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Abstract

Many applications in materials involve surface diffusion of elastically stressed solids. Study of 

singularity formation and long-time behavior of such solid surfaces requires accurate simulations 

in both space and time. Here we present a high-order boundary integral method for an elastically 

stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals 

for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating 

quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; 

in addition, a high-order (temporal) integration factor method, based on explicit representation of 

the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to 

a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a 

fast and accurate summation method for the periodic Green’s functions of isotropic elasticity. 

Using the high-order boundary integral method, we demonstrate that in absence of elasticity the 

cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of 

the pinching is found to be consistent with the previous studies based on a self-similar assumption. 

In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well 

before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner 

singularity on the cylinder surface is also estimated.
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1. Introduction

Since the work by Nichols and Mullins [19], the deformation of a heated solid due to surface 

diffusion has been under many studies because of its broad applications. Driven by surface 

energy only (without elasticity), a thin solid cylinder is unstable to axi-symmetric 

perturbations when the wavelength exceeds the circumference of the unperturbed cylinder, 
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and will pinch off forming a chain of spheres. The axi-symmetric pinchoff is self-similar and 

the cylinder forms conical shape at the pinchoff whose cone angle is universal, independent 

of the initial shape (for a review and the references, see Bernoff et al. [2]).

In the presence of stress in the solid, Asaro and Tiller [1] studied the surface evolution of a 

semi-finite elastic space subjected to a non-hydrostatic stress in two dimensions. Grinfeld 

[8] investigated the instability of the interface between a non-hydrostatic stressed elastic 

body and a melt. Spencer et al. [30] discussed the stability of a vapor-film interface and the 

effect of misfit strain. Chiu and Gao [4] considered the evolution of cycloid-type surfaces of 

a stressed elastic half-space. Spencer and Meiron [31] numerically simulated the nonlinear 

evolution of the stress-driven surface instability of a solid in two dimensions. Panat et al. 

[22] studied the growth of surface perturbations induced by surface diffusion and bulk 

diffusion in a stressed solid.

For an axisymmetric solid, the linear stability analysis in Colin et al. [5] and Kirill et al. [14] 

and the numerical simulation of the fully nonlinear evolution of an axisymmetric cylinder in 

Li and Nie [17] demonstrated that the system develops short-wavelength instability when 

the applied stress is beyond a critical value. To study whether the instability leads to 

pinchoff or development of geometrical singularities in finite time, accurate calculations of 

the interface curvature, the elasticity energy and the temporal dynamics are needed.

The boundary integral method, which reduces the boundary value problems to a system of 

integral equations on the surface (or a curve), is particularly convenient and efficient for 

boundary value problems where Green’s functions are known. In two dimensions, state-of-

art spectrally accurate boundary integral methods have been developed for a wide variety of 

applications (for a review, see [11]). In axisymmetric domains, for systems with static 

boundaries, low-order methods have long been used for elasticity [13,18,6]; for moving 

interface problems, the integral calculation is usually of low order in Stokes flows (e.g., 

[23,32]) which have integral kernels similar to the isotropic elasticity; and, the integral 

calculations can be high-order (or adaptive) in potential flows because the singular kernels 

have relatively simple form [21,20]. The complex singularity forms of the axisymmetric 

Green’s functions in the boundary integral equation of the elasticity or Stokes flows (for 

example, the two types of singularities, 1/r and ln r, cannot be explicitly separated from the 

kernels) prevents direct applications of any existing high-order integral quadratures. For 

general smooth boundaries in three dimensions, a high-order boundary integral method for 

elliptic boundary value problems is presented in Ying et al. [34].

In this paper, to solve boundary integral equations for isotropic elasticity equations in 

axisymmetric settings, we apply a modified alternating point quadrature along with 

Richardson extrapolations to obtain a series of quadratures that can be of any odd orders. 

Furthermore, when the Green’s functions are periodic in the axial direction, the evaluation 

of kernels usually dominates the overall simulation. To overcome this, we present a fast and 

accurate evaluation algorithm for the kernels using asymptotic expansions of the 

summations in terms of the number of summation periods and applying a recursive 

extrapolation technique.
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In addition, the evolution equation involves a fourth-order derivative term due to the surface 

diffusion, yielding a severe numerical stability constraint on the size of time-steps when 

explicit temporal schemes are applied. On the other hand, any fully implicit schemes are 

computationally expensive as it is necessary to solve a large nonlinear system at each time 

step. In this paper, we present a high-order temporal scheme for interfaces in axisymmetric 

geometry based on the local decomposition technique and integration factor methods 

[10,25]. In this method, the fourth derivative term is integrated (in time) explicitly such that 

the constraint on the time-step is reduced significantly without increasing any computational 

cost.

With high-order accuracy in both space and time for the boundary integral method, we are 

able to study singularity formation for an elastically stressed periodic cylinder. Through 

direct numerical simulations, we find that in absence of elasticity the cylinder surface 

pinches at the axis of symmetry in a finite time, and the form of singularity is consistent 

with a previous study based on assumption of self-similarity of interface near pinchoff [2]. 

