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Abstract 
 

 Balsara (2001, J. Comput. Phys., 174, 614) showed the importance of divergence-

free reconstruction in adaptive mesh refinement problems for magnetohydrodynamics 

(MHD) and the importance of the same for designing robust second order schemes for 

MHD was shown in Balsara (2004, ApJS, 151, 149). Second order accurate divergence-

free schemes for MHD have shown themselves to be very useful in several areas of 

science and engineering. However, certain computational MHD problems would be much 

benefited if the schemes had third and higher orders of accuracy. In this paper we show 

that the reconstruction of divergence-free vector fields can be carried out with better than 

second order accuracy. As a result, we design divergence-free weighted essentially non-

oscillatory (WENO) schemes for MHD that have order of accuracy better than second. A 

multistage Runge-Kutta time integration is used to ensure that the temporal accuracy 

matches the spatial accuracy. Accuracy analysis is carried out and it is shown that the 

schemes meet their design accuracy for smooth problems. Stringent tests are also 

presented showing that the schemes perform well on those tests. 
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1) Introduction 
 

The Magnetohydrodynamic (MHD) equations play an important role in many 

areas of astrophysics, space physics and engineering. Typical applications in those areas 

require one to capture flow on a range of scales in a way that is as dissipation-free as 

possible. As a result, there has been considerable interest in bringing accurate and reliable 

numerical methods to bear on this problem. The MHD system of equations can be written 

as a set of hyperbolic conservation laws. As a result, early efforts concentrated on 

straightforwardly applying second order total variation diminishing (TVD) techniques to 

the MHD equations. This was done by Brio & Wu [13], Zachary, Malagoli & Colella 

[34], Powell [27], Dai & Woodward [16], Ryu & Jones [29], Roe & Balsara [28], Balsara 

[1] and [2], Falle, Komissarov & Joarder [22] and Crockett et al [15]. Recent efforts have 

focused on understanding the structure of the induction equation: 

 

( ) + c  = 0
t

∂
∇×

∂
B E          (1) 

 

and the divergence-free evolution that it implies for the magnetic field. In eqn. (1), B is 

the magnetic field, E is the electric field and c is the speed of light. The magnetic field 

starts out divergence-free because of the absence of magnetic monopoles and eqn. (1) 

ensures that it remains divergence-free for all time. The electric field is given by: 

 

c  =    − ×E v B

E

         (2) 

 

where v is the fluid velocity. For the rest of this paper we will simplify the notation by 

making the transcription c . Brackbill & Barnes [11] have shown that violating 

the  constraint leads to unphysical plasma transport orthogonal to the magnetic 

field. This comes about because violating the constraint results in the addition of extra 

source terms in the momentum and energy equations. Yee [33] was the first to formulate 

divergence-free schemes for electromagnetism. Brecht et al [12] and DeVore [19] did the 

same for flux corrected transport (FCT)-based MHD. Dai & Woodward [17], Ryu et al 

  →E

  = 0∇⋅ B
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[30], Balsara & Spicer [9] and [10], Balsara [4] and Londrillo and DelZanna [26] showed 

that simple extensions of higher order Godunov schemes permit one to formulate 

divergence-free time-update strategies for the magnetic field. Balsara & Kim [6] 

intercompared divergence-cleaning and divergence-free schemes for numerical MHD. 

They found that if the test problems are made stringent enough the schemes that are 

based on divergence-cleaning show significant inadequacies when used for astrophysical 

applications. Thus it is advantageous to design robust schemes for numerical MHD that 

are divergence-free, as was done in Balsara [4]. Balsara [4] used the divergence-free 

reconstruction of vector fields from Balsara (2001) to present a formulation that 

overcame several inconsistencies in previous formulations. Balsara et al [5] a new class 

of higher order schemes for the Euler equations. In such formulations the lower moments 

of the solution are retained while the higher moments are reconstructed, resulting in low 

storage schemes with better than second order accuracy.  

 

 Higher order schemes for MHD have been attempted. Jiang & Wu [26] and 

Balsara & Shu [8] experimented with weighted essentially non-oscillatory (WENO) 

schemes. Another line of effort stems from the work of Londrillo and DelZanna [26]. 

These schemes were based on a finite difference formulation. For certain types of 

applications, especially those involving non-uniform meshes or adaptive solution 

strategies, finite volume formulations become essential. We therefore present a finite 

volume, divergence-free scheme for MHD that goes beyond second order of accuracy. 

We rely on efficient WENO interpolation strategies that were designed in Balsara et al 

[7] to make a high order reconstruction. The novel element introduced in this paper 

consists of extending the divergence-free reconstruction of magnetic fields from Balsara 

[3] and [4] to all orders up to fourth. When coupled with an appropriately accurate 

Runge-Kutta (RK) time integration scheme by Shu & Osher [31] and [32], we get a set of 

WENO schemes that have a spatial and temporal accuracy that exceeds that of second 

order schemes. 

 

 In Section 2 we catalogue the divergence-free reconstruction of vector fields for 

higher order schemes. In Section 3 we provide a step by step description of the scheme. 
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In Section 4 we provide an accuracy analysis and in Section 5 we present several test 

problems. 

 

2) Higher Order Divergence-Free Reconstruction of Vector Fields 
 

 In this section we study the divergence-free reconstruction of a divergenceless 

vector field for schemes with better than second order accuracy. In particular, we focus 

on the third and fourth order cases because they can be catalogued succinctly and are 

likely to be generally useful. The second order accurate divergence-free reconstruction of 

vector fields was studied for Cartesian meshes in Balsara [3]. In Balsara [4] we extended 

this to logically rectangular meshes with diagonal metrics. Balsara [4] also considered the 

second order accurate divergence-free reconstruction of vector fields on tetrahedral 

meshes and that too can be extended to higher orders. Since the method was described in 

detail in Balsara [3], in this paper we will focus on cataloguing results for the higher 

order case. The reader who wants a pedagogical introduction is referred to Balsara [3] 

and [4]. 

