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Abstract

A new scheme for numerical integration of the 1D2V relativistic Vlasov-
Maxwell system is proposed. Assuming that all particles in a cell of the
phase space move with the same velocity as that of the particle located
at the center of the cell at the beginning of each time step, we successfully
integrate the system with no artificial loss of particles. Furthermore, splitting
the equations into advection and interaction parts, the method conserves
the sum of the kinetic energy of particles and the electromagnetic energy.
Three test problems, the gyration of particles, the Weibel instability, and
the wakefield acceleration, are solved by using our scheme. We confirm that
our scheme can reproduce analytical results of the problems. Though we
deal with the 1D2V relativistic Vlasov-Maxwell system, our method can be
applied to the 2D3V and 3D3V cases.

Key words: Relativistic Vlasov-Maxwell system, Plasma instability,
Laser-plasma interaction

1. Introduction

In a wide range of plasma processes operating in laboratories or astrophys-
ical phenomena, interactions between relativistic particles and electromag-
netic fields play vital roles. For instance, recent laser experiments revealed
that a high intensity laser can accelerate particles to ultra-relativistic speed
(see, e.g., Esarey et al. [1]). Non-thermal components found in spectra of
active astrophysical objects, e.g., supernova remnants, gamma-ray bursts,
and jets from active galactic nuclei, are interpreted as synchrotron radiation
emitted by charged, relativistic particles gyrating about magnetic field lines.
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There are two approaches in order to model such plasmas. One is the fluid
approach based on the relativistic magnetohydrodynamics(RMHD) and the
other is the kinetic approach based on the Boltzmann equation coupled with
the Maxwell equations. Because the fluid approach implicitly assumes that
the distribution of particles in the momentum space is the Maxwell-Jüttner
distribution, which is the relativistic extension of the classical Maxwell-
Boltzmann distribution, the kinetic approach is indispensable for dealing
with the momentum distribution deviating from the thermal equilibrium.
Especially, dilute plasmas in which collisions between particles composing
the plasmas are absent, often called collisionless plasmas, are known to be
modeled by the so-called Vlasov-Maxwell system [2].

At present, the most reliable and reasonable method to simulate dynam-
ical behaviors of collisionless plasmas is the particle-in-cell (PIC) simulation
(see, e.g., Birdsall and Langdon [3]), which calculates the orbits of charged
particles by solving the equation of motion and the configuration of elec-
tromagnetic fields by solving the Maxwell equations. In this method, the
momentum distribution of plasmas is approximated by an ensemble of the
momentum of each particle placed in the physical space. Although the num-
ber of particles in virtual plasmas produced by a PIC simulation is much
smaller than that in real plasmas, it is known that behaviors of plasmas are
well reproduced by the method. Nevertheless, we cannot avoid significant
numerical noises due to the shortage of particles when we focus on the high
momentum tail of the distribution function of plasma particles.

On the other hand, the direct numerical integration of the Vlasov-Maxwell
system (referred to as ”Vlasov simulation”), which discretizes the momen-
tum space as well as the physical space, does not suffer from such noises.
Therefore, some methods to perform the Vlasov simulation have been de-
veloped [4, 5, 6, 7]. While Vlasov simulations require higher computational
performance than PIC simulations do, recent developments of computational
technology allow us to study plasma processes by using Vlasov simulations.
For example, Mangeney et al. [7] presented a scheme to numerically inte-
grate the 2D3V Vlasov-Maxwell system (the term ”2D3V” means the two
dimensional space associated with the three dimensional velocity space) and
demonstrated that the scheme could simulate the Weibel instability with
high accuracy. Valentini et al. [8] provided a scheme for the integration of the
electrostatic 1D2V Vlasov-Poisson system in a uniform magnetic field. They
adopted the polar coordinates in the velocity space, which allows them to
perform simulations with a good energy conservation. The scheme presented
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by Valentini et al. [9] integrates the Vlasov-Maxwell system in the hybrid ap-
proximation, i.e., they solve the 2D3V electromagnetic Vlasov equation for
ions and fluid equations for electrons, based on the current advance method
introduced by Matthews [10]. Suzuki and Shigeyama [11] investigated non-
linear behavior of the Weibel instability in detail by using a scheme similar
to that of Mangeney et al. [7]. Schmitz and Grauer [12] performed a se-
ries of simulations for the magnetic reconnection and confirmed that their
results are consistent with those of some PIC simulations. However, the at-
tempts stated above treated only non-relativistic plasmas. Investigations into
the numerical integration of the relativistic Vlasov-Maxwell system are still
rare. Although Besse et al. [13] presented a scheme for the 1D2V relativistic
Vlasov-Maxwell system, they assumed that particles have no dispersion in
the transverse momentum space. Furthermore, there exists another problem
that the mass and energy conservations are not always guaranteed unlike
PIC simulations.

In this paper, we propose a new conservative scheme for the numerical
integration of the 1D2V relativistic Vlasov-Maxwell system that allows par-
ticles to have dispersions in the momentum space. The scheme is based on
the semi-Lagrangian approach, which is extensively used to solve the Vlasov-
Maxwell system [13, 14, 15]. In Sec. 2, we introduce the 1D2V relativistic
Vlasov-Maxwell system and some characteristic scales, and then transform
the equations for convenience of the subsequent sections. Sec. 3 describes
the method for the numerical integration of the system. In Sec. 4, we calcu-
late three test problems using the scheme proposed in Sec. 3, the gyration of
particles, the Weibel instability, and the wakefield acceleration. We conclude
this paper in Sec. 5.

2. Formulation

In this section, we present a scheme for the numerical integration of the
1D2V relativistic Vlasov-Maxwell system.

2.1. The relativistic Vlasov-Maxwell system

We consider a plasma whose spatial distribution varies along one direc-
tion, which implies that only two components of the momenta of particles,
the longitudinal and the lateral components, need to be calculated. Thus,
the 1D2V Vlasov equation for species s describes the kinetic evolution of the
distribution function f s(x, p, q, t) (s = e for electrons and s = i for ions) in
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the phase space (x, p, q), where x is the coordinate in the physical space, p
is the corresponding coordinate in the momentum space, and q is the coor-
dinate labeling the lateral momentum. In this case, the relativistic Vlasov
equation takes the following form,

∂f s

∂t
+

p

msΓs

∂f s

∂x
+Qs

(

E‖ +
q

mscΓs
B⊥

)

∂f s

∂p
+Qs

(

E⊥ − p

mscΓs
B⊥

)

