
ar
X

iv
:0

80
6.

27
39

v1
 [

co
nd

-m
at

.m
es

-h
al

l]
 1

7
Ju

n
20

08

Optimal block-tridiagonalization of matrices for

coherent charge transport

Michael Wimmer ∗, Klaus Richter
Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany

Abstract

Numerical quantum transport calculations are commonly based on a tight-binding formulation.

A wide class of quantum transport algorithms requires the tight-binding Hamiltonian to be in

the form of a block-tridiagonal matrix. Here, we develop a matrix reordering algorithm based

on graph partitioning techniques that yields the optimal block-tridiagonal form for quantum

transport. The reordered Hamiltonian can lead to significant performance gains in transport

calculations, and allows to apply conventional two-terminal algorithms to arbitrary complex ge-

ometries, including multi-terminal structures. The block-tridiagonalization algorithm can thus

be the foundation for a generic quantum transport code, applicable to arbitrary tight-binding

systems. We demonstrate the power of this approach by applying the block-tridiagonalization

algorithm together with the recursive Green’s function algorithm to various examples of meso-

scopic transport in two-dimensional electron gases in semiconductors and graphene.

Key words: coherent quantum transport, recursive Green’s function technique, block-tridiagonal
matrices, matrix reordering, graph partitioning
PACS: 72.10.Bg,
PACS: 02.70.-c,
PACS: 02.10.Ox
1991 MSC: 05C50,
1991 MSC: 05C78

1. Introduction

If the dimensions of a device become smaller than the phase coherence length lφ of
charge carriers, classical transport theories are not valid any more. Instead, carrier dy-
namics is now governed by quantum mechanics, and the wave-like nature of particles

∗ Corresponding author. Email address: Michael.Wimmer@physik.uni-regensburg.de

Preprint submitted to Elsevier 29 October 2018

http://arxiv.org/abs/0806.2739v1

becomes important. In general, the conductance/resistance of such a device does not
follow Ohm’s law.
In the regime of coherent quantum transport, the Landauer-Büttiker formalism [1, 2, 3]

relates the conductance G of a device to the total transmission probability T of charge
carriers through the device,

G =
2e2

h
T =

e2

h

∑

mn

|tmn|2 , (1)

where tmn is the transmission amplitude between different states with transverse quan-
tum numbers n and m in the left and right lead, respectively. A state with a given
transverse quantum number n is also called channel n.
The problem of calculating the conductance is thus reduced to calculating scattering

eigenfunctions ψ for a given energy E:

(E −H)ψ = 0, (2)

whereH is the Hamiltonian of the system. Alternatively, the transmission probability can
be extracted from the retarded Green’s function Gr that obeys the equation of motion

(E −H)Gr = 1 . (3)

The Fisher-Lee relation [4, 5] then allows to calculate the transmission (tmn) and reflec-
tion (rnm) amplitudes from Gr. In its simplest form, the Fisher-Lee relation reads

tmn = −i~√vmvn
∫

CR

dy

∫

CL

dy′φm(y)GR(x,x′)φn(y
′) , (4)

and

rmn = δmn − i~
√
vmvn

∫

CL

dy

∫

CL

dy′φm(y)GR(x,x′)φn(y
′) , (5)

where vn is the velocity of channel n and the integration runs over the cross-section CL

(CR) of the left (right) lead.
The Landauer-Büttiker formalism can also deal with multi-terminal systems, but is

restricted to linear response, i.e. small bias voltages. In the general case including exter-
nal bias, the conductance can be calculated using the non-equilibrium Green’s function
formalism (see, e.g. [6]).
Except for particularly simple examples, solving Eqs. (2) and (3) exactly is not pos-

sible, and therefore a numerical computation is often the method of choice. Instead of
solving directly a differential equation with its continuous degrees of freedom, such as the
Schrödinger equation, numerical computations are usually only attempted within a dis-
crete basis set. The differential equation is then replaced by a set of linear equations, and
the HamiltonianH can be written as a matrix. Very often, only few of the matrix elements
Hij are nonzero. Such tight-binding representations of the Hamiltonian are ubiquitous in
quantum transport calculations and can arise from finite differences [7, 8, 9], from the
finite element method [10], from atomic orbitals in empirical tight-binding [11, 12, 13] or
Kohn-Sham orbitals within density functional theory [14, 15, 16].
When describing transport, the systems under consideration are open and thus extend

to infinity. As a consequence, the tight-binding matrixH is infinite-dimensional. However,
the conductance calculation can be reduced to a finite problem by partitioning the system

2

Fig. 1. (a) Schematic view of a finite difference grid in a two-terminal transport setup. (b) Natural
ordering of grid points yielding a block-tridiagonal matrix structure. The different matrix blocks are
marked in alternating shades of grey.

into a finite scattering region attached to leads that extend to infinity, as schematically
depicted in Fig. 1(a). For the case of two-terminals, the matrix H can be written as

H =

HL VLS 0

VSL HS VSR

0 VRS HR

, (6)

whereHL(R) is the (infinite) Hamiltonian of the left (right) lead, HS is the Hamiltonian of

the scattering region and of finite size. The matrices VSL = V †
LS and VSR = V †

rS represent
the coupling between the scattering region and the left and right lead, respectively.
In order to reduce the problem size, it is useful to introduce the retarded self-energy

Σr =
∑

i=L,R VSi g
r
i ViS, where g

r
L(R) is the surface Green’s function of the left (right)

lead, i.e. the value of the Green’s function at the interface of the lead disconnected from
the scattering region. Then, the Green’s function GS of the scattering region can be
calculated as [17, 18]

Gr
S = (E −HS − Σr)−1 , (7)

reminiscent of Eq. (3) but with an effective Hamiltonian HS + Σr of finite size. This
treatment is easily extended to multi-terminal systems.
Note that it suffices to know the surface Green’s function of the (semi-)infinite leads, as

in a tight-binding Hamiltonian the matrices VSL and VSR have only few nonzero entries.
For simple systems, the surface Green’s function can be calculated analytically [17, 18],
whereas in more complex situations it must be computed numerically, either by iteration
[19, 20], or by semi-analytical formulas [12, 16, 21].
The original infinite-dimensional problem has thus been reduced to a finite size matrix

problem that can, in principle, be solved straight-forwardly on a computer. However, for
any but rather small problems, the computational task of the direct inversion in Eq. (7)
is prohibitive. Therefore, for two-terminal transport, many algorithms make use of the
sparsity of the Hamiltonian matrix in tight-binding representation - in particular that
this matrix can be written in block-tridiagonal form:

3

H =

. . .

HL VL

V †
L HL H0,1

. . .

H1,0 H1,1 H1,2 0

H2,1 H2,2 H2,3
. . .

H3,2
. . .

. . .
. . . HN−1,N

0 HN,N−1 HN,N HN,N+1

. . . HN+1,N HR VR

V †
R HR

. . .

,

(8)
where the index L (R) denotes the blocks in the left (right) lead, 1 . . .N the blocks within
the scattering region, and 0 (N + 1) the first block in the left (right) lead. Such a form
arises, for example, naturally in the method of finite differences, when grid points are
grouped into vertical slices according to their x-coordinates, as shown in Fig. 1(b), but
also applies to any other sparse tight-binding Hamiltonian.
The block-tridiagonal form of the Hamiltonian is the foundation of several quantum

transport algorithms for two-terminal systems. The transfer matrix approach applies
naturally to block-tridiagonal Hamiltonians, but becomes unstable for larger systems.
However, a stabilized version has been developed by Usuki et al. [22, 23]. In the decima-
tion technique [24, 25], the Hamiltonian of the scattering region is replaced by an effective
Hamiltonian between the two leads by eliminating internal degrees of freedom. The con-
tact block reduction method [26] calculates the full Green’s function of the system using
a limited set of eigenstates. The recursive Green’s function (RGF) technique [27, 28, 29]
uses Dyson’s equation to build up the system’s Green’s function block by block. It has
also been adapted to Hall geometries with four terminals [30] and to calculate non-
equilibrium densities [31, 32]. Furthermore, the RGF algorithm has been formulated to
be suitable for parallel computing [33].
Of course, there are also other transport techniques not directly based on the block-

tridiagonal form of the Hamiltonian matrix, such as extracting the Green’s function from
wave packet dynamics [34]. Still, such algorithms are not as widely used as the large class
of algorithms, that are directly based on the block-tridiagonal form of the Hamiltonian.
In order to illustrate the typical computational tasks of this class of algorithms, we briefly
explain, as a representative example, the RGF algorithm.
The RGF technique is based on Dyson’s equation Gr = Gr

0 + Gr
0V G

r (see, e.g [29]),
where Gr denotes the Green’s function of the perturbed system, Gr

0 that of the unper-
turbed system and V the perturbation. Using this equation, the system is built up block
by block, as depicted in Fig. 2. Let Gr,(i) denote the Green’s function for the system
containing all blocks ≥ i. Then, at energy E, the Green’s function Gr,(i−1) is related to

4

Fig. 2. Schematic depiction of the recursive Green’s function algorithm: (a) The Green’s function Gr,(i)

contains all blocks ≥ i. (b) The Green’s function Gr,(i−1) is obtained by adding another matrix block.

