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Abstract

We describe an algorithm for the numerical solution of a phase-field model (PFM) of
microstructure evolution in polycrystalline materials. The PFM system of equations
includes a local order parameter, a quaternion representation of local orientation
and a species composition parameter. The algorithm is based on the implicit in-
tegration of a semidiscretization of the PFM system using a backward difference
formula (BDF) temporal discretization combined with a Newton-Krylov algorithm
to solve the nonlinear system at each time step. The BDF algorithm is combined
with a coordinate projection method to maintain quaternion unit length, which is
related to an important solution invariant. A key element of the Newton-Krylov
algorithm is the selection of a preconditioner to accelerate the convergence of the
Generalized Minimum Residual algorithm used to solve the Jacobian linear system
in each Newton step. Results are presented for the application of the algorithm to
2D and 3D examples.
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1 Introduction

In this paper, we describe an approach for the numerical solution of a phase-
field model (PFM) of microstructure evolution in polycrystalline materials.
A PFM is a system of equations describing the evolution of continuum rep-
resentations of material parameters of interest, such as the local state (e.g.,
liquid or solid), grain orientation and/or species composition. In addition to
microstructure evolution [1], PFMs have been applied to a variety of prob-
lems involving the evolution of interfaces between spatial domains, including
superconductivity [2], phase coexistence [3], solidification [4,5], critical phe-
nomena [6,7], alloy phase ordering [8], recrystallization [9] and martensitic
transformation [10].

Rather than explicitly tracking the interfaces between phases, grains, species,
etc. to model microstructure development, PFMs evolve diffuse interfaces.
The associated equations of motion therefore typically consist of a system
of coupled nonlinear diffusion equations. After choosing an appropriate dis-
cretization of the spatial variables, the resulting semidiscretized system can be
integrated numerically using a method-of-lines approach. Included among the
approaches that have been considered for the integration of PFMs are opera-
tor splitting, fully explicit methods, semi-explicit methods and fully implicit
methods. Operator splitting offers the potential simplification of integrating
each equation independently at each time step. However, since a major goal of
a PFM integration is to resolve a competition of energy minimization mecha-
nisms represented by each equation in the model, the accuracy and robustness
of operator-split approaches are problematic without some reliable means of
controlling splitting errors. In addition to these concerns, explicit algorithms
suffer the usual time step restrictions imposed by stability requirements. Since
PFM diffusion terms result in a time step limit proportional to the inverse
square of the mesh size, and a fine mesh may be required to resolve thin inter-
faces, fully explicit approaches can easily require a prohibitively large number
of time steps. For this reason, semi-explicit [11] and fully implicit [12–14] in-
tegration algorithms have also been investigated. In [14] it is reported that a
second-order implicit time discretization scheme with variable time step size
control is considerably faster than an Euler explicit scheme for a 2D binary
alloy solidification problem. In [12], a first-order accurate semi-explicit scheme
is compared to a fully implicit algorithm in the PFM simulation of dendritic
solidification. In spite of the additional significant expense of solving a sys-
tem of nonlinear algebraic equations at each step, the general conclusion of
[12] is that a fully implicit approach is more appropriate for simulations in
three-dimensions.

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
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A special feature of PFM models of polycrystalline materials is the inclusion
of one or more parameters describing local crystallographic orientation. At
least two approaches have been employed. In [1], a finite set of orientations is
specified, each represented by a different order parameter, effectively one order
parameter for each unique solid grain. The total amount of storage required
in an implementation of such a model can be reduced by various techniques
such as keeping values only for order parameters in regions which have val-
ues sufficiently greater than some minimum. Alternatively, local orientation is
described by a single parameter whose value may assume a continuous range
of orientations. For 2D problems, orientation can be described by a single an-
gle, as developed in [15,16]. This technique was used, e.g., in [17] to simulate
austenite to ferrite phase transformation in 2D. In 3D, additional angles can
be introduced, or, as described in [18], a quaternion-valued order parameter is
employed to avoid issues of singularity and expensive trigonometric function
evaluations associated with, e.g., Euler angles.

In this paper, we describe a numerical algorithm for the solution of a PFM
that includes a local order parameter, a quaternion representation of local
orientation and a species composition. The model and its derivation are pre-
sented in Section 2 and the Appendix. The numerical algorithm is described in
Section 3. Specifically, we describe the semidiscretization of the PFM system
and its implicit integration using a backward difference formula (BDF) tem-
poral discretization combined with a Newton-Krylov algorithm to solve the
nonlinear system at each step. The BDF algorithm is combined with a coordi-
nate projection method to maintain quaternion unit length, which is related
to an important solution invariant. A key element of the Newton-Krylov algo-
rithm is the selection of a preconditioner to accelerate the convergence of the
Generalized Minimum Residual algorithm used to solve the Jacobian linear
system at each step. In Section 4, 2D and 3D example results are presented.
Some conclusions and directions for future work are discussed in Section 5.

