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Abstract 
 
 In this work we present a general strategy for constructing multidimensional 
HLLE Riemann solvers, with particular attention paid to detailing the two-dimensional 
HLLE Riemann solver. This is accomplished by introducing a constant resolved state 
between the states being considered, which introduces sufficient dissipation for systems 
of conservation laws. Closed form expressions for the resolved fluxes are also provided 
to facilitate numerical implementation.  The Riemann solver is proved to be positively 
conservative for the density variable; the positivity of the pressure variable has been 
demonstrated for Euler flows when the divergence in the fluid velocities is suitably 
restricted so as to prevent the formation of cavitation in the flow.  
 
 We also focus on the construction of multidimensionally upwinded electric fields 
for divergence-free magnetohydrodynamical (MHD) flows. A robust and efficient second 
order accurate numerical scheme for two and three dimensional Euler and MHD flows is 
presented. The scheme is built on the current multidimensional Riemann solver and has 
been implemented in the author’s RIEMANN code. The number of zones updated per 
second by this scheme on a modern processor is shown to be cost competitive with 
schemes that are based on a one-dimensional Riemann solver. However, the present 
scheme permits larger timesteps. 
 
 Accuracy analysis for multidimensional Euler and MHD problems shows that the 
scheme meets its design accuracy. Several stringent test problems involving Euler and 
MHD flows are also presented and the scheme is shown to perform robustly on all of 
them. 
 
1) Introduction 
 
 Riemann solvers have long been recognized as being an important building block 
for robust and accurate schemes for conservation laws. Consequently, much attention has 
been lavished in the computational fluid dynamics community on the design of efficient 
Riemann solvers. Exact Riemann solvers for Euler flow have been formulated by 
Godunov [29] and van Leer [51]. While van Leer [51] had originally presented an 
efficient Newton iteration procedure for evaluating the exact Riemann problem for Euler 
flow, several authors have tried to build more efficient approximate Riemann solvers. 
The premise underlying this enterprise is that much of the information provided by the 
Riemann solver is indeed never used in the construction of a numerical flux. Thus there is 
the two-shock Riemann solver of Colella [15], the two-rarefaction fan Riemann solver of 
Osher and Solomon [39], the linearized Riemann solver by Roe [41], the HLLE Riemann 
solver (Harten, Lax & van Leer [31], Einfeldt [21]) and the HLLC Riemann solvers 
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(Einfeldt et al. [22], Toro, Spruce and Speares [50], Batten et al. [10]). All of the above-
mentioned Riemann solvers resolve the discontinuity at a zone boundary into a one-
dimensional foliation of waves.  
 
 Despite this spate of rather good one-dimensional Riemann solvers, some 
practitioners have always believed that the one-dimensional Riemann solvers lose much 
of their efficacy in multidimensional problems. Indeed the motivation for thinking so 
stems from the fact that these Riemann solvers cannot account for flow features that 
might be propagating transverse to the zone boundary. The one-dimensional Riemann 
solvers are, therefore, biased to pick up flow variations that are orthogonal to the zone 
faces of a computational mesh. It is believed that the directional bias that is built into 
one-dimensional Riemann solvers causes a reduction in the permissible Courant number 
in multidimensional flow. Consequently, some practitioners have attempted to use the 
one-dimensional Riemann solvers in very intricate combinations in order to achieve 
multidimensional upwinding (Colella [16], Saltzman [48], LeVeque [35]). This form of 
multidimensional upwinding did indeed enable the design of schemes that operate with 
an increased Courant number, even though it sometimes came at the expense of solving a 
rather large number of one-dimensional Riemann problems.  
 
 Other researchers tried to build more complex models for multidimensional wave 
propagation (Roe [42], Rumsey, van Leer & Roe [45]). Early successes emerged with the 
work of Abgrall [1], [2] and have been followed up by the work of other practitioners 
(Fey [24], [25], Gilquin, Laurens & Rosier [28], Brio, Zakharian & Webb [13]). These 
authors attempted to obtain a multidimensional analogue of Roe’s linearized Riemann 
solver. Thus a mean state was chosen at each edge of the computational mesh and the 
linearized, two-dimensional Euler equations were evolved in space and time to obtain a 
multidimensional solution of the Riemann problem. While elegant, this procedure only 
works for the Euler equations. It cannot be applied to any other hyperbolic system 
without a substantial amount of reformulation. The HLLE Riemann solver, on the other 
hand, works transparently for any conservation law. This prompted an early attempt by 
Wendroff [52] to formulate a multidimensional HLLE Riemann solver. Wendroff’s 
formulation introduced nine constant states, which made his scheme unwieldy. To keep it 
tractable, he had to artificially expand the signal speeds to handle supersonic situations, 
which further increased dissipation. By contrast, the multidimensional HLLE Riemann 
solver that is presented here is much simpler and naturally accommodates all the 
supersonic cases. The flux calculation is also much simpler in this work, yielding closed 
form expressions for the fluxes that are easily implemented on a computer. Moreover, the 
positivity of our multidimensional HLLE Riemann solver is easily demonstrated, whereas 
such a demonstration eluded Wendroff. Consequently, one of the goals of this paper is to 
present our multidimensional HLLE Riemann solver and provide sufficient amount of 
detail to facilitate numerical implementation. We also wish to demonstrate the 
performance of this Riemann solver when it is applied to the computation of 
multidimensional Euler flows. We, therefore, present details of a spatially and temporally 
second order accurate scheme for Euler and magnetohydrodynamic (MHD) flows that 
uses our multidimensional HLLE Riemann solver as a building block. 
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 In recent years it has become interesting to apply techniques drawn from higher 
order Godunov schemes for hydrodynamics to other hyperbolic systems of conservation 
laws. These systems are usually larger and more complicated and an evaluation of their 
eigenstructure carries a greater computational complexity. Thus methods for constructing 
Riemann solvers that do not rely on evaluating the eigenvectors are favored. The MHD 
system provides a case in point. Ever since the analysis of the MHD eigensystem by Roe 
& Balsara [43] it has become possible to design robust, efficient, one-dimensional, 
linearized Riemann solvers for numerical MHD (Cargo and Gallice [14], Balsara [3]). An 
HLLC Riemann solver, capable of capturing mesh-aligned contact discontinuities, was 
presented by Gurski [30]. Miyoshi and Kusano [37] drew on Gurski’s work to design an 
HLLD Riemann solver for MHD. In addition to contact discontinuities, the HLLD 
Riemann solver was also capable of capturing mesh-aligned Alfven waves. It is, 
therefore, one of the goals of this paper to present the performance of the 
multidimensional HLLE Riemann solver on multidimensional MHD problems. 
 
 A multidimensional Riemann solver has a utility in numerical MHD that goes 
beyond the construction of upwinded fluxes. The magnetic fields in the MHD system 
satisfy the property that they remain divergence-free for all time. Brackbill & Barnes [11] 
have shown that violating the divergence-free aspect of the magnetic field leads to 
unphysical plasma transport orthogonal to the magnetic field. One possible resolution is 
to formulate constrained transport schemes (Brecht et al. [12], DeVore [20], Evans & 
Hawley [23]) which collocate magnetic fields at zone centers and use edge-centered 
electric fields for their divergence-free update. Another solution might be to modify the 
MHD equations (Powell [40]) at the expense of introducing source terms in the 
momentum and energy update equations, thus relinquishing momentum and energy 
conservation.  Dedner et al. [19] have formulated another kind of modification of the 
MHD system where the divergence that builds up in the magnetic field is propagated 
away at a predetermined signal speed. Soon after the advent of higher order Godunov 
schemes for MHD, Dai & Woodward [18], Ryu et al. [47] and Balsara & Spicer [9] 
formulated higher order Godunov methods that kept the magnetic field divergence-free. 
The essential idea in Balsara & Spicer [9] was to rely on the dualism between certain 
components of the upwinded flux vector that is evaluated at zone faces and the electric 
fields that are sought at the zone edges. By using the facially upwinded fluxes to obtain 
the edge-centered electric field components, the previous authors introduced a modicum 
of upwinding into the evaluation of the electric field. However, Balsara & Spicer [9] were 
acutely aware of the need for multidimensional upwinding and provide a whole section in 
their paper on that issue. Subsequent efforts have drawn on the same dualism between the 
electric fields and flux components. However, recent work has tried to increase the 
amount of dissipation from one-dimensional Riemann solvers to obtain more stable 
multidimensional upwinding (Londrillo and DelZanna [36], Gardiner & Stone [27]). 
There has also been work on using a genuinely divergence-free reconstruction and 
collocating the one-dimensional Riemann solvers at zone edges (Balsara [5], [6], Balsara 
et al. [7]) so that a more accurate representation of the electric field can be obtained. It is, 
however, difficult to know what this multidimensional upwinding at the zone edges ought 
to be without having a multidimensional Riemann solver for MHD in hand. The 
multidimensional Riemann solver presented here is general enough to be applied to any 
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hyperbolic system of conservation laws, including MHD. Since our multidimensional 
HLLE Riemann solver is applied at zone edges and yields two sets of upwinded fluxes, 
our further goal in this paper is to use it to obtain properly upwinded electric fields at 
zone edges for MHD calculations. 
 