In presence of elasticity, our numerical simulations show that the cylinder surface develops 

a corner singularity in a finite time before it collapses onto the line of symmetry.

The paper is organized as follows: In Section 2, we present the governing equations of the 

system in which the stressed solid is periodic in axial direction and subject to uni-axial 

stress. In Section 3, we derive the boundary integral formulations of the system. In Section 

4, we present detailed description of the numerical methods. In Section 5, we investigate the 

non-linear evolution of the stressed cylinder and the singularity formation of the surface 

using the developed numerical methods.

2. Governing equations

Consider the deformation of an infinite, axisymmetric cylinder Ω induced by surface 

diffusion. The solid is periodic along the axis of symmetry, as illustrated in Fig. 1. The 

surface of the cylinder, denoted by its cross section in the (x, y)-plane x(α, t), evolves to 

minimize the sum of the surface energy and elastic energy ([14] and references therein) 

through

(1)

where n is the unit vector normal to the surface, gel is the elastic energy density, the 

dimensionless parameter β measures the relative strength of the elastic energy over the 

surface energy, and κ = ∇s · n is the sum of the principle curvatures. Both gel and β will be 

defined below.

The stress in the solid due to an external force with magnitude F along the x-axis, the axis of 

axi-symmetry, satisfies ∫Ωc tdA = Fe1, where Ωc is any cross section of the solid with a 

plane perpendicular to x-axis, t is the traction and e1 = (1, 0, 0) is the unit vector along x-

axis. The solid is at mechanical equilibrium in absence of body forces, ∇ · σ = 0, where σ 

denotes the stress tensor. The surface of the cylinder satisfies the traction-free condition, i.e. 
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t = 0 on ∂Ω. The relation between the stress and strain tensors follows Hooke’s law for 

isotropic elasticity, i.e. σij = 2μεij + λεkkδij, where μ and λ are the Lamé constants. Einstein 

summation notation is assumed in this study. The periodic boundary conditions require u(x 
+ Lpe1) − u(x) = Ue1 and t(x + Lpe1) + t(x) = 0 for any x in the solid, where U is a constant 

determined through F and LP is the length of one period. Given F or U, the displacement u 
on the interface ∂Ω is calculated by solving the elasticity equations. Then, the elastic energy 

density  can be computed using a local coordinate transformation [12,27].

3. Boundary integral formulation

We now derive boundary integral equations for isotropic elasticity in an axisymmetric 

domain which is periodic in the direction of axi-symmetry. Elastic stress arises due to an 

applied stress also along the direction of axi-symmetry.

Consider a volume of solid bounded by the surface ∂Ω. From the Maxwell–Betti reciprocity 

identity, the displacement u and the traction t on the surface ∂Ω are related by the following 

integral equation [3]

(2)

where j = 1, 2, 3 and x is a point on ∂Ω. In Eq. (2), Gij and Tijk are the Green’s functions of 

isotropic elasticity associated with the displacement and stress, respectively. The integral on 

the left-hand-side of Eq. (2) is a principal value integral.

When the solid is periodic in x-direction with a period Lp, Eq. (2) becomes [17]

(3)

where  and  are the corresponding Green’s functions that are Lp-periodic in x-axis. 

The integrals are over the surface boundary of the solid in one period, denoted by ∂Ωp. In the 

derivation of Eq. (3), we have decomposed the stress field (σ, u) into a uni-axial stress 

component,  and , and the disturbance field, (σD, 

uD) where eσ denotes the unit vector in σ-direction of the cylindrical coordinates (x, σ, ϕ), 

and E = 2μ(1 + ν) is the Young’s modulus. t(0) in Eq. (3) is the corresponding traction for 

σ(0). A relationship between the constants U and F takes the form

(4)

where Vp is the volume of the solid in one period, C is an oriented contour of the surface 

∂Ωp in (x, y)-plane in the direction of increasing x, and u = (u1, uσ, 0) is the displacement in 

the cylindrical coordinates (x, σ, ϕ). For detailed derivation of the relation (4), see [17].
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Following Pozrikidis [23], due to axi-symmetry, we can integrate along ϕ-direction in the 

boundary integral Eq. (3) analytically and obtain

(5)

where the indices α, β and γ take the value of x or σ in the cylindrical coordinates.  and 

 are the corresponding one-dimensional Lp-periodic (in x-direction), axisymmetric 

Green’s functions associated with stress and displacement, respectively. The expressions for 

 and  are presented later in Eq. (16).

The integral Eq. (5) has one non-trivial homogeneous solution, corresponding to the rigid-

body translation in the x-direction. To ensure the uniqueness of solution, following [15], we 

add the term  to the left-hand side of (5), where the vector D is defined as

As mentioned earlier, the elastic energy density gel in Eq. (1) can be obtained from the 

displacement u, the solution of the integral Eq. (5), and the traction t on the solid surface.

4. Numerical methods

Numerical simulation of the evolution of the elastically stressed solid surface consists of two 

distinctive steps from algorithm design perspective: (a) solving the boundary integral 

equations Eq. (5) for elasticity with axi-symmetry and one-dimensional periodicity given a 

fixed geometry, and (b) temporal updating the highly stiff Eq. (1) for the moving interface.