 

 For the rest of this work we assume that each zone has been mapped to a unit 

cube with local coordinates (x,y,z)  [ 1/ 2,1/ 2] [ 1/ 2,1/ 2] [ 1/ 2,1/ 2]∈ − × − × −  . A natural 

set of modal basis functions within that zone or on its faces would consist of tensor 

products of the Legendre polynomials P0 (x), P1 (x) and P2 (x) . The first few Legendre 

polynomials are given by: 

 

2 3
0 1 2 3

4 2
4

1 3P  (x) = 1 ; P  (x) = x ; P  (x) = x     ; P (x) = x    x  ; 
12 20

3 3P  (x) = x    x  + 
14 560

− −

−
   (3) 

 

The above Legendre polynomials have just been suitably scaled to the local coordinates 

of the zone being considered. The x-component of the magnetic field in the upper and 

lower x-faces of this zone can be projected into these bases as: 
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x x x

x 0 y 1 z 1

x x x
yy 2 yz 1 1 zz 2

B ( x = 1/2, y, z) = B  + B  P (y) + B  P (z)                                     second order

                 + B  P (y) + B  P (y) P (z) + B  P (z)                                th

± ± ±

± ± ±

± ←

←
x x x x
yyy 3 yyz 2 1 yzz 1 2 zzz 3

ird order

                 + B  P (y) + B  P (y) P (z) + B P (y) P (z) + B  P (z)   fourth order± ± ± ± ←

 

           (4) 

 

Here  ,  and are the moments that would be needed in a second order accurate 

representation in the basis functions that we have chosen. 

x
0B ± x

yB ± x
zB ±

x
yyB ±  ,  and  are the 

additional moments for a third order accurate representation in the same set of basis 

functions.  , B  ,  and 

x
zzB ± x

yzB ±

x
yyyB ± x

yyz
± Bx

yzz
± x

zzzB ±  are the further moments that are needed for a fourth 

order accurate representation, again in the same set of basis functions. Consequently, 

while eqn. (4) shows all the facial moments that are needed up to fourth order, the arrows 

in eqn. (4) show the terms that are needed for each specific order of accuracy. We can 

write similar expressions for the y and z-components of the field in the appropriate zone 

faces as: 

 
y y y

y 0 x 1 z 1

y y y
xx 2 xz 1 1 zz 2

B ( x, y = 1/2, z) = B  + B  P (x) + B  P (z)                                    second order 

                + B  P (x) + B  P (x) P (z) + B  P (z)                                thi

± ± ±

± ± ±

± ←

←
y y y y
xxx 3 xxz 2 1 xzz 1 2 zzz 3

rd order

                + B  P (x) + B  P (x) P (z) + B  P (x) P (z) + B  P (z)   fourth order± ± ± ± ←

 

           (5) 

 
z z z

z 0 x 1 y 1

z z z
xx 2 xy 1 1 yy 2

B ( x, y, z = 1/2) = B  + B  P (x) + B  P (z)                                     second order

               + B  P (x) + B  P (x) P (y) + B  P (y)                                  th

± ± ±

± ± ±

± ←

←
z z z z
xxx 3 xxy 2 1 xyy 1 2 yyy 3

ird order

               + B  P (x) + B  P (x) P (y) + B  P (x) P (y) + B  P (y)   fourth order± ± ± ± ←

 

           (6) 

 

To reconstruct the field in the interior of the zone we pick the following functional forms 

for the fields: 
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x 0 x 1 y 1 z 1

xx 2 xy 1 1 xz 1 1

yy 2 xyy 1 2 zz 2

B ( x, y, z) = a + a P (x) + a P (y) + a P (z) 

 + a P (x) + a P (x) P (y) + a P (x) P (z)                                                     second order

 + a P (y) + a P (x) P (y) + a P (z) 

←

xzz 1 2 yz 1 1 xyz 1 1 1

xxx 3 xxy 2 1 xxz 2 1

yyy 3 xyyy 1 3

+ a P (x) P (z) + a  P (y) P (z) + a  P (x) P (y) P (z)

 + a P (x) + a P (x) P (y) + a P (x) P (z)                                                   third order

 + a P (y) + a  P (x) P

←

yyz 2 1 xyyz 1 2 1

yzz 1 2 xyzz 1 1 2 zzz 3 xzzz 1 3

xxxx 4 xxxy 3 1 xxxz 3 1

xxyy 2 2

(y) + a P (y) P (z) + a P (x) P (y) P (z)

 + a  P (y) P (z) + a  P (x) P (y) P (z) + a P (z) + a  P (x) P (z) 

 + a  P (x) + a  P (x) P (y) + a  P (x) P (z) 

 + a  P (x) P (y) xxzz 2 2+ a  P (x) P (z)                                                              fourth order

 

←

           (7) 

 

y 0 x 1 y 1 z 1

yy 2 xy 1 1 yz 1 1

xx 2 xxy 2 1 zz 2

B ( x, y, z) = b + b P (x) + b P (y) + b P (z) 

 + b P (y) + b P (x) P (y) + b P (y) P (z)                                                  second order

 + b P (x) + b P (x) P (y) + b P (z) + b

←

yzz 1 2 xz 1 1 xyz 1 1 1

yyy 3 xyy 1 2 yyz 2 1

xxx 3 xxxy 3 1 x

P (y) P (z) + b  P (x) P (z) + b  P (x) P (y) P (z)

 + b P (y) + b P (x) P (y) + b P (y) P (z)                                               third order

 + b P (x) + b P (x) P (y) + b

←

xz 2 1 xxyz 2 1 1

xzz 1 2 xyzz 1 1 2 zzz 3 yzzz 1 3

yyyy 4 xyyy 1 3 yyyz 3 1

xxyy 2 2 yyzz

 P (x) P (z) + b  P (x) P (y) P (z)

 + b  P (x) P (z) + b  P (x) P (y) P (z) + b P (z) + b  P (y) P (z)

 + b  P (y) + b  P (x) P (y) + b  P (y) P (z)

 + b  P (x) P (y) + b  2 2P (y) P (z)                                                             fourth order←

 

           (8) 

 

z 0 x 1 y 1 z 1

zz 2 xz 1 1 yz 1 1

xx 2 xxz 2 1 yy 2 yyz

B ( x, y, z) = c + c P (x) + c P (y) + c P (z)

 + c P (z) + c P (x) P (z) + c P (y) P (z)                                                 second order