2 The phase field model

On a spatial domain Ω, we begin by introducing the total energy functional

F0 ≡ F0(φ, c,q, T ) ≡
∫
Ω

I0(φ, c,q, T )dΩ, (1)

where the energy density, I0, is

I0(φ, c,q, T ) ≡
ε2
φ

2
|∇φ|2 + f(φ, c, T ) +

ε2
q

2
|∇q|2 + Dq(φ, T )|∇q|, (2)
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where φ is a structural order parameter, c is the composition of a particular
species (here we assume a binary material so that 1 − c is the composition
of the second species), and q ≡ (q1, q2, q3, q4) is a quaternion describing local
crystallographic orientation (see Appendix 6.2), with the normalization

4∑
i=1

q2
i = 1. (3)

T is the temperature and is assumed to be uniform across the computational
domain Ω in our current model. The first term of the energy density (2) yields
an energy contribution at interfaces between the phases identified by φ, with εφ

controlling the interface width. We further assume that at every point in space
we have the possibility of coexistence of a two-phase mixture. We denote these
two phases S (φ = 1) and L (φ = 0) by reference to the classical problem of
solid-liquid mixture, but they can be used to represent various other general
two-phase problems. Following the model proposed by Kim et al. [19], we
introduce auxiliary variables cS and cL that describe the composition in each
of the two phases, such that

c = h(φ)cS + [1− h(φ)]cL, (4)

where h is some interpolating monotonic polynomial satisfying h(0) = 0 and
h(1) = 1. For the examples in this paper, we use

h(φ) = φ3
(
10− 15φ + 6φ2

)
. (5)

The free energy density, f(φ, c, T ), in the second term of (2) is defined by the
mixture rule

f(φ, c, T ) = h(φ)fS(cS, T ) + [1− h(φ)]fL(cL, T ) + ωg(φ), (6)

where fS and fL are the free energy densities of the S and L phases, and g(φ)
is a double well potential

g(φ) = 16φ2(1− φ)2. (7)

Following [18], the third term of (2) is an orientational free energy where

|∇q| =
(

4∑
i=1

(∇qi)
2

)1/2

(8)
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and

Dq(φ, T ) ≡ 2HTp(φ), (9)

with H a constant, T the local temperature, and p another interpolating mono-
tonic polynomial satisfying p(0) = 0 and p(1) = 1. This polynomial should
have a positive derivative at φ = 1. We use

p(φ) = φ2. (10)

We note that we have adopted the opposite convention compared to that used
in [18], i.e., we have replaced the polynomial p by 1− p.

The final term of (2) involves |∇q|2 but is not scaled with φ. This is different
than other published models using a similar orientation term. We have found
that preventing this term from approaching zero as φ goes to zero is necessary
to prevent physically unmeaningful values of orientation in low-order regions
from affecting the growth of ordered grains by producing a smooth quaternion
solution in such regions. The addition of noise terms or the use of a very
high relative quaternion mobility also have an effect on this issue, though its
exploration is beyond the scope of this paper.

We seek to minimize (1) subject to (3). As in [18], we use a Lagrange multiplier
to convert the constrained minimization problem to an unconstrained one.
This is accomplished by defining the new functional

F (φ, c,q, T, λ) ≡
∫
Ω

I(φ, c,q, T, λ)dΩ, (11)

where

I(φ, c,q, T, λ) = I0(φ, c,q, T ) + λ

(∑
i

q2
i − 1

)
(12)

is the original energy density (2) augmented by the Lagrange multiplier term.
The extrema of (1) then correspond to the critical points of F , which satisfy
the Euler-Lagrange equations

∂F

∂φ
=

∂F

∂c
=

∂F

∂qi

=
∂F

∂λ
= 0. (13)

For any particular initial condition (φ, c,q, λ), it is likely that one or more of
the quantities in (13) is non-zero. The essential idea behind the time evolution
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phase-field approach is to use the non-zero quantities as source terms in a time-
dependent relaxation to a steady state satisfying (13). In particular, for the
phase and orientation variables, we postulate the Allen-Cahn equations [3]

φ̇ =−Mφ
δF

δφ
, (14)

q̇i =−Mq
δF

δqi

, i = 1, . . . , 4, (15)

where dots denote temporal derivatives, Mφ and Mq are mobility coefficients
which may be non-constant, and the functional derivatives are computed as
described in Appendix 6.1. For the composition equation, we postulate the
governing equation to be [20]

ċ = Mc∇ ·Dc(c, φ, T )∇∂F

∂c
, (16)

where Dc is the diffusivity. In contrast to (14) and (15), this equation evolves
the composition c conservatively. We next evaluate the right-hand sides of
(14), (15) and (16) individually.

2.1 Phase equation

From (6), (9) and (12), we have

∂I

∂∇φ
= ε2

φ∇φ (17)

and

∂I

∂φ
= − h′(φ)

(
fL(cL, T )− fS(cS, T )− µ(cL − cS)

)
+ ωg′(φ) + 2HTp′(φ)|∇q|. (18)

Here we used the definition of the chemical potential µ from (63) and (70)
from Appendix 6.3.

Hence, from (14) and the functional derivative formula (57) given in Appendix
6.1, we have

φ̇ = Mφ

{
ε2
φ∇2φ + h′(φ)

(
fL(cL, T )− fS(cS, T )− µ(cL − cS)

)
− ωg′(φ)− 2HTp′(φ)|∇q|} . (19)
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In the particular case of a single species material, we have c = cL = cS = 1
and fL and fS are functions of the temperature T only.

In general, Mφ may be a function of φ itself, as well as its derivatives, and
possibly other model variables. For the examples in this paper, Mφ will be set
to a constant value.