4.1. Boundary integral equations for the elasticity

At each time step, in order to compute the elastic energy density gel in Eq. (1), we need to 

solve the boundary integral equations for the elasticity, Eq. (5). In particular, the equations 

are for axisymmetric and one-dimensional periodic solid bodies, as depicted in Fig. 1 and 

the unknown is the displacement vector u on the boundary surface ∂Ωp. Since the 

axisymmetric solid surface is represented by a set of marker points on the parameterized 

curve x(α) in the (x, y)-plane, the integral equations become a system of linear equations for 

the displacement at the marker points {u(x(αj))} after discretization using the collocation 

method and the quadrature approximation for the integrals. The dense system of linear 

equations for the displacement is solved using GMRES [26]. Once the displacement and 

traction are known, the elastic energy density gel can be computed as in [12,27]. FFT is used 

to calculate the derivatives of various quantities and the pseudo-spectral method is applied 

for the nonlinear terms (e.g. P in Eq. (26)).

4.1.1. High-order quadratures for singular and weakly-singular integrals—In 

this subsection, we derive and present the method for designing high-order quadratures for 
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both single-layer and double-layer integrals appearing in Eq. (5). The high-order quadratures 

lead to high-order methods for solving the axisymmetric boundary integral equations. 

Haroldsen and Meiron [9] presented a similar method for evaluating the singular Biot–

Savart integrals in doubly-periodic water wave calculation. Here, we also discuss the 

stability of applying the method in solving integral equations.

One of the difficulties in boundary integral method is to evaluate the singular and weakly-

singular integrals in the equations with proper precisions and efficiency. In our case, the 

singularities of the single- and double-layer integrals in Eq. (5) are less obvious due to the 

complexity of the axisymmetric Green’s functions as expressed in Appendix A. As the 

observation point y approaches the field point x, the singular behavior of the Green’s 

functions can be summarized as

(6)

where r̂ ≡ |y − x|. pαβγ, qαβγ, sαβγ, uαβ and υαβ are smooth functions of x and y even when y 
→ x. Unfortunately, the expressions of these smooth functions are unknown, otherwise 

spectral accurate numerical integration schemes could be developed for the integrals. From 

the decomposition given by Eq. (6), without loss of generality, the integrals in Eq. (5) are of 

the form

(7)

where g is a periodic function on [−1, 1], and a, b and c are smooth or analytic but unknown 

functions. The first integral on the right-hand side of Eq. (7) is taken as a Cauchy principal 

value integral.

Recall that the composite trapezoidal rule with uniform grid size h is spectrally accurate 

when applied to analytic periodic integrands. Note that the Green’s functions  and 

are periodic functions. In absence of the log-singularity term b(s) ln |s| in the integrands, the 

alternating point quadrature for the integral I, defined by

(8)

would eliminate the error of all polynomial orders due to the Cauchy-type singularity in the 

regular composite trapezoidal rule, resulting in a spectrally accurate approximation to the 

integral (see, for example, [28]). Here, n is the number of sub-intervals on [−1, 1] and we 

require n be an even integer. However, in the presence of log-type singularities, the error of 

the quadrature is
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(9)

where ζ(τ) is the Riemann zeta function, ζ′(τ) = dζ/dτ and b(k) denotes the kth derivative of b 

[28].

Taking advantage of the explicit form of the quadrature error (9), one can use different 

approaches to construct arbitrarily high-order quadratures for evaluating the integrals of type 

defined in Eq. (7). One way is to find the values of the derivatives of the function b at the 

singular point s = 0 and then to modify the alternating point quadrature (8) by subtracting 

the leading-order error terms in Eq. (9). This method involves detailed asymptotic analysis 

of the integrands Qαβγ and Mαβ, which is rather difficult and tedious if not impossible. An 

alternative is to use the standard Richardson extrapolation based on the alternating point 

quadratures (8) Ah, A2h, A4h,…, A2Neh (where Ne is the number of extrapolations) for the 

integral (7) to eliminate the leading-order error terms without using detailed knowledge of 

the coefficients such as b(k)(0). This approach is similar to the Romberg-type quadrature but 

without a recursive formula for the lowest order approximations, because the starting point 

of the extrapolation is the alternating point quadrature instead of the standard trapezoidal 

rule. Although this approach is theoretically sound, we find that it is numerically unstable 

because the condition number of the linear system arising from discretization of the integral 

Eq. (5) increases as the number of marker points Nm increases. The instability is due to 

special structure of the coefficient matrix corresponding to the integral equation resulting 

from applying the extrapolations to the alternating point quadrature. If starting with the 

standard trapezoidal rule, the linear system obtained after applying the extrapolations would 

be stable.

Instead, we can obtain an arbitrarily high-order quadrature using the following approach.

• First, we remove the first-order error term in Eq. (9) of the alternating point 

quadrature (8) by calculating the function value b(0), which is much easier 

compared with finding its derivatives. The resulting modified alternating point 

quadrature is

(10)

The error expansion for (10) contains every term with odd-power of h except the 

term that is linear in h.

