPU time for the mean-field model.

The present method has several advantages over the existing methods, such as
the Metropolis method, the Swendsen-Wang algorithm [7], the improvement
by Luijten and Blöte [9], or the recently proposed O(N) method [24], in sev-
eral aspects: (a) The CPU time per Monte Carlo sweep is O(N). (b) It works
effectively both for short-range and long-range interacting models. (c) It is
a cluster algorithm and free from the critical slowing down near the critical
point. (d) It is possible to formulate a single-cluster variant [8]. (e) It is very
easy to implement the algorithm, based on an existing Swendsen-Wang code.
(f) It can also be used for systems without translational invariance, though it
once costs O(N2) to initialize lookup tables. (g) Calculation of the total energy
and the specific heat can be done all together in O(N) time. (h) It can be ap-
plied to Potts, XY , and Heisenberg models with the help of Wolff’s embedding
technique [8]. (i) Extension to quantum models, such as the transverse-field
Ising model or the Heisenberg model, is also possible straightforwardly.

In Sec. 5, we have applied our new algorithm to the phase transition of Ising
model with inverse square interactions, where we see that the O(N) method
works ideally for both of the classical and quantum systems. It is confirmed
in a high accuracy that the phase transition belongs to the same universality
as the Kosterlitz-Thouless transition.

Finally, let us discuss the efficiency of the present algorithm at very low tem-
peratures. For a fixed system size N , the calculation cost of the present method
grows linearly as the inverse temperature β increases, whereas that of the naive
method is constant regardless of the temperature for classical Ising models. It
indicates that at lower temperatures than some threshold 1/βthresh, the naive
method outperforms the present method. At extremely low temperatures, al-
most all the bonds are activated. The present method then activates such
bonds many times, which is the cause of the slowing down. Although the β-
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linear increase of CPU time is inevitable for quantum systems, where the stan-
dard quantum Monte Carlo algorithms for short-range models also suffer from
the same slowing down, however, one can adopt a “hybrid” scheme to optimize
the calculation cost at intermediate temperatures, max(Jℓ) . β < βthresh for
classical models. Suppose Jℓ’s are sorted in descending order, and we use the
naive method for the first n bonds and the O(N) method for the others. The
CPU time C(n) per Monte Carlo sweep is estimated as

C(n) ≃ An +B
Nb
∑

ℓ=n+1

2βJℓ, (44)

where A and B are some constants. The optimal value of n is then given by
∆C = C(n + 1) − C(n) = A − 2BβJn = 0. For the one-dimensional model
with algebraically decaying interactions (2), for example, we have

nopt

Nb

≈ N−1
(

2Bβ

A

)
1

1+α

. (45)

The threshold βthresh is defined as the inverse temperature where nopt = Nb ≃
N2, that is, βthresh ≈ (A/2B)N1+α, which grows as the system size N increases.
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A Walker’s Method of Alias

Consider a random variable X which takes an integral value i according to a
probability pi (1 ≤ i ≤ N and

∑

pi = 1). In this appendix, we discuss how to
generate such random numbers effectively. One of the simplest and the most
well-known methods is the one based on rejection:

Rejection Method

(1) Generate a uniform integral random variable M (1 ≤ M ≤ N).
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(2) Generate a uniform real random variable U (0 ≤ U < 1).
(3) If U is smaller than pM/pmax then X = M , otherwise repeat from (1).

Here, pmax = max(pi). Since the acceptance rate in step (3) is 1/(Npmax)
(≡ q), the probability of obtaining X = i eventually is

∑∞
r=1 pi(1−q)r−1q = pi.

Notice that the number of iterations is
∑∞

r=1 r(1− q)r−1q = 1/q = Npmax on
average, and therefore it would take O(N) time for each generation. Especially,
the efficiency decreases quite rapidly as the variance of pi increases. One may
reduce the number of operations down to O(logN) by employing the binary
search on the table of cumulative probabilities (see Sec. 2.2). However, there
exists a further effective method, called “Walker’s method of alias” [13,14],
which is rejection free and generates a random integer in a constant time.

The Walker algorithm requires two tables of size N , which need to be calcu-
lated in advance. One is the table of integral alias numbers {Ai} (1 ≤ Ai ≤ N)
and the other is that of modified probabilities {Pi} (0 ≤ Pi ≤ 1). Using these
tables a random integer is generated by the following procedure:

Walker’s Method of Alias

(1) Generate a uniform integral random variable M (1 ≤ M ≤ N).
(2) Generate a uniform real random variable U (0 ≤ U < 1).
(3) If U is smaller than PM then X = M , otherwise X = AM .