2.2 Orientation equation

From (12), we have, for i = 1, . . . , 4,

∂I

∂∇qi

=

(
εq +

Dq(φ)

|∇q|

)
∇qi (20)

and

∂I

∂qi

= 2λqi. (21)

Hence, from (15) and (3) we obtain

q̇i −Mq(φ)

{
∇ ·

(
εq +

Dq(φ)

|∇q|

)
∇qi − 2λqi

}
= 0, i = 1, . . . , 4 (22)∑

i

q2
i − 1 = 0. (23)

We allow the mobility Mq to depend on φ in order to limit rotation in the
ordered phase, further detailed below. Equations (22)–(23) comprise a semi-
explicit, differential-algebraic system of index two (see, e.g., [21] for more
information about the theory and numerical solution of differential-algebraic
systems). Although an algorithm for the integration of such a system could be
pursued, it is generally the case that the numerical integration of differential-
algebraic systems of index two or higher is facilitated by first reducing the
index of the system. In the present case, this is accomplished by replacing
(23) by its time derivative and substituting (22), giving

0 = 2
∑

i

qiq̇i = 2
∑

i

qi

[
∇ ·

(
εq +

Dq(φ)

|∇q|

)
∇qi − 2λqi

]
, (24)

which yields an explicit expression for λ. Upon elimination of λ in (22), we
obtain the ordinary differential equations
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q̇i = Mq(φ)

{
∇ ·

(
εq +

Dq(φ)

|∇q|

)
∇qi

− qi∑
` q2

`

∑
k

qk∇ ·
(
εq +

Dq(φ)

|∇q|

)
∇qk

}
, (25)

which was originally formulated in [18] (which omits the εq term and includes
a noise term).

For any vector v ≡ (v1, v2, v3, v4), let Π(q)v denote the orthogonal projection
(with respect to the usual Euclidean inner product) of v onto q. The system
(25) can then be written as

q̇ = Mq(φ) (I − Π(q))∇ ·
(
εq +

Dq(φ)

|∇q|

)
∇q. (26)

In this form, it is clear that solutions of (26) also satisfy the invariant

q · q̇ = 0, (27)

which is just a restatement of the differentiated constraint (24). Solutions of
(26) with an initial condition on the constraint surface (23) therefore remain
on the surface at all times. Differentiation of the constraint (23) has thus
replaced the problem of integrating an index two differential-algebraic system
with the equivalent problem of enforcing the invariant (27) in the integration
of an ordinary differential equation.

As with the mobility for the phase equation, the orientation mobility, Mq, may
be a general function. It is common to use a functional form that reduces Mq

as the phase variable, φ, goes to 1 in order to slow or prevent the wholesale
rotation of ordered grains. For the examples in this paper, we will set

Mq(φ) = Mmin
q + m(φ)(Mmax

q −Mmin
q ), (28)

where Mmax
q varies with the problem and Mmin

q = 10−6, i.e., very near zero,
with m(φ) an interpolating monotonic polynomial satisfying m(0) = 1 and
m(1) = 0. We use

m(φ) = 1− φ3
(
10− 15φ + 6φ2

)
. (29)

2.3 Composition equation

The particular form of the composition equation depends upon the relationship
between the variables (cS, cL), and (c, φ) in (4). In Appendix 6.3, the details
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for the Kim, Kim and Suzuki (KKS) model are briefly recalled, which results
in the following equation of motion

∂c

∂t
= ∇ ·D0

c (φ, T )∇c +∇ ·D0
c (φ, T )h′(φ)(cL − cS)∇φ. (30)

To actually compute the right-hand side of (30), we need to know cS(c, φ) and
cL(c, φ). For that, we need to know the exact form of fS and fL. A specific
example for the Hu, Baskes, Stan and Mitchell (HBSM) model of a binary
alloy [22] is given in Appendix 6.4.

3 Numerical algorithm

We next consider the numerical discretization of the phase-field system given
by (19), (26), and (30). Our approach combines a finite volume spatial dis-
cretization with an implicit method of lines temporal discretization.

We begin by introducing a uniform grid on the physical domain Ω and treating
the dependent variables φ, q and c as cell-centered quantities with respect to
this grid. All divergences are also cell-centered and therefore computable using
the divergence theorem and face-centered quantities. The latter are obtained
either by averaging the respective cell-centered quantities or by differencing
if the quantity is a gradient. The quaternion gradients that appear in the
right-hand side of (19) are obtained by averaging face-centered gradients to
the cell centers. We note that this sort of finite volume discretization yields a
conservative discretization of the concentration equations (30). For notational
convenience in the discussion to follow, we will continue to use continuous
spatial operators (i.e., gradients and divergences) to represent their discrete
analogs.

Since the diffusion coefficient in (26) becomes unbounded in the limit of small
|∇q|, we impose a lower bound

|∇q| ≥ β > 0 (31)

in the evaluation of this coefficient on cell faces. The quantity β is therefore a
parameter in the discrete algorithm. The goal in choosing β is to set it small
enough so that the diffusion coefficient in (26) is large enough to flatten the
components of q inside the grains (i.e., where φ is near unity) while not setting
it so small that an unnecessarily fast time scale is introduced. A justification
for the use of such bounds based on the theory of semigroups and extended
gradient systems is presented in [23]. Although a smoother bound involving
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a hyperbolic tangent is actually proposed in [23], we have found in our tests
that the simpler and less expensive bound (31) is equally effective.

The spatially discretized model can be written as a system of ordinary differ-
ential equations

ẏ(t) = f(t, y(t)), y(0) = y0, (32)

where

y(t) ≡


yφ(t)

yq(t)

yc(t)

 ≡


φ(t)

q(t)

c(t)

 (33)

and

f(t, y(t)) ≡


fφ(t, yφ(t), yq(t), yc(t))

fq(t, yφ(t), yq(t), yc(t))

fc(t, yφ(t), yq(t), yc(t))

 , (34)

where fφ and fq are the spatially discretized right-hand sides of (19) and (26),
respectively, while fc is the right-hand side of (30).