• Second, we apply Richardson extrapolation on the modified alternating point 

quadrature (10) based on the principle that only the existing quadrature points are 

used in the extrapolation process.

For examples, the fifth- and seventh-order quadratures can be derived as following:
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Fifth-order quadrature: Following the above two steps and working with the modified 

alternating point quadratures MAh[g] and MA3h[g], we obtain the fifth-order quadrature rule 

for the integral (7)

(11)

where

(12)

Seventh-order quadrature: Similarly, based on the modified alternating point quadratures 

MAh[g], MA3h[g] and MA5h[g], we have the seventh-order quadrature

(13)

where

(14)

Next, we demonstrate the order of convergence for solving the elasticity equations Eq. (5) 

when the seventh-order modified Romberg-type quadrature (13) is used. We compare the 

numerical solution of Eq. (2) with the exact solution for an axisymmetric infinite rod, which 

is 2π-periodic in x-direction, for the applied plane stress σ = diag(2λ, 2(μ+ λ), 2(μ + λ)) 

given in Cartesian coordinates. The analytic solution for the displacement is uexact = σeσ for 

any shape profile of the cylindrical rod σ = σ(α). The shape used in the test is given by x(α) 

= α, σ(α) = 1 + (sin α + cos α)/3.

Table 1 shows the maximum error in the displacement, erru(Nm) := max1≤j≤Nm |uj − 

uexact(αj)|, for different values of the total marker points Nm on the interface. In the 

computations, the GMRES tolerance level is set at 10−13. Our direct simulation clearly 

shows the order of accuracy, seven, as expected in theory. The numerical order of 

convergence in the table is obtained by computing log2(erru(Nm)/erru(2Nm)). For the 

seventh-order quadrature (13), the number of marker points Nm must be multiples of 30 

because it has to be even and can be divided by 3 and 5.
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4.1.2. Fast summations for one-dimensional periodic, axisymmetric Green’s 
functions—It is well known that, without using fast algorithms (such as fast multipole 

method) for solving the integral equations, almost the entire computational cost is spent on 

evaluating the Green’s functions. Efficient and accurate evaluation of the kernels is 

indispensable in boundary integral methods.

The boundary integral formulation described in this study requires evaluating the 

axisymmetric Green’s functions  and  that are periodic in the axial direction (x-

direction) with a period Lp. Furthermore, the accuracy of numerical integration presented 

earlier relies on the assumption that the integrands are periodic. If the integrand g in (7) is 

not periodic, then the quadrature error given in (9) must be modified as [28]

(15)

where Bγ are the Bernoulli numbers.

The difficulty in constructing an efficient method for evaluating the periodic Green’s 

functions is the complex expressions corresponding to the free-space axisymmetric ones 

expressed in Eqs. (33) and (35) (given in the Appendix A). The one-dimensional Lp-

periodic, axisymmetric Greens functions can be obtained from direct summation of the non-

periodic axisymmetric ones,

(16)

The popular Ewald summation technique (see [24] and references therein) cannot be applied 

here. Here we present a fast summation method based on the asymptotic analysis of the 

truncated sums in the singly-periodic functions (16), denoted by

(17)

An alternative fast method for periodic structure is based on the fast multipole method [16].

First, we note that all the infinite sums in (16) are convergent except the component . 

Since the definition of Green’s function allows us to add an arbitrary constant, in our 

computation, we modify the expression of  by

(18)
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Analyzing the decay rate of Mαβ and Qαβγ for large arguments |y − x|, we find that the 

truncation errors of replacing the infinite sums (16) by the summations of over finite number 

of periods (17) can be represented by

(19)

where Ci’s are functions of y − x.

Now, we can apply Richardson extrapolation technique to obtain an efficient and accurate 

method for evaluating the periodic Green’s functions. Define

(20)

where G stands for one of the components in Mαβ and Qαβγ. The Richardson extrapolation 

procedure can be presented as

(21)

Here Ng is the number of Richardson extrapolations.

To demonstrate the effect of Richardson extrapolation, we measure the maximum errors in 

Green’s function evaluation during the numerical integration in solving the boundary 

integral Eq. (5) for the cylindrical profile x(α) = α, σ(α) = 1 + (sin α + cos α)/3. Table 2 

compares the errors in evaluating different components of the Green’s functions using the 

new extrapolation strategy and the direct summation. We regard the function values 

obtained from S(8, 8) as the exact values, as the difference between S(7, 7) and S(8, 8) are at 

least two orders smaller than the numbers shown in Table 2. The errors in the function 

evaluation are about four orders of magnitude smaller when we use the extrapolation 

formula given in (21) with Ng = 5 (the row in the table labeled by S(5, 5)), comparing to 

those of the direction summation S(5, 0). In order to achieve similar accuracy of S(5, 5) 

which covers 65 periods, without the extrapolation, one would have to sum over more than 

8193 periods (see the row labeled by S(11, 0)). It is important to note the extrapolation costs 

effectively no computational time because it involves a few floating-point additions, 

subtractions and division by integers.