∂f s

∂q
= 0,

(1)
where

Γs =

√

1 +

(

p

msc

)2

+

(

q

msc

)2

(2)

represents the Lorentz factor. The constants ms and Qs represent the mass
and the charge of a species s. c is the speed of light. The electric field
appearing here has two components parallel E‖ and normal E⊥ to the x-axis,
while the magnetic field has only one component B⊥ normal to the x-axis.
Here the normal component of the electric field points to the direction of
the lateral momentum and the electric and magnetic fields are perpendicular
to each other. Thus, they are expressed as vector forms E = (E‖, E⊥, 0)
and B = (0, 0, B⊥) when the momentum vector is expressed as p = (p, q, 0).
Their time evolutions are governed by the Maxwell equations,

∂E‖

∂t
= −4πJ‖,

1

c

∂E⊥

∂t
+

∂B⊥

∂x
= −4πJ⊥,

1

c

∂B⊥

∂t
+

∂E⊥

∂x
= 0, (3)

where the electric current densities J‖ and J⊥ are expressed in terms of
f s(x, p, q, t) as

J‖ =
∑

s

Qs

∫ ∞

−∞

∫ ∞

−∞

p

mscΓs
f s(x, p, q, t)dpdq (4)

J⊥ =
∑

s

Qs

∫ ∞

−∞

∫ ∞

−∞

q

mscΓs
f s(x, p, q, t)dpdq. (5)

2.2. Normalization

For the numerical integration of the equations introduced above, we de-
fine the characteristic value for each physical quantity: 1/ωe as the time
scale, c/ωe as the length scale, mec as the momentum, cmeωe/e as the elec-
tromagnetic field, and meω

2
e/(4πe) as the electric current density. Here ωe is
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the electron plasma frequency defined by

ω2
e =

4πe2n0

me

, (6)

where e is the elementary charge and n0 is the number density. Normalizing
physical variables with these quantities and using the same notations for
normalized quantities, one can obtain the dimensionless Vlasov equation,

∂f s

∂t
+

p

Γs

∂f s

∂x
+Rs

q

[

E‖ +
q

Γs
B⊥

] ∂f s

∂p
+Rs

q

[

E⊥ − p

Γs
B⊥

] ∂f s

∂q
= 0, (7)

where the Lorentz factor is modified to

Γs =
√

(Rs
m)

2 + p2 + q2. (8)

Here Rs
m and Rs

q are dimensionless constants defined by

Rs
m =

ms

me

, Rs
q =

Qs

e
, (9)

respectively. On the other hand, the Maxwell equations lead to the following
dimensionless form,

∂E‖

∂t
= −J‖,

∂E⊥

∂t
+

∂B⊥

∂x
= −J⊥,

∂B⊥

∂t
+

∂E⊥

∂x
= 0, (10)

where the dimensionless electric current densities J‖ and J⊥ are expressed
in terms of f s(x, p, q, t) as

J‖ =
∑

s

Rs
q

∫ ∞

−∞

∫ ∞

−∞

p

Γs
f s(x, p, q, t)dpdq, (11)

J⊥ =
∑

s

Rs
q

∫ ∞

−∞

∫ ∞

−∞

q

Γs
f s(x, p, q, t)dpdq. (12)

These two relations close the system.

2.3. Transformation of equations

For convenience of the following sections, we transform equation (7) into
the conservative form and equation (10) into the advection form.

5



Multiplying equation (7) by Γs(p, q) and some algebraic manipulations
lead to the following equation,

∂(Γsf s)

∂t
+

p

Γs

∂(Γsf s)

∂x
+Rs

q

(

E‖ +
q

Γs
B⊥

) ∂(Γsf s)

∂p

+Rs
q

(

E⊥ − p

Γs
B⊥

) ∂(Γsf s)

∂q
= Rs

q

pE‖ + qE⊥

Γs
f s. (13)

The L.H.S of this equation represents the advection of the rest and kinetic
energy of particles along the characteristics of the Vlasov equation (7), while
the R.H.S is interpreted as the exchange of energy between particles and
electromagnetic fields.

On the other hand, introducing the following variables,

G(x) =
E⊥(x) +B⊥(x)

2
, H(x) =

E⊥(x)− B⊥(x)

2
, (14)

one can rewrite the Maxwell equations for the perpendicular components E⊥

and B⊥ as
∂G

∂t
+

∂G

∂x
= −J⊥

2
,

∂H

∂t
− ∂H

∂x
= −J⊥

2
. (15)

In the following, we integrate the above equations instead of the equations
for the components E⊥ and B⊥.

3. Strategy for numerical integration

In this section, we describe a method for numerical integration of the
dimensionless Vlasov-Maxwell system (7)-(13) introduced in the previous
section.

3.1. Discretization

First, we divide the phase space with the range of [xmin, xmax]×[pmin, pmax]×
[qmin, qmax] into Nx × Np × Nq small cells each of which has the volume
∆x∆p∆q. Thus, ∆x, ∆p, and ∆q are

∆x =
xmax − xmin

Nx
, ∆p =

pmax − pmin

Np
, ∆q =

qmax − qmin

Nq
. (16)
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The center of a cell labeled by integers (i, j, k) is located at (x, p, q) =
(xi, pj , qk), where

xi = xmin +∆x(i− 1/2) for 1 ≤ i ≤ Nx, (17)

pj = pmin +∆p(j − 1/2) for 1 ≤ j ≤ Np, (18)

qk = qmin +∆q(k − 1/2) for 1 ≤ k ≤ Nq. (19)

Next, we define the number of particles of a species s in the cell at time t as,

N s
ijk(t) =

∫ xi+∆x/2

xi−∆x/2

dx

∫ pj+∆p/2

pj−∆p/2

dp

∫ qk+∆q/2

qk−∆q/2

dqf s(x, p, q, t), (20)

and the energy of particles contained in the cell at t;

Es
ijk(t) =

∫ xi+∆x/2

xi−∆x/2

dx

∫ pj+∆p/2

pj−∆p/2

dp

∫ qk+∆q/2

qk−∆q/2

dqΓsf s(x, p, q, t). (21)

On the other hand, we discretize electromagnetic fields by defining them only
at the positions xi,

E
‖
i (t) = E‖(xi, t), E⊥

i (t) = E⊥(xi, t), B⊥
i (t) = B⊥(xi, t). (22)

3.2. Splitting of equations

Applying the operator splitting method, Equation (13) is numerically
integrated by two steps. One is the step for the advection of particles and
electromagnetic fields and the other is the step for the exchange of energy
between particles and electromagnetic fields.