Gr,(i) by

G
r,(i−1)
i−1,i−1 =

(

E −Hi−1,i−1 −Hi−1,i G
r,(i)
i,i Hi,i−1

)−1

(9)

and

G
r,(i−1)
N+1,i−1 = G

r,(i)
N+1,i Hi,i−1 G

r,(i−1)
i−1,i−1 . (10)

Starting from G
r,(N+1)
N+1,N+1 = grR, the surface Green’s function of the right lead, N slices

are added recursively, until Gr,(1) has been calculated. The blocks of the Green’s function
of the full system necessary for transport are then given by

Gr
0,0 =

(

(grL)
−1 − H0,1 G

r,(1)
1,1 H1,0

)−1

(11)

and

Gr
N+1,0 = G

r,(1)
N+1,1 H1,0 G

r
0,0 , (12)

where grL is the surface Green’s function of the left lead. Gr
0,0 and Gr

N+1,0 are sufficient
to calculate transmission and reflection probabilities via the Fisher-Lee relation, Eqs. (4)
and (5).
Each step of the algorithm performs inversions and matrix multiplications with matri-

ces of sizeMi. Since the computational complexity of matrix inversion and multiplications
scales as M3

i , the complexity of the RGF algorithm is ∝ ∑N+1
i=0 M3

i . Thus, it scales lin-
early with the “length” N, and cubically with the “width”Mi of the system. This scaling
also applies to most of the other transport algorithms mentioned above.
While for particular cases general transport algorithms, such as the RGF algorithm,

cannot compete with more specialized algorithms, such as the modular recursive Green’s
function technique [35, 36] that is optimized for special geometries, they are very versatile
and easily adapted to two-terminal geometries—provided that the leads are arranged
collinearly. Amongst other things, this restriction will be lifted by the approach presented
in this work.
Although the block-tridiagonal structure of H , Eq. (8), that arises naturally in many

problems appears to have a small “width” and thus seems to be quite suitable for trans-
port algorithms, optimizing the block-tridiagonal structure by reordering the matrix H
may lead to a significant speed-up in the conventional two-terminal algorithms, as we
show below. Furthermore, such a reordering allows for the application of the estab-
lished two-terminal algorithms to more complex geometries, such as non-collinear leads

5

or multi-terminal structures, that would otherwise need the development of specialized
algorithms.
Below, we develop a matrix reordering algorithm based on graph partitioning tech-

niques that brings an arbitrary matrix H into a block-tridiagonal form optimized for
transport calculations. To this end, the paper is organized as follows. In section 2 we
formulate the matrix reordering problem in the language of graph theory and develop
the reordering algorithm. In section 3 we apply this algorithm to various examples and
investigate its performance and the performance of the RGF algorithm for the reordered
Hamiltonian H . We conclude in section 4.

2. Optimal Block-tridiagonalization of matrices

2.1. Definition of the problem

2.1.1. Definition of the matrix reordering problem

As shown in the introduction, the typical runtime of transport algorithms, is propor-
tional to

∑N+1
i=0 M3

i , does depend on the particular block-tridiagonal structure of H .
Therefore, the runtime of these algorithms can be improved in principle by conveniently
reordering H with a permutation P ,

H ′ = P H P−1 . (13)

In order to quantify how a typical transport algorithm performs for a given matrix
structure, we define a weight w(H) associated with a matrix H as

w(H) =

N+1
∑

i=0

M3
i , (14)

whereMi is the size of block Hi,i. Optimizing the matrix for transport algorithms is then

equivalent to minimizing the weight w(H). Since
∑N+1

i=0 Mi = Ngrid, where Ngrid is the
total number of grid points, w(H) is minimal, if all Mi are equal, Mi = Ngrid/(N + 2).
Therefore, a matrix tends to have small weight, if the number N of blocks is large, and
all blocks are equally sized. The reordering problem of the matrix H is thus summarized
as follows:
Problem 2.1. Matrix reordering problem: Find a reordered matrix H ′ such, that
(i) H ′

00 and H ′
N+1N+1 are blocks given by the left and right leads (as required by

transport algorithms)
(ii) H ′ is block-tridiagonal (H ′

ij 6= 0, iff j = i+ 1, i, i− 1),
(iii) the number N of blocks is as large as possible, and all blocks are equally sized.
In principle, this constrained optimization problem could be solved by generic opti-

mization algorithms, such as Simulated Annealing. However, for larger problems the opti-
mization could take much more time than the actual transport calculation, rendering the
optimization process useless. It is therefore necessary to use heuristics especially designed
for the problem at hand. To this end, we formulate the matrix reordering problem in the
language of graph theory.

6

Fig. 3. (a) Simple example showing the connection between a graph, its graphical representations with
dots and lines, and the zero–nonzero structure of a matrix. (b) Example of a finite difference grid, that
can be interpreted as a graph, and the structure of the corresponding matrix. Nonzero entries are shown

as black dots.

2.1.2. Mapping onto a graph partitioning problem

A graph G is an ordered pair G = (V , E), where V is a set of vertices v and E a set of
ordered pairs of vertices (v1, v2) ∈ V ×V . Such a pair is called an edge. A graph is called
undirected, if for every edge (v1, v2) ∈ E also (v2, v1) ∈ E . Two vertices v1 and v2 are
called adjacent, if (v1, v2) ∈ E . In order to simplify the notation, we will also consider a
vertex v to be adjacent to itself.
There is a natural one-to-one correspondence between graphs and the structure of

sparse matrices. For a given n × n matrix H , we define a graph G = (V , E) with V =
{1, . . . , n} and (i, j) ∈ E iff the entry hij 6= 0. A graph thus stores information about the
structure of a matrix, i.e. which entries are nonzero. It does not contain any information
about the values of the respective entries, although these may be stored easily along with
the graph. However, for the formulation of the quantum transport algorithms, only the
block-tridiagonal form, i.e. the structure of the matrix, is relevant. Hermitian matrices,
that are considered in quantum transport, have a symmetric structure of zero and nonzero
entries, and therefore the corresponding graphs are undirected.
A graph can be depicted by drawing dots for each vertex v, and lines connecting

these dots for every edge (v1, v2), as shown in Fig. 3(a). It should be noted that a
graphical representation of a tight-binding grid, such as shown in Fig. 3(b), can be directly
interpreted as a representation of a graph and the corresponding matrix structure.
In terms of graph theory, matrix reordering corresponds to renumbering the vertices of

a graph. Since we are only interested in reordering the matrix in terms of matrix blocks
(the order within a block should not matter too much), we define a partitioning of G as
a set {Vi} of disjoint subsets Vi ⊂ V such that

⋃

i Vi = V and Vi∩Vj = ∅ for i 6= j. Using
these concepts, we can now reformulate the original matrix reordering problem into a
graph partitioning problem:
Problem 2.2. Graph partitioning problem: Find a partitioning {V0, . . . ,VN+1} of
G such that:

7

(i) V0 and VN+1 contain the vertices belonging to left and right leads,
(ii) (a) vertices in V0 and VN+1 are only connected to vertices in V1 and VN , respec-

tively,
(b) for 0 < i < N + 1, there are edges between Vi and Vj iff j = i+ 1, i, i− 1,

(iii) the number N + 2 of sets Vi is as large as possible, and all sets Vi have the same
cardinality |Vi|. A partitioning with all |Vi| equally sized is called balanced.

A partitioning obeying requirement 2.2.ii is called a level set with levels Vi [37]. Level
sets appear commonly as an intermediate step in algorithms for bandwidth reduction of
matrices [37, 38, 39, 40]. These algorithms seek to find a level set of minimal width, i. e.
maxi=0...N+1 |Vi| as small as possible which is equivalent to requirement 2.2.iii. The main
difference between our graph partitioning problem and the bandwidth reduction problem
is requirement 2.2.i: In the graph partitioning problem, V0 and VN are determined by the
problem at hand, while in the bandwidth reduction problem these can be chosen freely.
Due to this difference, bandwidth reduction algorithms can be applied successfully to our
graph partitioning problem only for special cases, as we show below.
The term graph partitioning usually refers to the general problem of finding a balanced

partitioning {Vi} of a graph and has many applications in various fields such as very-large-
scale integration (VLSI) design [41, 42, 43], sparse matrix reorderings for LU or Cholesky
decompositions [44], or block ordering of sparse matrices for parallel computation [45, 46,
47, 48, 49, 50]. In particular, the latter examples also include block-tridiagonal orderings
[46, 47]. However, as these reorderings are geared towards parallel computation, they
obtain a fixed number N of sets Vi given by the number of processors of a parallel
computer, whereas in our block-tridiagonal reordering the number N should be as large
as possible. In addition to that, the constraints on the blocks V0 and VN+1 (requirement
2.2.i) are again not present there.
As we cannot directly employ existing techniques to solve the graph partitioning prob-

lem, we will develop an algorithm combining ideas from both bandwidth reduction and
graph partitioning techniques in the subsequent sections: Concepts from bandwidth re-
duction are employed to construct a level set which is then balanced using concepts from
graph partitioning.