By choosing Ng ≥ 5, we find that the numerical solutions to the integral Eq. (5) are 

indistinguishable for our choice of the tolerance in GMRES solver. The numerical results 

presented in this paper are obtained by setting Ng = 5.
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4.2. Time integration

Detailed discussions of a second-order time integration schemes that reduce the time-step 

constraint are given in our previous study [17]. Here, we summarize the steps for 

completeness and present a new fourth-order method based on the integration factor 

techniques and the Runge–Kutta method. Similar technique of removing stiffness in time 

integration have been applied in previous studies of stressed solids, e.g., for Ostwald 

ripening of two-dimensional particles [33] and for evolution of voids with anisotropic 

surface energy [29].

We evolve the solid surface C, x(α, t)e1 + σ(α, t)eσ, by advancing the pair of local 

geometrical variables (sα, θ), where sα and θ are the local arc-length derivative and the 

tangent angle, respectively. The relation between the two equivalent sets of variables is 

given by (xα,σα)/sα = (cos θ(α, t), sin θ(α, t)). The differential equations for (sα, θ) are

(22)

(23)

where T is the tangential velocity specified by

(24)

This choice of tangential velocity keeps sα constant in space satisfying sα(α, t) = L(t)/2π, 

where L is the total arc-length of C. In other words, the marker points are evenly distributed 

along the interface at any instant. Accordingly, the Eq. (22) for sα is replaced by

(25)

The equation for the normal velocity υn, Eq. (1), can be decomposed as υn = −θsss + P, 

where

(26)

Note that the curvature κ = κ2d + κ∞, where κ2d = θs and κ∞ = −cos θ/σ are the curvatures 

in the meridian and azimuthal directions, respectively, and the surface Laplacian in 

axisymmetric geometry is given by

(27)

Substituting the expression of υn into Eq. (23), the evolution of θ becomes
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(28)

The temporal stability constraint of an explicit time integration scheme is dictated by the 

term with the highest order of derivative. Therefore, a standard explicit scheme, such as 

Runge–Kutta methods or linear multi-step type methods, applied to Eq. (28) requires a time-

step proportional to (Δs)4, where Δs is the mesh size. On the other hand, a fully implicit 

temporal scheme on Eq. (28) leads to nonlinear systems that have to be solved at every time-

step. For both approaches, the computational costs are very expensive, and become 

prohibitive for medium to small mesh sizes.

Realizing that the fourth-order derivative term is linear and diagonalized in Fourier space, 

we rewrite Eq. (28) in Fourier space and obtain the equations for the corresponding Fourier 

coefficients of θ

(29)

where f (k, t) ≡ (2π/L(t))4k4, Â(k) is the Fourier coefficient for Ps + Tθs and k denotes the 

wavenumber. Then, we treat the k4θ̂(k) term with the integration factor technique and the 

nonlinear term explicitly such that the stability constraint associated with the fourth-order 

derivative term is removed without the need of solving any nonlinear systems.

In particular, because the interfaces might develop singularities, in order to achieve high 

accuracy, we derive a fourth-order scheme based on the classical explicit Runge–Kutta 

method. We point out that the technique can be applied to any equations can be written in 

the form of Eq. (29) with arbitrary f (k, t).

Define . Using integration factor method on Eq. (29), the 

governing equation for ψ(k, t) becomes

(30)

Applying the fourth-order Runge–Kutta method to Eq. (30), we obtain

(31)

where , tn = nΔt, and Ân denotes Â(k) at time tn. The terms 

 and Ân+1* correspond to  and θ̂n+1*, respectively, and they are 

obtained by

Li and Nie Page 12

J Comput Phys. Author manuscript; available in PMC 2015 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(32)

It is well known that the time-stepping methods in Fourier space have aliasing errors due to 

the high-order derivatives, and the small-scale numerical oscillation is usually controlled by 

using Fourier filtering to damp the highest modes [10]. We find that the artificial Fourier 

filtering is not necessary in our case, because the multipliers ek(a, b) appearing in the 

schemes (31) and (32) provide enough damping to high-frequency terms. Note that ek 

decays to zero in O(exp(−k4)) as the wavenumber k increases.

5. Numerical results

The dimensionless parameter that characterizes the dynamics of the whisker is given by β ≡ 

R0Eε̃2/γ, which measures the relative strength of the elastic energy compared with the 

surface energy. The non-dimensionalization is done by choosing the radius of the 

undisturbed cylinder R0 as the length scale, ε̃ = U1/R0 and Eε̃ as the scales of the strain and 

stress, respectively, and  as the time scale, where Ds is the surface 

diffusivity coefficient, Va is the atomic volume, A0 is the number of atoms per unit area on 

the interface, and kT is the thermal energy. Note E is Young’s modulus and γ is the solid-

vapor surface tension.

Our previous work [17] has validated the numerical implementation by comparing the 

numerical results with those from the linear analysis on small perturbation, even though it 

used less accurate schemes for solving the elasticity equations and advancing in time. We 

have repeated the validation using the numerical methods presented in this work and the 

results agree with that of the linear theory well as in [17]. Next, we focus on presenting a 

numerical result that would have been impossible to obtain using less accurate schemes, 

such as in [17]. In particular, we study the existence and the form of finite-time singularity 

developed on the solid surface.