The Vlasov equation (7) is an advection equation with no source term,
while the energy equation (13) contains advection terms and a source term.
We split the energy equation (13) into the two parts as follows,

∂(Γsf s)

∂t
+

p

Γs

∂(Γsf s)

∂x
+Rs

q

(

E‖ +
q

Γs
B⊥

) ∂(Γsf s)

∂p

+Rs
q

(

E⊥ − p

Γs
B⊥

) ∂(Γsf s)

∂q
= 0, (23)

∂(Γsf s)

∂t
= Rs

q

pE‖ + qE⊥

Γs
f s. (24)

One can see that the advection part of the energy equation (23) takes the
same form as the Vlasov equation (7). Therefore, we introduce an operator
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Ap[E
‖(t), G(t), H(t),∆t] that evolves the variables N s

ijk(t) or Es
ijk(t) by a

time interval ∆t according to Equations (7) or (23) for given E‖(t), G(t), and
H(t) (or E⊥(t) and B⊥(t)). For the interaction part, we introduce another
operator Ip[E

‖(t), G(t), H(t),∆t] that evolves the variable Es
ijk(t) by a time

interval ∆t according to Equation (24) with given E‖(t), G(t), and H(t).
We present a method to calculate the time evolution of the quantities

defined by equations (20)-(22). As is the case for the energy equation, the
Maxwell equations contain advection terms and source terms. Thus, we split
them into the two parts as follows,

∂G

∂t
+

∂G

∂x
= 0,

∂H

∂t
− ∂H

∂x
= 0, (25)

∂E‖

∂t
= −J‖,

∂G

∂t
= −J⊥

2
,

∂H

∂t
= −J⊥

2
. (26)

Here we introduce two operators that evolve the variables Gi(t) and Hi(t)
by a time interval ∆t according to Equations (25) as Ag[∆t] and Ah[∆t]. In
addition, for the interaction part, we introduce three operators that evolve
the variables E

‖
i (t), Gi(t), and Hi(t) by a time interval ∆t according to

Equation (26) as Ie[∆t], Ig[∆t], and Ih[∆t]. The explicit procedures of the
thus introduced operators for advection terms are discussed in Sec. 3.3. Sec.
3.5 discusses those for source terms. Using the operators introduced above,
we propose a scheme to numerically integrate the relativistic Vlasov-Maxwell
system according to the following steps,

step1 : N s∗
ijk = Ap[E

‖(t), G(t), H(t),∆t/2]N s
ijk(t)

Es∗
ijk = Ap[E

‖(t), G(t), H(t),∆t/2]Es
ijk(t)

G∗
i = Ag[∆t]Gi(t)

H∗
i = Ah[∆t]Hi(t) (27)

step2 : Es∗∗
ijk = Ip[E

‖(t), G∗, H∗,∆t]Es∗
ijk

E
‖
i (t +∆t) = Ie[∆t]

G∗∗
i = Ig[∆t]G∗

i

H∗∗
i = Ih[∆t]H∗

i (28)

step3 : N s
ijk(t +∆t) = Ap[E

‖
i (t +∆t), G∗∗

i , H∗∗
i ,∆t/2]N s∗

ijk
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Es
ijk(t +∆t) = Ap[E

‖
i (t +∆t), G∗∗

i , H∗∗
i ,∆t/2]Es∗∗

ijk

Gi(t +∆t) = Ag[∆t]G∗∗
i

Hi(t +∆t) = Ah[∆t]H∗∗
i . (29)

The electric current densities J⊥ and J‖, which are necessary for the inte-
gration of the source terms, are evaluated between step1 and step2. The
procedure for the evaluation is explained in Sec. 3.4.

3.3. Advection part

For the integration of the advection part, we make use of the character-
istics of the Vlasov equation (7),

dx

dt
=

p

Γs
,

dp

dt
= Rs

q

(

E‖ +
q

Γs
B⊥

)

,
dq

dt
= Rs

q

(

E⊥ − p

Γs
B⊥

)

, (30)

which are equivalent to the equation of motion of a relativistic charged par-
ticle, because there exists a reliable scheme for the integration of these equa-
tions widely used in PIC simulations [3], the Buneman-Boris method.

At first, using the Buneman-Boris method, we obtain the orbit of a par-
ticle located at the center of each cell (xi, pj, qk) at time t. We thus calculate
the coordinates (x′

i, p
′
j , q

′
k) of the particle at t +∆t as

x′
i = xi +

∫ t+∆t

t

p

Γs
dt,

p′j = pj +

∫ t+∆t

t

Rs
q

(

E‖ +
q

Γs
B⊥

)

dt, (31)

q′k = qk +

∫ t+∆t

t

Rs
q

(

E⊥ − p

Γs
B⊥

)

dt.

We then assume that the other particles in the same cell move with the same
velocity as the particle having been located at the center, which should be a
good approximation for a sufficiently small cell. The relation between the size
of the cell and the accuracy of the above treatment is discussed in §3.7 and
examined in §4.1. The intuitive explanation for the scheme is shown in Figure
1. In each panel, the horizontal axis represents the x-axis and the vertical
axis represents the p- and q-axes. Although we draw the phase space as
two dimensional, actual calculations are performed in the three dimensional
phase space (x, p, q). The procedure to calculate the number of particles in
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the cell (cell 5) located at the center of the surrounding nine cells at t+∆t
is as follows; (1) calculate the orbit of a particle located at the center of each
cell (the left panel) using the Buneman-Boris method. (2) count the number
of particles entering the original position of cell 5 under the assumption for a
uniform distribution of particles inside each cell. In other words, the number
of particles in cell 5 at t + ∆t is defined as that of particles located in the
gray zones in the right panel of Figure 1. Therefore, an explicit expression
of the operator Ap becomes

Ap[E
‖
i , Gi, Hi,∆t]N s

ijk(t) =

i+1
∑

i′=i−1

j+1
∑

j′=j−1

k+1
∑

k′=k−1

N s
i′j′k′(t)

×|x′
i′ − xi′ |
∆x

|p′j′ − pj′|
∆p

|q′k′ − qk′|
∆q

. (32)

Here the summations in this expression run over only the cells overlapping
the original position of the cell at (xi, pj, qk), i.e., cell 5, cell 6, and cell 7 for
the case of Figure 1. We evolve the energy contained in a cell Es

ijk(t) in the
same way. In this method, the number (or the mass) and the kinetic energy
of particles are conserved for each step.

The advection part of the Maxwell equations (25) consists of two linear
advection equations with a constant velocity that have exact solutions in the
form of

G(x, t) = G(x− t, 0), H(x, t) = H(x+ t, 0). (33)

Therefore, assuming ∆t = ∆x, one finds that the relations

Gi(t+∆t) = Gi−1(t), Hi(t+∆t) = Hi+1(t), (34)

hold. We use these relations for the integration of the advection part of the
Maxwell equation. Because this method is based on the exact solution of a
linear advection equation, no numerical diffusion occurs.

