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Abstract
The Stochastic Simulation Algorithm (SSA) is widely used in the discrete stochastic simulation of
chemical kinetics. The propensity functions which play a central role in this algorithm have been
derived under the point-molecule assumption, i.e., that the total volume of the molecules is negligible
compared to the volume of the container. It has been shown analytically that for a one dimensional
system and the A+A reaction, when the point molecule assumption is relaxed, the propensity function
need only be adjusted by replacing the total volume of the system with the free volume of the system.
In this paper we investigate via numerical simulations the impact of relaxing the point-molecule
assumption in two dimensions. We find that the distribution of times to the first collision is close to
exponential in most cases, so that the formalism of the propensity function is still applicable. In
addition, we find that the area excluded by the molecules in two dimensions is usually higher than
their close-packed area, requiring a larger correction to the propensity function than just the
replacement of the total volume by the free volume.

1. INTRODUCTION
The Stochastic Simulation Algorithm (SSA) [1] is the workhorse algorithm for discrete
stochastic simulation of networks of coupled chemical reactions. The physical system, in this
case, is a collection of molecules of various chemical species that move around inside a fixed
volume, and are subject to a set of chemical reactions in which the molecules may be reactants
or products or both. The chemical reactions are all assumed to be “elementary” in the sense
that they occur essentially instantaneously. Elementary reactions will invariably be either
unimolecular or bimolecular; all other types of reactions (trimolecular, reversible, etc.) will
consist of a series of two or more elementary reactions. If the system is well-stirred, we can
define its state simply by giving the vector x of the molecular populations of the various
chemical species. In that circumstance, it is usually possible to describe the dynamics of each
reaction channel Rj by a “propensity function” aj (x), defined so that if the system is in state
x, then aj (x)dt gives the probability that the reaction will occur somewhere inside the system
in the next infinitesimal time interval dt. The magnitude of aj (x) thus measures the “propensity”
of reaction Rj to occur in the immediate future.
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The propensity function is very close to, and sometimes numerically equal to, what in
deterministic chemical kinetics is called the “reaction rate”. But the propensity function does
not make the assumption that reactions occur continuously and deterministically, and its
product with dt is mathematically treated as a probability. The outcome of such a set of
assumptions is the chemical master equation (CME) and the stochastic simulation algorithm
(SSA), as discussed in numerous articles over the past three decades [1]. In the thermodynamic
limit (infinite populations and infinite system volume with finite concentrations), the CME and
SSA almost always reduce to the ordinary differential equations of deterministic chemical
kinetics.

The SSA generates times τ between successive reactions as samples of an exponential
distribution whose mean is equal to the inverse of the sum of the propensity functions. The
most commonly used propensity functions are of a mass action form, according to which the
rate of a reaction is proportional to the combinatorial product of the reactants' populations.

Mass action propensity functions for elementary reactions have been rigorously derived in a
well-stirred, dilute hard sphere setting [2]. In this setting molecules are represented by hard
spheres moving ballistically in a vacuum. We refer to them as point molecules, because,
although they must have non-zero diameter l in order to collide, the volume of all the molecules
combined is negligible compared to the volume of their container. If the point molecule
assumption is relaxed, to what extent does the volume occupied by the reactant molecules
themselves affect the rates of the reactions in which they participate?

We will be studying the effect of reactant-excluded volume, in a simple but computationally
tractable physical model. Specifically, we will attempt to answer the following two questions.
First, is the time between successive reactions in a well-stirred, non-point molecule system
exponentially distributed, as it must be for the stochastic process theory which underlies the
SSA to hold? Second, if the reaction times are exponentially distributed, what is the
mathematical form of the propensity functions in this setting?

Since bimolecular reactions are always initiated by a collision, the probability of a reaction
between two molecules can be broken down into a) the probability that the two molecules will
collide, times b) the probability that they will react given that they have collided. Throughout
this work we make the simplifying assumption that (b) is unity, and thus use the terms
collision and reaction probability (and inter-collision and inter-reaction time) interchangeably.