5.1. Without elasticity (β = 0)

In absence of the applied stress, β = 0, evolution of the cylindrical surface with 

axisymmetric disturbances has been studied intensively (see [2] and references therein). In 

this case, the surface diffusion drives unstable long-wave disturbances toward a finite-time 

pinchoff. Furthermore, it has been shown that the pinchoff is self-similar and the cylinder 

forms a cone with half-cone angle of 46.0444° when it collapses onto the axis of symmetry.

Because of the accurate schemes developed in this work, we are able to show the formation 

of singularity and, furthermore, that the predicted cone angle matches well with the results 

in previous work, based on our direct numerical simulation of the original fully nonlinear 

Eq. (1).
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In Fig. 2(a), we show a sequence of the solid surface profiles during the evolution. The 

initial shape is a sinusoidal perturbation of a straight cylindrical cylinder, given by 

. The result clearly shows the cylinder pinches and the surface 

develops sharp curvatures at the minimum neck width. In our simulation, in order to save 

computational time, we start with 64 marker points (Nm = 64) and double the number of 

marker points whenever the evenly distributed points are not enough to resolve the high 

curvature area of the shape configurations. The inadequacy of the resolution can be also 

detected from the loss of conservation of the volume of the numerical solution. We double 

the number of marker points Nm when the relative change in the volume of the rod is larger 

than 10−7 comparing with the volume at the start. For the numerical results in Fig. 2, Nm = 

1024 near the end of pinchoff.

To investigate whether a geometrical singularity develops and the form of the singularity (a 

cusp, a corner or other types of singularity), one needs to apply data fitting and extrapolation 

techniques based on the full simulation data close to the time of singularity formation. In 

Fig. 2(b)–(d), we plot the reciprocal of maximum plane curvature of the trace of the cylinder 

in the (x, y)-plane, 1/maxκ2d, the minimum neck width, and the half-cone angle near the 

pinchoff point as functions of time t. The numerical data are shown by the circular marks in 

the graphs. The dashed lines in the figures are the polynomials of degree two interpolating 

the last three data points (i.e., the numerical data at the times closest to the singularity 

formation time). Fig. 2(b) shows that the extrapolation from the interpolating polynomial 

predicts the curvature blows up, equivalently the singularity forms, at the estimated 

singularity time tc = 4.53242. Using the interpolating polynomial for the minimum neck 

width based on the same three data sets, we obtain the extrapolated value of minimum neck 

width is 0.00326 at the singularity time tc estimated from the curvature data. Theoretically, 

the cylinder forms cone as it collapse onto the axis of symmetry, i.e., the curvature becomes 

infinity as the minimum neck width reaches zero. Considering the interface is represented by 

1024 marker points, our extrapolated value of the neck width at the estimated time when the 

curvature blows up, 0.00326, is rather accurate. Furthermore, the polynomial extrapolation 

from the cone angle data predicts the half-cone angle would be 0.8067 in radian or 46.22° at 

the time tc, which differs from the accurate estimate 46.0444° obtained from similarity 

solution by 0.4%.

In this case, we know the pinchoff process is self-similar, e.g. [2]. We also have performed 

the nonlinear least square fit of the form A*(Tc − t)p based on the last six data points in both 

Fig. 2(b) and (c). The least square fit from the curvature data, plotted using the solid line in 

Fig. 2(b), predicts the singularity time Tc = 4.53194 and the power p = 0.2595. The form fit 

from the minimum neck width data predicts Tc = 4.53195 and p = 0.2317, shown with the 

solid line in Fig. 2(c). The results from the least square fit are consistent in predicting the 

singularity time and the values of p are also close to the theoretical value 1/4. Although the 

predicted values of the singularity time from the form fit Tc are slightly less than the one 

predicted from the polynomial fit tc, the quadratic polynomial fit can be considered as a 

truncated Taylor expansion of the curvature and minimum neck width near the singularity 

time. Because the form of the cone angle near the pinchoff is unknown, we did not analyze 

the cone angle data using form fitting.
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The consistency of the result is further checked by using Nm = 4096 marker points and 

applying the same polynomial interpolation and extrapolation techniques as above. For this 

numerical resolution, we obtain the estimated minimum neck width at the singularity time, 

predicted by the blow-up of the plane curvature, is accurate to the fourth digit. In addition, 

we have used other data points near the end of simulation to perform the polynomial 

extrapolation and obtained almost the same results. Therefore, we simulate with Nm = 1024 

marker points in the numerical study of stressed solid surface diffusion, presented in the next 

section.

The consistency of our numerical results and the agreement with previous similarity solution 

[2] suggest that our numerical methods are accurate for predicting singularity formation and 

exploring the singularity types. Importantly, we will use the exactly same numerical 

methods including the polynomial interpolation and extrapolation procedures in the 

unexplored stressed-solid case, discussed in the next subsection.