3.4. Interpolation

As we noted in Section 3.2, the electric current density needs to be eval-
uated for integration of the interaction part. In the following, we discuss a
method to evaluate the electric current density. The key ingredient for the
method is interpolation of the distribution function f s(x, p, q, t). We know
the number N s

ijk(t) of particles and the energy Es
ijk(t) contained in each cell.
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From the definition of the two variables, the distribution function f s(x, p, q, t)
must satisfy Equations (20) and (21) for given N s

ijk(t) and Es
ijk(t). In other

words, we have two constraints. So the interpolation function, which is de-
fined as f s

ijk(t), generally have the form with two unknown coefficients,

f s
ijk(t) = aijk + bijkg(x, p, q), (35)

where g(x, p, q) is a function and the coefficients aijk and bijk are determined
from the constraints (20) and (21). Here, to determine the form of the func-
tion g(x, p, q), we consider the meaning of the constraints. The constraints,
(20) and (21), are the zero-order and the first-order moment of the Lorentz
factor. Then, we assume the interpolation function f s

ijk(t) to take the form
of

f s
ijk(t) = aijk + bijkΓ

s, (36)

We should note that there are many other candidates for the form of the
interpolation function. If we calculate time evolutions of other macroscopic
variable for each cell, e.g., momenta of particles, second-order moment of
the Lorentz factor, and so on, or use the number N s

i±1j±1,k±1(t) and the
energy Es

i±1j±1,k±1(t) of particles in neighboring cells, we can construct an
interpolation function including more correction terms,

f s
ijk(t) = aijk + bijkΓ

s + cijkh(x, p, q) + · · · , (37)

where h(x, p, q) is a function corresponding to the additional macroscopic
variable. In this study, we use the interpolation function (36), which is a
linear function of the energy of particles, to reduce the computational cost.

Substitution of the interpolation function (36) into the constraints and
some algebraic manipulations lead to

aijk =
〈(Γs)2〉jkN s

ijk(t)− 〈Γs〉jkEs
ijk(t)

∆x∆p∆q[〈(Γs)2〉jk − 〈Γs〉2jk]
, (38)

bijk =
Es

ijk(t)− 〈Γs〉jkN s
ijk(t)

∆x∆p∆q[〈(Γs)2〉jk − 〈Γs〉2jk]
, (39)

where the bracket represents the following integral,

〈A〉jk =
1

∆p∆q

∫ pj+∆p/2

pj−∆p/2

∫ qk+∆q/2

qk−∆q/2

Adpdq. (40)

11



Appendix A gives the expressions of the variables 〈Γs〉jk and 〈(Γs)2〉jk. Thus
the distribution function f s

ijk takes a uniform value in each spatial cell i. Us-
ing this interpolation function, the electric current densities due to a particle
species s are evaluated as

j
s‖
ijk = Rs

q

∫ pj+∆p/2

pj−∆p/2

∫ qk+∆q/2

qk−∆q/2

p

Γs
f s
ijk(t)dpdq

= Rs
q∆p∆q

(

aijk〈
p

Γs
〉jk + bijk〈p〉jk

)

(41)

js⊥ijk = Rs
q

∫ pj+∆p/2

pj−∆p/2

∫ qk+∆q/2

qk−∆q/2

q

Γs
f s
ijk(t)dpdq

= Rs
q∆p∆q

(

aijk〈
q

Γs
〉jk + bijk〈q〉jk

)

(42)

in non-dimensional forms.
However, the thus constructed function f s

ijk is not guaranteed to take
positive values at all points in the region [pj − ∆p/2, pj + ∆p/2] × [qk −
∆q/2, qk+∆q/2] for each i. Because the distribution function of real plasmas
must be positive at any point in the phase space, the interpolation is modified
if f s

ijk takes a negative value. We use the following simple expressions for j
s‖
ijk

and js⊥ijk,

j
s‖
ijk = Rs

q〈
p

Γs
〉
N s

ijk(t)

∆x
, (43)

js⊥ijk = Rs
q〈

q

Γs
〉
N s

ijk(t)

∆x
, (44)

instead of the expressions (42) in cells with negative f s
ijk(t).

One can evaluate the electric current density by summing up these vari-
ables as

J
‖
i =

∑

s

∑

j

∑

k

j
s‖
ijk, J⊥

i =
∑

s

∑

j

∑

k

js⊥ijk. (45)

3.5. Interaction part

In this subsection, we propose a method to integrate the interaction part
with respect to time. This method conserves the sum of the kinetic energy
of particles and the electromagnetic energy.
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Equations (26) are discretized as

E
‖
i (t+∆t) = E

‖
i (t)− J‖(t +∆t/2)∆t,

Gi(t+∆t) = Gi(t)−
J⊥(t+∆t/2)

2
∆t, (46)

Hi(t+∆t) = Hi(t)−
J⊥(t +∆t/2)

2
∆t,

where the electric current densities are evaluated beforehand according to
the procedure described in the previous subsection. These equations give
expressions for the operators Ie, Ig, and Ih. On the other hand, to obtain
the energy Es

ijk(t) of particles in a cell evolved by the interaction part of the
energy equation (24), Equation (24) is integrated with respect to p and q as

∂

∂t

∫ pj+∆p/2

pj−∆p/2

∫ qk+∆q/2

qk−∆q/2

Γsf sdpdq

= E‖

∫ pj+∆p/2

pj−∆p/2

∫ qk+∆q/2

qk−∆q/2

p

Γs
f sdpdq (47)

+E⊥

∫ pj+∆p/2

pj−∆p/2

∫ qk+∆q/2

qk−∆q/2

q

Γs
f sdpdq,

which means that the total energy of particles in a cell is changed by inter-
actions between particles and electric fields. Discretizing this equation, we
then propose the following scheme for the integration:

Es
ijk(t+∆t)−Es

ijk(t)

∆t
=

E‖(t +∆t) + E‖(t)

2
j
s‖
ijk +

E⊥(t+∆t) + E⊥(t)

2
js⊥ijk,

(48)
which gives an expression for the operator Ip.

In the following, we will show that this procedure conserves the total
energy. Summing up the above equation with respect to j, k, and s, and
then substituting the relations (45) and (46) into the result, one obtains

∑

jks

Es
ijk(t+∆t)−

∑

jks

Es
ijk(t) =

[

E
‖
i (t)−

J
‖
i (t)

2
∆t

]

J
‖
i (t)∆t (49)

+

[

Gi(t) +Hi(t)−
J⊥
i (t)

2
∆t

]

J⊥
i (t)∆t,

13



which represents the change of kinetic energy of particles after a time step
in this scheme. The change of the electromagnetic energy is obtained by
summing the square of each of (46),

[E
‖
i (t +∆t)]2

2
+ [Gi(t+∆t)]2 + [Hi(t +∆t)]2

=
[E

‖
i (t)]

2

2
+ [Gi(t)]

2 + [Hi(t)]
2 −

[

E
‖
i (t)−

J
‖
i (t)

2
∆t

]

J
‖
i (t)∆t

−
[

Gi(t) +Hi(t)−
J⊥
i (t)

2
∆t

]

J⊥
i (t)∆t (50)

By summing up both sides of Equations (49) and (50) with respect to i, one
can easily check that the total energy in a region [xi − ∆x/2, xi + ∆x/2] ×
[pmin, pmax]× [qmin, qmax] is conserved:

∑

ijks

Es
ijk(t) +

[E
‖
i (t)]

2

2
+ [Gi(t)]

2 + [Hi(t)]
2 = const. (51)

In other words, the procedures Ie, Ig, Ih, and Ip expressed by (46) and (48)
give a conservative scheme for the integration of the interaction part of the
relativistic Vlasov-Maxwell system.