The inclusion of the orientation components in (32) imposes important re-
quirements for numerical integration. Since the coefficients Dq(φ, T )/|∇q| in
(26) can be large, introducing a potentially fast time scale, an implicit method
is recommended for the integration of (32) to avoid the stability-imposed time
step limitation of an explicit scheme. Moreover, the solution invariant (27)
must be preserved. We note that a simple implicit rule such as backward
Euler

qn+1 = qn + (tn+1 − tn)fq(t
n+1,qn+1), (35)

does not preserve this invariant: if qn lies on the unit sphere, then qn+1 cannot
also lie on the unit sphere and be orthogonal to fq(t

n+1,qn+1).

To accommodate the above requirements, we employ variable-order, variable-
step backwards difference formulas (BDFs) combined with a coordinate pro-
jection. Our choice of integration method is also influenced by the availability
of a well-developed software package implementing the algorithms we now
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summarize. At each discrete time tn, the use of a BDF results in a nonlinear
system to be solved for the discrete solution yn at time tn

G(yn) = h−1
n

k∑
i=0

σn,iy
n−i − f(tn, yn) = 0, (36)

where hn is the current time step, k is the integration order, and the σn,i are the
BDF coefficients. The quantities hn, k and the σn,i can be chosen adaptively
during the integration, based on estimates of the local truncation error and
other factors, to maintain stability and achieve accuracy to user-prescribed
tolerances. Following the solution of (36), described in more detail below,
and the subsequent computation of a corresponding estimate en of the local
truncation error satisfying a prescribed tolerance, the orientation component
yn
q of the solution yn is renormalized (projected) onto the unit sphere

yn
q → yn

q/|yn
q|, (37)

and the orientation component en
q of en is projected orthogonally onto the

subspace orthogonal to the resulting yn
q

en
q → en

q − yn
q · en

q. (38)

The fact that such seemingly ad hoc projections do not degrade the stability
or accuracy of a BDF integration is proved in [24], in which it is shown that
the use of a BDF with coordinate projection is stable if the underlying non-
projected method is, and the order of convergence remains the same, including
variable order (through sixth-order) and variable step BDFs. For linear mul-
tistep methods applied to linear systems, the analysis of [24] concluded that
the only error components that matter are those lying in the invariant man-
ifold, so one can (and should) project out the extraneous components of the
local truncation error estimates as in (38). In applying coordinate projection
to the integration of the particular system (32), since the solution invariant
only involves the yq component, the identity is used in projecting the remain-
ing components yφ and yc, i.e., the latter components and their corresponding
local error estimates are unaffected by the coordinate projection step.

The nonlinear system (36) is solved using a Newton-Krylov algorithm. Starting
with a predicted solution value at the new time step, yn

m+1, an inexact Newton
iteration

J(ỹn)(yn
m+1 − yn

m) = −G(yn
m), (39)
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is performed, where J(ỹ) is some approximation to the system Jacobian, i.e.,

J(ỹ) ≈ ∂G

∂y
(ỹ) =

σn,0

hn

I − ∂f

∂y
(ỹ) (40)

evaluated at ỹ, which can be the current Newton iterate, yn
m, an earlier Newton

iterate or some other prediction of the solution at time tn. The Jacobian system
(39) is solved using a Generalized Minimum Residual (GMRES) iteration [25].
The advantage of using a Krylov subspace method like GMRES is that only
products of the Jacobian matrix ∂G/∂y times vectors are required, which are
computed using finite differences of the system right-hand side f . That is, for
an arbitrary vector v

∂f

∂y
(ỹ)v ≈ f(ỹ + σv)− f(ỹ)

σ
(41)

for small σ.

Although the Newton-Krylov approach avoids the need to evaluate and store
the Jacobian matrix, a preconditioner is nevertheless required for effective
convergence of the GMRES iteration. Since the preconditioner is only required
to approximate the system Jacobian, we construct one containing the most
dominant terms, which include the diffusive operators whose eigenvalues scale
like the inverse square of the mesh size. Specifically, we take

P ≡


Pφ,φ 0 0

Pq,φ Pq,q 0

0 0 Pc,c

 , (42)

where

Pφ,φ≡
{

σn,0

hn

+ Mφωg′′
(
φ̃
)}

I −Mφε
2
φ∇2 (43)

Pq,φ≡ (L, L, L, L)T , (44)

Pq,q≡



K 0 0 0

0 K 0 0

0 0 K 0

0 0 0 K


, (45)

Pc,c≡
σn,0

hn

I −∇D0
c∇, (46)
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and K and L are the linear operators defined by

Kqi≡
σn,0

hn

qi −Mq

(
φ̃
)
∇ ·

εq +
D
(
φ̃
)

|∇q̃|

∇qi, i = 1, . . . , 4, (47)

Lφ≡−M ′
q

(
φ̃
)
φ∇ ·

εq +
D
(
φ̃
)

|∇q̃|

∇q̃−Mq

(
φ̃
)
∇ · D′(φ̃)φ

|∇q̃|
∇q̃. (48)

Here, φ̃ and q̃ denote the components of the vector about which the lineariza-
tion is being performed. For example, these could be the components of the
current Newton iterate or even the solution at a previous time step, depending
upon how frequently the preconditioner is being updated. At certain steps in
the GMRES algorithm, the solution z of the linear system

Pz = r (49)

for a given right-hand side r is required, which can be performed using forward
block elimination. The only nontrivial step involves the (approximate) inver-
sion of the matrix K. Since K is symmetric and positive definite, a variety of
appropriate solvers can be employed. For robustness, we employ a multigrid
preconditioned conjugate gradient algorithm.