2.2. Matrix reordering by graph partitioning

2.2.1. A local approach—breadth first search

A breadth-first-search (BFS) [51] on a graph immediately yields a level set [37, 38, 39,
40]. In our particular example, the level set is constructed as follows:
Algorithm 1. Level set construction by breadth-first-search.

A Start from i = 0. Then, Vi = V0, as the first level is given by the constraints of
requirement (i).

B If there is a vertex in Vi that is adjacent to a vertex in VN+1, assign all the remaining
unassigned vertices into Vi and end the algorithm.

C All vertices adjacent to Vi that are not contained in the previous levels Vi,Vi−1, . . .V0

are assigned to Vi+1.
D Continue at step B with i = i+ 1.
Note that the sets {Vi} form a level set by construction—a set Vi may only have vertices

adjacent to Vi−1 and Vi+1. The construction by BFS not only obtains the number of levels

8

Fig. 4. Level set created by a BFS starting from V0. Different levels are shown in alternating shades of
grey.

N + 2 for a particular realization, but yields a more general information:
Lemma 2.3. The number of levels N + 2 in the level set constructed by algorithm 1 is

the maximum number of levels compatible with the constraints on the initial and final

level V0 and VN+1 for a graph G.
This can be seen from the fact that a BFS finds the shortest path in the graph between

the initial sets V0 and VN+1, (v0, v1, . . . , vi, . . . , vN+1) where v0 ∈ V0 and vN+1 ∈ VN+1.
Any vertex on this shortest path can be uniquely assigned to a single level Vi and it
would not be compatible with a larger number of levels than N + 2.
Algorithm 1 not only yields the maximum number of levels: All vertices contained in

the first n levels of the BFS must be contained in the first n levels of any other level set.
Lemma 2.4. Let {V0,V1, . . . ,VN+1} be a level set constructed by algorithm 1, and

{V ′
0,V ′

1, . . . ,V ′
N ′+1} another level set consistent with the requirements of problem 2.2 with

N ′ ≤ N . Then V0 ∪ V1 ∪ · · · ∪ Vn ⊂ V ′
0 ∪ V ′

1 ∪ · · · ∪ V ′
n for 0 ≤ n ≤ N ′ + 1.

The statement is proved by induction. It is true trivially for n = 0 (because of re-
quirement i in problem 2.2) and for n = N ′ + 1 (then the levels cover the whole graph).
Suppose now that the statement holds for n < N ′. Note that for the proof it suffices
to show that Vn+1 ⊂ V ′

0 ∪ V ′
1 ∪ . . . ,∪V ′

n+1. Consider now the set of all vertices adja-
cent to Vn, adjacent(Vn) = {v ∈ V | v is adjacent to some v′ ∈ Vn}. By construction,
Vn+1 ⊂ adjacent(Vn). Since Vn ⊂ V ′

0 ∪ V ′
1 ∪ · · · ∪ V ′

n and V ′
i is a level set, all ver-

tices adjacent to Vn must be contained in the set of vertices including the next level,
i.e. adjacent(Vn) ⊂ V ′

0∪V ′
1∪ . . . ,∪V ′

n∪V ′
n+1. But then also Vn+1 ⊂ V ′

0∪V ′
1∪ . . . ,∪V ′

n+1,
which concludes the proof.
Thus, the vertices contained in the first n levels of the BFS form a minimal set of

vertices needed to construct n levels. However, this also implies that the last level which
then covers the remaining vertices of the graph, may contain many more vertices than
the average, leading to an unbalanced level set. This is not surprising, since the algorithm
does not explicitly consider balancing and only local information is used, i.e. whether a
vertex is adjacent to a level or not. An example for this imbalance is shown in Fig. 4,
the BFS construction yields a very large last level.
Note that throughout the manuscript we visualize the graph theoretical concepts using

examples of graphs obtained from discretizing a two-dimensional structure. However,
the ideas and algorithms presented here apply to any graph and are not limited to
graphs with coordinate information. Two-dimensional graphs have the advantage of being

9

Fig. 5. Schematic depiction of recursive bisection.

visualized easily. In particular, the BFS search has an intuitive physical analog: Wave
front propagation of elementary waves emanating from the vertices of the initial level V0.
The problem that a BFS does not yield a balanced partitioning was also noted in the

theory of bandwidth reduction. The Gibbs-Poole-Stockmeyer (GPS) algorithm tries to
overcome this deficiency by constructing a level set through the combination of two BFS
searches starting from the initial and the final levels. However there the initial and final
levels are sought to be furthest apart, contrary to our problem. In general, the GPS
construction only yields a balanced level set if the initial and final level are close to
furthest apart, as we will show in Sec. 3.

2.2.2. A global approach—recursive bisection

In order to obtain a balanced partitioning, graph partitioning algorithms commonly
perform a recursive bisection, i.e. successively bisect the graph and the resulting parts
until the desired number of parts is obtained [41, 42, 46, 47, 52, 53]. This approach
has the advantage of reducing the partitioning problem to a simpler one, i.e. bisection.
Furthermore, if the resulting parts of every bisection are equally sized, the overall par-
titioning will be balanced. In addition, bisection is inherently a global approach, as the
whole graph must be considered for splitting the system into two equally sized parts.
Thus, it can be expected to yield better results than a local approach, such as BFS.
We intent to construct a level set with N + 2 levels, where N + 2 is the maximum

number of levels as determined by algorithm 1. To this end we start from an initial parti-
tioning {V0,V1,VN+1}, where V0 and VN+1 contain the vertices of the leads (requirement
2.2.i), and V1 all other vertices. The level set is then obtained by applying the bisection
algorithm recursively to V1 and the resulting subsets, until N levels are obtained, as
shown schematically in Fig. 5. Here bisection means splitting a set Vi into two sets, Vi1

and Vi2 , such that Vi1 ∪Vi2 = Vi and Vi1 ∩Vi2 = ∅. In oder to be applicable to the graph
partitioning problem 2.2, the bisection must comply with certain requirements:
Problem 2.5. The bisection algorithm must be
(i) compatible with a level set with N + 2 levels.
(ii) balanced.
(iii) performed such that subsequent bisections may lead to a balanced level set.
Requirement 2.5.iii is formulated rather vaguely: Usually there are many different

choices how to perform a bisection. A particular choice will influence the subsequent
bisections (for a similar problem in graph partitioning see [53]), and thus the bisection
algorithm must in principle take all following bisection steps into account. Since an exact
solution to that problem seems computationally intractable, we will resort to heuristics
there.
We start explaining how to comply with requirements 2.5.i and 2.5.ii. In the following

10

Fig. 6. (a) Example showing for a disk-type geometry the BFS from the left and right neighboring
sets that construct the minimal set of vertices Vi1,BFS (black) and Vi2,BFS (dark grey) that must be
contained in Vi1 and Vi2 , respectively. The remaining vertices (light grey) can be assigned to either set.
(b) and (c): Examples illustrating the difference between cut edges and cut nets. The number of cut
edges is 5 in both (b) and (c), while the number of cut nets (boundary vertices) is 10 in (b) and 9 in (c).

we assume that N > 0, as N = −1, 0 are trivial cases. Then the initial partitioning
{V0,V1,VN+1} forms a level set, and so will the final result of the recursive bisection,
if the result of every intermediate bisection yields a level set. For this, consider a set
Vi with vertices adjacent to the sets Vileft and Viright , where “left”(“right”) is defined as
being closer to V0 (VN+1). Then the sets resulting from the bisection, Vi1 and Vi2 may
only have vertices adjacent to Vileft ,Vi2 and Vi1 ,Viright , respectively.
Apart from the condition of forming a level set, requirement 2.5.i also dictates the total

number of levels. Due to the nature of the recursive bisection, the number of final levels
contained in an intermediate step is always well-defined. If a set Vi containsNi levels, then
Vi1 and Vi2 must contain Ni1 = Int(Ni/2) and Ni2 = Ni − Int(Ni/2) levels, respectively.
Here, Int(. . .) denotes rounding off to the next smallest integer. The bisection is thus
balanced, if

|Vi1 | ≈
Ni1

Ni

|Vi| and |Vi2 | ≈
Ni2

Ni

|Vi| . (15)