+ c P (x) + c P (x) P (z) + c P (y) + c P

←

2 1 xy 1 1 xyz 1 1 1

zzz 3 xzz 1 2 yzz 1 2

xxx 3 xxxz 3 1 xxy 2

(y) P (z) + c  P (x) P (y) + c  P (x) P (y) P (z)

+ c P (z) + c P (x) P (z) + c P (y) P (z)                                              third order

+ c P (x) + c P (x) P (z) + c  P (x

←

1 xxyz 2 1 1

xyy 1 2 xyyz 1 2 1 yyy 3 yyyz 3 1

zzzz 4 xzzz 1 3 yzzz 1 3

xxzz 2 2 yyzz 2 2

) P (y) + c  P (x) P (y) P (z)

+ c  P (x) P (y) + c  P (x) P (y) P (z) + c  P (y) + c  P (y) P (z)

+ c  P (z) + c  P (x) P (z) + c  P (y) P (z)

+ c  P (x) P (z) + c  P (y) P (z)                                                           fourth order←

 

           (9) 

 

The rationale for picking this set of moments follows from Balsara [3]. Relative to the 

format followed in Balsara [3], a slight rearrangement of the functional forms has been 
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made in the previous three equations to cast them in terms of the basis functions. 

Analogous to eqn. (4), eqn. (7) shows the terms that have to be included to achieve 

second, third and fourth order accuracy. Eqns. (8) and (9) have a structure that is similar 

to eqn. (7) and the corresponding terms that are needed with increasing accuracy are 

easily identified. The procedure for enforcing the divergence-free constraint is entirely 

similar to the one in Balsara [3] and will not be repeated here. 

 

 We now provide the formulae for obtaining the coefficients in eqn. (7) using the 

coefficients in eqns. (4), (5) and (6). To obtain the coefficients in eqn. (8) make the cyclic 

rotation of variables, a  b, b  c, c  a, x  y, y  z and z  x , in the formulae 

below. Similarly, to obtain the coefficients in  eqn. (9) make the cyclic rotation of 

variables, a  c, b  a, c  b, x  z, y  x and z  y . Note that the formulae in this 

Section should be implemented in code in the same sequence as described here. 

 

The description of the fourth order divergence-free reconstruction starts with this 

paragraph. Matching the modal basis functions with cubic terms at the x = 1/2±  

boundaries gives: 

 

( )

( )

( )

( )

x+ x x+ x
yyy yyy yyy xyyy yyy yyy

x+ x x+ x
yyz yyz yyz xyyz yyz yyz

x+ x x+ x
yzz yzz yzz xyzz yzz yzz

x+ x x+
zzz zzz zzz xzzz zzz

1a  = B B    ; a  = B B    ; 
2
1a  = B B    ; a  = B B    ; 
2
1a  = B B    ; a  = B B    ; 
2
1a  = B B    ; a  = B
2

− −

− −

− −

−

+ −

+ −

+ −

+ x
zzzB    ; −−

     (10) 

 

Eqn. (10) gives us the coefficients  in eqn. 

(7). Making the analogous match of the cubic terms at the 

yyy xyyy yyz xyyz yzz xyzz zzz xzzza ,  a ,  a ,  a ,  a , a ,  a  and a

y = 1/2±  boundaries in eqn. 

(8) give us zzz yzzz xzz xyzz xxz xxyz xxx xxxyb , b , b , b , b , b , b  and b

z = 1/2

. It is worth pointing out that 

making a cyclic rotation of the variables in eqn. (10) also yields the same coefficients that 

are needed in eqn. (8). Matching the cubic terms at the ±  boundaries for eqn. (9) 
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gives us  . Notice too that making another 

cyclic rotation of variables also yields the coefficients for eqn. (9). We now apply the 

divergence-free constraint to the quartic terms in eqns. (7) to (9). After making an SVD 

minimization of the integral of the reconstructed magnetic energy over the zone w.r.t. the 

coefficients  ,   and  , the resulting constraints are: 

xxx xxxz xxy xxyz xyy xyyz yyy yyyzc , c , c , c , c , c , c  and c

xxxya xxxza  , xxyya xxzza

 

( )xxxx xxxy

xyyz

b

 c

xxxz

xxzz

 + c

   ; a

yyyy yyyz

x   ; a

3 3 = − −

xyyy

xxy xxyz xxxz xxyz

xxyy

7a  =  =  c    ; a  =  b    ; 
0 30

a  =  b
20 20

−

xyzz

1 7
4 3

− −

yyzz

  (11) 

 

Notice that the right hand sides of eqn. (11) are available by this point in the computation 

so that eqn. (11) can be used to obtain the coefficients  in 

eqn. (7). A cyclic rotation of variables gives us the constraints for the coefficients in eqns. 

(8) and yields 

xxxx xxxy xxxz xxyy xxzza ,  a ,  a ,  a  and a

xxyyb , b , b , b nd b a . Likewise a cyclic rotation of variables 

gives us the coefficients in eqn. (9) and yields c . All the 

terms that are evaluated in this paragraph will be needed in the subsequent formulae 

when fourth order reconstruction is carried out. However, for reconstruction at third and 

second orders they can all be set to zero. 

zzzz xzzz yzzz xxzz yyzz, c , c , c  and c

 

The description of the third order divergence-free reconstruction starts with this 

paragraph. This paragraph also continues our description of the fourth order 

reconstruction. Matching the modal basis functions with quadratic terms at the x = 1/2±  

boundaries gives: 

 

( )

( )

( )

x+ x
yy y

x+ x
yz yz

x+ x
zz

B

B

B

x+ x
yy y yy yy

x+
yz x yz

x+ x
zz zz zz zz

1 1a  = B      ; a B    ; 
2 6
1a  = B    ; a
2
1 1a  = B       ; a B   
2 6

− −

−

− −

+ − −

+ −

+ − −

xxyy

yz

xxzz

 a

 = B

 a

−

xyy

x
yz

xzz

 = B

B    ; 

 = B

    (12) 
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Eqn. (12) provides  all of which are needed in eqn. (7). 

Making a cyclic rotation of variables in eqn. (12) yields the analogous terms in eqns. (8), 

i.e. 

yy xyy yz xyz zz xzza ,  a ,  a ,  a ,  a  and a

yz xx xxyzz yzz xz xb , b , b , b , b  and b

c

 , all of which are needed in eqn. (8). Likewise, another 

cyclic rotation of variables gives the coefficients  that are 

needed in eqn. (9). We are now ready to apply the constraints on the cubic terms in eqns. 