We have previously shown how, for a one dimensional system, the mass action propensity
functions need to be modified when the volume of the reactant molecules is comparable to the
total system volume [3]. We analytically derived the following exact formula for the reaction
probability, in the next infinitesimal time dt, of the reaction A + A → products in a one-
dimensional system of N non-overlapping hard rods of length l moving ballistically in a volume
of length L :

(1)

(In the limit of l → 0 this is equal to the usual dilute gas reaction rate law.) The propensity
function for the reaction is, by definition, this probability divided by dt. In Eq. (1), srel is the
mean relative speed of two randomly chosen rods. The correctness of this formula was then
confirmed through an extensive series of exact hard rod molecular dynamics simulations.

An analogous treatment of the two-dimensional hard disc system has proved to be challenging.
The difficulty arises when trying to find an analytical intermolecular distance distribution
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function for non-overlapping, non-zero sized hard disks in a finite area. The one dimensional
case, given in [3] is essentially a consequence of the Tonks result [4]. But, to the best of our
knowledge, a two or three-dimensional exact version has not been reported in the literature,
and we have not been able to derive it ourselves.

Thus, in this paper we use the hard spheres molecular dynamics simulation methodology to
computationally investigate the effect of molecule size on the propensity for the A + A →
products reaction in the two-dimensional version of the system. We consider a system of N
hard disks, each of diameter l, initially distributed uniformly randomly with no overlap inside
a circular container with hard reflective walls and diameter L. The choice of hard instead of
periodic boundaries was made after careful consideration. We believe that hard boundaries
bring our simple system closer to being “realistic”. Periodic boundaries would introduce the
unphysical “appearance” of molecules from nowhere, as they cross the boundary. Also, for
molecules that have nonzero diameter, periodic boundaries make choices regarding initial
random placement and inter-molecular collision detection awkward, if not arbitrary.

The molecules move ballistically, and their initial velocities are drawn from a Maxwell-
Boltzmann distribution. These initial conditions represent a well-stirred system in thermal
equilibrium. For this system, we collect statistics for the time τ from the initialization of the
system until the first inter-molecular collision. We will not be concerned with the evolution of
the system beyond the first collision, because our goal here is simply to study the form of the
propensity functions when the well-stirred condition, which is assumed by the SSA, holds
before each reaction. The question of under what conditions such a system will return to a
well-stirred state is both interesting and important, but we do not address that question in this
paper. We do, however, briefly consider the effect of container shape on our results.

We find that the distribution of inter-collision times τ in this system is approximatly
exponential, but with noticeable deviations in certain circumstances. We study how the τ
distribution varies with the parameters l and L, which, for a fixed N, determine the area density
of the system (defined as the ratio of the area of the molecule disks to the total area of the
system).

For small numbers of molecules, it appears that three types of τ distribution are present: at
intermediate values of the area density, the distribution is indistinguishable from an
exponential; as the system tends to the point molecule limit (low area density), long inter-
molecular collision times are overrepresented; as the area density of the system becomes high,
short inter-molecular collision times are overrepresented.

It is known that the choice of container shape affects the degree of ergodicity of the molecules'
trajectories, with some container shapes encouraging trajectories that sample only small parts
of the container's area. In the low population and small molecule size limit, we find that the
small number of molecules, combined with a choice of non-ergodic container shape (e.g.
circular, as opposed to “stadium”), gives rise to over-represented long times, while the τ
distribution for short times is just as predicted theoretically. Either increasing the number of
molecules, or improving the shape of the boundary, ameliorates this effect.

As the area density of the system becomes high (i.e. for large l / L), and for low population,
we find that the excluded area inferred from the simulation measurements is larger than what
one might expect from taking into account the area of the molecule disks, or their close-packed
area, or even several less dense packings [5]. However, as the number of molecules is increased,
the excluded area approaches the close-packed area, as one might have expected.
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These results suggest that excluded area in two and three dimensional, finite, dense systems
has a somewhat predictable impact for systems with a large number of molecules, but may
have greater impact than one might have initially supposed for systems with low population.

In section 2 we present the physical system under consideration and the computational
algorithms used to simulate its kinetics. In section 3 we give a brief derivation of the probability
of collision from first principles. In section 4 we present the results of our simulations. Section
5 summarizes and attempts to explain our findings.

2. HARD SPHERE MOLECULAR DYNAMICS
A. The Hard Sphere Molecular Dynamics algorithm

The hard sphere molecular dynamics simulation algorithm is a simple billiard balls simulator.
Given randomly uniform initial positions and random Maxwellian velocities for the molecules,
it returns the time to the first inter-molecular collision.