5.2. With elasticity (β > 0)

In the presence of the elastic stress β > 0, we will show that the whisker does not collapse 

onto the axis but forms a finite-time singularity (a corner), starting with a perturbed cylinder. 

This result is in contrast with that of stress-driven instability in a two-dimensional semi-

infinite solid where numerical evidence of cusp formation is shown by Spencer and Meiron 

[31].

Our formulation of the applied stress on the whisker agrees with that in the linear studies 

[5,14] up to the leading order. The linear analysis of Kirill et al. [14] shows that, for the 

Poisson ratio  and the elastic parameter β = 0.01, the most linearly unstable sinusoidal 

perturbation to the cylindrical whisker has the wavenumber very close to that of β = 0 : 

. We choose the initial configuration to be the straight cylinder perturbed by this 

sinusoidal wave: σ = 1 + 0.1 cos(kx) with .

To save computational time, we start the simulation with 120 number of marker points on 

the interface, i.e. Nm = 120. We increase the spatial resolution by doubling the number of 

marker points Nm when the resolution is not adequate to represent the section of sharp 

curvature. We apply the following rule in determining when to double the number of points: 

(a) when the change in the volume of the solid is greater than 0.01% of the original volume; 

or (b) when the change of the maximum curvature of the interface is larger than 0.1% after 

we double the number of marker points. In this case, the resolution is 960 marker points at 

the end of simulation.

The size of time-step Δt in the simulation is chosen to satisfy both the stability and accuracy 

constraints. Initially, Δt = 8 × 10−4 for Nm = 120. To satisfy the stability condition alone, we 

need to reduce Δt by a factor of six when Nm is doubled. The factor would be sixteen if the 

stiffness of surface diffusion were not treated such as by the integration factor method with a 

fourth-order Runge–Kutta presented in Section 4.2. Because the shape develops a singularity 

in finite time, the dynamics become faster when it is close to the singularity time. In our 

simulation, to achieve high accuracy, we reduce the time-step Δt by a factor about ten when 
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doubling Nm, controlling the local truncation error in time integration method. Near the end 

of the simulation, the time-step size is 4 × 10−7 while Nm = 960.

Fig. 3 displays the shape evolution of the whisker at times t = 3, 3.7 and 3.85672, where two 

periods of the periodic cylinder are shown (the period in x-direction is  in this case). 

The corresponding dimensionless parameters in the simulation are  and β = 0.01. The 

numerical results show that the neck of the whisker shrinks and the width increases where 

the whisker bulges initially. At later stages of the evolution, the whisker changes shape at a 

much faster pace near the section of small neck width than the other sections of the cylinder. 

As we will show below, the whisker develops a corner in finite time at the points of the 

minimum neck width,  where m is an integer.

In order to show that the whisker develops a finite-time singularity before it collapses onto 

the axis of symmetry, we plot the reciprocal of the maximum plane curvature of the trace of 

the cylinder in the (x, y)-plane, 1/maxκ2d, and the minimum neck width against time t as 

functions of time t in Fig. 4(b) and (c). The full simulation data, shown by the circular marks 

in the graphs, are chosen at times close to the singularity formation, and the quadratic 

polynomial interpolation using the last three data points are also shown by the dashed lines 

in the figures. Extrapolating the data based the polynomials, we estimate that the critical 

time that the singularity forms, i.e. the time that the plane curvature blows up, is 

approximately tc = 3.85712. At the critical time, the minimum neck width is about 0.289, 

which is far away from zero, and much larger than the grid size on the interface (Nm = 960 

in this case). Fig. 4(c) suggests that the rate of neck thinning is finite as the corner forms. 

Our boundary integral method breaks down as a geometrical singularity forms and our 

results cannot predict the behavior of the evolution beyond the singularity formation. Again, 

note that we have used the same numerical procedure and the exactly same polynomial 

interpolation and extrapolation as in the case of no applied elastic stress β = 0 with Nm = 

1024.

Since there is no known self-similar theory for this case, we present only the form fitting for 

the data 1/maxκ2d shown in Fig. 4(b). Assuming the form of A(Tc − t)p as before, the 

nonlinear least square fit predicts the singularity time Tc = 3.85692 shown with the solid line 

in Fig. 4(b) and the power p = 0.3805. Since the value of the singularity time estimated from 

the form fitting Tc is smaller than that from polynomial extrapolation tc, the result suggests 

that minimum neck width remain nonzero when the surface develops the geometric 

singularity. Although the estimated singularity times are different from the different data 

fitting methods, the qualitative conclusion on whether the solid pinches off are consistent.

Next, we show the solid surface forms a corner instead of other types of singularities. Fig. 

4(a) displays a series of close-up snapshots near the point xc where the singularity forms. 

The plots suggest that the trace of the cylinder in the (x, y)-plane develops a corner at xc. We 

estimate the angle of the corner as follows. We first measure the angle of rounded corner by 

fitting straight lines nearby but away from the tip of the corner xc at times close to 

singularity formation, as shown by the circular symbols in Fig. 4(d). Then, we fit a 

polynomial of degree two using these angles (shown as the solid line in Fig. 4(d)) and 

extrapolate at the estimated singularity time tc = 3.85712 (shown as the dashed line and the 
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square symbol). The predicted value of the corner angle is about 2.02 in radian or 116°, 

based on the same numerical procedures used for the case of absence of elasticity β = 0.