(7) to (9). After making an SVD minimization of the integral of the reconstructed 

magnetic energy over the zone w.r.t. the coefficients  and  we get: 

xx xxz xy xyz yy yyz, c , c , c , c  and c

xxya xxza

 

( )xxx xxy xxz xxy xyz xxz xyz
1a  = b + c    ; a  = c 4    ; a  = b 4
3

− − −     (13) 

 

Eqn. (13) gives us the coefficients in eqn. (7). Analogous terms in eqns. 

(8) and (9) can now be made via a cyclic rotation of variables so that we obtain 

xxx xxy xxza , a  and a

yyy yyz xyy zzz xzz yzzb , b , b , c , c  and c . This paragraph again gives us all the terms that will be 

needed in the subsequent formulae when third or fourth order reconstruction is carried 

out. However, for second order divergence-free reconstruction the coefficients that have 

been obtained in this and the previous paragraph are set to zero. 

 

Our description of the second order divergence-free reconstruction starts with this 

paragraph. The present paragraph also continues our description of the third or fourth 

order reconstruction. Matching the modal basis functions with linear terms at the 

 boundaries gives: x = 1/2±

 

( ) ( )

( ) ( )

x+ x x+ x
y y y xxy xy y y xxxy

x+ x x+ x
z z z xxz xz z z xxxz

1 1 1a  = B B    a    ; a  = B B    a    ; 
2 6 10
1 1 1a  = B B    a     ; a  = B B    a  
2 6 10

− −

− −

+ − − −

+ − − −
   (14) 
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Eqn. (14) provides the coefficients  that are needed in eqn. (7). 

Analogous terms in eqns. (8) and (9) can now be made via a cyclic rotation of variables. 

Thus one cyclic rotation of variables applied to eqn. (14) provides us 

y xy z xa , a , a  and a z

z yz x xyb , b , b  and b  . 

Another such rotation of variables yields  . The constraint applied to the 

quadratic terms in eqns. (7) to (9) gives: 

x xz yc , c , c  and cyz

 

( ) (xx xy xz xxxx xyyy xzzz
1 3 1a = b + c    a    b  + c
2 35 20

− − − )     (15) 

 

Analogous terms in eqns. (8) and (9) can now be made by applying cyclic rotations to 

variables in eqn. (15) and those rotations yield  yy zzb  and c  . 

 

Matching the constant terms at the x = 1/2±  boundaries gives: 

 

( ) ( )x+ x x+ x
0 0 0 xx xxxx x 0 0 xxx

1 1 1a  = B B    a   a    ; a  = B B    a
2 6 70 10

− −+ − − − −
1

x

z

   (16) 

 

Eqn. (1) provides the coefficients  that are needed in eqn. (7). Analogous terms 

in eqns. (8) and (9) can now be made to get 

0a  and a

0 y 0b , b , c  and c . The constraint applied to 

the linear terms in eqns. (7) to (9) gives: 

 

( ) (x y z xxx yyy zzz
1a  + b  + c  +  a  + b  + c  = 0

10
)      (17) 

 

The coefficients in eqn. (16) are so constructed that, along with eqn. (17), they ensure 

(and are equivalent to) the integral form of the divergence-free constraint: 

 

( ) ( ) ( )x+ x y+ y z+ z
0 0 0 0 0 0B B  + B B  + B B  = 0− − −− − −      (18) 

 

This completes our description of the divergence-free reconstruction on the unit cube.  
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 In practical situations, one might want to carry out the same procedure on a zone 

of size ,  x yΔ Δ  and  in the x, y and z-directions respectively. Notice that eqn. (18) then 

becomes: 

zΔ

 

( ) ( ) ( )x+ x y+ y z+ z
0 0 0 0 0 0

1 1 1B B  + B B  + B B  = 0
x y z

− −− − −
Δ Δ Δ

−     (19) 

 

The problem can be mapped to a unit cube by dividing all the coefficients in eqns. (4), (5) 

and (6) by ,  x yΔ Δ  and respectively. The method described in this Section can now be 

applied to get the coefficients in eqns. (7), (8) and (9) and all the coefficients in those 

equations can subsequently be multiplied by 

zΔ

,  x yΔ Δ  and zΔ respectively. This completes 

our description of the divergence-free reconstruction on any rectilinear mesh. 

 

We make a few observations below: 

 

1) We observe that the normal components of the magnetic field in eqns. (4) to (6) are 

indeed fourth order accurate in the faces. Furthermore, specifying all the moments in 

eqns. (4) to (6) at the zone faces uniquely specifies all the coefficients in eqns. (7) to (9) 

for the interior of that zone. Eqns. (7) to (9) contain all the terms that one would need in a 

fourth order accurate polynomial expansion. Thus all the fourth order accurate terms that 

are needed for reconstructing a divergence-free vector field in the interior of a zone are 

already provided by their fourth order accurate specification at the boundaries. The few 

remaining terms in eqns. (7) to (9) only help in matching the magnetic fields exactly to 

the components at the boundaries. By dropping suitable terms in eqns. (4) to (9) we can 

also see that all the third order accurate terms that are needed for reconstructing a 

divergence-free vector field in the interior of a zone are already provided by their third 

order accurate specification at the boundaries. A similar statement applies to the second 

order accurate reconstruction. 
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2) Notice too that when carrying out adaptive mesh refinement of a divergence-free 

vector field by a refinement ratio of three, we need to specify nine degrees of freedom at 

each boundary. The fourth order reconstruction presented here has ten degrees of 

freedom at each boundary, see eqns. (4) to (6). One degree of freedom can be 

relinquished either by setting x
yyy zzzB  = Bx± ±  or by setting x

yyz yzzB  = Bx± ± . Thus the 

reconstruction has sufficient amount of freedom to make it useful for carrying out 

adaptive mesh refinement with refinement ratios of three. 

 

3) Balsara [3] provided formulae for carrying out adaptive mesh refinement of a 

divergence-free vector field by a refinement ratio of two. The above point shows that a 

refinement ratio of three is also easy to achieve. Recursive application of the algorithms 

makes it possible to achieve refinement ratios that are any multiples or two and three. The 

algorithm presented here is dimensionally unsplit and offers analytic, closed form 

expressions for the reconstruction. Our formulation also minimizes the energy of the 

magnetic field and we will later show in Section 5 that it helps keep the pressure positive 

when simulating stringent test problems. 