Note that Ni can take any value, and usually is not a power of two.
From Lemma 2.4 we know that the minimum set of vertices necessary to form n levels

is given by a BFS up to level n. Let Vi1,BFS (Vi2,BFS) denote the set of vertices found by a
BFS starting from Vileft (Viright) up to level Ni1 (Ni2). Then, for any bisection complying
with requirement 2.5.i, Vi1,BFS ⊂ Vi1 and Vi2,BFS ⊂ Vi2 . These vertices are uniquely
assigned to Vi1 and Vi2 and are consequently marked as locked, i.e. later operations may
not change this assignment. An example for the vertices found in a BFS is shown in
Fig. 6(a). Note that in the initial bisection, Vi = V1, Ni = N , Vileft = V0, and Vileft =
VN+1.
The remaining unassigned vertices can be assigned to either set, and the bisection

will still be compatible with a level set containing N + 2 vertices. Thus for complying
with requirement 2.5.ii, any prescription obeying the balancing criterion may be used.
We choose to distribute the remaining vertices by continuing the BFS from Vileft and
Viright and assigning vertices to Vi1 and Vi2 depending on their distance to the left or
right neighboring set, while additionally obeying the balancing criterion. This approach—
assigning vertices to levels according to their distance from the initial and final set—is
rather intuitive and probably the procedure that would be used if the level set were to
be constructed “by hand”. This procedure may lead to reasonable level sets, however in

11

general, additional optimization on the sets Vi1 and Vi2 is needed, as discussed below.
If this optimization is used, it can also be useful to distribute the unassigned vertices
randomly, as this may help avoiding local minima.
As mentioned above, there is a lot of arbitrariness in distributing the unassigned ver-

tices into Vi1 and Vi2 . However, the particular choice of the bisection will influence
whether a later bisection is balanced or not: If Vi1(i2),BFS contains more vertices than
the balance criterion (15), the bisection cannot be balanced. Obviously, the BFS that
constructs Vi1(i2),BFS depends on the details of the set Vi and thus on the details of the
previous bisection step.
In order to formulate a criterion that may resolve the above mentioned arbitrariness

and help to find a balanced level set, it is useful to consider the matrix representation of
the graph G. Bisecting a graph means ordering the corresponding matrix into two blocks
that are connected by an off-diagonal matrix Hi1,i2 :

. . .

Hi1,i2

Hi2,i1

. . .

. (16)

This off-diagonal matrix will be unchanged by further bisections and thus determines the
minimum level width that can be achieved. Therefore, the size of the off-diagonal matrix
Hi1,i2 should be minimized.
In a bisection, an edge (v1, v2) ∈ E is said to be cut, if v1 and v2 belong to different sets,

i.e. v1 ∈ Vi1 and v2 ∈ Vi2 or vice versa. The entries of Hi1,i2 correspond to edges cut by
the bisection, and minimizing the number of entries in Hi1,i2 corresponds to minimizing
the number of edges cut by the bisection (min-cut criterion). This criterion is often
used in reordering matrices for parallel processing, where the off-diagonal matrix size
determines the amount of communication between processors.
However, the number of entries in Hi1,i2 is not directly related to the size of the matrix,

as has been noted in the graph partitioning problem for parallel computing [48]. Instead,
the size of the off-diagonal matrix is given by the number of surface vertices, i.e. the
number of vertices that have cut edges. For this, we define a net of a vertex v in a graph
G = (V , E) as [46, 47]

net(v) = {u ∈ V|u is adjacent to v} . (17)

Note that v ∈ net(v), as v is adjacent to itself. A net is said to be cut by a bisection,
if any two vertices v1, v2 ∈ net(v) are contained in different sets Vi1 and Vi2 . Then, the
number of surface vertices and thus the size of the off-diagonal matrix Hi1,i2 is given by
the number of cut nets. Thus, minimizing the number of cut nets (min-net-cut criterion)
corresponds to minimizing the the number of surface vertices, and thus to minimizing
the size of the off-diagonal matrix Hi1,i2 . Furthermore, since the vertices in Vi1/2,BFS are
determined by a BFS emanating from the surface vertices, minimizing the number of
cut nets will usually also lead to a smaller number of vertices in Vi1/2,BFS, leaving more
freedom towards achieving a balanced bisection. Figs. 6(b) and (c) show a comparison of
the min-cut and min-net-cut criterion for simple examples. In practice, when minimizing
the number of cut nets, we also use the min-cut criterion to break ties between different

12

bisections with the same number of cut nets (min-net-cut-min-cut criterion) in order to
avoid wide local minima, that occur frequently in the min-net-cut problem.
Both the min-cut and min-net-cut bisection problem have been shown to be NP-

hard [54]. Therefore, only heuristics are available to solve them. These heuristics start
from an initial (balanced) bisection, such as constructed by the steps outlined above,
and improve upon this initial bisection. Here, we choose to use the Fiduccia-Mattheyses
(FM) algorithm [42], as it is readily available for min-cut and min-net-cut bisection. In
fact, min-net-cut bisection is a hypergraph partitioning problem, and the FM algorithm
was originally designed for hypergraph partitioning. Furthermore, the FM algorithm can
naturally deal with locked vertices that may not be moved between sets, is reasonable
fast and its underlying concepts are easy to understand. The FM heuristic is a pass-based

technique, i.e. it is applied repeatedly to the problem (several passes are performed),
iteratively improving the bisection. More detailed information about the fundamentals
of the Fiduccia-Mattheyses algorithm are given in appendix A.
We now summarize the steps outlined above and formulate an algorithm for bisection:

Algorithm 2. Bisection of set Vi containing Ni levels, with left (right) neighboring set
Vileft (Viright).

A Stop, if Ni = 1.
B Do a BFS starting from Vileft up to level Ni1 = Int(Ni/2) and a BFS starting from

Viright up to level Ni2 = N−Int(Ni/2). The vertices found by the BFS are assigned
to Vi1 and Vi2 , respectively, and are marked as locked.

C Distribute the remaining unassigned vertices taking into account the balance cri-
terion (15). The vertices may be assigned according to either one of the following
prescriptions:
a) Continue the BFSs from step B and assign vertices to Vi1 , if they are first

reached by the BFS from Vileft , and to Vi2 , if they are first reached by the BFS
from Viright . If a set has reached the size given by the balance criterion, assign
all remaining vertices to the other set.

b) Distribute the unassigned vertices randomly to Vi1 and Vi2 . If a set has reached
the size given by the balance criterion, assign all remaining vertices to the other
set.

D Optimize the sets Vi1 and Vi2 by changing the assignment of unlocked vertices
according to some minimization criterion. In particular, the following optimizations
may be performed:
a) No optimization.
b) Min-cut optimization using the FM algorithm.
c) Min-net-cut optimization using the FM algorithm.
d) Min-net-cut-min-cut optimization using the FM algorithm.

Recursive application of the bisection algorithm 2 then leads to an algorithm for con-
structing a level set complying with the requirements of the graph partitioning problem
2.2, and thus an algorithm for block-tridiagonalizing a matrix.
Algorithm 3. Block-tridiagonalization of matrix H

A Construct the graph G = (V , E) corresponding to the matrix H , and the sets V0

and VN+1 corresponding to the leads.
B Use algorithm 1 to determine the maximum number of levels N+2. If N < 1, stop.
C Construct V1 = V \ (V0 ∪ VN+1), containing N levels.
D Apply the bisection algorithm 2 to V1 and then recursively on the resulting subsets.

13

Fig. 7. Examples of level sets arising from (a) the natural ordering of grid points (as in Fig. 1), and
application of the block-tridiagonalization algorithm 3 with distribution of vertices by BFS (algorithm
2, step C.(a)) (b) without further optimization, (c) with min-cut optimization, (d) with min-net-cut
optimization.

Do not further apply if a set only contains one level.
It should be emphasized, that the block-tridiagonalization does not require any other

input than the graph structure. In principle, the number of FM passes may affect the
result. However, from experience, this number can be chosen as a fixed value, e.g. 10 FM
passes, for all situations [42]. Thus, the block-tridiagonalization algorithm can serve as a
black box.
In Fig. 7 we show for examples of level sets arising from the natural ordering of grid

points (Fig. 7(a), natural level set) and from the block-tridiagonalization algorithm de-
veloped in this work (Fig. 7(b)–(d)) for the case of a disk-type geometry. The level set in
Fig. 7(b) arises from recursive bisection, where the vertices were distributed according to
a BFS without any optimization. The resulting level set strongly resembles the natural
level set. This is due to the highly symmetric structure and the fact that vertices are
assigned to levels according to their distance from the leads—only small deviations are
present due to the balance criterion. When the bisection is optimized according to the
min-cut criterion, Fig. 7(c), the resulting level set changes little, as the min-cut crite-
rion favors horizontal and vertical cuts for a square lattice, as presented in the example.
In contrast, min-net-cut optimization (Fig. 7(d)) yields a new, non-trivial level set that
has less symmetry than the underlying structure. Note that the minimization of surface
vertices leads to levels in the form of “droplets”, analogous to surface tension in liquids.
In fact, we will show in Sec. 3 that min-net-cut optimization usually leads to level

sets and thus block-tridiagonal orderings that are superior to those arising from other
methods. In particular, they are better than the natural level sets, leading to a significant
speed-up of transport algorithms, as demonstrated in Sec. 3.1. In addition to that, the

14

reordering algorithms allow one to use conventional two-terminal transport algorithms
also for more complicated, even multi-terminal structures (see Secs. 3.1 and 3.2).