We have implemented the algorithm just described in a research code called
AMPE, which was used to obtain the example result presented in Section 4. In
AMPE, we employ the general-purpose integrator CPODES to integrate the
system (32). CPODES solves systems of ordinary differential equations with
invariants using the combination of BDF, coordinate projection, and Newton-
Krylov type algorithms summarized above. CPODES is closely related to the
predecessor CVODE integrator, primarily adding the coordinate-projection
capability. Distributed as part of the Sundials [26] suite of time integrators
and nonlinear solvers, CVODE uses linear multistep methods to integrate stiff
or nonstiff systems of ordinary differential equations, automating the problem-
independent portions of local error estimation, step size and order selection,
and nonlinear solves. Following a beta test period and the creation of appro-
priate documentation, the recently developed CPODES integrator will also be
available as part of the Sundials suite. For the solution of the linear systems
in (49), we employ a multigrid preconditioned conjugate-gradient solver from
the Hypre library [27].

A complication in the use of Newton iteration for the solution of the nonlin-
ear equation (36) is the presence of the |∇q| factors in the phase equation
(19) and the diffusion coefficient of the orientation equation (26), since these
factors are not differentiable at ∇q = 0. Even when a smooth lower bound is
placed on |∇q| to maintain a finite diffusion coefficient in (26), the evaluation
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Fig. 1. Idealized 2D grain growth and coarsening: three snapshots of time evolution
of Phase (top) and Orientation (bottom) variable at t=0 (initial condition), t=2,
t=50. The different colors indicate different grain orientations.

of an approximate Jacobian product via finite differencing as in (41) can still
result in the generation of poor search directions for the Newton root-finding
algorithm. To avoid the finite differencing of the non-differentiable |∇q| fac-
tors, we simply suppress them during the computation of the Jacobian-vector
products. Specifically, we ensure that both function evaluations in the calcu-
lation of the finite difference (41) are performed using the same value of |∇q|.
This removes the contribution of the |∇q| term in the phase equation to the
Jacobian product. Compared with the time scales embedded in the discrete
diffusion terms, neglecting the latter term in this manner does not signifi-
cantly affect the accuracy of the Jacobian approximation. The elimination of
this term is also consistent with the preconditioner described above, where the
(1,2) block Pφ,q is zero as well. The latter is important, since it enables (49) to
be solved by forward elimination rather than a more complicated block solve.
Lagging |∇q| in the quaternion diffusion coefficient results in a term that is
linear in q, and therefore easily and accurately (except for the small lagging
error) differentiated by the finite difference (41).
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εφ 0.1 (E/L)1/2

εq 0.02 (E/L)1/2

fL 5.0 E/L3

fS 0.0 E/L3

ω 2.5 E/L3

T 1.0 T

Mφ 1.0 t−1E−1

Mmax
q 10.0 t−1E−1

H 1.0 E/TL

Table 1
Simulation parameters for idealized grain growth and coarsening. t, E, L, T denote
a consistent set of time, energy, length and temperature units

4 Numerical examples

4.1 Idealized grain growth and coarsening in 2D

As an example of the use of the full quaternion-orientation parameter, we
simulate the growth of a random distribution of multiple non-overlapping solid
(φ = 1) grains of randomly varying orientation within a disordered region (φ =
0). The problem geometry is two-dimensional (2D), although the orientation
is three-dimensional (3D). The initial condition and two snapshots at later
times are shown in Fig. 1. The four components of the quaternion have been
mapped to a colormap of RGB plus alpha.

The physical domain is a square with side length of 2, discretized with 256
cells in each direction. The parameters for this simulation are set to idealized
values to display representative behavior, rather than attempting to simulate
any particular physical system, and are shown in Table 1. Nominally, values
have been set to order 1, then adjusted for balance between phase energy
and misorientation energy and adequate resolution of interfaces at this mesh
spacing. Orientation mobility is set high enough to avoid impeding the early
growth of grains.

There is an initial rapid period of grain growth as the grains expand through
solidification into the disordered region. As the grains impinge on one another,
the misorientation between them causes interfaces to form. It can be seen from
Fig. 1 that the interface width between grains varies with the relative degree of
misorientation of those grains. The variation of the orientation mobility with
phase from (28) prevents grains from rotating, so the subsequent coarsening
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of the grain structure leads to some grains shrinking and subsequently disap-
pearing, which happens on a much longer timescale than the initial growth.

4.2 Ostwald ripening of a binary alloy in 2D

We next illustrate the application of our algorithm to the study of structure
evolution in binary alloys with a simulation of Ostwald ripening. Ostwald
ripening is a phenomenon observed in solids and liquids in which a precipitate
grows at the expense of smaller precipitates that have higher solubility into
the bulk matrix of the material. Phase-field modeling has proven to be an
ideal tool for the study of such processes [28].

Adopting the model and parameters proposed by Hu, Baskes, Stan and Mitchell
(HSBM) in [22] (see also Section 6.4 of the Appendix), we consider two spher-
ical particles in a face-centered cubic (fcc) phase evolving in a body-centered
cubic (bcc) matrix. Parameters related to the misorientation energy are de-
termined in such a way that the single grain growth are similar to the HBSM
model. The growth is diffusion controlled, and the mobilities Mq and Mφ are
chosen as small as possible, but sufficiently large, such that the grain growth is
controlled by the composition equation. Using larger values for those param-
eters does not influence the grain growth, but would make the whole problem
stiffer, reducing the time step. The diffusion coefficient for the composition
equation is given by

D0
c (φ, T ) = h(φ)D̃δ(T ) + (1− h(φ))D̃ε(T ), (50)

with

D̃ϕ(T ) = D0
ϕ exp(−Q0

ϕ/RT ) (51)

for ϕ = δ(fcc), ε(bcc), and where R is the gas constant. Values for D0
δ , D0

ε , Q0
δ

and Q0
ε have been measured experimentally [29,30]. Parameter values used in

our simulation are summarized in Table 2.