The algorithm, as used for the two-dimensional problem, has the following steps:

1. Initialize N molecules, each a disk of diameter l, with:

a. uniform random non-overlapping positions in a finite container of area A
(see placement algorithms in subsections B and C);

b. velocities distributed according to the Maxwell-Boltzmann distribution

2. For each molecule, compute the next putative collision time with the boundary of the
system (ignoring all the other molecules in the system).

3. For each pair of molecules, compute the next putative inter-molecular collision time,
if it exists.

4. Choose the smallest of all molecule-boundary and inter-molecular collision times,
and advance the time by that amount.

5. If the collision was:

a. inter-molecular, then report the time and exit;

b. between a molecule and the boundary, then reflect the colliding molecule
according to a specular reflection formula; advance the positions of the
remaining molecules, and go back to step 2.

The velocities of the molecules are Maxwell-Boltzmann distributed, meaning that each
Cartesian component of the velocity vector is a statistically independent normal random
variable with mean 0 and temperature-determined variance σ2.

Statistics for the distribution of times τ to the first collision are obtained by running an ensemble
of 100,000 realizations of the hard spheres molecular dynamics algorithm (for a given N, l, and
L), each with different random seeds.

B. Generating exact initial positions
For the one-dimensional problem it was possible to derive a rejection-free Monte Carlo
algorithm for generating samples of the molecules' initial positions. An analogous procedure
for two dimensions has proven elusive (this problem is equivalent to finding the analytical
formula for the intermolecular distance distribution function), so a rejection based Monte Carlo
algorithm was used to generate uniform random non-overlapping positions for the molecules
in two dimensions.
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The rejection-based initial placement algorithm has the following steps:

For molecule index i = 1,…, N :

1. Generate putative coordinates (xi, yi) for the center of molecule i uniformly and
randomly inside the container.

2. Check whether the proposed placement will overlap any of the (i − 1) previously
placed molecules

a. If an overlap is discovered, discard the entire set of placed molecules (indices
1,…,i). Reset the index to i = 1 and restart the procedure.

b. If no overlap is discovered, accept the placement, increment the index and
go to step 1.

Step (2a) is the only non-obvious step of the placement algorithm: we discard the entire set of
already placed molecules, as opposed to only the very last one, which produced the overlap.
The latter procedure will result in a biased distribution, as can be demonstrated both analytically
and by numerical simulation in a one-dimensional setting.

The computational cost of this rejection-based method increases with the total number of
molecules, and with the area density of the system. The simulations we were able to perform
using this placement method reached up to area densities of 40% for small values of N (e.g.
N=6).

C. Generating approximate initial positions
One approximate alternative to generating the initial positions of the molecules by the rejection-
based Monte Carlo method is to use a pre-stirring procedure. In this scheme we initialize the
positions of the molecules on a regular grid and then allow the molecules to bounce around
until their positions are randomized. The success of such an initialization depends on choosing
a good stopping condition. This can be: a) a time by which an ensemble of positions is
guaranteed to have become well-stirred, b) a target value for a function (e.g. the radial
distribution function), which when reached would denote a well-stirred state, or c) noticing
that a function (again, possibly the radial distribution function) appears to have converged,
without explicitly having a target value for it. We were unable to locate either (a) or (b) in the
literature, and our experience with checking the radial distribution function for convergence
suggested that it was too noisy for systems with small numbers of molecules.

There is a subtle aspect to choosing the stopping criterion when the system is simulated not by
traditional Molecular Dynamics (i.e. integration of the laws of motion), but by our exact hard
sphere algorithm, which steps from collision to collision. If we stop pre-stirring the system
immediately after an intermolecular collision has occurred, the two molecules which have just
collided will be touching. Thus, choosing a stopping criterion that is based on the idea that an
exact number of collisions must occur before stopping will yield ensembles of initial positions
which systematically contain two molecules touching. One must remember to remove such a
bias by evolving the system for some time past the last collision, or avoid introducing such a
bias in the first place, by choosing a stopping condition expressed as a duration of time rather
than number of collisions. We do the latter.