2.2.3. Computational complexity

We conclude the theoretical considerations with an analysis of the computational com-
plexity of algorithms 2 and 3.
The bisection algorithm involves a BFS search on Vi, which scales linearly with the

number of edges within Vi, and thus has complexity O(|Ei|), where Ei is the set of edges
within Vi. In addition to that, a single optimization pass of the FM algorithm scales also
as O(|Ei|) [42]. Usually, a constant number of passes independent of the size of the graph
is enough to obtain converged results, and therefore the optimization process of several
FM passes is also considered to scale as O(|Ei|). Thus, the full bisection algorithm also
has complexity O(|Ei|).
Usually, the number of edges per vertex is approximately homogeneous throughout the

graph. Since the recursive bisection is a divide-and-conquer approach, the computational
complexity of the full block-tridiagonalization algorithm is then O(|E| log|E|) [51]. In
typical graphs arising from physics problems, the number of edges per vertex is a constant,
the computational complexity can also be written as O(Ngrid logNgrid), where Ngrid is
the number of vertices in V , or the size of the matrix H .
In contrast, many quantum transport algorithms, such as the recursive Green’s function

technique, scale as O(N(Ngrid/N)3) = O(N3
grid/N

2) in the optimal case of N equally
sized matrix blocks (levels) of size Ngrid/N . Often, the number of blocks (levels) N ∝
Nα

grid. Typically, to name a few examples, α = 1 in one-dimensional chains, α = 1/2

in two dimensions, and the transport calculation scales as O(N3−2α
grid). Thus, except for

the case of a linear chain, where N = Ngrid and matrix reordering is pointless anyways,
the block-tridiagonalization algorithm always scales more favorably than the quantum
transport algorithms. This scaling implies that the overhead of the matrix reordering in
the transport calculation will become more negligible, the larger the system size.

3. Examples: Charge transport in two-dimensional systems

3.1. Ballistic transport in two-terminal devices

We now evaluate the performance of the block-tridiagonalization algorithm using rep-
resentative examples from mesoscopic physics. The Schrödinger equation for the two-
dimensional electron gas (2DEG) is usually transformed into a tight-binding problem by
the method of finite differences [7, 8, 9], where the continuous differential equation is
replaced by a set of linear equations involving only the values of the wave function on
discrete grid points. Commonly, these points are arranged in a regular, square grid. This
grid, together with the shape of the particular structure under consideration then defines
the structure of the Hamilton matrix and the corresponding graph.
The representative examples considered here are shown in Fig. 8: The circle (Fig. 8(a))

and the asymmetric Sinai billiard (Fig. 8(b)) that are examples of integrable and chaotic
billiards in quantum chaos, the ring (Fig. 8(c)) that may exhibit various interference
physics, and the circular cavity with leads that are not parallel (Fig. 8(d)) as an example
of a structure that does not have an intuitive, natural block-tridiagonal ordering. For

15

Fig. 8. Typical examples of structures considered in two-dimensional mesoscopic systems: (a) circle
billiard, (b) asymmetric Sinai billiard, (c) ring, and (d) circular cavity with perpendicular leads. The
tight-binding grid arises from the finite difference approximation to the Schrödinger equation. Note that
the number of grid points used here was deliberately chosen very small for visualization purposes. In a
real calculation, the number of grid points would be at least 2 orders of magnitude larger. dextent denotes
a length characterizing the extent for the different structures.

all these structures, we introduce a length scale dextent, given by the outer radius of
the circular structures and the side length of the square structure, characterizing the
maximum extent. The fineness of the grid, and thus the size of the corresponding graph
will be measured in number of grid points per length dextent.
We now apply the block-tridiagonalization algorithm using the various optimization

criteria discussed in the previous section, and compare the resulting orderings with the
natural ordering and the ordering generated by the GPS algorithm. The weights w(H),
Eq. (14), of the different orderings are given in Table 1.
The initial distributions for the bisection algorithm are done in two different ways: The

vertices are distributed both in an ordered way—by BFS—and randomly. The outcome
after the optimization however is always similar for both types of initial distributions
which indicates that the resulting weights are close to the global minimum and not stuck
in a local minimum. Note that we use twice as many FM passes for a random initial
distribution than for an initial distribution by BFS, as convergence is usually slower for
a random initial distribution.
In all examples, the min-net-cut criterion yields orderings with the best weights, as

expected from the considerations of the previous section. Based on the weight, order-
ings according to this criterion are expected to give the best performance in transport
calculations such as the RGF algorithm. Note that the min-net-cut-min-cut ordering
is on average closest to the best ordering. The min-net-cut ordering sometimes suffers
from slow convergence, when the algorithm must traverse a wide local minimum. The

16

Table 1
Weights w(H), Eq. (14), for the block-tridiagonal ordering constructed by different algorithms for the

examples of Fig. 8 . Optimization was done by 10 passes of the FM algorithm, when the initial bisection
was constructed by BFS (algorithm 2, step C.(a)), and 20 passes, when the initial bisection was con-
structed by a random distribution of vertices (algorithm 2, step C.(b)). The minimal weights for each
system are printed bold. In all examples, there were 400 grid points per length dextent.

Circular billiard
Asymmetric
Sinai billiard

Ring
Cavity with
perp. leads

natural block-
tridiagonal ordering

1.51× 1010 1.58× 1010 8.72× 108 −

Gibbs-Poole-
Stockmeyer

1.15× 1012 7.84× 1011 2.14× 108 7.05× 1012

distribution by BFS,
no optimization

1.51× 1010 9.29× 109 2.1× 108 1.69× 1010

distribution by BFS,
min-cut

1.51× 1010 9.67× 109 2.1× 108 1.59× 1010

random distribution,
min-cut

2.22× 1010 9.95× 109 2.1× 108 5.13× 1010

distribution by BFS,
min-net-cut

1.51× 1010 9.46× 109 2.1× 108 1.18× 10
10

random distribution,
min-net-cut

1.46× 1010 9.0× 10
9 2.09× 108 1.18× 10

10

distribution by BFS,
min-net-cut-min-cut

1.26× 10
10 9.28× 109 2.08× 10

8 1.24× 1010

random distribution,
min-net-cut-min-cut

1.27× 1010 9.16× 109 2.09× 108 2.02× 1010

additional min-cut criterion helps to break ties and thus avoids these wide local minima.
Except for the ring, where all algorithms perform well, the GPS algorithm yields

weights that are even larger than the weight of the natural ordering. As discussed above,
the GPS algorithms performs well, if both leads are furthest apart in terms of the graph.
In the case of the ring, this is approximately fulfilled. In the general case, when the leads
are at arbitrary positions, the GPS algorithm usually produces some very large levels.
As the level size enters cubically in the w(H), this results in a prohibitively large weight.
The GPS algorithm thus cannot be used as a generic reordering algorithm for quantum
transport according to problem 2.2.
In summary, the block-tridiagonalization algorithm 3 in the combination of initial

distribution by BFS and min-net-cut-min-cut optimization yields the best reorderings
with respect to the weight w(H). Experience shows that usually 10 FM passes are enough
for optimizing a bisection. As a consequence, we will use this combination exclusively in
the rest of this work.
The weightw(H) of a matrix is a global measure of the quality of a ordering. Additional

insight can be gained from the distribution of the sizes Mi of the matrix blocks/levels.
In Fig. 9 we show this distribution before and after reordering. For the natural ordering
of the finite difference grids, the number of matrix blocks is determined by the number
of lattice points along the x-coordinate direction (see Fig. 1(b)). In contrast, the number

17

Fig. 9. Level (matrix block) size Mi as a function of the level (matrix block) index i for the natural level
set (dashed line) and the min-net-cut-min-cut reordering (solid line), shown for (a) the circle billiard,
(b) the asymmetric Sinai billiard, (c) the ring, and (d) the circular cavity with perpendicular leads. Note
that for (d), there is no natural ordering. In all examples, there were 400 grid points per length dextent.

of matrix blocks after reordering is given by the length of the shortest path between the
two leads, in terms of the corresponding graph.
In the case of the circle billiard, Fig. 9(a), the number of matrix blocks is the same for

the natural ordering and the reordered matrix, as the shortest path between the leads is
simply a straight line along the x-coordinate direction. The improvements in the weight
originate only from balancing the matrix block sizes: While the matrix block sizes vary
for the natural ordering—the lateral size changes along the x-direction—the reordered
matrix has equally sized matrix blocks. For this particular example, the result of the
block-tridiagonalization algorithm is optimal, as it yields the best solution with respect
to the requirements set forth in problems 2.1 and 2.2. Note that in general it is not
always possible to find a perfectly balanced partitioning, but the circle billiard is such
an example.
In contrast, in the case of the asymmetric Sinai billiard and the ring the number of

matrix blocks generated by the block-tridiagonalization algorithm is larger than in the
natural ordering (see Figs. 9(b) and (c), respectively). In both cases, the obstacle within
the scattering region increases the length of the shortest path connecting the two leads.
In both examples, this increase in the number of matrix blocks leads to a significantly
decreased weight w(H) with respect to the natural ordering, although the partitioning is
only approximately balanced. For instance, in the particular case of the ring, the number
of matrix blocks after reordering is approximately given by the number of lattice points
around half of the circumference. The reordered ring thus has a weight very similar to
a straight wire with a width twice as large as the width of one arm of the ring, and a
length given by half of the ring circumference.