 Multidimensional Riemann solvers have sometimes been perceived as being too 
complicated or difficult to implement. Part of this perception stems from the fact that 
most users of traditional higher order Godunov codes are accustomed to a dimension by 
dimension approach for building the update terms. This simplifies the scheme by 
requiring the fluxes to be evaluated at facial boundaries. The present Riemann solver, like 
most multidimensional Riemann solvers, is implemented at zone edges, which does 
require a slight paradigm shift in the implementer’s thinking. The fluxes in the present 
Riemann solver are, however, very easy to build, requiring no more evaluations than 
those that would have been made for a one-dimensional HLLE Riemann solver. The 
method presented here easily extends to any hyperbolic conservation law. The approach 
in this paper is shown to work on a large number of stringent test problems in two and 
three dimensions. In return for the slightly greater complexity of implementation, the 
resulting scheme can operate with larger CFL numbers. The multidimensional Riemann 
solver also provides an unambiguous evaluation of the multidimensionally upwinded 
electric field in divergence-free formulations for MHD. 
 
 The plan of this paper is as follows. Section 2 presents the multidimensional 
HLLE Riemann solver. Section 3 examines multidimensional upwinding as it applies to 
computing edge-centered electric fields in MHD. Section 4 briefly describes the second 
order accurate predictor-corrector scheme that uses the multidimensional Riemann solver 
described here. Section 5 presents an accuracy analysis for Euler and MHD flows, 
showing that the schemes meet their design accuracy. Section 6 presents some stringent 
multidimensional test problems drawn from Euler flow. Section 7 does the same for 
MHD flow. Section 8 presents conclusions. In an Appendix we show that our Riemann 
solver always produces positive densities for Euler and MHD flows. In that same 
Appendix we also demonstrate the pressure positivity of our Riemann solver for Euler 
flows when the divergence of the velocity lies in certain ranges so as to exclude 
multidimensional cavitations. 
 
2) Multidimensional HLLE Riemann Solver 
 
 We divide this section into three sub-sections. Sub-section 2.1 gives the 
derivation of the multidimensional HLLE Riemann solver. Sub-section 2.2 provides an 
analogous multidimensional LLF Riemann solver. Sub-section 2.3 gives details on how 
the multidimensional fluxes are to be assembled at zone faces and considers the 
restrictions placed on the timestep.  
 
2.1) Derivation of the Multidimensional HLLE Riemann Solver 
 
 Consider an N-component system of conservation laws 
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0t x y∂ + ∂ + ∂ =U F G .         (1) 
 
Here  is the vector of conserved variables and  and  are the flux vectors in the x 
and y-directions. Say that we want to formulate a multidimensional HLLE solver on 
Cartesian meshes, or on any logically rectangular mesh. Fig. 1 shows a schematic 
diagram of such a situation where the four zones that come together at an edge are shown 
by the four quadrants of the coordinate system. The edge itself is located at the origin O. 
The initial conditions for this multidimensional Riemann problem consist of four constant 
states,  ,  ,  and , in the first, second, third and fourth quadrants 
respectively, as shown in Fig. 1. A mnemonic strategy for remembering the subscripts 
RU, LU, LD and RD is given in the figure caption of Fig. 1. We assume that we can 
identify the largest right and left-going wave speeds emerging from that edge and denote 
them by S  and S  . These could be obtained, say for instance, by considering two x-
directional HLLE Riemann solvers, one located immediately above the x-axis and 
another immediately below the x-axis. Thus the speeds  and S  represent the maximal 
right and left-going speeds obtained from both those Riemann solvers. We can similarly 
identify the largest upward and downward-going wave speeds emerging from the same 
edge and denote them by S  and S

U

U

F G

R

RU

R

LUU

L

LDU RDU

S L

U D . Einfeldt [21] and Batten et al. [10] provide 
prescriptions for obtaining these one-dimensional extremal speeds, and the same can be 
used here in multi-dimensions. Thus let ( )1

x RUλ U  and ( )
RUU

xλ
N URU  denote the smallest and 

largest x-directional wave speeds respectively in the state  with corresponding 
definitions for the other states. Let ( )1

xλ  , LU RUU U  and ( )RU

SL

xλ  , LU
N U U

R

 be the smallest 
and largest x-directional wave speeds from a linearized Riemann solver that is applied 
between the states U  and  with similar definitions for the other pairs of states. 
Make similar definitions for the y-direction. The extremal speeds S , ,  and 

LU RUU
SU SD  are 

then given by 
 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

x x x x

1 1 1 1
x x x x

y y y y

1 1 1 1
y y y y

S max  ,  ,   , ,   , 

S min  ,  ,   , ,   , 

S max  ,  ,   , ,   , 

S min  ,  ,   , ,   , 

N N N N
R RU RD LU RU LD

L LU LD LU RU LD RD

N N N N
U RU LU RD RU LD

D RD LD RD RU LD LU

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

=

=

=

=

U U U U U U

U U U U U U

U U U U U U

U U U U U U

RD

LU

.  (2) 

 
 Dissipation is produced in the one-dimensional HLLE Riemann solver by 
assuming a constant state that lies between the left and right states. As long as the 
extremal speeds are based on a physically sound choice, the presence of this constant 
state introduces the requisite amount of dissipation. In multiple dimensions, this domain 
will likely be a circle or ellipse. However, in the interest of a simple formulation, we 
assume that the cell-break problem is started at 0t =  and that by a time t  the 
constant state fills the rectangle shown in Fig. 1. The left panel of Fig. 2 shows the simple 
wave model that we adopt for the propagation of waves in two spatial dimensions and 

T=
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one temporal direction. Since this wave model circumscribes the actual waves that 
propagate out from the initial discontinuity, it will provide adequate amount of 
dissipation in multi-dimensions. Later we show that it can even account for all the 
supersonic cases in multiple dimensions. 
 
 As in the one-dimensional HLLE Riemann solver, we wish to identify the fluxes 
at the boundaries of the space-time domain being considered. Associated with the 
constant state  in the first quadrant, we can evaluate the x and y-fluxes  and 

 which prevail at the line segments MA and MC respectively, see Fig. 1. The 
constant state  in the second quadrant yields the fluxes  and  at the line 
segments NB and NC respectively. One can draw on the constant state  in the third 
quadrant to evaluate the fluxes  and  which correspond to the line segments RB 
and RD respectively. Likewise, the constant state  in the fourth quadrant yields the 
fluxes  and  at the line segments QA and QD respectively. 

RUU

LUU

RDG

RUF

RUG

LUF LUG

LDU

LDF LDG

RDU

RDF
 
 For the one-dimensional HLLE Riemann solver, the constant resolved state, ∗U , 
is obtained by carrying out a two-dimensional integration of the conservation law in 
space-time. The derivation of that resolved state is most easily obtained if one begins by 
considering the subsonic case. For that reason, we start our derivation by assuming the 
situation where  and SS 0 SL R< < 0 SD U< <

U

 . (We will show how this assumption is 
relaxed before the end of this Section.) For our present spatially two-dimensional 
problem, the constant resolved state, ∗ , can be obtained by integrating the conservation 
law, eqn. (1), over a three dimensional rectangular prism in space-time. The base of this 
rectangular prism at  is given by the rectangle QMNR in Fig. 1. The set of vertices 
that make up this rectangular prism in space-time is given in the (

0t =
), ,x y t  coordinate 

system by { ( ) ,  S ,  S ,  R UT T 0 ( ),  0S ,  SL UT T , ( )S ,  S ,  0L DT T , , 

, , 
( ),  0 S ,  SR DT T

( )T ,   S ,  S ,  R UT T ( )S ,  SL UT T T ( )TS ,  SL DT T ,  , ( )TS ,  S ,  R DT T }. Integrating eqn. 