 

4) The same transformations that were catalogued in Balsara [4] for treating logically 

rectangular meshes with diagonal metrics go over transparently for the reconstruction 

given here. As a result, there are no obstacles to using the present formulation for 

designing MHD algorithms in cylindrical and spherical meshes. Similarly, one can use 

the present formulation for carrying out adaptive mesh refinement on such curvilinear 

meshes. 

 

5) The present formulation should also help in making divergence-free prolongation 

which is very useful in the construction of divergence-free multigrid schemes for resistive 

or Hall MHD. 

 

3) Step-by-Step Description of the RK-WENO Schemes for Divergence-

free MHD 
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 The equations of ideal MHD can be cast in a conservative form that is suited for 

the design of higher order Godunov schemes. In that form they become: 

 

 +  +  +  = 0
t x y z

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
U F G H         (20) 

 

where F , G and H are the ideal fluxes. Written out explicitly, eqn. (20) becomes : 
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           (21) 

where ρ is the density, vx , vy and vz are the velocity components, Bx , By and Bz are the 

magnetic field components, γ is the adiabatic index and ( )2 2=  v /2 + P/ 1  + /8  ρ γ πε − B  

is the total energy. The equations for the density, momentum density and energy density 

parallel those in the Euler equations and can be discretized using standard RKDG 

formulations. While the magnetic fields seem to have a conservation law structure, an 
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examination of the flux vectors show that the equations of MHD obey the following 

symmetries: 

 

7 6 8 6 8F  =  G  ,   F  =  H  ,    G  =  H  − − − 7       (22) 

 

These symmetries are also obeyed when any manner of non-ideal terms are introduced 

and are a fundamental consequence of the induction equation, see eqn. (1). Balsara & 

Spicer [10] realized how to use this dualism between the flux components and the electric 

fields to build electric fields at zone edges using the properly upwinded Godunov fluxes. 

Balsara [4] introduced a better way of obtaining the electric fields at zone edges that 

avoids spatial averaging. The Balsara & Spicer [10] scheme is inherently second order 

accurate because of the spatial averaging. By overcoming this limitation, the Balsara [4] 

scheme is easily extended to all orders. Once the electric fields are obtained at requisite 

collocation points on the zone edges a discrete version of eqn. (1) can be built, as shown 

in Balsara [4]. Balsara [4] also showed that Runge-Kutta time-discretizations could be 

used for MHD. We therefore describe the steps in the implementation of a Runge-Kutta 

time-discretiztion for MHD. The spatial representation is provided by an efficient 

implementation of a WENO scheme for structured meshes. A step-by-step description of 

the WENO scheme with Runge-Kutta time-stepping is provided below. 

 

3.1) Divergence-Free WENO Reconstruction Step 

 

 The first step in any finite volume scheme consists of obtaining a reconstruction 

of the field variables within a zone. Inclusion of the appropriate moments of the flow 

yields a correspondingly high accuracy. Thus at any stage in a multi-stage RK time-

stepping scheme our first task is to obtain a representation of the flow in the following 

basis space: 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 0 0 0

2 1 0 0 3 0 1 0 4 0 0 1

5 2 0 0 6 0 2 0 7 0 0 2

8 1 1 0 9 0 1 1 10 1 0 1

x,y,z  = P x P y P z
ˆ ˆ ˆ + P x P y P z  + P x P y P z  + P x P y P z            second order

ˆ ˆ ˆ    + P x P y P z  + P x P y P z  + P x P y P z
ˆ ˆ ˆ    + P x P y P z  + P x P y P z  + P x P y P z        third 

←

←

U U

U U U

U U U

U U U

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

11 3 0 0 12 0 3 0 13 0 0 3

14 2 1 0 15 2 0 1 16 1 2 0 17 0 2 1

18 1 0 2 19 0 1 2 20 1 1 1

order
ˆ ˆ ˆ + P x P y P z  + P x P y P z  + P x P y P z
ˆ ˆ ˆ ˆ + P x P y P z  + P x P y P z  + P x P y P z  + P x P y P z
ˆ ˆ ˆ + P x P y P z   + P x P y P z  + P x P y P z       fourth order←

U U U

U U U U

U U U
 

           (23) 

 

Here (x,y,z) denotes the local coordinates in the unit cube [-1/2,1/2]×[-1/2,1/2]×[-1/2,1/2] 

to which the zone of interest is mapped and ( )x,y,zU  is the vector of conserved variables 

from eqn. (20). are the modes that are reconstructed at each time level for a fourth 

order scheme, with fewer modes needed for lower order schemes. The first five 

components of 

2,..,20Û

1U  are just the zone-averaged mass, momentum and total energy densities 

that are available in each zone. The last three components of 1U  and  have to be 

obtained from the divergence-free reconstruction of the magnetic field, whose facially-

averaged components are available at the appropriate faces. Using WENO reconstruction 

in each of the faces we obtain all the moments of eqns. (4) to (6). The results of Section 2 

then gives us all the moments of eqns. (7) to (9) which also gives us the last three 

components of 

2,..,20Û

1U  and . WENO reconstruction can now be applied to obtain all the 

remaining components of . Several good choices are available for WENO 

interpolation these days including the works of Jiang & Shu [25], Balsara & Shu[8], 

Dumbser & Käser [21], Balsara et al [5] and [7]. In Balsara et al [7] we presented a 

WENO reconstruction strategy that is very well-suited for structured meshes and we used 

that strategy here.  