The physical domain is a 6.4 µm × 6.4 µm square and is discretized using
a 128 × 128 mesh. As mentioned above, the problem is initialized with two
fcc grains (φ = 1) surrounded by a bcc region (φ = 0). The temperature is
fixed at 873 K. The composition c of the alloying element is initialized with
its equilibrium fcc phase value inside the grains (c = 0.10). The bcc region
is initialized with a uniform composition value above equilibrium (c = 0.06
vs. 0.05), and thus constitutes a source of the alloying element for the two
grains to grow. The two grains are given two of the three possible orienta-
tions for fcc phase obtained from bcc through the inverse Bain distortion:
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Parameters used in the binary alloy simulation

εφ 0.165 (pJ/µm)1/2

εq 0.1 (pJ/µm)1/2

ω 0.4125 pJµm−3

D0
ε 56000 µm2s−1

D0
δ 1.3 · 108 µm2s−1

Q0
ε 55.29× 103 Jmol−1

Q0
δ 156.4× 103 Jmol−1

Mφ 200 s−1pJ−1

Mmax
q 200 s−1pJ−1

H 10−3 pJK−1µm−1

Aε 666 pJµm−3

Aδ 666 pJµm−3

Table 2
Values of parameters used in the binary alloy simulation (adapted from [22] using
a molar volume of 1.5× 10−5 m3mol−1).

q = (cos(π/2), sin(π/2), 0, 0) and q = (cos(π/2), 0, sin(π/2), 0), while the
bcc region is initialized with q = (1, 0, 0, 0). Before starting the simulation,
we let the variable q diffuse in the bcc region by evolving the model with
Mφ = Mc = 0 and H = 0.

As shown in Fig. 2, the two grains grow until they enter into contact. Sub-
sequently, the larger grain keeps growing while the smaller one shrinks and
eventually disappears. At equilibrium, the fraction of each phase (fcc or bcc)
is given by the lever rule [31].

4.3 3D grain growth and coring in a binary alloy.

Coring is a well-known phenomenon in alloys [32] that illustrates how the
competition between thermodynamic and kinetic driving forces can impact the
composition field of off-equilibrium microstructure. Consider the two-phase
(ε + δ) region in an A-B binary alloy phase diagram (e.g., liquid+solid, or
solid+solid as in the present example) illustrated in Fig. 3. Under equilibrium
conditions, at T0 the δ phase starts nucleating and takes from the ε phase a
disproportionately large amount of the B component, causing the ε phase to
become richer in A component, compared with the nominal alloy composition
c0. As temperature decreases, the trajectories of the composition field for the
ε and δ phases evolve along the (solid) lines indicated by single arrows in
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Fig. 2. 2D Ostwald ripening in alloy: phase (top), concentration (middle), 2nd com-
ponent of orientation (bottom), with snapshots at time t=0, 0.36, and 1.48 s. Phase
of 0 and 1 correspond to bcc and fcc phase, respectively.

Fig. 3. The ε phase keeps being richer in A species and the δ phase must also
moves toward higher A content, and this can only happen by the preferential
adsorption of A from the ε phase and the diffusion of A species into the δ phase
formed previously at higher temperature. Because of the strong adjustment
in composition in the two phases that needs to occur, compared with the
nominal alloy composition c0, departure from equilibrium is to be expected
when ordinary cooling rates are used. In the example about to be considered,
it can be assumed that homogeneous equilibrium is maintained in the ε phase
but not in the δ phase where the rate of diffusion is much lower, i.e., D̃ε >> D̃δ.
Hence a cored structure (gradient of composition) develops inside the δ grains
with an average composition that evolve along the dotted line (with double
arrow) in Fig. 3, whereas the ε matrix is compositionally homogeneous.

Before we illustrate the application of PFM to coring, let us first consider the
3D growth of a single spherical fcc (δ) grain of diameter 0.6 µm at T = 873 K
embedded in a bcc (ε) matrix. As in the 2D example, compositions are initially
set to 0.10 inside the fcc grain and 0.06 in the bcc region, and the parameter
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Fig. 3. Schematic representation of coring in a two-phase A-B binary alloy (HBSM
model). The data are those that have been used in the PFM-based calculations.

Fig. 4. Binary alloy: growth rate for an fcc spherical grain in a bcc matrix at 873 K.

values listed in Table 2 are used. The computational domain is a cube of size
12.8 µm×12.8 µm×12.8 µm discretized with a 256×256×256 uniform mesh.
When we let the system evolve, the grain grows and we measure its diameter
as a function of time (Fig. 4). After an initial phase during which the initially
sharp grain boundary is smoothed out, a growth rate proportional to t1/2 is
observed, as expected for a phase-field model [33].

Next we consider the more general case of several fcc grains growing together
in a bcc matrix. As an initial condition, we generate twenty non-overlapping
spherical grains located at random positions in a 12.8 µm×12.8 µm×12.8 µm
domain, each with one of the three possible orientations for the δ phase. As in
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Fig. 5. Initial fcc grains (nuclei) in a bcc matrix for a 3D alloy simulation.

the previous grain growth problem, each grain has an initial nucleated radius
of 0.6 µm and a composition c = 0.10, while the rest of the domain comprised
of ε phase has an initial composition c = 0.06. The problem is discretized on
a 256× 256× 256 uniform mesh.