5.3. Conclusions

In this study, we have presented an extrapolation method along with a modified alternating 

point quadrature for developing high-order boundary integral methods in axisymmetric 

domains. Although the method has been applied to solving the axisymmetric elasticity 

system, it can be extended to other systems where boundary integral techniques are 

applicable, for instance, interfacial systems in Stokes flows.

We also have presented a new method for accelerating the slowly convergent infinite series 

for calculation of the periodic Green’s functions. The computational cost in evaluating 

Green’s functions usually is dominant in the overall cost of a boundary integral method, 

especially for axisymmetric domains and periodic configurations. Further investigation on 

devising faster algorithms for calculating the complicated Green’s functions is warranted.

We have employed the developed high-order and efficient numerical methods to study the 

singularity formation due to surface diffusion. It is important to note that the full nonlinear 

evolution equation is simulated in this study without assumptions on the form of solution, 

except restricting the interface to be the axisymmetric. In absence of stress, the methods are 

capable of reproducing the well-known pinchoff of the cylinder, and predicting accurately 

the form of the singularity, i.e. the cone formation at the point of pinchoff. With the applied 

uni-axial stress, we have found that the cylinder forms a corner before it collapses onto the 

axis of symmetry. It would be interesting to further investigate the dependence of the corner 

angle on the relative magnitude of applied stress.
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Appendix A. Axisymmetric Green’s functions

We obtain the axisymmetric Green’s functions Qαβγ and Mαβ by integrating the free-space 

Green’s functions for isotropic elasticity with respect to the polar angle ϕ. For the points x = 

(x1,σx, 0) and y = (y1,σy, 0) in cylindrical coordinates, the axisymmetric Green’s functions 

associated with displacement are given by

(33)

where x̂ = y1 − x1 and the integrals Imn are defined by

(34)

The integrals Imn can be expressed in terms of complete elliptic integrals of the first and 

second kind [7]. The corresponding axisymmetric Green’s functions associated with stress 

are given by

(35)
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Fig. 1. 
Sketch of a periodic whisker.
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Fig. 2. 
(a) A sequence of surface profiles for β = 0 at times t = 0 (the dotted line), 3.6 (the dashed 

line), 4.32 (the dash-dotted line) and 4.53168 (the solid line). (b) The reciprocal of the 

maximum plane curvature for the cylinder against the time, where the numerical results are 

indicated with the circles (o’s) and the nonlinear least square form fit and quadratic 

polynomial interpolation and extrapolation are shown in solid and dashed lines, respectively. 

The solid diamond and square symbols are the singularity times where the maximum 

curvature is infinity, predicted by the least square and polynomial fits, respectively. (c) 

Same as (b) except that the minimum neck width is plotted. (d) Same as (b) except that the 

half-cone angle is plotted. The square symbol predicts the value of the angle at the estimated 

singularity time from the polynomial fit.
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Fig. 3. 
Evolution of a cylindrical whisker using the initial profile σ = 1 + 0.1 cos(kx) with the 

wavenumber  (shown by the dotted line) and β = 0.01. The cross sections in the (x, y)-

plane of the whisker are shown at the nondimensionalized time t = 3 (the dashed line), 3.7 

(the dash-dotted line), and 3.85672 (the solid line).
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Fig. 4. 
(a) The close-up of the snapshots near the singularity at times t = 3.8562 (the dash-dotted 

line), 3.85664 (the dashed line) and 3.85672 (the solid line). (b) The reciprocal of the 

maximum plane curvature for the cylinder against the time, where the full simulation data 

are indicated with the circles (o’s) and the polynomial fit and the nonlinear least square form 

fit are shown in dashed and solid lines, respectively. The solid square and diamond symbols 

are the singularity times where the maximum curvature is infinity, estimated from the 

polynomial fit and the least square form fit, respectively. (c) Same as (b) except that the 

minimum neck width is plotted. The square symbol indicates the extrapolated value of the 

minimum neck width at the estimated singularity time from the polynomial fit. (d) Data 

points in (a) are used for the angle of the corner. The square symbol predicts the value of the 

angle at the estimated singularity time from the polynomial fit.
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Table 2

Effect of extrapolation in Green’s function evaluation. The table shows the maximum error in evaluating the 

different components of the Green’s functions, where  includes  and  and similarly for the other 

entries. S(i, 0) is the direct summation over 2i+1 + 1 periods defined in Eq. (20), and S(i, i) is the result of 

extrapolating i times the values in S(i, 0) as defined in Eq. (21).

S(5, 0) 2.1 × 10−5 3.1 × 10−6 9.6 × 10−5 2.5 × 10−6

S(5, 5) 1.0 × 10−9 8.8 × 10−11 1.5 × 10−9 3.4 × 10−10

S(11, 0) 1.4 × 10−9 6.9 × 10−10 2.6 × 10−9 3.2 × 10−9
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