2,..,20Û

Û2,..,20

 

3.2) Flux and Electric Field Evaluation Step 
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 A higher order scheme should also evaluate fluxes and electric fields with suitably 

high accuracy. Traditionally this has been done by solving a large number of Riemann 

problems at a large number of quadrature points as was done in Cockburn & Shu [14]. A 

substantially simpler strategy was presented in Dumbser, Enaux & Toro [20] where the 

flux is viewed as a linear combination of four vectors. The four vectors are: a) the 

conserved variables to the left of the zone boundary given by , b) the 

conserved variables to the right of the zone boundary given by , c) the 

flux to the left of the zone boundary given by 

(; 1/2, , y,zL i j k+U

(; 1/2, , y,zR i j k+U

)

)

( ); 1/2, , y,zL i j k+F  and d) the flux to the right 

of the zone boundary given by ( )z; 1/2, , y,R i j k+F . The strategy proposed by Dumbser, 

Enaux & Toro [20] applies to the space-time domain. We specialize it for the case where 

the time-averaging is not needed. Below it is instantiated for the linearized Riemann 

solver at any general point (y,z) on the x-boundary “i+1/2,j,k” . Such a flux is described 

by: 

 

( ) ( ) ( )( ) ( ) ( ) ( )( )1/2, , ; 1/2, , ; 1/2, , ; 1/2, , ; 1/2, ,
1y,z y,z y,z A y,z y,z y,z
2i j k L i j k R i j k R i j k L i j k+ + + + += + − −F F F U U

 

           (24) 

As written, the matrix ( )A y,z  would have to be evaluated anew at each point (x,y) on 

the zone boundary. The essential insight from Dumbser, Enaux & Toro [20] consists of 

realizing that ( )A y,z  can be evaluated once at the barycenter of the zone boundary. This 

is equivalent to freezing the dissipation model all over the zone boundary and it also 

makes the flux a linear function of the four vectors catalogued above.  and 

 are easily obtained once the reconstruction from eqn. (23) is available in 

the two zones that abut a zone face. Balsara et al [7] present a very efficient strategy for 

obtaining F(x,y,z) within a zone when eqn. (23) is available in the zone. As a result, 

 and  are also easily obtained. Averaging eqn. (24) over the 

(y,z) coordinates of an x-face of the reference element only entails evaluating the integral 

analytically once and is easily done by using a symbolic manipulation package. A similar 

(; 1/2, , y,zL i j k+U )

)

)

(; 1/2, , y,zR i j k+U

( ); 1/2, , y,zL i j k+F (; 1/2, , y,zR i j k+F
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strategy can be applied at the y and z-faces. The electric fields are also easily obtained by 

averaging eqn. (24) suitably over the edges of the reference element and picking out the 

appropriate components of the fluxes. Four electric field contributions are available at 

each edge, one from each of the four faces that come together at that edge. These electric 

fields are averaged, as in Balsara [4] to obtain the final electric field at the zone of 

interest. This completes our description of the fluid flux and the electric field evaluation 

for any stage in our multi-stage RK time-update. 

 

3.3) Multi-Stage Runge Kutta Time Update Step 

 

 The strong stability preserving Runge Kutta schemes from Shu & Osher [31] and 

[32] are used for carrying out a time update. At each stage of the multi-stage RK update, 

we apply the steps from Sub-Sections 3.1 and 3.2 to obtain the fluxes at each face and the 

electric field components at each edge. The Runge-Kutta time-stepping schemes consist 

of writing eqn. (1) for the magnetic field evolution and eqn. (20) for the evolution of the 

mass, momentum and energy densities in the form 

 

( )d  = L
d t

U U           (25) 

 

Where L(U) is a discretization of the spatial operator. The second order TVD Runge-

Kutta scheme is simply the Heun scheme: 

 

( )
( )

(1) n n

n+1 n (1)

1 =  +  t L
2

 =  + t L

Δ

Δ

U U U

U U U
        (26) 

 

The third order TVD Runge-Kutta scheme is given by: 
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( )
( )

( )

(1) n n

(2) n (1) (1)

n+1 n (2) (2)

 =  + t L

3 1 1 =   +   +  t L
4 4 4
1 2 2 =   +   +  t L
3 3 3

Δ

Δ

Δ

U U U

U U U U

U U U U

      (27) 

 

The fourth order RK scheme from Shu & Osher [31] is rather complicated to implement 

and was not implemented here. As a result, the temporal update of the spatially fourth 

order scheme was always done with eqn. (27). For most applications this yields a 

serviceable scheme that functions at a robust Courant number. However when 

demonstrating the order of accuracy at fourth order in Section 4 we had to reduce the 

Courant number by a factor of ~ 0.396  for every doubling of the number of zones. This 

had to be done so that the third order temporal accuracy from eqn. (27) keeps step with 

the fourth order spatial accuracy. This deficiency is ameliorated by the ADER (for 

Arbitrary Derivative Riemann Problem) schemes presented in Balsara et al [7]. 

 

4) Accuracy Analysis 
 

 The schemes presented here handily meet their design accuracies in one 

dimension. It is therefore interesting to present multi-dimensional tests showing high 

order of accuracy. Here we present a couple of demonstrations of high accuracy in two 

and three dimensions. A more extensive accuracy analysis for hydrodynamic and MHD 

problems has been catalogued in Balsara et al [7] for a new class of ADER-WENO 

schemes. 

 

 A couple of points need to be made about the simulations presented here. First, 

following Balsara [4] we used the slopes from the r=3 WENO reconstruction of Jiang & 

Shu [25] for our second order scheme. As a result, the slopes have one more order of 

accuracy than the accuracy that would be furnished by a TVD-preserving limiter. This 

yields a very superior second order scheme. Second, for all the accuracy analyses 
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presented in this section involving the spatially fourth order scheme, the Courant number 

was always decreased by a factor of 0.396 for every doubling of the number of zones. 

 

4.1) Magnetized Isodensity Vortex in Two Dimensions 

 

 This test problem as described in Balsara [4] consists of a magnetized vortex 

moving across a domain given by [-5, 5] x [-5, 5] at an angle of 45° for a time of 10 units. 

For the fourth order scheme the domain is increased to [-10, 10] x [-10, 10] and the 

simulation time is increased to 20 units. This is done because the magnetic field has a 

Gaussian decay with radius and the smaller domain retains a small but significant amount 

of magnetic field at the boundary. Had we used the smaller domain for the fourth order 

scheme, this small but spurious magnetic field would actually have been picked up by the 

scheme and its order property would have been damaged. The problem is initialized with 

an unperturbed flow of ( , , , , , ) (1, 1, 1, 1, 0, 0)x y x yP v v B Bρ = . All boundaries are 

periodic. The ratio of the specific heat is set to 5 / 3γ = . The vortex is set up as a 

fluctuation of the unperturbed flow in the velocities and the magnetic field given by: 

 

20.5(1 )( , ) ( ,
2

r
x yv v e y xκδ δ

π
−= − )  

20.5(1 )( , ) ( ,
2

r
x y )B B e y xμδ δ

π
−= −  

 
The pressure fluctuation can be written as 
 

2 22 2 (1 ) 2 (1 )1 1( ) (1 ) ( )
8 2 2 2

r rP r e eμ κδ
π π π

− −= − −  

 
The density is set to unity. A Courant number of 0.4 was used for all the second and third 

order test problems and also for the coarsest mesh in the fourth order test problem. A 

linearized Riemann solver was used. 