3.6. Conditions for the time interval

In Sections 3.2, 3.3, 3.4, and 3.5, we present procedures that evolve the
number and the energy of particles in a cell and electromagnetic fields. In
order for the procedures to work, the time interval ∆t is required to satisfy
some conditions.

As we noted in Section 3.3, the scheme (34) requires that the time interval
∆t must be equal to ∆x. Furthermore, the scheme for integration of the
advection part of the Vlasov equation (32) requires that the displacement of
a particle by integration of Equations (30) along the x-, p-, and q-axes must
not exceed the intervals ∆x, ∆p, and ∆q. In short, particles must not jump
over a cell. These conditions impose the value of the time interval to satisfy

∆t = ∆x, ∆t <
∆p

max(|E‖
i |+ |B⊥

i |)
, ∆t <

∆q

max(|E⊥
i |+ |B⊥

i |)
, (52)

where max(Ai) represents the maximum of the variable Ai for all i.
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3.7. Accuracy of the scheme

Finally, we mention the accuracy of our scheme proposed in this section.
As explained above, our scheme is based on various procedures, such as split-
ting of equations, the advection part, the interaction part, and the evaluation
of the current density, which makes the mathematical proof of the accuracy
of our scheme very difficult. Then, we estimate the accuracy of the advection
of particles, which is likely to be the most inaccurate compared to the other
procedure.

In the procedure solving the advection part of the Vlasov equation, all
particles in a given cell in the phase space are assumed to move with the
same orbit as that of the particle located at the center of the cell. However,
this treatment obviously involves errors to a certain extent, because particles
located at the different position from the center must be integrated under
different initial conditions. In particular, the difference is most significant for
particles located at the vertex of the cell. Since the difference of the position
between particles at the vertex and the center is of the order of ∆x,∆p, and
∆q, the estimated positions of particles at the vertex contain errors of the
order of ∆x,∆p, and ∆q, which indicates the number of particles in the cell
at the next step contains errors of the order of ∆x,∆p, and ∆q. Therefore,
the procedure solving the advection part of the Vlasov equation have first
order accuracy in the physical and the momentum spaces.

4. Test problems

In this section, we show results of simulations performed by using the
scheme proposed in the previous section. For the purpose, we solve three
test problems, the gyration of particles, the Weibel instability, and the wake-
field acceleration. The gyration of particles is solved to investigate into the
accuracy of our scheme. The Weibel instability and the wakefield accelera-
tion are well-known plasma processes and important in both experimental
and astrophysical contexts.

4.1. Gyration of particles

We assume that electrons are uniformly distributed in the physical space
with a gaussian distribution in the momentum spaces,

f e(x, p, q, 0) ∝ exp

(

−p2 + q2

σ2

)

, (53)
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where σ represents the dispersion in the momentum spaces, and an uniform
magnetic field,

E‖(x, 0) = E⊥(x, 0) = 0, B⊥(x, 0) = B0, (54)

where B0 is a constant. One can easily check that the above configuration
is a stationary solution of the Vlasov-Maxwell system. However, since our
scheme suffers from a numerical diffusion as expected in the previous section,
the distribution function f e(x, p, q, t) at t must be different slightly from the
initial one f e(x, p, q, 0). Then, we adopt the following value ǫ as a measure
of the accuracy of our scheme,

ǫ =

√

∑

ijk[N
e
ijk(tg)−N e

ijk(0)]
2

NxNpNq
, (55)

where tg represent the gyration period given by mec/(eB0). Figure 2 shows
the result with σ2 = 2.0 and B0 = 1.0. The ranges of the space coor-
dinate, the longitudinal momentum, and the lateral momentum are given
by x ∈ [−

√
2π,

√
2π], p, q ∈ [−10, 10], respectively. The periodic bound-

ary is imposed in the physical space, while, in the momentum space, the
free boundary condition is imposed. The filled circles represent the values ǫ
for various Nx(= 110, 120, 130, 140, 150, 160, 170, 180, and 190) and fixed Np

and Nq (Np = Nq = 200), whereas the filled squares represent those for
Np = 110, 120, 130, 140, 150, 160, 170, 180, and 190 and Nx = Nq = 200.

The solid line shows that the value ǫ seems to scale roughly as (∆x)1.8.
The value ǫ is expected to depend strongly on ∆p and ∆q rather than ∆x
in this test problem where particles rotate in the momentum space (p, q).
In other words, the dependence of ǫ on ∆x have uncertainty because of the
insensitiveness. Therefore, we conclude that the dependence derived above
must be ǫ ∝ (∆x)2 essentially. However, this does not mean second order
accuracy in the physical space. Because of the condition ∆t = ∆x mentioned
in §3.6, when we double the number of zones Nx in the physical space, the
time interval ∆t must be half of the previous value. Therefore, the value ǫ
scales as ∆t∆x, which indicates that our scheme has first order accuracy in
time and the physical space. On the other hand, the dashed line shows that
the value ǫ scales as ∆p, which confirms the estimation in §3.7.

4.2. Weibel instability

TheWeibel instability is a kind of plasma instabilities caused by anisotropic
momentum distributions of collisionless plasma. The formulation and dis-
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persion relation of the Weibel instability operating in a relativistic one-
dimensional plasma are shown in Appendix B.

For a simulation of the Weibel instability, we treat ions as a uniform
background and assume that electrons have the following initial distribution,

f e(x, p, q, 0) = δ(p)
δ(q − qb) + δ(q + qb)

2
, (56)

which is approximated in the discretized form by

N e
ijk(0) =























1/2 for −∆p/2 < pj < ∆p/2
and qb −∆q/2 < qk < qb +∆q/2,

1/2 for −∆p/2 < pj < ∆p/2
and − qb −∆q/2 < qk < −qb +∆q/2,

0 otherwise
(57)

Ee
ijk(0) =























√

1 + q2b/2 for −∆p/2 < pj < ∆p/2
and qb −∆q/2 < qk < qb +∆q/2,

√

1 + q2b/2 for −∆p/2 < pj < ∆p/2
and − qb −∆q/2 < qk < −qb +∆q/2,

0 otherwise
(58)

Here we have introduced a constant qb that represents the bulk momentum
of the counter-stream of the plasma. The initial configuration of the electro-
magnetic field is

E‖ = E⊥ = 0, B⊥ = ǫ cos(kx), (59)

where ǫ is a small parameter (= 10−5) and k is the wave number of the
perturbation.