18

Fig. 10. (a)–(c): relative gain in computational time rcpu-time, Eq. (18), through the reordering as a
function of the grid size for the circular billiard, the asymmetric Sinai billiard, and the ring, respectively.
rcpu-time is shown excluding (�) and including (©) the overhead of matrix reordering. The estimate
for rcpu-time from the weights w(H) of the different orderings is shown as a dashed line. (d): fraction
of time rmatrix reordering, Eq. (19), used for reordering the matrix as a function of the grid size. Data

is shown for the circular billiard (�), the asymmetric Sinai billiard (©), the ring (△), and the circular
cavity with perpendicular leads (+). The benchmarks were run on Pentium 4 processor with 2.8 GHz
and 2 GBs of memory.

For the cavity with perpendicular leads, there is no natural ordering, and a specialized
transport algorithm would be required. The reordering creates a matrix with approxi-
mately balanced block sizes, and allows the direct application of conventional algorithms.
The weight w(H) was introduced as a theoretical concept in order to simulate the

computational complexity of a transport calculation. After discussing the influence of the
reordering on this theoretical concept, we now demonstrate how the reordering increases
the performance of an actual quantum transport calculation.
To this end we use a straight-forward implementation of the well-established recursive

Green’s function algorithm for two terminals, as described in Ref. [29]. The necessary
linear algebra operations are performed using the ATLAS implementation of LAPACK
and BLAS [55, 56], optimized for specific processors. It should be emphasized that the
code that does the actual transport calculation—such as calculation of the Green’s func-
tion and evaluation of the Fisher-Lee relation—is the same for all examples considered
here, including the non-trivial cavity with perpendicular leads. The abstraction necessary
for the reordering, i.e. the graph structure and the corresponding level set, allows for a
generic computational code applicable to any tight-binding model.
We measure the performance gain through matrix reordering as

rcpu-time =
computing time for natural ordering

computing time for reordered matrix
. (18)

19

Note that during a real calculation, the conductance is usually not only calculated once,
but repeatedly as a function of some parameters, such as Fermi energy or magnetic
field. Thus, the respective quantum transport algorithm is executed repeatedly, too. In
contrast, the block-tridiagonalization has to be carried out again only when the structure
of the matrix and thus the corresponding graph changes. For the examples considered
here this would correspond to changing the grid spacing or the shape of the structure. In
such a case, the overhead of matrix reordering must be taken into account for rcpu-time.
This overhead can be quantified as

rmatrix reordering =
overhead of matrix reordering

computing time including reordering
. (19)

In a typical calculation however, the matrix structure given by the underlying tight-
binding grid does not change, and the matrix reordering must be carried out only once. In
this common situation, the overhead of matrix reordering is negligible. For example, any
change of physical parameters such as Fermi energy, magnetic field or disorder averages
does not change the matrix structure.
In Fig. 10 we show the performance gain through matrix reordering, rcpu-time, as a

function of grid size for the circle billiard, the asymmetric Sinai billiard, and the ring
(Figs. 10(a)–(c), respectively). We include both measurements excluding and including
the overhead of matrix reordering, as discussed above. Remember that in the case of
the cavity with perpendicular leads, Fig. 8(d), there is no natural ordering and thus a
performance comparison is not possible. In fact for this system, only matrix reordering
makes a transport calculation possible in the first place.
We find that block-tridiagonalization always increases the algorithmic performance in

the typical situation, when the overhead of matrix reordering can be neglected. However,
even if the reordering overhead is taken into account, we see a significant performance
gain except for small systems—but there the total computing time is very short anyway.
In fact, as the system sizes increases, the overhead of reordering becomes negligible,
as predicted from the analysis of the computational complexity, and the performance
gains including and excluding the reordering overhead converge. This can also be seen
in Fig. 10(d), where we show the reordering overhead rmatrix reordering as a function of
system size.
Especially for large systems, the total computing time can become very long, and any

performance gain is beneficial. Reordering leads to significant performance gains up to a
factor of 3 in the case of the ring. The performance gain rcpu-time can also be estimated
from the weights w(H) of the original matrix (the natural ordering) and the reordered
matrix, shown as the dashed line in Figs. 10(a)–(c). The actual, measured performance
gain approaches this theoretical value, as the system size increases. Note that we do
not fully reach the theoretically predicted performance gain in the case of the ring. On
modern computer architectures, computing time does not only depend on the number
of arithmetic operations [56], and thus the weight w(H) overestimates the performance
gain, though the performance still improves significantly.
Finally, we demonstrate the O(Ngrid logNgrid) scaling of the reordering algorithm.

Fig. 11 shows the computing times of the block-tridiagonalization algorithm as a func-
tion of matrix/graph size N for the geometries considered in this section. For all sys-
tems, the computing times scale according to the prediction from the complexity anal-
ysis in Sec. 2.2.3, as apparent from the fit ∝ Ngrid logNgrid. Note that for large Ngrid,

20

Fig. 11. Time spent for matrix reordering as a function of the total grid (matrix) size N , for the circular
billiard (�), the asymmetric Sinai billiard (©), the ring (△), and the circular cavity with perpendicular
leads (+). The solid line is a fit to the predicted scaling of the computational complexity, N logN .

O(Ngrid logNgrid) scaling is practically indistinguishable from O(Ngrid), as can also be
seen in Fig. 11.
In the examples of this section, we considered the pedagogic case of charge transport

on a square, finite difference grid. The approach presented here can however immediately
applied to more complex situations, such as spin transport, as reviewed in Ref. [57].
In addition, extending the transport calculation to a different grid is straightforward,
as any tight-binding grid can be encoded into a graph, and the block-tridiagonalization
algorithm has already been applied to the case of the hexagonal grid of graphene [58] (for
a review on graphene see [59]). A further example of this versatility is shown in the next
section, where we apply the block-tridiagonalization algorithm to solve multi-terminal
structures involving different tight-binding models.

3.2. Multi-terminal structures

In the previous section, we demonstrated that matrix reordering increases the per-
formance of quantum transport algorithms for two-terminal structures and addition-
ally makes it possible to apply these conventional algorithms to non-trivial structures.
Whereas there is a great variety of quantum transport algorithms for systems with two
leads, there are only few algorithms that are suitable for multi-terminal structures, and
most of these are restricted to rather specific geometries (e.g. Ref. [30]). Only recently
algorithms have been developed that claim to be applicable to any multi-terminal struc-
ture. The knitting algorithm of Ref. [60] is a variant of the RGF algorithm where the
system is built up adding every lattice point individually, instead of adding whole blocks
of lattice points at a time. Therefore, instead of a matrix multiplication, the central
computational step is an exterior product of vectors. Unfortunately, this implies that the
knitting algorithm cannot use highly optimized matrix multiplication routines (Level 3
BLAS operations), that are usually much more efficient than their vector counterparts
(Level 2 BLAS operations), as discussed in Ref. [56]. Another multi-terminal transport
algorithm presented recently [61], is based on the transfer matrix approach. However, it
requires the Hamiltonian to be in a specific block-tridiagonal form, and the corresponding
level set is set up manually.

21

Fig. 12. A multi-terminal structure can be reduced to an equivalent two-terminal structure by collecting
all leads in two virtual leads. (a) The leads are redistributed into two virtual leads. (b) All leads are
combined in a single virtual lead, the second virtual lead is formed by a vertex furthest away.

Fig. 13. Example of a four-terminal calculation: Quantum hall effect (a) in a two-dimensional electron
gas and (b) in graphene. The Hall resistance RH is shown as a function of W/lcycl, where W is the width
of the Hall bar and lcycl the cyclotron radius in a magnetic field B. Note that W/lcycl ∝ B. The dotted
lines indicate the quantized values of the Hall resistance, h/2e2 × n−1, where n is a positive integer.