In our experiments exploring different amounts of pre-stirring we found that unexpectedly long
amounts of pre-stirring time were necessary for other indicators, e.g. the mean of τ, which is
the focus of this paper, to reach the values obtained by the rejection-based method. For a given
system (i.e. given N, l, L) we quantify the duration of pre-stirring as FNμ̃τ units of time, where
F is a scaling factor, N is the number of molecules, and μ̃τ is the expected time to the first
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collision for this system, under the assumption that Ve = Vd = Na (see section 3). Figure 1
shows, for a system with N=9, L=10, l=2, how the mean time to the first collision computed
by simulations initialized with pre-stirring (circles) approaches that computed by a simulation
initialized by rejection-based Monte Carlo (solid line with dashed confidence interval), with
increasing F.

For a factor F=300, and the system of Figure 1 (N=9), we see on average 4113 intermolecular
collisions, i.e. each molecule experiences on average 457 collisions with another molecule.
We also see on average 2401 collisions with the boundary, i.e. on average 267 collisions with
the boundary per molecule. So F is a conservative estimate of the number of intermolecular
collisions each molecule experiences during the pre-stirring simulation.

While the pre-stirring method of obtaining initial positions makes it possible to work with
dense, high-population systems which we would otherwise not have been able to examine, it
is nevertheless very time consuming. As can be seen from Figure 1, F=300 is suboptimal in
terms of achieving good stirring (if the mean of the τ -distribution is used as a convergence
criterion). However it would take 10 times as long to simulate with F=3000, in order to achieve
the dubious improvement of having the 95% confidence interval of the pre-stirring method
overlap that of the rejection-based Monte Carlo. Simulating ensembles of size 100,000 with a
stirring factor of F=300 already takes days on a workstation, so the results we show in this
paper are based on simulations with F=300, rather than a higher value.

Due to the lack of a rigor of our pre-stirring method, we do not consider it to be on equal footing
with the rejection-based Monte Carlo. Nearly all the results in this paper were obtained using
simulations initialized by rejection-based Monte Carlo. The single exception is Figure 7, which
would have been impossible to obtain by rejection-based Monte Carlo, and which we therefore
consider speculative.

3. THEORY FOR THE TWO-DIMENSIONAL CASE
Here we derive an expression for the probability pcol (dt) of an inter-molecular collision
occurring in the next infinitesimal time interval dt. This probability is given by the product of:
(the number of ways one can choose a random pair of molecules) times (the probability that a
randomly chosen pair of molecules will collide in the next dt). Because of the randomly uniform
spatial distribution, the second factor can be further decomposed into the ratio: (the area one
molecule will sweep out relative to the other molecule in the next dt) over (the total area inside
the container accessible to the other molecule).

The initial velocities of the molecules are assumed to follow the equilibrium Maxwell-
Boltzmann distribution, i.e. their Cartesian components are normal random variables with
means 0 and variances σ2 ≡ kBT / m, where T is the absolute temperature of the system, m is
the mass of the molecules and kB is Boltzmann's constant. The mean relative speed of two
randomly chosen molecules in such a distribution can be shown to be

(2)

Suppose we randomly choose a pair of molecules. We can do this in  ways. Now
we change our frame of reference so that we are standing on one of the chosen molecules. Then
the area swept out by the other molecule in the next infinitesimal time increment dt relative to
the center of the one we are standing on is (see Fig. 2) 2lsreldt. To get the probability of our
randomly chosen pair of molecules colliding in the next dt, we must divide this area by the
total area available to the molecules. If we assume that the molecules have no extent (l = 0),
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the area A available to the molecules is the total area of the system. If the shape of the container

is circular, and the diameter is L, the area is given by . For a “stadium” container
(formally known as a Bunimovich stadium [6]), in which semi-circles of diameter L are

separated by a square of side L, the area is .

If we relax the point molecule assumption (i.e. l > 0), the area available to the molecules will
be less than the total area A of the system by at least the area excluded by the disks of the

molecules themselves . The question of exactly how large is the excluded area
has prompted this research. We will call the excluded area as estimated from the simulation
data the effective excluded area Ve, and we will show in the results section that it is quite a bit
larger than Vd.

Finally, combining all of the above, we find that the probability of an inter-molecular collision
in the next dt is given by:

(3)

with Ve = 0 at the limit l = 0.

If we assume that the same probability pcol(dt) holds for each successive infinitesimal time
increment dt, from the initialization of the system until the first inter-molecular collision occurs,
then the times τ will be samples of the exponential distribution whose mean is the inverse of
the coefficient of dt in Eq. (3). If we further assume that every collision results in a reaction,
that coefficient will be the propensity function of the Stochastic Simulation Algorithm and the
master equation for that reaction [1].