 
TABLE I  

Method Number of zones L1 error L1 order  L∞ error L∞ order 
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2nd order ADER 32×32 1.15689 × 10-2  0.189318  

 64×64 3.74953 × 10-3 1.62 6.00319 × 10-2 1.66 

 128×128 9.57467 × 10-4 1.97 1.53503 × 10-2 1.97 

 256×256 2.39584 × 10-4 2.00 3.83531 × 10-3 2.00 

3rd order ADER 32×32 5.53837 × 10-3  9.79331 × 10-2  

 64×64 9.77841 × 10-4 2.50 1.75191 × 10-2 2.48 

 128×128 1.27506 × 10-4 2.94 2.36221 × 10-3 2.89 

 256×256 1.60549 × 10-5 2.99 2.99136 × 10-4 2.98 

4th order ADER 32×32 2.96778 × 10-3  0.103623  

 64×64 1.56211 × 10-4 4.25 5.21875 × 10-3 4.31 

 128×128 7.33125 × 10-6 4.41 2.45447 × 10-4 4.41 

 

 Table I shows the results of the accuracy analysis. The error is measured in the x-

component of the magnetic field. All the schemes meet their design accuracies. Notice 

that the third order scheme at 128x128 zone resolution shows the same L1 error as the 

second order scheme at 256x256 zone resolution. We see therefore that higher order 

schemes deliver a much improved solution quality compared to lower order schemes on 

meshes of the same resolution. Furthermore the higher order schemes need far fewer 

zones to achieve the same accuracy as a lower order scheme. Table I therefore illustrates 

the utility of higher order schemes very nicely.  

 

4.2) Torsional Alfven Wave Propagation in Three Dimensions 

 

 The previous test problem used a flow that was an exact, equilibrium structure of 

the governing equations. Although torsional Alfven waves also satisfy the governing 

equations, they are susceptible to parametric instabilities. These instabilities exist at low 

values of plasma-β , see Goldstein [23] and Del Zanna et al [18], and also at high values 

of plasma-β , see Jayanti & Hollweg [24]. The present test problem is designed to 

ameliorate such instabilities as far as possible. 

 

 In this problem we initialize a torsional Alfven wave along the x/ axis of an (x/ , y/ 

, z/ ) coordinate system with the following parameters 
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( )
/ / /

/ / /

/

x y z

x y z

21   , P = 1000 ,  x 2 t  

v 1  , v cos  , v sin

B 4  , B 4 cos  , 4 sinB

πρ
λ

ε ε

πρ ε πρ ε πρ

= Φ = −

= = Φ = Φ

= = − Φ = − Φ

 

 

Here we take 0.02ε =  and 3λ =  . The magnetic vector potential is also useful when 

initializing a divergence-free magnetic field on a mesh and is given by 

 

/ / /
/

x y z
A 0 , A cos  , A 4  y  sinελ ρ π πρ ελ ρ π= = Φ = + Φ  

 

The actual problem is solved on a unit cube in the (x,y,z) coordinate frame which is 

rotated relative to the (x/ , y/ , z/ ) coordinate system. The rotation matrix is called A and 

is given by 

 

cos cos cos sin sin cos sin cos cos sin sin sin
 = sin cos cos sin cos sin sin cos cos cos cos sin

sin sin sin cos cos

ψ φ θ φ ψ ψ φ θ φ ψ ψ θ
ψ φ θ φ ψ ψ φ θ φ ψ ψ

θ φ θ φ θ

− +⎡ ⎤
⎢ ⎥− − − +⎢ ⎥
⎢ ⎥−⎣ ⎦

A θ  

 

where / 4φ π= −  , (1sin 2 3θ −= − )  and ( )( )1sin 2 6 4ψ −= −  . As a result, the 

position vector r/ in the primed frame transforms to the position vector r in the unprimed 

frame as r = A r/  . Other vectors transform similarly. Application of the rotation matrix 

makes the wave propagate along the diagonal of the unit cube. The wave propagates at a 

speed of 2 units. The problem is stopped at a time of 3 2  by which time the wave has 

propagated once around the unit cube. A Courant number of 0.3 was used for all the 

second and third order test problems and also for the coarsest mesh in the fourth order 

test problem. A linearized Riemann solver was used. 

 

Table II 
Method Number of zones L1 error L1 order  L∞ error L∞ order 

2nd order ADER CG 8×8×8 3.46827 × 10-2        5.17569 × 10-2  
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 16×16×16 2.25885 × 10-2       0.62 3.57951 × 10-2 0.53 

 32×32×32 4.87419 × 10-3       2.21 7.68322 × 10-3 2.22 

 48×48×48 1.77966 × 10-3 2.48 2.79747 × 10-3        2.49 

3rd order ADER CG 8×8×8 3.56043 × 10-2        5.32694 × 10-2  

 16×16×16 1.65967 × 10-2       1.10 2.56119 × 10-2        1.06 

 32×32×32 2.65506 × 10-3       2.64 4.17435 × 10-3        2.62 

 48×48×48 8.05482 × 10-4       2.94 1.27225 × 10-3        2.93 

4th order ADER CG 8×8×8 2.52284 × 10-2  3.82295 × 10-2  

 16×16×16 1.17975 × 10-3       4.42 1.85115 × 10-3        4.37 

 32×32×32  5.29206 × 10-5       4.48 8.38025 × 10-5        4.47 

 

 Table II presents the accuracy analysis for schemes up to fourth order. Please 

recall that the combination of a spatially fourth order scheme with a temporally third 

order RK scheme required us to use a diminishing Courant number with increasing 

resolution at fourth order and only at fourth order. As a result, the accuracy analysis of 

the fourth order scheme had to be restricted to smaller meshes. In Balsara et al [7] we 

present schemes that overcome this limitation. Table II is nevertheless very illustrative. It 

shows that all the schemes presented here meet their design accuracies. We see that even 

on very small resolution starved meshes, such as the 16x16x16 mesh in Table I, the 

fourth order scheme offers more than one order of magnitude improvement over the 

second order scheme. Table II therefore provides a further illustration of the utility of 

higher order schemes. 