Here we show how to employ the block-tridiagonalization algorithm in order to apply
the well-established two-terminal quantum transport algorithms to an arbitrary multi-
terminal system. The basic idea is sketched in Fig. 12(a): Combining several (real) leads
into only two virtual leads the multi-terminal problem is reduced to an equivalent two-
terminal problem. After reordering, the resulting problem can then be solved by conven-
tional two-terminal algorithms. Note that in this approach the number of matrix blocks
is given by the shortest path between leads in two different virtual leads. If all leads are
very close together, this may lead to only few, large blocks in the reordered matrix and
respectively levels in the graph partitioning, leading to a very large weight w(H). In such
a case it is advisable to collect all leads into a single virtual lead. The second virtual lead
is then formed by a vertex in the graph, that is furthest away from all leads as depicted
in Fig. 12(b). Such a vertex can be found by a BFS search originating from all leads.
Thereby the number of matrix blocks/levels is maximized. In fact, this approach yields
a block-tridiagonal matrix structure as required by the algorithm of Ref. [61].
We now demonstrate these strategies on the example of the quantum Hall effect (QHE)

in a 2DEG formed in a semiconductor heterostructure [62] and in graphene [63]. For this

22

we use a four-terminal Hall bar geometry as sketched in Fig. 12(a), on top of a square
lattice (finite difference approximation to 2DEG) and a hexagonal lattice . Again, it
should be emphasized that the code of the actual transport calculation is the same
as employed in the two-terminal examples of the previous section. The results of the
calculation are shown in Fig. 13, where the integer QHE of the 2DEG and the odd-
integer QHE of graphene are clearly visible.
The methods outlined above make it possible to calculate quantum transport in any

system described by a tight-binding Hamiltonian. This generality is one of the main
advantages gained by using the matrix reordering. However, generality also implies that
it is difficult to make use of properties of specific systems, such as symmetries, in order
to speed up calculations. Special algorithms developed specifically for a certain system
however can, and will usually be faster than a generic approach—at the cost of additional
development time.
In the case of the Hall geometry in a 2DEG, such a special algorithm was presented by

Baranger et al. [30], and we have implemented a variant of it. Comparing the computing
times for the Hall bar geometry in a 2DEG, we find that the special algorithm is only a
factor of 1.6−1.7 faster than our generic approach. Although such a performance compar-
ison may depend crucially on the details of the system under consideration, experience
shows that the use of the generic approach often does not come with a big performance
penalty.

4. Conclusions

We have developed a block-tridiagonalization algorithm based on graph partitioning
techniques that can serve as a preconditioning step for a wide class of quantum transport
algorithms. The algorithm can be applied to any Hamilton matrix originating from an
arbitrary tight-binding formulation and brings this matrix into a form that is more
suitable for many two-terminal quantum transport algorithms, such as the widely used
recursive Green’s function algorithm. The advantages of this reordering are twofold: First,
the reordering can speed up the transport calculation significantly. Second, it allows for
applying conventional two-terminal algorithms to non-trivial geometries including non-
collinear leads and multi-terminal systems. The block-tridiagonalization algorithm scales
as O(Ngrid logNgrid), where Ngrid is the size of the Hamilton matrix, and thus induces
only little additional overhead. We have demonstrated the performance of the matrix
reordering on representative examples, including transport in 2DEGs and graphene.
The block-tridiagonalization algorithm can operate as a black box and serve as the

foundation of a generic transport code that can be applied to arbitrary tight-binding
systems. Such a generic transport code is desirable, as it minimizes development time
and increases code quality, as only few basic transport routines are necessary, that can
be tested thoroughly.
We acknowledge financial support from DFG within GRK638 and SFB689.

23

Fig. A.1. Schematic representation of (a) a simple graph and (b) the corresponding hypergraph structure
imposed through all nets, N = {net(v) | v ∈ V}.

Appendix A. The Fiduccia-Mattheyses algorithm

A.1. Graphs and hypergraphs

The Fiduccia-Mattheyses algorithm was originally developed for hypergraph partition-
ing [42]. A hypergraph H is an ordered pair H = (V ,N), where V is a set of vertices, and
N a set of nets ni (also called hyperedges) between them. A net ni is a set of vertices,
i.e. ni ⊂ V . An undirected graph is a special realization of a hypergraph, where every
net contains exactly two vertices. Thus, any algorithm for hypergraph partitioning can
also be applied to an undirected graph.
During the FM bisection, we have to consider the graph structure arising from the

Hamiltonian matrix in order to minimize the number of cut edges (min-cut), whereas
for minimizing the number of surface vertices, i.e. the number of cut nets (min-net-
cut), the hypergraph structure arising from all nets net(v) as defined in Eq. (17), N =
{net(v) | v ∈ V}, is essential. For min-net-cut-min-cut optimization, we have to consider
both structures simultaneously. A schematic representation of a graph and the corre-
sponding hypergraph structure is shown in Fig. A.1.

A.2. Fiduccia-Mattheyses bisection

The FM algorithm is based on the concept of gain. The gain of a vertex in an existing
bisection is defined as the change in weight, i.e. the number of cut edges or nets, that
occurs when this vertex is move to the other part. This gain can also be negative, if such a
move increases the number of cut edges or nets. The basic idea of the FM algorithm is to
swap vertices with the highest gain between parts, while obeying some balance criterion.
The fact that the highest gain can be negative, helps the FM algorithm to escape local
minima. After moving, the respective vertex is locked in order to avoid an infinite loop,
where a single vertex might be swapped back and forth repeatedly. The FM pass ends,
when all (free) vertices have been moved, and the best bisection encountered during the
pass is returned as result. Further passes can then successively improve on this bisection.

References
[1] R. Landauer, Spatial variation of currents and fields due to localized scatterers in

metallic conduction, IBM J. Res. Dev. 1 (3) (1957) 223.

24

[2] M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Generalized many-channel conduc-
tance formula with application to small rings, Phys. Rev. B 31 (10) (1985) 6207–6215.

[3] A. D. Stone, A. Szafer, What is measured when you measure a resistance? - the
Landauer forumula revisited, IBM J. Res. Dev. 32 (3) (1988) 384–413.

[4] D. S. Fisher, P. A. Lee, Relation between conductivity and transmission matrix,
Phys. Rev. B 23 (12) (1981) 6851–6854.

[5] H. U. Baranger, A. D. Stone, Electrical linear-response theory in an arbitrary mag-
netic field: A new Fermi-surface formation, Phys. Rev. B 40 (12) (1989) 8169–8193.

[6] H. Haug, A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconduc-
tors, Springer, Berlin, Heidelberg, 1998.

[7] G. E. Kimball, G. H. Shortley, The numerical solution of Schrödinger’s equation,
Phys. Rev. 45 (11) (1934) 815–820.

[8] L. Pauling, E. B. Wilson, Introduction to Quantum Mechanics, Dover, New York,
1935.

[9] D. Frustaglia, M. Hentschel, K. Richter, Aharonov-Bohm physics with spin. II. Spin-
flip effects in two-dimensional ballistic systems, Phys. Rev. B 69 (15) (2004) 155327.

[10] P. Havu, V. Havu, M. J. Puska, R. M. Nieminen, Nonequilibrium electron transport
in two-dimensional nanostructures modeled using green’s functions and the finite-
element method, Phys. Rev. B 69 (11) (2004) 115325.

[11] R. C. Bowen, G. Klimeck, R. K. Lake, W. R. Frensley, T. Moise, Quantitative
simulation of a resonant tunneling diode, J. Appl. Phys. 81 (7) (1997) 3207–3213.

[12] S. Sanvito, C. J. Lambert, J. H. Jefferson, A. M. Bratkovsky, General Green’s-
function formalism for transport calculations with spd Hamiltonians and giant mag-
netoresistance in Co- and Ni-based magnetic multilayers, Phys. Rev. B 59 (18) (1999)
11936–11948.

[13] M. Luisier, A. Schenk, W. Fichtner, G. Klimeck, Atomistic simulation of nanowires
in the sp3d5s∗ tight-binding formalism: From boundary conditions to strain calcu-
lations, Phys. Rev. B 74 (20) (2006) 205323.

[14] M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Density-functional
method for nonequilibrium electron transport, Phys. Rev. B 65 (16) (2002) 165401.

[15] A. Di Carlo, A. Pecchia, L. Latessa, T. Frauenheim, G. Seifert, Tight-binding DFT
for molecular electronics (gDFTB), in: G. Cuniberti, G. Fagas, K. Richter (Eds.),
Introducing Molecular Electronics, Springer, Berlin, Heidelberg, 2006, pp. 153–184.

[16] A. R. Rocha, V. M. Garćıa-Suárez, S. Bailey, C. Lambert, J. Ferrer, S. Sanvito, Spin
and molecular electronics in atomically generated orbital landscapes, Phys. Rev. B
73 (8) (2006) 085414.

[17] S. Datta, Electronic Transport in Mesoscopic Transport, Cambridge University
Press, Cambridge, 2002.

[18] D. K. Ferry, S. M. Goodnick, Transport in Nanostructures, Cambridge University
Press, Cambridge, 2001.

[19] M. P. Lopez Sancho, J. M. Lopez Sancho, J. Rubio, Quick iterative scheme for the
calculation of transfer matrices: application to Mo (100), J. Phys. F: Met. Phys.
14 (5) (1984) 1205–1215.