The initial temperature is 873 K, which is inside the bcc+fcc region of the
phase diagram for a 6% composition. We use a cooling rate of dT/dt =
−20K/s and carry out a run for 2 s physical time. At this time the temperature
reaches 833 K, which is the boundary between the two-phase bcc+fcc region
and the single-phase fcc region in the phase diagram (cf. Fig. 3). This run
remains in the temperature range over which the HBSM model is valid. The
initial grain distribution is shown in Fig. 5. The phase variable and composi-
tion after 2 s are shown in Fig. 6. One can observe coring due to the relatively
slow diffusion of composition inside the grains. Grains of the same orientation
merge together once they impinge. The whole calculation took approximately
1400 time steps and 14 hours on 64 processors 2 . We set a maximum BDF
integration order of 2, which is the order selected by the integrator for every
time step except for the initial 2 steps, which were order 1. Each time step
required an average of 1.4 Newton iteration and 3.8 linear iterations.

Finally we look at the parallel scaling of our code. Our parallel implementation
is built on the SAMRAI (Structured Adaptive Mesh Refinement Application
Infrastructure) framework [34,35] using a standard spatial domain decomposi-
tion. Fig. 7 shows a strong scaling (speedup) result measured for the 3D alloy
simulation described above. For this fixed problem size, there is a roughly 7.5x
speedup with an 8x increase in the number of processors from 64 to 512.

2 Quad AMD Opteron Dual Core 2.4 GHz Infiniband Linux cluster.
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Fig. 6. State after 2 s of a 3D simulation of a binary alloy. Left: phase variable. φ = 0
(resp. φ = 1) corresponds to bcc (resp. fcc) phase. Right: composition variable.

Fig. 7. Parallel speedup for the 3D binary alloy structure evolution problem. The
discretization mesh is 256 × 256 × 256. System: Thunder Linux cluster, Lawrence
Livermore National Laboratory, Quadrics interconnect, Intel IA-64 Itanium 2 1.4
GHz (5.6 GFlops) processors.

5 Conclusions

We have developed a numerical algorithm for the solution of a phase-field
model of binary materials that includes a quaternion representation of lo-
cal crystallographic orientation. Our approach uses a finite-volume spatial
discretization combined with an implicit BDF-Newton-Krylov temporal dis-
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cretization. The BDF algorithm incorporates a coordinate projection step to
maintain unit quaternion length. Some special considerations arising in the
use of Newton iteration to solve the nonlinear system at each time step were
addressed, as well as a preconditioning strategy for the GMRES solution of
the Jacobian system in each Newton step. We have demonstrated the perfor-
mance of our algorithm on 2D examples of grain growth and Ostwald ripening
as well as 3D alloy examples of single grain growth and multiple grain growth
during cooling. The scalability of our implementation on massively parallel
computer systems was also shown.

Our implementation AMPE (Adaptive Mesh Phase Evolution) of the algo-
rithm described in this paper includes the ability to perform adaptive mesh
refinement (AMR). AMR enables the interfaces between grains to be resolved
using finer mesh than in the interior of grains. Since the inclusion of AMR
results in substantial algorithmic modifications beyond those described here,
we defer this discussion to a future article.

Future directions for expanding the model considered in this paper include
the addition of elastic energy, additional phase-order parameters for more
than two material phases, and additional composition parameters for more
than two material components. Including elastic energy requires the solution
of an additional equation for displacements, which are assumed to be in equi-
librium with the existing equations [36]. Efficient solution of this additional
equation is expected to present further challenges. Including additional com-
ponents and ordered phases is relatively straightforward in terms of numerical
implementation, though doing so significantly increases the complexity of the
code implementation.
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6 Appendix

6.1 Functional derivatives

Let

F (u) = F (u1, . . . , un) =
∫
Ω

I(u1, . . . , un)dΩ (52)

be a functional on a space of function tuples u = (u1, . . . , un) where the ui are
defined and periodic on the domain Ω. By definition, the functional derivative
of F with respect to ui at any point û = (û1, . . . , ûn) is the functional whose
action is defined by

〈
δF

δui

(û), v

〉
=

d

dε

∫
Ω

I(û1, . . . , ûi + εv, . . . , ûn)dΩ

∣∣∣∣∣∣
ε=0

for all v. (53)

Hence, for all v,

〈
δF

δui

(û), v

〉
=
∫
Ω

(
∂I

∂ui

(û)v +
∂I

∂∇ui

(û) · ∇v

)
dΩ (54)

=
∫
Ω

[
∂I

∂ui

(û)v +∇ ·
(

∂I

∂ui

(û)v

)
−
(
∇ · ∂I

∂ui

(û)

)
v

]
dΩ (55)

=

〈
∂I

∂ui

(û)−∇ · ∂I

∂ui

(û), v

〉
, (56)

where the second term in (55) vanishes due to the divergence theorem and the
assumed periodicity of v. Thus,

δF

δui

=
∂I

∂ui

−∇ · ∂I

∂∇ui

. (57)

6.2 Quaternions

By analogy with complex numbers, a quaternion q can be written as a linear
combination

q = (a + ib + jc + kd) (58)
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with 3 imaginary dimensions i, j, k. In the following we will assume that all of
the quaternions are normalized, i.e. a2 + b2 + c2 + d2 = 1. A rotation by an
angle θ around an axis of direction (x, y, z) can be described by a quaternion

q = cos(θ/2) + i(x ∗ sin(θ/2)) + j(y ∗ sin(θ/2)) + k(z ∗ sin(θ/2)) (59)

where (x, y, z) is assumed to be normalized. We denote by

q∗ = a− ib− jc− kd (60)

the conjugate of q. Using the quaternion multiplication rules, i.e., ij = k, jk =
i, ki = j, ji = −k, kj = −i, ik = −j, i2 = j2 = k2 = −1, the rotation
between two quaternions, q1 and q2, can be computed as either q∗1q2 or q2q

∗
1,

depending on an arbitrary convention. Due to the non-commutative nature
of the quaternion multiplication, these two are not equivalent, but are the
conjugate of each other. They correspond to a rotation by the same angle
around an axis of opposite direction.