(1) over this rectangular prism gives (after an obvious cancellation of a factor of  ) 2T
 

( )( )
( ) ( ) ( ) ( )

S S S S    S S  +  S S  +  S S    S S

 S   S  + S   S  = 0
R L U D RU R U RD R D LU L U LD L D

RU LU U RD LD D RU RD R LU LD L

∗ − − − −

+ − − − − − −

U U U U U

F F F F G G G G
. (3) 

 
The above equation can now be written as 
 

( )( )
( ) ( ) ( ) (

( )( )
)

 S S  +  S S    S S    S S
S S S S

S   S  + S   S
       

S S S S

RU R U LD L D RD R D LU L U

R L U D

RU LU U RD LD D RU RD R LU LD L

R L U D

∗ − −
=

− −

− − − − − −
−

− −

U U U UU

F F F F G G G G
. (4) 
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The previous equation yields the resolved state for the multidimensional Riemann 
problem. 
 
 It is interesting to observe several aspects of the resolved state given in eqn. (4). 
First, notice that when the variation is confined to be in the x-direction we have 
 

 and   ,  ,  and  RU RD LU LD RU RD LU LD RU RD LU LD= = ⇒ = = = =U U U U F F F F G G G G .(5) 
 
In that limit we obtain 
 

( )S   S  
S S

R RU L LU RU LU

R L

∗ − − −
=

−
U U F F

U .      (6) 

 
Eqn. (6) is just the familiar formula for the resolved state of the one-dimensional HLLE 
Riemann solver in the subsonic case. We see, therefore, that in the subsonic case our 
multidimensional Riemann solver produces the expected resolved state when all the 
variations are one-dimensional. A similar reduction occurs when all the variations are 
confined to the y-direction. Notice though that in all other situations the resolved state 
always picks up multidimensional variations that are not contained in the one-
dimensional resolved state. This is as one would expect for a multidimensional Riemann 
solver. 
 
 We now focus on obtaining the resolved x and y-fluxes, ∗F  and  respectively, 
for our multidimensional Riemann solver. Again, we first restrict attention to the 
subsonic case but we will relax that assumption later on. Our derivation will become 
easier if we make the following simplifying definitions, each of which has a self-evident 
meaning within the context of the one-dimensional HLLE Riemann solver. Thus we 
define 

∗G

 

(HLLE S S S S     +  
S S S S S S

R L R L
U LU RU RU

R L R L R L

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
≡ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

F F F U )LU−U ,  (7) 

 

(HLLE S S S S     +  
S S S S S S

R L R L )D LD RD RD LD
R L R L R L

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
≡ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

F F F U −U ,  (8) 

 

( )HLLE S S SS     +  
S S S S S S

U U DD
R RD RU R

U D U D U D

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
≡ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

G G G U U RD−U ,  (9) 

 
and 
 

( )HLLE S S SS     +  
S S S S S S

U U DD
L LD LU L

U D U D U D

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
≡ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

G G G U U LD−U .  (10) 
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We will try to express the resolved x and y-fluxes in terms of the above four familiar 
definitions because they also make it easy to identify those parts of the fluxes that carry 
the dissipation terms and those parts of the fluxes that carry the genuinely 
multidimensional contributions. 
 
 To obtain , the resolved x-flux from the multidimensional Riemann solver, we 
have again to integrate the conservation law from eqn. (1) over a three-dimensional 
rectangular prism in space-time. The base of this rectangular prism at  is given by 
the rectangle QMCD in Fig. 1. The set of vertices that make up this rectangular prism in 
space-time is given in the 

∗F

0t =

( , , )x y t  coordinate system by { ( ), 0S ,  S  R UT T , , 

, , 
( ) 0,  S ,  0UT

( ) 0,  S ,  0DT ( ) S ,  0R DT T S , ( )S ,  S ,  R UT T T , ( )0,  S ,  UT T , , 

}. To simplify the derivation, we first evaluate the area integral on the 
 face. Notice that the multidimensional wave shown in Fig. 2 will not reach all 

points on that face. As a result, we only have two x-directional Riemann problems 
operating on those parts of the  

( ) S ,  DT T 0,

(  S ,  S ,  R DT T
0x =

)T

0x =  face that are not overtaken by the multidimensional 
wave. The  face is shown separately in the right panel of Fig. 2 along with the 
fluxes that propagate through parts of that face. The area integral of the x-flux on the 

 face is, therefore, given by 

0=x

0x =
 

( )2 HLLE 2 HLLE 21 1 1 S     S     S S   
2 2 2U U D D U DT T T ∗− + −F F F .    (11) 

 
Integrating the conservation law, eqn. (1), over the rectangular prism that we have 
identified in this paragraph yields ( after an obvious cancellation of a factor of  ) 2T
 

( )

( ) ( )HLLE HLLE

S S S    S S  +   S S  +  S    S
1 1 1   S +   S   S S  +  S  = 0
2 2 2

U D R RU R U RD R D RU U RD D

U U D D U D RU RD R

∗

∗

− − −

− − − −

U U U F F

F F F G G
.  (12) 

 
After a certain amount of algebraic simplification eqn. (12) yields  
 

( )( )

( )( ) (

( )( )

)

( ) (

 S S  +  S S   S S   S S 
S S S S

S S     2    
S S S S

S S     + S S
S S S S

LU R U RD L D LD R D RU L U

R L U D

R L
RU LU LD RD

R L U D

R L
U RU LU D RD LD

R L U D

∗ − −
=

− −

⎡ ⎤
− − +⎢ ⎥− −⎣ ⎦
⎡ ⎤

− − −⎡ ⎤⎢ ⎥ ⎣ ⎦− −⎣ ⎦

F F F FF

G G G G

U U U U )

− .   (13) 

 
Eqn. (13) is useful because it allows us to pick out the contributions from the x and y-
fluxes as well as the dissipation term. We see that the first term in eqn. (13) is a convex 
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combination of x-fluxes. This is the non-dissipative part of the x-flux. The second term 
contains the contribution from the y-fluxes to the resolved x-directional flux. Any 
genuinely multidimensional Riemann solver should include such contributions from the 
fluxes in the transverse direction. Observe that the contribution from the y-fluxes to eqn. 
(13) depends on the relative magnitudes of S  and S . Thus the amount of transverse 
flux contributed to the resolved x-flux depends on the direction and speed with which 
signals propagate in the x-direction. Notice though that for smooth flow, the contribution 
from the y-fluxes is small. The last term in eqn. (13) contains the dissipation terms.  

R L

 
 It is useful to observe that the dissipation terms in eqn. (13) only provide 
dissipation in the x-direction; there are no dissipation terms in the y-direction. At strong 
shocks, and especially at strong oblique shocks, there are no dissipation terms in eqn. 
(13) corresponding to the y-direction. At such shocks the contribution from the second 
term in eqn. (13), i.e. the terms with the y-fluxes, can become significant. There is no 
further y-directional dissipation term corresponding to the y-fluxes at strong shocks, as a 
result, the only strategy for stabilizing the x-flux at strong shocks is to have a shock-
detector and truncate the second term in the vicinity of strong shocks. If the underlying 
numerical method has a shock detector (Colella & Woodward [17], Balsara et al. [7]) it 
pays to suppress the contribution of the transverse terms in the vicinity of shocks. Thus 
we introduce a flow-dependent parameter β  that smoothly goes to zero in the vicinity of 
a shock. At all other locations in the computation we set 1β = .  The final form for the 
resolved flux is then written as 
 

( )( )

( )( ) (

( )( )

)

( ) (

 S S  +  S S   S S   S S 
S S S S

S S     2     
S S S S

S S     + S S
S S S S

LU R U RD L D LD R D RU L U

R L U D

R L
RU LU LD RD

R L U D

R L
U RU LU D RD LD

R L U D

β

∗ − −
=

− −

⎡ ⎤
− − +⎢ ⎥− −⎣ ⎦
⎡ ⎤

− − −⎡ ⎤⎢ ⎥ ⎣ ⎦− −⎣ ⎦

F F F FF

G G G G

U U U U )

− .   (14) 

 
By comparing eqns. (13) and (14), we see that the latter equation restricts the contribution 
of the transverse fluxes at strong shocks. It is interesting to point out that in their analysis 
of multidimensional schemes for scalar advection Roe and Sidilkover [44] also found that 
the transverse fluxes have to be restricted in certain situations. This completes our 
description of the method for obtaining the resolved flux ∗F  from the multidimensional 
HLLE Riemann solver. 
 