[20] M. P. Lopez Sancho, J. M. Lopez Sancho, J. Rubio, Highly convergent schemes for
the calculation of bulk and surface Green functions, J. Phys. F: Met. Phys. 15 (4)
(1985) 851–858.

[21] P. S. Krstić, X.-G. Zhang, W. H. Butler, Generalized conductance formula for the

25

multiband tight-binding model, Phys. Rev. B 66 (20) (2002) 205319.
[22] T. Usuki, M. Takatsu, R. A. Kiehl, N. Yokoyama, Numerical analysis of electron-

wave detection by a wedge-shaped point contact, Phys. Rev. B 50 (11) (1994) 7615–
7625.

[23] T. Usuki, M. Saito, M. Takatsu, R. A. Kiehl, N. Yokoyama, Numerical analysis of
ballistic-electron transport in magnetic fields by using a quantum point contact and
a quantum wire, Phys. Rev. B 52 (11) (1995) 8244–8255.

[24] C. J. Lambert, D. Weaire, Decimation and Anderson localization, Phys. Status Solidi
(b) 101 (2) (1980) 591–595.

[25] M. Leadbeater, C. J. Lambert, A decimation method for studying transport prop-
erties of disordered systems, Ann. Phys. 7 (5-6) (1998) 498–502.

[26] D. Mamaluy, D. Vasileska, M. Sabathil, T. Zibold, P. Vogl, Contact block reduction
method for ballistic transport and carrier densities of open nanostructures, Phys.
Rev. B 71 (24) (2005) 245321.

[27] D. J. Thouless, S. Kirkpatrick, Conductivity of the disordered linear chain, J. Phys.
C: Solid State Phys. 14 (3) (1981) 235–245.

[28] P. A. Lee, D. S. Fisher, Anderson localization in two dimensions, Phys. Rev. Lett.
47 (12) (1981) 882–885.

[29] A. MacKinnon, The calculation of transport properties and density of states of
disordered solids, Z. Phys. B 59 (4) (1985) 385–390.

[30] H. U. Baranger, D. P. DiVincenzo, R. A. Jalabert, A. D. Stone, Classical and quan-
tum ballistic-transport anomalies in microjunctions, Phys. Rev. B 44 (19) (1991)
10637–10675.

[31] R. Lake, G. Klimeck, R. C. Bowen, D. Jovanovic, Single and multiband modeling of
quantum electron transport through layered semiconductor devices, J. Appl. Phys.
81 (12) (1997) 7845–7869.

[32] A. Lassl, P. Schlagheck, K. Richter, Effects of short-range interactions on transport
through quantum point contacts: A numerical approach, Phys. Rev. B 75 (4) (2007)
045346.

[33] P. Drouvelis, P. Schmelcher, P. Bastian, Parallel implementation of the recursive
Green’s function method, J. Comp. Phys. 215 (2) (2006) 741–756.

[34] T. Kramer, E. J. Heller, R. E. Parrott, An efficient and accurate method to obtain
the energy-dependent green function for general potentials, J. Phys.: Conf. Ser. 99
(2008) 012010.

[35] S. Rotter, J.-Z. Tang, L. Wirtz, J. Trost, J. Burgdörfer, Modular recursive Green’s
function method for ballistic quantum transport, Phys. Rev. B 62 (3) (2000) 1950–
1960.

[36] S. Rotter, B. Weingartner, N. Rohringer, J. Burgdörfer, Ballistic quantum transport
at high energies and high magnetic fields, Phys. Rev. B 68 (16) (2003) 165302.

[37] N. E. Gibbs, J. William G. Poole, P. K. Stockmeyer, An algorithm for reducing
the bandwidth and profile of a sparse matrix, SIAM J. Num. Anal. 13 (2) (1976)
236–250.

[38] E. Cuthill, J. McKee, Reducing the bandwidth of sparse symmetric matrices, in:
Proceedings of the 1969 24th national conference, ACM, New York, 1969, pp. 157–
172.

[39] A. George, Computer implementation of the finite element method, Tech. Rep.
STAN-CS-71-208, Computer Sci. Dept., Stanford Univ., Stanford, Calif. (1971).

26

[40] W.-H. Liu, A. H. Sherman, Comparative analysis of the Cuthill–McKee and the
reverse Cuthill–McKee ordering algorithms for sparse matrices, SIAM J. Num. Anal.
13 (2) (1976) 198–213.

[41] B. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs, Bell
Syst. Tech. J. 49 (2) (1970) 291–308.

[42] C. M. Fiduccia, R. M. Mattheyses, A linear-time heuristic for improving network
partitions, in: DAC ’82: Proceedings of the 19th conference on Design automation,
IEEE Press, Piscataway, NJ, USA, 1982, pp. 175–181.

[43] G. Karypis, V. Kumar, Multilevel k-way hypergraph partitioning, VLSI Design,
11 (3) (2000) 285–300.

[44] B. Hendrickson, E. Rothberg, Improving the run time and quality of nested dissec-
tion ordering, SIAM J. Sci. Comput. 20 (2) (1998) 468–489.

[45] J. O’Neil, D. B. Szyld, A block ordering method for sparse matrices, SIAM J. Sci.
Stat. Comput. 11 (5) (1990) 811–823.

[46] A. Coon, M. Stadtherr, Generalized block-tridiagonal matrix orderings for parallel
computation in process flowsheeting, Comput. Chem. Eng. 19 (1995) 787–805.

[47] K. V. Camarda, M. A. Stadtherr, Matrix ordering strategies for process engineering:
graph partitioning algorithms for parallel computation, Comput. Chem. Eng. 23 (8)
(1999) 1063–1073.

[48] B. Hendrickson, Graph partitioning and parallel solvers: Has the emperor no
clothes?, in: Workshop on Parallel Algorithms for Irregularly Structured Problems,
1998, pp. 218–225.

[49] B. Hendrickson, T. G. Kolda, Partitioning rectangular and structurally unsymmetric
sparse matrices for parallel processing, SIAM J. Sci. Comput. 21 (6) (2000) 2048–
2072.

[50] C. Aykanat, A. Pinar, Ümit V. Çatalyürek, Permuting sparse rectangular matrices
into block-diagonal form, SIAM J. Sci. Comput. 25 (6) (2004) 1860–1879.

[51] R. Sedgewick, Algorithms in C++, 2nd Edition, Addison Wesley, 1992.
[52] A. Gupta, Fast and effective algorithms for graph partitioning and sparse-matrix

ordering, IBM J. Res. Dev. 41 (1/2) (1997) 171–184.
[53] H. D. Simon, S.-H. Teng, How good is recursive bisection?, SIAM J. Sci. Comput.

18 (5) (1997) 1436–1445.
[54] M. R. Garey, D. S. Johnson, Computers and Intractability; A Guide to the Theory

of NP-Completeness, W. H. Freeman & Co., New York, NY, USA, 1990.
[55] R. C. Whaley, A. Petitet, Minimizing development and maintenance costs in sup-

porting persistently optimized BLAS, Softw. Pract. Exper. 35 (2) (2005) 101–121.
[56] R. C. Whaley, A. Petitet, J. J. Dongarra, Automated empirical optimization of

software and the ATLAS project, Parallel Comput. 27 (1–2) (2001) 3–35.
[57] M. Wimmer, M. Scheid, K. Richter, Spin-polarized quantum transport in meso-

scopic conductors: Computational concepts and physical phenomena, to appear in
the Encyclopedia of Complexity and System Science, arXiv:0803.3705v1 (2008).

[58] M. Wimmer, İnanç Adagideli, S. Berber, D. Tománek, K. Richter, Spin currents in
rough graphene nanoribbons: Universal fluctuations and spin injection, Phys. Rev.
Lett. 100 (17) (2008) 177207.

[59] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The elec-
tronic properties of graphene, to be published in Rev. Mod. Phys., arXiv:0709.1163v2
(2008).

27

http://arxiv.org/abs/0803.3705
http://arxiv.org/abs/0709.1163

[60] K. Kazymyrenko, X. Waintal, Knitting algorithm for calculating green functions in
quantum systems, Phys. Rev. B 77 (11) (2008) 115119.

[61] Z. H. Qiao, J. Wang, A variant transfer matrix method suitable for transport through
multi-probe systems, Nanotech. 18 (2007) 435402.

[62] K. v. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination
of the fine-structure constant based on quantized hall resistance, Phys. Rev. Lett.
45 (6) (1980) 494–497.

[63] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.
Grigorieva, S. V. Dubonos, A. A. Firsov, Two-dimensional gas of massless dirac
fermions in graphene, Nature 438 (7065) (2005) 197–200.

28

	Introduction
	Optimal Block-tridiagonalization of matrices
	Definition of the problem
	Matrix reordering by graph partitioning

	Examples: Charge transport in two-dimensional systems
	Ballistic transport in two-terminal devices
	Multi-terminal structures

	Conclusions
	The Fiduccia-Mattheyses algorithm
	Graphs and hypergraphs
	Fiduccia-Mattheyses bisection