4. SIMULATION RESULTS
A. Collision time distribution methodology

To fully characterize the distributions of times to the first collision, τ, we asked the following
questions: what is the empirical distribution of τ at different area densities, and what is the
relationship between this empirical distribution and the analytical exponential in Equation (3)
with the most conservative estimate of excluded volume (Ve = Vd = Na)?

Upon casual visual inspection, all the distributions certainly appear exponential. To
quantitatively test for exponentiality, we used a common two-sample comparison test, the
Kolmogorov-Smirnoff test [7]. To test a τ distribution (100,000 values) for exponentiality, we
generated the same number of random samples from an exponential with the same mean as the
τ distribution. We then used Matlab's kstest routine at the default significance level α = 0.05.
The routine rejects the null hypothesis that the samples came from the same distribution
(exponential) if the so-called p-value returned by the test is < 0.05; it fails to reject the null
hypothesis that the samples came from the same distribution, if the p-value is > 0.05.

B. Collision time distribution for N=6
We began by considering the low molecule count case N = 6, with σ = 1 in a circular container
of diameter L. Figure 3 shows the regions of (L,l) phase space where the distribution of τ is or
is not statistically indistinguishable from an exponential according to the K-S test. At
intermediate values of area density, for ensembles denoted with ‘+’, the distribution is
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indistinguishable from the exponential. At low and high area density values, for ensembles
denoted with ‘o’, the distribution deviates from the exponential.

However, the p-value of the K-S test does not reveal how the empirical τ distribution differs
from an exponential distribution. To gain some insight into this issue, we note that the standard
deviation of an exponential distribution is equal to its mean. We therefore computed the mean
μτ and the standard deviation στ of the empirical τ distribution, and then examined the quantity
Iτ ≡ (στ/μτ)−1. If τ were exponentially distributed, we would have Iτ = 0. If Iτ < 0 the empirical
τ distribution would be more peaked around its mean than an exponential distribution would
be, and if Iτ > 0 the empirical τ distribution would be more spread out than an exponential
distribution.

The grayscale portion of Figure 3 gives a plot of Iτ, again for N = 6 and σ = 1, in the (L,l) -
plane. The plot shows where the distribution of τ is more spread out or less spread out than an
exponential. One possible interpretation of this plot is the following: a large portion of the
distribution of the τ sample is exponential, but superimposed on that is a component that ruins
the overall exponentiality. In areas with Iτ < 0 the values in the added component are close to
the mean, i.e. small. In areas with Iτ > 0 the values in the added component are larger than the
mean. The latter component, in fact, contains some very large outliers.

This can be seen by comparing the hypothesized analytical exponential, whose mean is given
by the inverse of the coefficient of dt in equation (3), to the histogram of the τ data. An instance
of a system for which Iτ > 0 is the “small” molecule case σ = 1, N = 6, L = 35, l = 0.1. The mean
for the data is ∼191 and the standard deviation is ∼204. Figure 4 breaks down the pdf of the
τ distribution into three segments for clarity (note the different scales on the vertical axes). For
shorter times (top plot), the empirical τ distribution (solid line) follows our analytical prediction
(dashed line) very well. Approximately two standard deviations to the right of the mean (∼600,
middle plot), the data becomes heavier than that model prediction, and is better described by
an exponential with the empirical mean (dotted line). Finally, at long times (bottom plot), the
data is heavier than both exponentials. So it appears that, in the Iτ > 0 regime, the data follows
the analytical exponential at shorter τ values, but has heavier than exponential tails for long τ
values.

To better understand this behavior, we looked at some of the realizations that contributed the
outlier τ samples, i.e. very long times. The trajectories of the molecules in those systems were
notable for their non-ergodicity; more specifically, there would frequently be one or more
molecules that moved along the circle boundary (a “whispering gallery” mode [8]), or that
crossed very close to the center (and therefore bounced back and forth along the diameter).
These trajectories are non-ergodic in the sense that the molecules are not sampling the entire
container volume. This has the effect of reducing the number of potential pairings of molecules,
which is small to begin with, thereby reducing the probability that some pair will collide. In
this way, the shape of the container boundary combined with the small number of molecules
contributes to the increased number of long-time outliers in the τ distribution.