We calculate the evolution of a plasma with the above initial condition
in the simulation domain whose spatial interval is given by x ∈ [−π/k, π/k].
The longitudinal momentum ranges are given by p ∈ [−5, 5] for qb = 2.065
(the corresponding bulk velocity is 0.9c), p ∈ [10,−10] for qb = 7.018 (0.99c),
and p ∈ [30,−30] for qb = 22.344 (0.999c). The lateral momentum range is
q ∈ [−5, 5]. The periodic boundary is imposed in the x direction, while, in
the momentum space, the free boundary condition is imposed.

Figure 3 shows the time evolutions of the kinetic energy Ke of electrons,
the electric energy E, and the magnetic energy B defined by

Ke =
∑

ijk

Ee
ijk(t), (60)
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E =
∆x

2

∑

i

[(E
‖
i )

2 + (E⊥
i )

2]

=
∆x

2

∑

i

[(E
‖
i )

2 + (Gi +Hi)
2], (61)

B =
∆x

2

∑

i

(B⊥
i )

2 =
∆x

2

∑

i

(Gi −Hi)
2, (62)

for the case of qb = 2.065 (the corresponding bulk velocity is 0.9c) and
k = 1. The numbers of zones for the three coordinates are Nx = 100,
Np = Nq = 50 for qb = 2.065, Nx = 100, Np = 100, Nq = 50 for qb = 7.018,
and Nx = 100, Np = 300, Nq = 50 for qb = 22.344. The dashed line in
Figure 3 reproduces the growth rate calculated from the linearized analysis
with Pth = 0.1 described in Appendix B. Although we treat a cold plasma
whose initial momentum distribution is given by (56), the initial setup (57)
has particles with some dispersions in the momenta of the order of the width
of the momentum bins ∆p = ∆q = 0.2. Therefore we compare the dispersion
relation from the numerical simulations with that derived from linearized
analyses with a finite temperature corresponding to the size of the momentum
bin. The numerical simulation seems to reproduce the theoretical growth rate
for a given wave number k = 1.

Figure 4 summarizes the growth rates for other cases as a function of
the wave number of the perturbation. The lines in this figure represent the
growth rates for the bulk velocities 0.9c, 0.99c, and 0.999c calculated from
the dispersion relation (94) with Pth = 0.1. The plotted points show values
measured from results of the simulation.

4.3. Wakefield acceleration

The wakefield acceleration is a promising mechanism for the acceleration
of particles to highly relativistic speeds (see, Esarey et al. [1], for review).
The ponderomotive force of a coherent electromagnetic wave propagating
in a stationary plasma, such as an intense laser in laboratory or a light
pulse emitted by a certain active phenomenon in astrophysical environment
[16, 17, 18], excites a longitudinal electric field and efficiently generates high-
energy particles.

To simulate such circumstances, we impose the following boundary con-
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dition for the electromagnetic field,

G(0, t) = A0ωL exp

[

−(t− 2τ)2

τ 2

]

sin(ωLt), H(0, t) = 0, (63)

which produces a linearly polarized electromagnetic wave (light pulse) prop-
agating in the +x-direction. Here we have introduced some parameters char-
acterizing simulations; A0 the scale of the vector potential, ωL the frequency
of the light pulse, τ the duration of the light pulse. For the initial con-
figuration of particles, we consider a cold, homogeneous, stationary plasma
composed of electrons. The momentum distribution is expressed as

f e(x, p, q, 0) = δ(p)δ(q), (64)

which leads to

N e
ijk(0) = Ee

ijk(0) =







1 for −∆p/2 < pj < ∆p/2
and −∆q/2 < qk < ∆q/2,

0 otherwise
(65)

We treat ions as a neutralizing background, choosing the value of the scale of
the light pulse to be longer than the electron inertial length c/ωe but shorter
than the ion inertial length

√

mi/mec/ωe.
Some results for the case of A0 = 2.0, ωL = 2.0, and τ = π/2 are shown

in Figures 5, 6, and 7. In each figure, the panels represent the color-coded q-
integrated distribution function, the longitudinal electric field, the transverse
electric field, and the transverse magnetic field from top to bottom. It is
clearly seen that a sinusoidal electrostatic field is excited immediately after
the passage of the light pulse and accelerate electrons, resulting in some
bunches of electrons in the phase space. The responses of the plasma and
the electric field to the light pulse is consistent with the previous studies.
Sprangle et al. [20] studied this process by numerically solving equations
which treat non-linear interactions of particles and waves (see also, Ting et
al. [21]). They showed that sawtooth-like longitudinal waves associated with
some bunches of particles in the phase space form after the passage of a
light pulse. Recent two-dimensional PIC simulations (see, e.g., Kuramitsu
et al. [19]) show a similar behavior. The behavior is also reproduced in our
results, which indicates that the method presented here can treat the correct
behavior of the distribution function of relativistic, collisionless plasmas.
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The electron distributions in the momentum space at t = 200 and x =
178, 184 are plotted in Figure 8. It is clearly seen that the existence of high-
energy electrons up to p = 17mec (the corresponding velocity is equal to
0.998c) at x = 178, where the strong electrostatic field, i.e., the wakefield, is
excited due to the ponderomotive force. At x = 184, on the contrary, there
exists no accelerated electron, since the node of the wakefield is located at
this point.

5. Discussion and Conclusions

In this paper, we have proposed a new conservative scheme for numerical
integration of the relativistic Vlasov-Maxwell system and performed three
test problems, the gyration of particles, the Weibel instability, and the wake-
field acceleration. Adopting semi-Lagrange method, we succeed in developing
a scheme that conserves the number of particles and the sum of the ener-
gies of particles and electromagnetic fields. Since the previous scheme [13]
solving the relativistic Vlasov-Maxwell system do not treat the dispersion of
the lateral momentum of particles, our scheme is the first one that can treat
the dispersion correctly. Results of the simulations clearly indicate that our
method succeeds in reproducing detailed behaviors of the distribution func-
tions in the phase space. Especially, the tail of the distributions where only a
tiny fraction of particles reside seems to be solved with considerably high ac-
curacy, while PIC simulations would suffer from large statistical error there.