The formula for the misorientation angle between two unit-length quaternions
is given by

|d21| = 2 sin(θ12/4). (61)

where |d21| is the distance between q1 and q2 in the 4D space, and θ12 is the
angle between q1 and q2 (note the factor of 2). The mapping from unit quater-
nions to rotations is 2-to-1. Multiplying a quaternion by an overall factor of -1
has no physical effect. Two quaternions on opposite sides of the hypersphere
are a distance |d21| = 2 apart, which gives θ12 = 2π, which is no rotation at
all. To first order, (61) gives

θ ' 2|d21| (62)

and justifies using quaternion differences to approximate local misorientation
[18].

6.3 Derivation of the Kim, Kim, Suzuki (KKS) model

In [19], Kim et al. define the relation between the variables (cS, cL), and (c, φ)
in (4) by imposing the condition

∂fS

∂cS

∣∣∣∣∣
cS=cS(x,t)

=
∂fL

∂cL

∣∣∣∣∣
cL=cL(x,t)

= µ(x, t). (63)
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This means that the chemical potential is equal for both phases at the infinites-
imal point x, and thus there would be no change in free energy by exchanging
an infinitesimal amount of species between phases S and L.

In the KKS model, we also define

Dc(c, φ, T ) = D0
c (φ, T )

(
∂2f

∂c2

)−1

. (64)

From (6) and (63), we obtain

∂f

∂c
= h(φ)

∂fS

∂cS

∂cS

∂c
+ [1− h(φ)]

∂fL

∂cL

∂cL

∂c

= µ

(
h(φ)

∂cS

∂c
+ [1− h(φ)]

∂cL

∂c

)
(65)

and from (4)

1 =
∂c

∂c
= h(φ)

∂cS

∂c
+ [1− h(φ)]

∂cL

∂c
(66)

From (65) and (66), we then get

∂f

∂c

∣∣∣∣∣
c=c(x,t)

= µ(x, t) (67)

(Eq. 28 of [19]).

From (6), we also have

∂f

∂φ
= h′(φ)(fS(cS)− fL(cL)) + ωg′(φ)

+ h(φ)µ
∂cS

∂φ
+ (1− h(φ))µ

∂cL

∂φ
. (68)

Noticing that, since c is independent of φ,

h(φ)
∂cS

∂φ
+ (1− h(φ))

∂cL

∂φ
=

∂c

∂φ
− h′(φ)(cS − cL)

=−h′(φ)(cS − cL), (69)
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we get

∂f

∂φ
= −h′(φ)

(
fL(cL)− fS(cS)− µ(cL − cS)

)
+ ωg′(φ) (70)

(Eq. (27) of [19]). We also get

∂

∂c

(
∂f

∂φ

)
=−h′(φ)

[
∂fL

∂cL

∂cL

∂c
− ∂fS

∂cS

∂cS

∂c
− µ

(
∂cL

∂c
− ∂cS

∂c

)
− ∂2f

∂c2
(cL − cS)

]

= h′(φ)(cL − cS)
∂2f

∂c2
(71)

using (63). This is Eq. (30) of [19].

Now, since f is a function of c and φ,

∂

∂x

∂f

∂c
=

∂2f

∂c2

∂c

∂x
+

∂2f

∂c∂φ

∂φ

∂x
(72)

and we have

∇µ = ∇∂f

∂c
=

∂2f

∂c2
∇c +

∂2f

∂c∂φ
∇φ (73)

From Eqs. (16), (64),(71),(73), we obtain

∂c

∂t
= Mc∇ ·D0

c (φ, T )∇c + Mc∇ ·D0
c (φ, T )h′(φ)(cL − cS)∇φ (74)

which is Eq. (33) of [19].

To actually compute the right hand side of (74), we need to know cS(c, φ) and
cL(c, φ). For that, we need to know an explicit form of fS and fL. See, for
example, Section 6.4.

6.4 Hu, Baskes, Stan, Mitchell (HBSM) model for a binary alloy

In [22], Hu et al. propose a phase-field model for a binary alloy. The two
phases are ε, or body-centered cubic (bcc) and δ, or face-centered cubic (fcc)
(to substitute for L and S, respectively, in the preceding section). The following
explicit forms for f ε and f δ are proposed:

f ε(cε, T ) = Aε (cε − ceq
ε (T ))2 , (75)
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f δ(cδ, T ) = Aδ (cδ − ceq
δ (T ))2 . (76)

Using (63), we obtain

Aε(cε − ceq
ε ) = Aδ(cδ − ceq

δ ) (77)

and thus

cε(cδ, T ) = ceq
ε + Aδ(cδ − ceq

δ (T ))/Aε (78)

cδ(cε, T ) = ceq
δ + Aε(cε − ceq

ε (T ))/Aδ (79)

From (4), we then get

cε(c, φ, T ) =
c− h(φ)

(
ceq
δ (T )− Aε

Aδ
ceq
ε (T )

)
(1− h(φ)) + h(φ)Aε

Aδ

(80)

cδ(c, φ, T ) =
c− (1− h(φ))

(
ceq
ε (T )− Aδ

Aε
ceq
δ (T )

)
h(φ) + (1− h(φ))Aδ

Aε

(81)

These expressions for cε(c, φ, T ) and cδ(c, φ, T ) can be substituted into (74) to
have a right-hand side function that depends explicitly on φ and c.
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