One is also led to suspect the boundary's role from the observation that the number of boundary
collisions preceding each inter-molecular collision increases dramatically as one approaches
the point molecule limit – something that does not happen in a one-dimensional system. To
test the hypothesis that the boundary contributes to the over-represented long times, we tried
several modifications to the hard circular boundary that we initially studied.

One class of modifications left the shape of the boundary intact, but changed how the molecules
were reflected after they struck it. Since our hypothesis is that specular reflections from the
circular boundary tend to orchestrate the molecules' trajectories in such a way that they did not
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always sample the entire space, we modified the reflection formulas in several ways, in an
attempt to increase the randomness in the trajectory of the molecules as they depart the
boundary. First, we completely randomized the departing velocity of the molecule after a
collision, while keeping the speed constant. Surprisingly, this had the effect of further
lengthening the mean collision time. We next tried adding a small random angle to the departure
angle after a reflection. This had the effect of very slightly shifting the mean collision time
towards the model mean. Both of these were ways that intuitively seemed to us as though they
would increase the ergodicity of the trajectories in the system; yet, they yielded very
inconclusive results.

The other class of modification that we tried retained specular reflection but changed the
shape of the boundary to one which is supposed to discourage non-ergodic trajectories. More
specifically, we moved from a circular boundary to a “Bunimovich stadium” [6]. This is simply
the interior of a boundary made by joining two semi-circles of diameter L with a square of side
L in between. This boundary shape is supposed to create fewer non-ergodic trajectories than
either a square or a circle boundary alone. Indeed, we observed that it affected the τ distribution
by moving its mean slightly, but noticeably, closer to the analytically predicted mean, and also
the standard deviation closer to the mean (as it should be for an exponential). For instance when
comparing two 400K run ensembles with σ = 1, N=6, l=0.1, one in a circular container of
diameter L=30, A=706.9 and the other in a stadium with L=19.9, A=707.0, we found a mean
τ of 140.9 for the circle and 138.9 for the Bunimovich stadium, along with a standard deviation
of 149.5 for the circle and 145.9 for the stadium. The analytical mean and standard deviation
of τ for a volume of this area are 132.9. We confirmed that the effect is general by noticing
that the p-values for the K-S exponentiality test imply that the test is much closer to accepting
the distributions as exponential for Bunimovich stadium volumes than for circular volumes of
the same area.

It seems to us that whether a boundary's shape and reflection characteristics contribute to non-
ergodic trajectories is not a simple yes-or-no question, but rather one of degree. Some
boundaries will cause molecules' trajectories to sample the container's area in a shorter amount
of time than others. Our simulations would be mostly affected by the degree of ergodicity
within a set finite amount of time (the expected time to a collision), not “eventually”. Thus,
we suspect that there is no such thing as an “ideal” boundary that would completely eliminate
the effects of non-ergodic trajectories. If this is so, then it is not surprising that the Bunimovich
stadium did not completely abolish the long-time tails; instead, it is satisfying that it produced
a measurable change in the expected direction.

At the other extreme of the area density, we see a different picture. An example system for
which Iτ < 0 is given by the “large” molecule case σ = 1, N = 6, L = 10,l = 2.8. The mean for
the data is ∼0.1511 and the standard deviation is ∼0.1460. Figure 5 gives a breakdown of the
pdf of the τ distribution for those parameters. The most noticeable feature of the pdf is the
complete mismatch between the model exponential curve (dashed line) and the data (solid
line). This is due to the fact that the model exponential (dashed line) is computed using the
very conservative estimate that Ve = Na. But we see that the exponential curve with the
empirical mean (dotted curve) follows the data (solid line) rather well. The major deviation in
that regard is that at about two standard deviations to the right of the mean (∼0.5), the data
slightly undershoots the dotted exponential curve, which has the effect of biasing the mass of
the distribution closer to the mean.

C. Collision time distribution for large population
We have shown that in the low molecule population and low area density case the small number
of molecules conspires with the non-ergodic boundary to introduce long-time outliers in the
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τ -distribution. Figure 6 shows that increasing the number of molecules while maintaining the
low area density abolishes this effect, restoring exponentiality to the distribution.