 A particularly compact and interesting form for the resolved flux  is given by ∗F
 

 9



( )( ) ( )

HLLE HLLES S    
S S S S

S S      2     
S S S S

U D
U D

U D U D

R L
RU LU LD RD

R L U D

β

∗ ⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

⎡ ⎤
− −⎢ ⎥− −⎣ ⎦

F F F

G G G G+ −

.   (15) 

 
This is also the form that is most useful for computations. Notice that when the variation 
is confined to be in the x-direction, eqn. (15) reduces appropriately. Consequently, for x-
directional variations we have . For genuinely multidimensional 
problems notice two important features of eqn. (15). First, observe that the first two terms 
of eqn. (15) represent a linear weighting of the regular HLLE fluxes  and . 
The weighting is simply proportional to the relative areas of the rectangles BAMN and 
BAQR from Fig. 1, which lends itself to a very simple geometrical interpretation. Second, 
we see that the third term of the resolved flux picks up extra contributions from the y-
directional fluxes.  

HLLE HLLE
U D

∗ = =F F F

HLLE
UF HLLE

DF

 
 To obtain , the resolved y-flux from the multidimensional Riemann solver, we 
have to integrate the conservation law from eqn. (1) over a three-dimensional rectangular 
prism in space-time. The base of this rectangular prism at 

∗G

0t =  is given by the rectangle 
AMNB  in Fig. 1. We do not provide all the steps in the derivation of  because they are 
very similar to our previous derivation. We simply quote the final form of the resolved 
flux in a compact form as 

∗G

∗G
 

( )( ) ( )

HLLE HLLES S    
S S S S

S S       2     
S S S S

R L
R L

R L R L

U D
RU LU LD RD

R L U D

β

∗ ⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

⎡ ⎤
− −⎢ ⎥− −⎣ ⎦

G G G

F F F F+ −

 .   (16) 

 
Just like eqn. (15), eqn. (16) lends itself to an elegant physical interpretation. 
 
 Up to this point we have focused on the transonic case. There is a very simple 
way in which the flux formula is generalized to handle the supersonic case in the one-
dimensional HLLE Riemann solver. The structure of eqns. (7) to (10) suggests that the 
same might work here. Thus we assert that eqns. (15) and (16) easily extend to all 
possible supersonic cases if the signal speeds are reset as 
 

( ) ( ) ( ) ( )S min S ,0  , S max S ,0  , S min S ,0  , S max S ,0L L R R D D U→ → → → U . (17) 
 
We consider three interesting examples below: 
1) Say we originally start with a situation where S  and S . It corresponds to a 
physical problem where all the waves in the Riemann problem are propagating 
supersonically into the first quadrant. The use of eqn. (17) in eqns. (15) and (16) and also 

0L > 0D >
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eqns. (7) to (10) then yields  and  , i.e. the Riemann solver indeed 
picks out the correct upwinded fluxes that would be contributing to the first quadrant. 
Notice, quite interestingly, that this is not obtained by an arithmetic averaging of the 
fluxes at the four faces that come together at the edge. Later in this paper we will see that 
this example also yields insights into the process of obtaining edge-centered electric 
fields in schemes for divergence-free MHD. 

LU
∗ =F F RD

∗ =G G

2) Let us consider another example where we originally have S 0 SL R< <  and . 
The use of eqn. (17) in eqn. (15) then shows us that 

S 0D >
∗F  does not depend any more on 

 , which is as one would expect from the upwinding. Notice though that HLLE
DF ∗F  still 

depends on . Furthermore, HLLE
UF ∗F continues to depend on the y-fluxes, though their 

contribution diminishes as S  increases.  U

3) In this example, let us consider a situation where we originally start with  and S 0L >

S 0 SD U< < . Now  depends exclusively on  and  , i.e. it picks up the requisite 
upwinding in the x-direction. Notice, however, that the y-fluxes do not contribute to 

∗F LUF LDF
∗F . 

 
 The Appendix demonstrates that the Riemann solver designed here keeps the 
density positive for Euler and MHD flows. We also demonstrate that when the velocities 
are restricted so as to preclude multidimensional cavitations in the flow, our Riemann 
solver keeps the pressure positive.  
 
2.2) Multidimensional LLF Riemann Solver 
 
 It is also possible to obtain an LLF (or Rusanov [46]) variant of the fluxes in eqns. 
(13) and (16) by setting  
 

( )   ;  SS  max S ,  S ,  S ,  S S   ;  S S  ;  S SR L U D R U D≡ → → − → →−  ;  S SL  (18) 
 
to get 
 

( ) ( )

( )

1 1    +    RU LU−G G   
4 2
S        
4

RU LU RD LD LD RD

RU LU RD LD

β∗ = + + + + −

− − + −

F F F F F G G

U U U U
  (19) 

 
and 
 

( ) ( )

( )

1 1     +   RU LF    
4 2
S         
4

RU RD LU LD U LD RD

RU RD LU LD

β∗ = + + + − + −

− − + −

G G G G G F F F

U U U U
.  (20) 
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The first terms in eqns. (19) and (20) contain the contribution from the dissipation-free x 
and y-fluxes respectively at the edge being considered. The second terms in eqns. (19) 
and (20) contain the contribution from the fluxes in the transverse direction. The last 
terms in eqns. (19) and (20) contain the dissipation terms. 
 
2.3) Assembling the Multidimensional Fluxes at Zone Faces and Timestep 
Considerations 
 
 The previous sub-sections have provided the derivation of the multidimensional 
HLLE Riemann solver without specifying how one should assemble the final flux at each 
zone face of a two-dimensional zone. As shown in Fey [24], Brio, Zakharian and Webb 
[13] and Kurganov, Noelle and Petrova [34] the multidimensional flux has to be 
assembled at a zone face by considering the contributions coming from a one-
dimensional Riemann solver evaluated at the center of the zone face and the 
multidimensional Riemann solvers evaluated at the corners of that face. Consider the 
zone in Fig. 3 and say that its sides have a length of xΔ  and yΔ  in the x and y-directions. 
The zone is denoted by indices ( ),i j  with appropriate half-integer notational extensions 
to denote zone faces and corners. Fig. 3 shows the evolution of Riemann problems at all 
the faces and all the corners of the two-dimensional zone for a time Δt . In other words, at 
each zone face we also solve a one-dimensional Riemann problem in addition to solving 
the multidimensional Riemann problem at each corner. As time Δt increases, the 
multidimensional Riemann problems at each of the corners make an increasingly larger 
contribution to the facially and temporally averaged fluxes at the zone faces. This is 
especially true in the subsonic cases shown in Fig. 3. These multidimensional 
contributions have a beneficial and stabilizing effect on the one-dimensional flux, 
because they represent the contribution from the cross-terms that arise when making a 
Taylor expansion of the original partial differential equation. With the help of Fig. 3 we 
can arrive at a space-time averaged version of the flux 1/2, ji+F  at the ( )1/ 2,i + j

j

j

 face. As 

shown in Fig. 3,  is the resolved x-flux coming from the one-dimensional Riemann 

solver at the ( )  face,  is the resolved x-flux from the multidimensional 

Riemann solver at the corner ( )  and  is the resolved x-flux from 

the multidimensional Riemann solver at the corner 

1/2,i
∗
+F

1/ 2,i + 1/2, 1/i j
∗
+F

1/ 2,+
2+

i j 1/ 2+ 1/
∗
+F 2,i j 1/2−

( )1/ 2i j −1/ 2,+ . The final 
expression for the multidimensionally corrected, space-time averaged x-flux is given by 
 

( )1/2, 1/2, , 1/2, 1/2 , 1/2, 1/2

1/2, 1/2 , 1/2, 1/2 1/2, 1/2 , 1/2, 1/2

 =  1  S S  
2

             S  +  S
2 2

i j i j U i j D i j

i j D i j i j U i j

t
y

t t
y y

∗
+ + + − + +

∗ ∗
+ + + + + − + −

⎡ ⎤Δ
− −⎢ ⎥Δ⎣

Δ Δ
−

Δ Δ

F F

F F

⎦ .   (21) 

 
Eqn. (21) is so designed that it extends seamlessly to the supersonic limits when eqn. (17) 
is applied to the wave speeds.  
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 We see from Fig. 3 that even in the extreme limit where the waves emanating 
from the multidimensional Riemann solvers at ( )1/ 2, 1/ 2i j+ +  and ( )  

touch each other at the x-face, the flux 

1/ 2, 1/ 2i j+ −

1/2,i j+F  gets a contribution of at least 1/2, 2i j
∗
+F  

from the one-dimensional Riemann solver. This is inevitable considering that eqn. (21) is 
a space-time average evaluated over the x-face. The condition that the waves emanating 
from the corners of any face in Fig. 3 should not intersect each other is explicitly given 
by 
 

, 1/2, 1/2 , 1/2, 1/2 , 1/2, 1/2 , 1/2, 1/2 , 1/2, 1/2 , 1/2, 1/2 , 1/2, 1/2 , 1/2, 1/2

  min   ,  ,  ,  
S S S S S S S SR i j L i j R i j L i j U i j D i j U i j D i j

x x y yt
− + + + − − + − + − + + − − − +

⎛ ⎞Δ Δ Δ Δ
Δ ≤ ⎜ ⎟⎜ ⎟− − − −⎝ ⎠

. 