 

5) Test Problems 
 

 In this section we present several tests for the schemes that have been designed 

here. Because the divergence-free reconstruction of the magnetic field only comes to the 

fore in multiple dimensions, all of the tests presented here are inherently two-dimensional 

and were run with a Courant number of 0.4.  

 

5.1) Numerical Dissipation and Long-Term Decay of Alfven Waves in Two 

Dimensions 
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 This test problem was first presented in Balsara [4] and examines the dissipation 

of torsional Alfven waves in two dimensions. Here the torsional Alfven waves propagate 

at an angle of  to the y-axis through a domain given by [-

r/2, r/2] x [-r/2, r/2] with r = 6. The problem was initialized on a computaitonal domain 

with 120 x 120 zones. Periodic boundary conditions were enforced. The pressure and 

density are uniformly initialized as 

1 1tan (1/ ) tan (1/ 6) 9.462r− −= =

0 1P

°

=  and 0 1ρ = . The unperturbed velocity and 

unperturbed  magnetic field are given by 0 0v =  and 0B 1= . The amplitude of the Alfven 

waves is parametrized by ε , which is set to 0.2. The simulation was stopped at 129 time 

units by which time the waves had crossed the domain several times. The CFL number 

was set to 0.4 for all the schemes presented here. The direction of the wave propagation 

along the unit vector can be written as 

 

2 2

1ˆ ˆ ˆˆ
1 1

x y
rn n i n j i j

r r
= + = +

+ +
ˆ . 

 

The phase of the waves is given by 

 

2 ( )x y A
y

n x n y V t
n
πφ = + − , where 0

04A
BV
πρ

= . 

 
The velocity is given by 

 

0 0
ˆˆ ˆ( cos ) ( cos ) six y y xv n n i v n n j knε φ ε φ ε= − + − +v φ . 

 
The magnetic field is given by 

 

0 0 0 0 0
ˆˆ ˆ( 4 cos ) ( 4 cos ) 4 sinx y y xB n n i B n n j kε πρ φ ε πρ φ ε πρ φ= + + − −B . 

 
The corresponding vector potential is given by 
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00
0 0

44 ˆˆcos ( sin )
2 2

y
y x

n
i B n x B n y

ε πρε πρ
kφ φ

π π
= − + − + +A  

 

and is used to initialize the magnetic field.  

 

 Fig. 1 shows the time-evolution of the maximum of the z-velocity and the 

maximum of the z-component of magnetic field. All the panels in Fig. 1 use log-linear 

scaling. To explore the effect of Riemann solvers on this problem, the HLL and 

linearized Riemann solvers were used with the second, third and fourth order schemes. 

For comparison purposes, we also present results from a second order TVD scheme using 

vanLeer’s MC limiter. We see that regardless of the Riemann solver used, increasing the 

order of accuracy provides a substantial reduction in the numerical dissipation. Thus 

higher order schemes are favored for the simulation of complex phenomena involving 

wave propagation. For the lower order schemes the linearized Riemann solver offers a 

significant improvement over the HLL Riemann solver. However, this advantage is 

diminished with increasing order. We therefore see that higher order schemes allow us to 

get by with less expensive Riemann solvers. 

 

5.2) The Rotor Problem in Two Dimensions 

 

 The two dimensional rotor problem was presented in Balsara & Spicer [10] and in 

Balsara [4]. The description in Balsara [4] is quite thorough. As a result the problem 

description is not repeated here. As in Balsara [4] the problem was set up on a 200x200 

zone mesh and was run with a Courant number of 0.4 to a completion time of 0.29 units. 

The spatially fourth order WENO scheme with a third order RK time-stepping strategy 

and a linearized Riemann solver were used. Fig. 2 shows the density, pressure, Mach 

number and the magnitude of the magnetic field. The results are very consistent with 

those from Balsara & Spicer [10] showing that the divergence-free reconstruction 

presented here performs well on multi-dimensional MHD problems. 

 

5.3) The Blast Problem in Two Dimensions 
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 This two-dimensional problem was first presented by Balsara & Spicer [10]. It 

has also been catalogued in detail in Balsara [4] and we do not repeat the same 

description here. The fourth order WENO scheme with a third order RK time-stepping 

strategy and an HLL Riemann solver was applied to a mesh having 200 × 200 zones. The 

problem was run with a Courant number of 0.4 and was stopped at a time of 0.01 units. 

The problem results in an extremely strong, almost circular fast magnetosonic shock 

propagating at all possible angles to the magnetic field in the low-β ambient plasma. The 

plasma-β is 0.000251 making this a challenging test problem. Fig. 3 shows the logarithm 

(base 10) of the density, the logarithm of the pressure, the magnitude of the velocity and 

the magnitude of the magnetic field. We see that all structures are captured crisply. The 

positivity of the pressure is maintained even in regions where the strong shock propagates 

obliquely to the mesh. This shows that the divergence-free reconstruction strategies and 

the resultant high order schemes presented here perform well on stringent multi-

dimensional MHD problems involving low-β plasmas. 
 

6) Conclusions 
 

The work presented here enables us to come to the following conclusions: 

 

1) Following a line of development begun in Balsara [3], we show that the problem of 

reconstructing divergence-free vector fields can be carried out to higher orders. 

 

2) Following a line of development begun in Balsara [4], we show that the above 

development yields divergence-free WENO schemes with order of accuracy that is better 

than second. In particular, we explore the third and fourth order accurate schemes here. 

 

3) When applied to smooth test problems, the schemes have been shown to meet their 

design accuracies. 
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4) Using a stringent set of test problems we show that the schemes presented here 

effectively combine the dual, and often-conflicting demands of capturing very strong 

shocks and retaining low dissipation in contact discontinuities and Alfven waves. This 

shows the effectiveness of our schemes for numerical MHD. 
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