But is it also the case that the low population but high area density non-exponentiality, which
we described in the previous section, can be abolished by increasing the number of molecules?
A definitive answer to this question could be given if our exact simulation methodology were
tractable on dense, high N systems. However, the rejection-based Monte Carlo initialization
of the positions of the molecules takes prohibitively long to complete for such systems. A
tentative answer, which is hopefully a hint in the right direction, can be obtained using the pre-
stirring based molecule position initialization routine. Figure 7a shows that increasing the
number of molecules while maintaining a high area density restores exponentiality to the τ -
distribution. (We will discuss figures 7b and 7c in the next section.)

D. Excluded volume
Our initial goal in this effort was to investigate the effect of reactant-excluded volume on the
kinetics of the A + A → products reaction in our simulation experiments. The most
straightforward way to estimate the excluded volume felt by the molecules in these experiments
is to proceed as follows: Assume the distribution of τ to be exponential; then estimate the
propensity P as the inverse of the mean μτ of the empirical τ -distribution; finally, compute the
effective excluded volume by solving the following equation for Ve :

(4)

The effective excluded volume computed this way can then be compared to several
“theoretically plausible” excluded volume formulas. The simplest such formula takes into
account only the area excluded by the disk molecules themselves: Vd = Na.

Another possibility would be to consider volumes of the form Vi = Na/ϕi, where ϕi is a packing
fraction. Some packing fractions that have been theoretically studied by others are: ϕcp = π/
2√3 ≈ 0.90, the “close packing” fraction; ϕf = 0.69, the “freezing” packing fraction; and ϕc =
0.82, the “random close” packing fraction [5]. It should be noted that in one dimension, all
three of these packing fractions are equal to 1; therefore, if we were to find that in two
dimensions any one of these fractions is the desired factor, the theory would limit nicely to the
lower dimensional result.

Since all the proposed excluded volumes above are of the form V = fNa, with f the inverse of
a packing fraction, a reasonable quantity to visualize is the effective inverse packing fraction,
fe = Ve/Na. Higher fe is associated with looser packings, i.e. higher per-molecule excluded
volume. The inverse “close packing” fraction is fcp ≈ 1 / 0.90 ≈ 1.1; the inverse “freezing”
packing fraction is ff ≈ 1.45; and the inverse “random close” packing fraction is fc ≈ 1.22.

The three parameters of the simulation are N, the number of molecules, L, the diameter of the
circular container, and l, the diameter of the molecules. In each of the plots in Figure 8, we
keep two of these parameters fixed and vary the other. In the left plots we show Ve (solid line),
as estimated from solving Eq. (4), along with Vd = Na for comparison (dashed line). In the
right plots we show fe. Note that fe is the ratio of the solid and dashed lines from the left plots.

The first two left plots (in which we vary N and l) show that the effective excluded volume is
higher than just the disk volume, as expected. But does the effective excluded volume
correspond to some packing fraction? The first two plots on the right address just that question:
it seems that no constant packing fraction can account for the effective excluded volume we
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observe, across the whole range of area densities and populations. The effective inverse
packing fraction, fe, decreases with increasing area density and with increasing population (see
Figures 7b and 7c, as well, for a speculative result based on the pre-stirring initialization of
positions).

This implies that the excluded volume situation for finite, reflective boundary containers is not
as simple in two dimensions as it is in one dimension. Since the effective excluded volume is
a function of the mean μτ of the empirical τ -distribution (Eq. 4), the reason why the packing
appears more compact as the number of molecules increases must relate back to the τ -
distribution. But we have already shown that in situations with low population, the τ -
distribution contains artifacts introduced by the reflective boundary, which ruin its
exponentiality, and which obviously impact its mean. So it is reasonable that in situations where
the τ -distribution is not exponential, the packing estimated from the empirical is surprising,
in this case for its looseness.

At high population and intermediate density, e.g. N=20 and area density ∼12%, at the right
end of Figure 8b, the packing reaches fe = 1.8. At high population and high area density (but
simulated with pre-stirring), e.g. N=50 and area density ∼42%, at the right end of Figure 7c,
the packing reaches fe = 1.45, the freezing packing fraction. So, it appears that for densities at
which the excluded area is a significant portion of the area of the system, at high population,
the effective excluded area is reasonably close to close packed.

5. SUMMARY AND DISCUSSION
We have used computer simulations of hard disk dynamics to study the effect of reactant size
on the rates of intermolecular collisions in the ballistic setting. We have found that the
distribution of collision rates is close to exponential. It can be thought of as mostly exponential,
except at low population, where we observe an additional mode which depends on the area
density of the system.