           (22) 
In practice we might make the less restrictive requirement that 1/2,i+F j  should be a convex 

combination of the fluxes ,  and  in eqn. (21). This allows us to 
double the timestep constraint in eqn. (22), yielding a maximum CFL number of unity. 
Thus the final constraint on the timestep for two-dimensional flow is given by 

1/2,i j
∗
+F 1/2, 1/2i j

∗
+ +F 1/2, 1/2i j

∗
+ −F

 

, 1/2, 1/2 , 1/2, 1/2 , 1/2, 1/2 , 1/2, 1/2 , 1/2, 1/2 , 1/2, 1/2 , 1/2, 1/2 , 1/2, 1/2

2 2 2 2  min   ,  ,  ,  
S S S S S S S SR i j L i j R i j L i j U i j D i j U i j D i j

x x y yt
− + + + − − + − + − + + − − − +

⎛ ⎞Δ Δ Δ Δ
Δ ≤ ⎜ ⎟⎜ ⎟− − − −⎝ ⎠

. 

           (23) 
In practice, the timestep is evaluated using the conventional zone-centered approach. 
Eqn. (23) only serves to illustrate that a larger CFL number might be possible. This 
completes our description of timestep constraints in two dimensions. 
 
 There is, however, a deficiency in eqn. (21) that becomes apparent to those who 
are familiar with the old ENO schemes from the 1980s, see Harten et al. [32]. Notice that 
eqn. (21) changes form as the waves at the edge change direction and speed. Thus the 
weights ascribed to the fluxes ,  and  in eqn. (21) keep changing. 
This is tantamount to having a rapidly changing stencil. As with the old ENO schemes, 
this results in a loss of accuracy in certain circumstances. For that reason, we prefer to 
incorporate the multidimensional Riemann solver using a Simpson rule which fixes the 
relative weights of the fluxes and yields 

1/2,i j
∗
+F 1/2, 1/2i j

∗
+ +F 1/2, 1/2i j

∗
+ −F

 

1/2, 1/2, 1/2 1/2, 1/2, 1/2
1 4 1 =  +  + 
6 6 6i j i j i j i j

∗ ∗ ∗
+ + + + +F F F F −

j

.     (24) 

 
Please note that eqn. (24) may relinquish some of the timestep advantages of eqn. (21), 
but in practice it permits timesteps that are quite large without ever degrading the order of 
accuracy. Eqn. (24) is formally third order accurate if the fluxes  and  
are evaluated at the upper and lower x-face using the multidimensional Riemann solver 
and if the flux  is evaluated at the center of the x-face. Notice however that during 

the evaluation of  and  we do evaluate the x-directional HLL fluxes at 
the x-face. I.e. we are referring to the two HLLE fluxes at the x-face that are evaluated 

1/2, 1/2i j
∗
+ +F 1/2, 1/2i j

∗
+ −F

1/2,i
∗
+F

1/
∗
+F 2, 1/2i j+ 1/2, 1/2i j

∗
+ −F
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using just the variables and their moments in zones ( ),i j  and ( )1,i j+ . If one is willing 
to accept second order accuracy then those two x-directional HLL fluxes can be averaged 
to the center of the x-face to yield a second order accurate approximation for  . 
This is the economical choice that we made for the applications that we present later. 
Eqn. (24) is also trivially extended to three dimensions, especially when one only desires 
a second order scheme. Thus in three dimensions an easy way of evaluating an x-flux at 
the upper x-face of the zone (  while using the multidimensional Riemann solver at 
the edges of that face consists of extending eqn. (24) as 

1/2,i j
∗
+F

), ,i j k

 

1/2, , 1/2, 1/2, 1/2, , 1/2 1/2, , 1/2 1/2, ,
1 1 1 1 2 =   +  +   +  + 
6 6 6 6 6i j k i j k k i j k i j k i

∗ ∗
+ + + − + + + −F F F F F1/2, 1/2,i j

∗ ∗
+F

1/2, ,i j k
∗
+F

j k
∗
+ . (25) 

 
Eqn. (25) and its analogues in the other two directions were used to evaluate the fluxes in 
all the three dimensional calculations shown here. As with eqn. (24), if we want a second 
order accurate scheme then  in eqn. (25) does not need to be evaluated but can be 
obtained via an averaging process. 
 
3) Multidimensional Upwinding of Edge-centered Electric Fields in MHD 
 
 In Sub-section 3.1 we obtain explicit expressions for the electric field for MHD 
using the multidimensional Riemann solver from the previous section. In Sub-Section 
3.2) we put the present work in context by comparing it to expressions for the electric 
field obtained from prior research. 
 
3.1) Electric Field Expressions from the Multidimensional HLLE Riemann Solver 
 
 The three-dimensional MHD system can be written in flux conservation form, 

 , as  + 0t x y z∂ + ∂ + ∂ ∂ =U F G H
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( ) ( )

( )
( )

x
2 2 2
x x

x

x y x y
y

x z x z
z

2
x x

x

y x y y x

z z x x z

 v
 v  + P + /8   B /4   v

 v  v   B  B /4 v
 v  v   B  B /4 v

 + +P+ /8 v   B /4t x
0B

B v  B   v  B
B v  B   v  B

ρρ
ρ π πρ

ρ πρ
ρ πρ

π πεε

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ −⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎜ ⎟∂ ∂⎜ ⎟ ⎜ ⎟− ⋅⎜ ⎟∂ ∂ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ − −⎝ ⎠

B

B v B

( ) ( )
( )

( )

y z

x y x y x z x z
2 2 2
y y y z y z

y z y z z
2

y y

x y y x

y z z y

 v  v
 v  v   B  B /4  v  v   B  B /4

 v  + P + /8   B /4  v  v   B  B /4
 v  v   B  B /4  v

 +  + +P+ /8 v   B /4y z
v  B   v  B

0

v  B   v  B

ρ ρ
ρ π ρ π

ρ π π ρ π
ρ π ρ

π πε

⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −
⎜ ⎟−⎜ ⎟∂ ∂
⎜ ⎟− ⋅∂ ∂⎜ ⎟
⎜ ⎟− −
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

B

B v B ( ) ( )
( )
( )

2 2 2
z

2
z z

z x x z

y z z y

 + P + /8   B /4
= 0+P+ /8 v   B /4

v  B   v  B

v  B   v  B

0

π π

π πε

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟− ⋅
⎜ ⎟
⎜ ⎟−
⎜ ⎟

− −⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

B

B v B

           (26) 
 
where ρ is the density;   and  are the velocity components;   and  are 

the magnetic field components;  
xv  , yv zv xB  , yB zB

( )2 v /2 + P/ 1  + /8  2= ρ γ πε − B  is the total energy and 
γ  is the ratio of specific heats. Note though that the divergence-free update equation for 
the magnetic field is still given by 
 

1 + c  = 0  ;        
t c

∂
∇× ≡ − ×

∂
B E E v B

6−

      (27) 

 
where  is the electric field vector. The speed of light “c” cancels out in eqn. (27). 
Consequently, for the sake of simplicity, we do not carry it in the ensuing equations. 
Balsara and Spicer [9] realized that there is a dualism between the fluxes that are 
produced by a higher order Godunov scheme and the electric fields that were needed in 
eqn. (27). We see that the flux components of eqn. (26) obey the following symmetries: 

E

 
x 8 7 y 8 6 z 7E  =  G  =  H  ;   E  = F  =  H   ;    E  =  F  = G  − −  .   (28) 

 
The last three components of the F , G and H fluxes could also be reinterpreted as 
electric fields in the dual approach. The electric fields are needed at the edge centers as 
shown in Fig. 4 and are to be used to update the face-centered magnetic fields. For 
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example, on a Cartesian mesh with zone sizes xΔ , yΔ  and zΔ  a one-step, second order 
accurate discretization of the x-component of the magnetic field in eqn. (27) yields 
 

( )1 1/2 1/2 1/2 1/2
; 1/2, , ; 1/2, , ; 1/2, 1/2, ; 1/2, 1/2, ; 1/2, , 1/2 ; 1/2, , 1/2B = B E E E En n n n n n

x i j k x i j k z i j k z i j k y i j k y i j k
t z z y y

y z
+ + + +
+ + + + + − + − +

Δ
− Δ −Δ + Δ −Δ
Δ Δ

+
+

. 