As we noted above, Vlasov simulations generally require more computa-
tional resources than PIC simulations do. Furthermore, as previous works
[7, 23] have investigated, Vlasov simulations suffer from so-called ”filamen-
tation problem”. Ref.[23] studied wave-particle interactions of a plasma ap-
proaching to an equilibrium state using PIC simulation and showed that the
equilibrium is realized through a phase mixing accompanied by formation of
filamentary structures in the phase space. In Vlasov description, particles
composing a plasma are treated as a continuous medium, which means that
Vlasov equation can not take account of essential discreteness of plasma. As
a result, artificial entropy may arise when a structure with the characteristic
scale smaller than the mesh size is generated in the phase space. Ref.[23]
argued that this artificial entropy prevents the plasma treated by the Vlasov
simulation from following the correct path toward the statistical equilibrium.
Therefore, we need careful studies of long-term evolutions of plasmas by using
Vlasov simulations.

20



Nevertheless, Vlasov simulations provide us detailed dynamics of plasmas
in the phase space. Though we deal with the 1D2V relativistic Vlasov-
Maxwell system, our method can be applied to the 2D3V and 3D3V cases
Although our scheme proposed in this paper suffer from numerical diffusion,
there is a plenty room for improvement. For example, in order to integrate
advection part of the Vlasov equation, we can use the orbit of the particle
located at each vertex of a cell. In other words, taking account for the
deformation of the cell at each time step improves the accuracy of the scheme.
In theoretical investigations into complex behaviors of collisionless plasmas,
Vlasov simulations must be a attractive tool to compensate defects of PIC
simulations.
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A. Evaluation of Some Integrals

In this section, we evaluate some integrals used to construct the interpo-
lation function in Sec.3.4. The first one is the average of the modified Lorentz
factor (8) in the phase space, 〈Γs〉jk, defined by

〈Γs〉jk =
1

∆p∆q

∫ pj+∆p/2

pj−∆p/2

∫ qk+∆q/2

qk−∆q/2

√

(Rs
m)

2 + p2 + q2dpdq. (66)

To perform the integrations, we introduce a function of the variables p and
q described by

g1(p, q) =
pq

3

√

(Rs
m)

2 + p2 + q2 − (Rs
m)

3

3
Arctan

[

pq

Rs
m

√

(Rs
m)

2 + p2 + q2

]

+
p

6
[p2 + 3(Rs

m)
2] ln

[

q +
√

(Rs
m)

2 + p2 + q2
]

+
q

6
[q2 + 3(Rs

m)
2] ln

[

p+
√

(Rs
m)

2 + p2 + q2
]

. (67)

Since the differentiation with respect to p and the subsequent differentiation
with respect to q of this function leads to

∂2g1
∂p∂q

=
√

(Rs
m)

2 + p2 + q2, (68)

21



one can evaluate the integral 〈Γs〉 as

〈Γs〉jk =
g1(pj +∆p/2, qk +∆q/2)

∆p∆q
− g1(pj +∆p/2, qk −∆q/2)

∆p∆q

−g1(pj −∆p/2, qk +∆q/2)

∆p∆q
+

g1(pj −∆p/2, qk −∆q/2)

∆p∆q
.(69)

The second integral is the average of the square of the modified Lorentz factor
in the phase space, 〈(Γs)2〉jk, defined by

〈(Γs)2〉jk =
1

∆p∆q

∫ pj+∆p/2

pj−∆p/2

∫ qk+∆q/2

qk−∆q/2

[

(Rs
m)

2 + p2 + q2
]

dpdq. (70)

This integration is straightforward and one obtains

〈(Γs)2〉jk = (Rs
m)

2 + p2j +
∆p2

12
+ q2k +

∆q2

12
. (71)

The third and forth integrals are defined by

〈 p

Γs

〉

jk
=

1

∆p∆q

∫ pj+∆p/2

pj−∆p/2

∫ qk+∆q/2

qk−∆q/2

p
√

(Rs
m)

2 + p2 + q2
dpdq, (72)

and
〈 q

Γs

〉

jk
=

1

∆p∆q

∫ pj+∆p/2

pj−∆p/2

∫ qk+∆q/2

qk−∆q/2

q
√

(Rs
m)

2 + p2 + q2
dpdq, (73)

respectively. To evaluate the third integral, we define the following function,

g2(p, q) =
q

2

√

(Rs
m)

2 + p2 + q2 +
(Rs

m)
2 + p2

2
ln
[

q +
√

(Rs
m)

2 + p2 + q2
]

.

(74)
Since the differentiation with respect to q and the subsequent differentiation
with respect to p leads to

∂

∂p

(

∂g2
∂q

)

=
p

√

(Rs
m)

2 + p2 + q2
, (75)

the third integral is written as
〈 p

Γs

〉

jk
=

g2(pj +∆p/2, qk +∆q/2)

∆p∆q
− g2(pj +∆p/2, qk −∆q/2)

∆p∆q

−g2(pj −∆p/2, qk +∆q/2)

∆p∆q
+

g2(pj −∆p/2, qk −∆q/2)

∆p∆q
.(76)
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Using the same function, the forth integral is expressed as

〈 q

Γs

〉

jk
=

g2(qk +∆q/2, pj +∆p/2)

∆p∆q
− g2(qk −∆q/2, pj +∆p/2)

∆p∆q

−g2(qk +∆q/2, pj −∆p/2)

∆p∆q
+

g2(qk −∆q/2, pj −∆p/2)

∆p∆q
.(77)

The remaining integrals 〈p〉jk and 〈q〉jk can be evaluated by a straightforward
manner:

〈p〉jk = pj, 〈q〉jk = qk. (78)

B. The Relativistic Weibel Instability

The dispersion relation of the Weibel instability in both nonrelativistic
and relativistic plasmas have already been derived in several investigations
(see, e.g., Califano et al. [22]). Nevertheless, we review the formulation
and the dispersion relation of the Weibel instability in a relativistic one-
dimensional plasma for completeness of this paper.