This procedure has no iterations, and thus completes in a constant time. The
meaning of the tables {Ai} and {Pi} and the correctness of the algorithm is
readily understood with the following example:

i 1 2 3 4 5 6 7 8 9 10 11 12

pi 0 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Pi 0 1
3

2
3

3
3

3
3

2
3

2
3

1
3

2
3

0 2
3

1
3

Ai 10 9 8 * * 5 6 6 7 7 8 8

The modified probabilities Pi are determined from pi (see Appendix B), which
gives the probabilities whether one should accept the firstly chosen number or
choose the alias number Ai. Let us consider, for example, the probability of
X = 9. There are two possibilities: One is M = 9 and U < P9, and the other
is M = 2 and U ≥ P2 since A2 = 9. The sum of these two probabilities is

1

12
[P9 + (1− P2)] =

1

9
, (A.1)

which is equal to p9 as expected. One can confirm that {Pi} and {Ai} are
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given in the example so that

pi =
1

N

[

Pi +
N
∑

j=1

(1− Pj)δi,Aj

]

(A.2)

holds for i = 1, 2, · · · , N . Together with the ordinary requirement for proba-
bilities, 0 ≤ Pi ≤ 1 (i = 1, 2, · · · , N), Eq. (A.2) is the necessary condition for
{Pi} and {Ai} to satisfy.

In practice, when N is not a power of two, we expand the size of tables
from N to Nopt, where Nopt is the smallest integer satisfying Nopt ≥ N . For
N + 1 ≤ i ≤ Nopt, we assume pi = 0. In this way, generating M in step (1)
is optimized as a bit shift operation on a 32- or 64-bit integral random num-
ber [14]. Furthermore, steps (2) and (3) can be replaced by a comparison
between two integral variables by preparing a table of integers {232Pi} (or
{264Pi}) instead of floating point numbers {Pi}, by which a costly conversion
from an integer to a floating point variable can also be avoided.

In summary, by using the Walker method, integral random numbers according
to arbitrary probabilities can be generated in a constant time. This extreme
efficiency is essential for the present O(N) cluster Monte Carlo method. In
the next appendix, we describe how to prepare the tables {Pi} and {Ai}.

B Preparation of Modified Probabilities and Aliases

In the original paper by Walker [13] and also in the standard literature [14],
only a naive O(N2) method is presented for initializing {Pi} and {Ai}. Here
we propose for the first time an efficient alternative procedure, which takes
only O(N) time.

Consider the following table of probabilities for {pi}:

i 1 2 3 4 5 6 7 8 9 10 11 12

pi 0 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Pi 0 1
3

2
3

3
3

4
3

5
3

6
3

5
3

4
3

3
3

2
3

1
3

Here Pi is initially set to a tentative value Npi for i = 1, · · · , N . First we
rearrange the table so that all the elements with Pi ≥ 1 precede those with
Pi < 1
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▽ H

i 4 5 6 7 8 9 10 12 11 3 2 1

Pi
3
3

4
3

5
3

6
3

5
3

4
3

3
3

1
3

2
3

2
3

1
3

0

The rearrangement can be done by N steps in contrast to the perfect sorting,
which is an O(N logN) procedure. The white triangle points to the rightmost
element with Pi ≥ 1 and the black triangle points to the rightmost element in
the rearranged table.

Next, we determine the alias numbers Ai sequentially from the right. We fill
the “shortfall” (1 − Pi) of the element pointed by the solid triangle by the
one pointed by the white triangle. The latter is always large enough, since
Pi ≥ 1 by definition. In the present example, first the shortfall of the rightmost
element (1 − P1) = 1 is filled by the element with i = 10. The alias number
for i = 1 is then set to 10 and P10 is replaced by P10 − (1 − P1) = 0. Since
P10 is no more larger than nor equal to unity, we shift the white triangle to
the left by one. We repeat the same for the next “unfilled” element. After four
iterations, the table is transformed as follows:

▽ H

i 4 5 6 7 8 9 10 12 11 3 2 1

Pi
3
3

4
3

5
3

6
3

1
3

2
3

0 1
3

2
3

2
3

1
3

0

Ai 8 8 9 10

Here the solid and white triangles are shifted four and three times from their
original positions, respectively. The above procedure is repeated until the black
triangle points to the same element as the white one, i.e., all the elements get
filled. One should note that the black triangle always moves by one after each
iteration, though the white one may stay on the same element depending
whether Pi ≥ 1 or not after the step. The whole procedure is thus completed
at most after (N − 1) iterations. In the present example, after 10 iterations
we end up with

H
▽

i 4 5 6 7 8 9 10 12 11 3 2 1

Pi
3
3

3
3

2
3

2
3

1
3

2
3

0 1
3

2
3

2
3

1
3

0

Ai * * 5 6 6 7 7 8 8 8 9 10

which is equivalent to the table presented in Appendix A.
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