           (29) 
Here ; 1/2, ,Bn

x i j+ k  and 1
; 1/2, ,Bn

x i j
+
+ k

t

 are the facially-averaged magnetic fields at times  and 

 and the time-centered electric field components 

nt
1n nt t+ = + Δ 1/2

; 1/2, , 1/2−En
y i j k
+
+  and 

1/2
; 1/2, 1/2,En

z i j k
+
+ −  are collocated as shown in Fig. 4. Details on implementing CT schemes that 

are based on higher order Godunov methodology are provided in [5] and [9]. Using these 
magnetic and electric fields in eqn. (29) and its analogues in the other two directions then 
yields a divergence-free, i.e. constrained transport, update strategy. In this section we 
focus on obtaining the upwinded forms of the z-component of the electric field at the z-
edges of the zone shown in Fig. 4. Eqn. (28) shows us that we will, therefore, have to 
focus on , the seventh component of the x-flux, and , the sixth component of the y-
flux. 

7F 6G

 
 Let us, therefore, explicitly write out eqn. (13) as it applies to the seventh 
component of the x-flux, i.e. . We see immediately that the seventh component of the 
y-flux in eqn. (26) is zero. However, the multidimensional upwinding from the Riemann 
solver that was designed in the previous Section plays an important role in deciding how 
the electric fields from  in eqn. (26) are to be combined. It also provides the structure 
of the dissipation terms. To obtain a good appreciation of the dissipation terms, realize 
from Fig. 1 that when a divergence-free reconstruction is used for the magnetic field 
(Balsara [4], [5])  is continuous between the states  and  while  undergoes 
a jump between those two states. Fig. 1 also shows us that  is continuous but 

undergoes a jump between the states  and . Thus the jumps in  produce 

the dissipation terms in . Using eqn. (13) we therefore get 

7F∗

7F

7F∗

xB LUU

RD

RUU

xB
yB

ByB LDU U y

 

( )( )

( )( ) ( ) (

z, z, z, z, 
7

y, y, y, y, 

E  S S  + E  S S  E  S S  E  S S
F   

S S S S

S S     + S B B S B B
S S S S

LU R U RD L D LD R D RU L U

R L U D

R L
U RU LU D RD LD

R L U D

∗ − −
= −

− −

⎡ ⎤
⎡ ⎤− − −⎢ ⎥ ⎣ ⎦− −⎣ ⎦

)
.  (30) 

 
 Similarly, realize that  is continuous but  undergoes a jump between the states 

 and . Likewise,  is continuous but  undergoes a jump between the states 

 and . Thus the jumps in  produce the dissipation terms in . Using eqn. 
(16) gives us 

yB xB
BRDU

LDU
RUU

LUU
yB x

xB 6G∗
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( )( )

( )( ) ( ) (

z, z, z, z, 
6

x, x, x, x, 

E  S S  + E  S S  E  S S  E  S S
G  

S S S S

S S       + S B B S B B
S S S S

RD R U LU L D RU R D LD L U

R L U D

U D
R RU RD L LU LD

R L U D

∗ − −
=

− −

⎡ ⎤
⎡ ⎤− − −⎢ ⎥ ⎣ ⎦− −⎣ ⎦

)
.  (31) 

 
We see that the first terms in eqns. (30) and (31) represent convex combinations of the z-
component of the electric fields at the four zone corners that abut the z-edge, i.e. O in 
Fig. 1. The second terms in eqns. (30) and (31) carry the dissipation. Notice that the 
contributions from the flux components 7F∗  and 6G∗  are somewhat different. To obtain a 
unique z-component of the electric field at the z-edge, we have to combine the upwinded 
flux components from eqn. (30) and (31) in a judicious fashion. We do that next. 
 
 Balsara & Spicer [9] were acutely aware that the combination of the upwinded 
fluxes at zone edges should be carried out multidimensionally and presented an idea from 
rotated Riemann solvers (Rumsey, Roe & van Leer [45]) to accomplish that. Another 
approach by Londrillo & Del Zanna [36] and Gardiner & Stone [27] consists of retaining 
the maximal dissipation terms from either direction while averaging the non-dissipative 
parts of the flux components. Thus we should suitably average the first terms from eqns. 
(30) and (31) while we appropriately combine the second terms from the same equations. 
(Note that  is, in fact, the negative of the electric field.) This yields a stable scheme for 
magnetic field update. But the scheme still lacks sufficient cross-term coupling and so its 
permissible timestep is halved from the desired timestep. There is, however, a modicum 
of freedom in how the dissipation terms are to be combined. For example, one could use 
part of the dissipation terms from the multidimensional LLF fluxes, eqns. (19) and (20), 
because those dissipation terms also introduce cross-term coupling. That resolved the 
timestep issues. Thus our final form for the electric field is given by 

7F∗

 

( )( ) ( )( )
( )( )

( ) ( )( ) ( ) ( )

( )

( ) ( )

z, z, z, z, 

z

y, y, y, y, 

y, y, y, y, 

1 1E  E S S  + S S E  E S S  + S S
2 2E  

S S S S

S S      1  S B B S B B
S S S S

S     +   B B  + B B
4

S S     + 1  
S S S S

LU RD R U L D RU LD R D L U

R L U D

R L
U RU LU D RD LD

R L U D

RU LU RD LD

U D

R L U

α

α

α

+ − +
=

− −

⎡ ⎤
⎡ ⎤− − − − −⎢ ⎥ ⎣ ⎦− −⎣ ⎦

− −

−
− −( ) ( ) ( )

( )

x, x, x, x, 

x, x, x, x, 

S B B S B B

S        B B  + B B
4

R RU RD L LU LD
D

RU RD LU LDα

⎡ ⎤
⎡ ⎤− − −⎢ ⎥ ⎣ ⎦

⎣ ⎦

− − −

. (32) 

 
Here α  is a parameter that lies between 0 and 1. Smaller values of α  are preferred and 
we have been able to obtain good results with 0.3α = . If the underlying numerical 
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method has a shock detector (Colella & Woodward [17], Balsara et al. [7]), the previous 
references show that it pays to smoothly increase α  to a value of 0.5 in the vicinity of 
strong shocks. The directional biasing that is usually built into shock detectors ensures 
that the detector increases gradually in a zone as a strong shock approaches it. Eqn. (27) 
may be thought of as a kind of Hamilton-Jacobi equation and the weight of experience, 
Kurganov, Noelle and Petrova [34], has been that such equations require a larger amount 
of cross-term dissipation. 
 
 Notice that in the subsonic case all of the four electric fields , , 

and  in eqn. (32) contribute to the edge in question. However, they contribute 
in balanced pairs. To understand the significance of the balanced pairs of electric fields, 
consider the supersonic case with the flow propagating supersonically into the first 
quadrant of Fig. 1. Eqn. (17) then gives us S

z, E LU z, E RD

z, E RU z, E LD

0L =  and S 0D =  so that the first term of 

eqn. (32) becomes ( )z, z, E  ELU RD+ 2 . In light of the first example that was studied after 
eqn. (17) we realize that this is the correct upwinded part that one should get on 
averaging the x and y-fluxes which is what we did to obtain eqn. (32) from eqns. (30) and 
(31). If the flow is propagating supersonically into the third quadrant, we should get the 
same term, and we do. Similarly, if the flow is propagating supersonically into the second 
or fourth quadrants, the first term of eqn. (32) gives ( )z, RU z,E  E LD+  2  . We see, 
therefore, that eqn. (32) does retrieve the correct limits.  
 
3.2) Comparing the Present Results with Prior Research 
 
 With the present multidimensional Riemann solver in hand, it is also possible to 
gain insights into previous treatments for the electric field in numerical MHD with a view 
to understanding their strengths and developing some perspective on their weaknesses. 
 