At low population and low area density, non-ergodic trajectories contribute to longer than
expected intermolecular collision times. At low population and high area density shorter
intermolecular collision times are over-represented. We conclude, on the basis of exact
simulations, that increasing the population abolishes the low area density effect; on the basis
of approximate simulations, we speculate that the same is true at high area density.

At intermediate and high area densities, the volume excluded by the reactants ranges from
about 2.5 times the area of the molecules' disks, at low population or low area density, to near
the close packed volume, at high population or high area density.

In spite of differences in the details of the formula for the effective excluded volume in different
population and area density regimes, it is clear that the probability of collision, and hence the
reaction's propensity function, will be higher in a system with large molecules, compared to a
system with the same number but smaller molecules.
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FIG 1.
The mean of the τ -distribution, as calculated from simulations initialized with rejection-based
Monte Carlo, is given by the solid lines. The dashed lines give the 95% confidence interval in
the estimate of the mean. The circles and error bars give the means and 95% confidence
intervals of the means of the τ -distribution, as calculated from simulations initialized with pre-
stirring with F given by the respective x-coordinates. The system is N=9, L=10, l=2.
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FIG 2.
To calculate the probability of collision of two randomly chosen molecules of diameter l,
moving with relative velocity νrel, in the next infinitesimal time dt we compute the area that
one molecule sweeps relative to the other in that amount of time: 2lsreldt.
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FIG 3.
Results of K-S test for exponentiality of the τ -distribution at significance level α = 0.05,
superimposed on a grayscale plot of the quantity Iτ ≡ (στ/μτ) − 1. The population is N = 6 for
all samples; the standard deviation of the Cartesian velocity components is σ = 1 for all samples;
the vertical axis is l, the diameter of one molecule, and the horizontal axis is L, the diameter
of the system. ‘+’ denotes a τ -distribution which is indistinguishable from exponential (p-value
> 0.05), while ‘o’ denotes a τ -distribution which deviates from the exponential (p-value <
0.05). Positive Iτ values imply a distribution with more spread than an exponential, while
negative values imply a distribution with less spread than an exponential.
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FIG 4.
Piecewise histogram of the τ distribution for σ = 1, N = 6, L = 35, l = 0.1 vs analytical pdfs of
two exponentials. The dotted exponential has the same mean as the τ distribution (∼191). The
dashed exponential is the most conservative theoretical prediction (with Ve = Vd = Na, where
a is the area of one molecule).
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FIG 5.
Piecewise histogram of the τ distribution for σ = 1, N = 6, L = 10, l = 2.8 vs analytical pdfs of
two exponentials. The dotted exponential has the same mean as the τ distribution (∼0.1511).
The dashed exponential is the most conservative theoretical prediction (with Ve = Vd = Na,
where a is the area of one molecule).
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FIG 6.
Plot of the indicator Iτ ≡ (στ/μτ) − 1 for fixed low area density 0.5%, L=10, and varying N. ‘+’
denote τ -distributions which are indistinguishable from exponential according to the K-S test
at significance 0.05, while ‘o’ denote τ -distributions which are non-exponential.
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FIG 7.
(6a) Plot of the exponentiality according to the K-S test, and the indicator Iτ ≡ (στ/μτ) − 1 for
fixed high area density ∼42%, L=10, and varying N. ‘+’ denote τ -distributions which are
indistinguishable from exponential, according to the K-S test at significance 0.05, while ‘o’
denote τ -distributions which are not exponential by the K-S test. The y-coordinate of the ‘+’
and ‘o’ gives the Iτ value for each distribution. Plot of the effective excluded volume Ve (7b),
and inverse packing fraction fe (7c), as a function of N, for the same fixed high area density
∼42%, and L=10. The dashed line in (7b) gives Vd = Na.
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FIG 8.
Plots of the effective excluded volume Ve (left) and inverse packing fraction fe (right), as a
function of the three parameters L, l, and N, keeping two parameters fixed, and varying the
other. For all plots we have σ = 1, ensembles of size 100,000, and 95% confidence intervals.
The dashed lines give Vd = Na. In the top plots we vary N, the number of disks, while
maintaining L=35, l=2.8; in the middle plots we vary l, the diameter of the molecule disks,
while maintaining N=6, L=10; in the bottom plots we vary L, the diameter of the container
circle, while maintaining N=6, l=2.8.
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