B.1. Formulation

We assume that the initial state characterized by an unperturbed distri-
bution function f s

0 has no electromagnetic field and that the space (x) and
time (t) dependences of the perturbations are proportional to exp[i(kx−ωt)].
We then consider how the perturbation δf s on the distribution function and
the lateral components of the electromagnetic fields δE⊥ and δB⊥ evolve ac-
cording to the relativistic Vlasov-Maxwell system. The linearized relativistic
Vlasov equation expressed as

(

−iω + ik
p

Γs

)

δf s +Rs
q

q

Γs
δB⊥∂f

s
0

∂p
+Rs

q

(

δE⊥ − p

Γs
δB⊥

) ∂f s
0

∂q
= 0, (79)

and the linearized Maxwell equations

− iωδE⊥ + ikδB⊥ = −δJ⊥,

−iωδB⊥ + ikδE⊥ = 0 (80)

govern the time evolutions of the perturbed quantities. Elimination of δB⊥

in Equations (79) by using Equation (80) yields

(

−iω + ik
p

Γs

)

δf s +Rs
q

q

Γs

k

ω
δE⊥∂f

s
0

∂p
+Rs

q

(

1− p

Γs

ω

k

)

δE⊥∂f
s
0

∂q
= 0 (81)
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and the expression for δf s,

δf s = −
iRs

q

ω

(

qk

ωΓs − kp

∂f s
0

∂p
+

∂f s
0

∂q

)

δE⊥. (82)

The perturbed electric current density δJ⊥ is related to the perturbed dis-
tribution function δf s as

δJ⊥ =
∑

s

Rs
q

∫ ∞

−∞

dp

∫ ∞

−∞

dq
q

Γs
δf s, (83)

and necessary to obtain the dispersion relation. We then assume that ions
are uniformly distributed in the physical space with no bulk velocity,

f i
0 = n0δ(p)δ(q), (84)

where δ(x) represents the delta function, and that electrons have the following
form of the initial distribution,

f e
0 = n0

Θ(p+ Pth)−Θ(p− Pth)

2Pth

(85)

×Θ(q + P0 + Pth)−Θ(q + P0 − Pth) + Θ(q − P0 + Pth)−Θ(q − P0 − Pth)

4Pth

,

where Θ(x) represents the Heaviside function. The parameter Pth represents
the thermal dispersion of the momentum distribution of electrons, and P0

represents their bulk momentum. This assumption means that only electrons
contribute to the generation of the electric current density. We define the
following two integrals,

I1 =

∫ ∞

−∞

dp

∫ ∞

−∞

dq
q

Γe

qk

ωΓe − kp

∂f e
0

∂p
, (86)

I2 =

∫ ∞

−∞

dp

∫ ∞

−∞

dq
q

Γe

∂f e
0

∂q
, (87)

which contribute to the electric current density δJ⊥, and evaluate them be-
forehand.

From the properties of the Heaviside function, the first integral reduces
to

I1 = −n0k
2

2Pth

∫ P0+Pth

P0−Pth

q2dq
√

1 + P 2
th + q2 [ω2(1 + P 2

th + q2)− k2P 2
th]

. (88)
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We then define the function g(q) in the form of

g(q) =
√

ω2(1 + P 2
th)− k2P 2

thArctan

[

kPth
√

ω2(1 + P 2
th)− k2P 2

th

q
√

1 + P 2
th + q2

]

−kPth log

(

q +
√

1 + P 2
th + q2

)

(89)

Since the derivative of this function is

dg

dq
= − ω2kPth

√

1 + P 2
th + q2

q2

ω2(1 + P 2
th + q2)− k2P 2

th

, (90)

one can express the integral I1 as

I1 =
n0k

2P 2
thω

2
[g(P0 + Pth)− g(P0 − Pth)]. (91)

On the other hand, the second integral becomes

I2 = − n0

2P 2
th

{

(P0 + Pth)Arcsinh

[

Pth
√

1 + (P0 + Pth)2

]

−(P0 − Pth)Arcsinh

[

Pth
√

1 + (P0 − Pth)2

]}

(92)

from the straightforward evaluation of the integral.
Using these integrals, the perturbed electric current density is expressed

as

δJ⊥ = − i

ω
(I1 + I2)δE

⊥. (93)

Substitution of this expression into Equation (80) and non-trivial δB⊥ yields
the following dispersion relation,

ω2 − k2 +
ωp

n0

(I1 + I2) = 0 (94)

B.2. Dispersion relation

B.2.1. cold plasmas

Before we solve the dispersion relation (94) with a fixed wave number k
and obtain the frequency ω, we simplify Equation (94) by taking cold limit
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(Pth → 0) to clarify whether any unstable mode exists or not. Under the
cold limit, the integrals defined in the previous section becomes

lim
Pth→0

I1 = −n0k
2

ω2

P 2
0

(1 + P 2
0 )

3/2
, (95)

and
lim

Pth→0
I2 = − n0

(1 + P 2
0 )

3/2
, (96)

respectively. Then, the dispersion relation becomes

ω4 −
[

k2 +
1

(1 + P 2
0 )

3/2

]

ω2 − k2P 2
0

(1 + P 2
0 )

3/2
= 0. (97)

One of the solution of this equation is a pure imaginary number, which means
that this dispersion relation contains at least one unstable mode. The growth
rates of the mode γ defined by iγ = ω versus wave number k for initial bulk
velocities 0.9c, 0.99c, and 0.999c are plotted as solid lines in Figures 9, 10,
and 11.

B.2.2. warm plasmas

The analysis performed in the previous subsection indicates that there
exists an unstable mode. Solving the dispersion relation of warm plasmas
(94), one obtains the growth rate of the Weibel instability for plasmas with
finite temperature. The results for the case of Pth = 0.1 and the bulk ve-
locities 0.9c, 0.99c, and 0.999c are also shown in Figures 9, 10, and 11. One
can see that the growth of unstable modes is suppressed in the high wave
number regime.
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wavelet-MRA-based adaptive semi-Lagrangian method for the relativis-
tic Vlasov-Maxwell system, J. Comput. Phys. 227 (2008) 7889
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Figure 1: Schematic views of the integration of the advection part.

Figure 2: Errors as a function of the number of zones.
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Figure 3: The time evolution of the electron energy, Ke (solid), the electric energy E (dash-
dotted), and the magnetic energy B (dashed). The dashed line represents the theoretical
growth rate derived by the linearized analysis.
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Figure 4: The dispersion relation of the Weibel instability. The horizontal axis represents
the wave number of perturbation and the vertical axis represents the corresponding growth
rate. The solid, dashed, and dotted lines corresponds to the case that the bulk velocity is
0.9c, 0.99c, and 0.999c. The points plotted the plane is the value measured from results
of the simulation.
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Figure 5: Snapshot of the distribution function and the electromagnetic fields at t = 10.

32



Figure 6: Same as Figure 5, but for t = 100.
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Figure 7: Same as Figure 5, but for t = 200.
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Figure 8: The q-integrated electron distribution in the longitudinal momentum space at
t = 200 and x = 178, 184.

Figure 9: The growth rate of the relativistic Weibel instability with the bulk velocity 0.9c
as functions of wave numbers. The solid line represents the growth rate calculated from
the dispersion relation for cold plasmas (97). The dashed line represents the growth rate
calculated from the dispersion relation for warm plasmas with Pth = 0.1 (94).
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Figure 10: Same as Figure 9, but for the bulk velocity 0.99c.

Figure 11: Same as Figure 9, but for the bulk velocity 0.999c.
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