 Londrillo & Del Zanna [36] consider the electric field that is obtained from 
averaging four one-dimensional HLLE Riemann solvers and provide an explicit formula 
for it in their eqn. (56). It is, therefore, interesting to compare our eqn. (32) and the 
analogous eqn. (56) of Londrillo & Del Zanna [36]. Recasting their eqn. (56) in our 
notation gives 
 

( )( )

( ) ( ) ( ) ( )

z, z, RU z, z, 
z

x, x, x, x, y, y, y, y, 
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− −
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− −

.           (33) 
We see that their dissipation terms are of the same magnitude, though not the same form, 
as the ones obtained here. The upwind terms that their formula would pick out in the 
supersonic limits are not the ones that we obtain from a careful multidimensional 
analysis. 
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 The above paragraph examined electric fields that are obtained from HLLE 
Riemann solvers. Strategies for obtaining upwinded, edge-centered electric fields have 
also been based on other types of one-dimensional Riemann solvers. We examine those 
strategies next. Thus, analogous to eqn. (7), let  denote the flux vector from a general 
one-dimensional Riemann solver that is applied to the state vectors  and . 
Again, analogous to eqn. (8), let 

RS
UF

LUU RUU
RS
DF

RU

 denote the flux vector from a general one-
dimensional Riemann solver that is applied to the states  and . In analogy with 
eqn. (9), let us use  to denote the flux from the one-dimensional Riemann solver 
applied to the states   and . Similarly, eqn. (10) motivates us to use  to 
denote the flux from the Riemann solver applied to the states   and . The electric 
field from Balsara & Spicer [9] or Balsara [5] can then be written as 

LDU RDU
RS
RG
URD U RS

LG

LDU LUU

 

( ) ( ) ( ) ( )RS RS RS RS
z 7 7 6

1E
4 U D R L
⎡= − − + +⎣ F F G G

6
⎤
⎦ .     (34) 

 
The numerical subscripts in eqn. (34) denote the component of the flux vector. We see 
that it lacks the enhanced dissipation from eqn. (32), with the result that it may need more 
dissipation on some subsonic and transonic problems. However, as long as the underlying 
one-dimensional Riemann solver retrieves the correct supersonic limit, eqn. (34) will pick 
out the correct upwinded limits in all the supersonic cases. This explains why it is a 
strong performer on problems with strong, supersonic shocks.  
 
 Londrillo & Del Zanna [36] and Gardiner & Stone [27] have presented other 
strategies for obtaining the electric field that are still based on the dualism of the flux 
components and electric fields. Eqn. (39) from Gardiner & Stone [27] and eqns. (41) and 
(42) of Londrillo & Del Zanna [36] both yield the same form given by 
 

( ) ( ) ( ) ( ) ( )RS RS RS RS
z z, z, z, z, 7 7 6 6

1 1E E
2 4U D R L RU LD LU RD
⎡ ⎤= − − + + − + + +⎣ ⎦F F G G  E E  E .  

           (35) 
Notice that eqn. (35) doubles the dissipation in eqn. (34) in the subsonic and transonic 
cases, where such a doubling of the dissipation is needed. As a result, eqn. (35) performs 
well in the subsonic and transonic limits. The deficiency in eqn. (35) shows up in the 
supersonic limit. Say the flow is propagating supersonically into the first quadrant of Fig. 
1. One would then expect that  should not be independent of any contribution from the 
downwind direction. Yet, eqn. (35) picks up a piece given by 

zE

z, E RU 4  which diminishes 
its ability to perform well on problems with strong, supersonic shocks.  One of the 
algorithms presented in Gardiner & Stone [27] (which they refer to as the o

zε  algorithm 
in their paper) replaces the second term in eqn. (35) with  
( )z, z, z, z,E  E E  E 4RU LD LU RD+ + +   where z, E RU  is the zone-averaged value of the electric 
field in the first quadrant and a similar notation is applied to all other quadrants. This 
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replacement would further increase the downwind character of their scheme in the 
supersonic limits. 
 
 A one-dimensional HLLE Riemann solver can indeed be slightly dissipative when 
compared to its alternatives. When one must use a different one-dimensional Riemann 
solver to assemble an edge-centered electric field, a happy compromise would, therefore, 
consist of using eqn. (35) for the subsonic and transonic cases and using eqn. (34) in the 
supersonic cases. This is easily accomplished because the doubling of the dissipation that 
is inherent in eqn. (35) can be withheld in each of the four contributing one-dimensional 
Riemann solvers when their Riemann fans become supersonic. (All Riemann solvers do 
indeed check for their Riemann fans being supersonic because it leads to other 
computational simplifications that are always exploited.) Consequently, our simple 
strategy can be implemented post-facto at the end of any one-dimensional MHD Riemann 
solver. It is tantamount to doubling the dissipation in the last three components of the flux 
vector when the Riemann fan is subsonic and doing nothing when the Riemann fan is 
supersonic. The four values of the electric fields that come from such a modified 
Riemann solver can then be combined as in eqn. (34). This was indeed the strategy that 
was used in Balsara et al. [7] and Balsara [6]. 
 
4) Brief Description of the One-Step, Second Order Accurate, Predictor-Corrector 
Scheme for Euler and MHD Flow 
 
 The multidimensional Riemann solver presented here is inherently two-
dimensional. A three dimensional extension of the same is the topic of future research. 
Just as a one-dimensional Riemann solver is applied to each face and yields one flux, a 
two-dimensional Riemann solver is applied to each edge and provides two fluxes in the 
two directions that are transverse to the direction of that edge. (Similarly, a genuinely 
three dimensional Riemann solver would be applied at each vertex and would yield three 
fluxes.) Thus the Riemann solver presented here is applied by visiting each edge and 
solving the multidimensional Riemann problem at that edge. For MHD, that process 
directly yields the electric field along that edge, see eqn. (32). At each face one would 
also desire the fluid flux normal to that face for both Euler and MHD flows. In two 
dimensions this is obtained by using eqn. (24). Similarly eqn. (25) is used in three 
dimensions. Recall too that for a second order scheme the evaluation of a face centered 
flux can be simplified in two and three dimensions in light of the discussion that follows 
eqn. (24). 
 
 The calculation can be structured very economically so that the two-dimensional 
Riemann solver is applied at each edge producing two upwinded fluxes as outputs. See 
eqns. (15) and (16) for an example of the fluxes, F∗  and G∗ , that are obtained at the z-
edge. Eqn. (24) and its analogue for the y-flux can then be used to assemble the facial 
fluxes in two dimensions. For a two-dimensional calculation, one only needs to apply the 
two-dimensional Riemann solver to all of the vertices of the two-dimensional mesh. As a 
result, application of the multidimensional Riemann solver at each of the vertices only 
results in one call to the multidimensional Riemann solver per zone in a two-dimensional 
calculation. In three dimensions, each edge is shared by four zones. Consequently, a 
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single application of the two-dimensional Riemann solver to all of the three different 
edge directions of a three dimensional mesh is tantamount to making three calls to the 
two-dimensional Riemann solver per zone.  
 
 We now provide a pointwise description of the one-step predictor-corrector 
scheme that we used in the examples that will be presented in the next three Sections. 
The Riemann solver is called twice at each edge in the course of a timestep. As a result, 
the present scheme makes six calls to the multidimensional Riemann solver in the course 
of updating a zone through one timestep. Each timestep of the scheme consists of the 
following six functional sub-steps. 
 
1) Reconstruct Conserved Variables: For each zone-centered variable, apply a limiter in 
each of the dynamically active directions to obtain the undivided differences in those 
directions. 
2) Reconstruct Magnetic Fields: For face-centered magnetic field components, apply a 
limiter in each of the two transverse directions that lie within that face. Use the undivided 
differences that are produced in those faces to obtain a second order accurate divergence-
free reconstruction of the magnetic field within each zone (Balsara [4], [5]). This step is 
not needed for Euler flows. 
3) Predictor Step: We are now in a position to carry out spatially second order accurate 
interpolation of variables within a zone. Likewise, for a magnetic field component, we 
can carry out second order accurate spatial interpolation within the face that it belongs to. 
Owing to the divergence-free reconstruction we can also interpolate any of the magnetic 
field components to any location within a zone. Therefore, use that spatial interpolation 
to produce the four states that go into the two-dimensional Riemann solver that is applied 
at each edge. Visit each edge and obtain the fluxes at the faces for this predictor step. If 
this is an MHD calculation, obtain the electric fields at the zone edges for this predictor 
step. 
4) Predicted Time Rates of Update: Use the fluxes to obtain the time rate of update for all 
the zone-centered variables. This includes obtaining the time rate of update for the zone-
centered divergence-free reconstruction of each magnetic field component. Likewise, use 
the electric fields to obtain a time rate of update for the magnetic field components within 
each face. 
5) Corrector Step: The time rates of update from the previous step can now be used to 
make a corrector step that is second order accurate in space and time. Consequently, use 
that space-time interpolation to produce the four states that go into the two-dimensional 
Riemann solver that is applied at each edge. Notice that unlike the predictor step, the 
states in this corrector step are centered in time. Visit each edge and obtain the fluxes at 
the faces. Also obtain the electric fields at the edges if this is an MHD calculation. 
6) Second Order Accurate Update: The fluxes and electric fields that are obtained from 
the previous step are centered in space and time. They can then be used to make a one-
stage update that is conservative, divergence-free and second order accurate in space and 
time. See Balsara et al. [7] for an example of such a one-step update.  
 
This completes our description of the timestepping strategy. 
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 The algorithm presented here has been implemented in the author’s RIEMANN 
code. In light of the interest in large multidimensional calculations, the implementation 
was optimized for two and three-dimensional calculations. We made one implementation 
for Euler flow and another for MHD flow. On a single Intel Xeon 5500 core operating at 
2.4 GHz the Euler and MHD codes with the multidimensional Riemann solvers update 
136,500 and 80,000 three-dimensional zones per second respectively. (In two 
dimensions, the codes update 415,700 and 196,000 zones per second for Euler and MHD 
flow.) A comparable version of the RIEMANN code (that utilizes one-dimensional 
HLLE Riemann solvers for the predictor and corrector steps) updates 138,600 and 81,250 
three-dimensional zones per second for Euler and MHD flow respectively. The difference 
in the speeds is very slight. The implementation of the multidimensional Riemann solver 
efficiently organizes the float-point intensive work, doing more calculations per 
subroutine call. This permits us to amortize the overhead of each subroutine call in a 
more expeditious fashion. Subsequent sections show that the small difference in the 
speeds is handily compensated for by the larger timesteps permitted by the 
multidimensional Riemann solver. MHD calculations are especially benefited by the use 
of our genuinely multidimensional Riemann solver because it yields a genuinely 
multidimensional treatment of the edge-centered electric fields. Subsequent sections 
present accuracy analysis and test problems for the code described here. 
 
5) Accuracy Analysis for Euler and MHD Flows 
 
 The schemes presented here can easily achieve second order accuracy for one-
dimensional problems. Because this is a paper on multidimensional Riemann solvers, we 
focus on multidimensional demonstrations of second order accuracy. A suite of such test 
problems was presented in Balsara et al. [7]. We present a couple of interesting two-
dimensional tests from that test suite. All the two-dimensional test problems in this 
section were run with a CFL number of 0.65, though we have verified that they also run 
stably and without any appreciable change in the accuracy when run with a CFL number 
of 0.85. To provide a point of comparison, all the simulations were first run with a 
minmod limiter, then they were run with an MC limiter and lastly they were run with the 
slopes that can be obtained from the r=3 WENO scheme of Jiang and Shu [33]. In other 
words, the piecewise parabolic part of the reconstruction that can be obtained from the 
r=3 WENO reconstruction was not retained and the stencils were centrally biased. 
 
5.1) Unmagnetized Isentropic Vortex in Two Dimensions 
 
 In this hydrodynamical test problem from Balsara & Shu [8], an isentropic vortex 
is made to propagate for a time of 10 units along the diagonal of a periodic domain 
spanning [ ] [ ]5,5 5,5− × −  . The unperturbed flow has unit density, unit pressure and unit 
velocities in each of the x and y-directions. The gas has a ratio of specific heats given by 
1.4. The entropy is given by S =  P γρ  and density and pressure fluctuations are 
introduced in such a way as to keep the flow isentropic. The temperature is defined by 
T =  P ρ . A vortex is set up as a fluctuation to the unperturbed flow where the 
fluctuations are specified by 
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Here we set 5ε =

2

. r is the radius from the origin of the domain and can be written as 
. 2 2r x y= +

 
TABLE I  

Table I shows the accuracy analysis for the two-dimensional, unmagnetized, isentropic 
vortex problem using schemes that use the multidimensional Riemann solver presented 
here. Minmod, MC and r = 3 WENO slopes were used. The errors were measured using 
the density variable which was compared to the analytical solution. 

Method Number of zones L1 error L1 order  L∞ error L∞ order 
minmod limiter 64×64 8.0130 × 10-3  1.5466 × 10-1  
 128×128 2.6687 × 10-3 1.59 5.9768 × 10-2 1.37 
 256×256 9.0798 × 10-4 1.55 2.7398 × 10-2 1.13 
 512×512 3.3087 × 10-4 1.46 1.5020 × 10-2 0.86 
MC limiter 64×64 2.3608 × 10-3  6.1816 × 10-2  
 128×128 5.5141 × 10-4 2.10 2.7894 × 10-2 1.15 
 256×256 1.1895 × 10-4 2.22 6.2342 × 10-3 2.15 
 512×512 2.3152 × 10-5 2.35 1.9041 × 10-3 1.71 
WENO limiter 64×64 1.2598 × 10-3  2.3001 × 10-2  
 128×128 2.3236 × 10-4 2.43 3.6835 × 10-3 2.64 
 256×256 4.0201 × 10-5 2.53 5.7757 × 10-4 2.67 
 512×512 8.0701 × 10-6 2.32 9.6655 × 10-5 2.58 

 
 Table I shows the accuracy analysis for the multidimensional Riemann solver-
based schemes presented here. The errors are measured in the  and L  norms for the 
density variable. We see that the scheme which uses the r=3 WENO slopes starts out with 
an intrinsically smaller error than the scheme which uses the minmod limiter. 
Furthermore, the scheme with the r=3 WENO slopes reaches its design accuracy 
immediately, even on very small meshes whereas the scheme with the minmod limiter 
has not yet reached its design accuracy for the meshes shown. The MC limiter obtains 
results that are intermediate between the minmod limiter and the WENO limiter. The 
schemes with the minmod and MC limiters fail to meet their design accuracy in the 

1L ∞

L∞  
norm, whereas the scheme with the WENO limiter succeeds on that front. This inability 
of schemes that are based on TVD limiters to meet their design accuracy in the  norm 
is closely related to the fact that TVD limiters clip off extrema in the flow. Along with 
showing that the multidimensional Riemann solver itself meets its desired specifications, 
the results also show that it is worthwhile to invest in a higher quality reconstruction 
algorithm. The better reconstruction algorithm only costs ~11% more per timestep, yet 
the data from Table I shows that it often enables us to get almost an order of magnitude 
improvement in accuracy on meshes of all possible sizes. 

L∞

 
5.2) Magnetized Isodensity Vortex in Two Dimensions 
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 This MHD test problem was described in Balsara [5]. As with the previous test 
problem, the vortex moves along the diagonal of a periodic domain spanning 
[ ] [ ]5,5 5,5− × − for a time of 10 units. The unperturbed flow has unit density, unit pressure 
and unit velocities in each of the x and y-directions. The unperturbed magnetic field is 
zero. The gas has a ratio of specific heats given by 5/3. The magnetized vortex can now 
be specified as a perturbation to the flow given by 
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Here we set  and 1κ = 4μ π=  which makes the Alfven speed of the vortex equal to its 
rotational speed. r is the radius from the origin of the domain and can be written as 

. 2 2r x= + 2y
 

TABLE II  
Table II shows the accuracy analysis for the two-dimensional, magnetized, isentropic 
vortex problem using schemes that are based on the multidimensional Riemann solver 
presented here. Minmod, MC and r = 3 WENO slopes were used. The errors were 
measured using the x-component of the magnetic field which was compared to the 
analytical solution. 

Method Number of zones L1 error L1 order  L∞ error L∞ order 
minmod limiter 64×64 1.0355 × 10-2  1.8623 × 10-1  
 128×128 3.4013 × 10-3 1.59 7.6101 × 10-2 1.29 
 256×256 1.2161 × 10-3 1.49 3.0813 × 10-2 1.30 
 512×512 3.4345 × 10-4 1.82 1.2788 × 10-2 1.28 
MC limiter 64×64 2.8301 × 10-3  6.2567 × 10-2  
 128×128 7.3086 × 10-4 1.95 1.9733 × 10-2 1.67 
 256×256 1.9048 × 10-4 1.94 6.5885 × 10-3 1.74 
 512×512 4.7592 × 10-5 2.00 2.2375 × 10-3 1.56 
WENO limiter 64×64 2.2342 × 10-3  3.1604 × 10-2  
 128×128 5.2474 × 10-4 2.09 6.5299 × 10-3 2.28 
 256×256 1.2927 × 10-4 2.02 1.6460 × 10-3 1.99 
 512×512 3.2436 × 10-5 1.99 4.1233 × 10-4 1.99 

 
 Table II shows the accuracy analysis for the multidimensional Riemann solver-
based schemes presented here. The errors are measured in the  and L  norms for the 
x-component of the magnetic field. As in the previous test, we see that the scheme which 
uses the r=3 WENO slopes starts out with an intrinsically smaller error than the scheme 
which uses the minmod limiter. Consistent with our previous finding, the scheme with 
the WENO slopes reaches its design accuracy immediately, even on very small meshes 
whereas the scheme with the minmod limiter has not yet reached its design accuracy for 
the meshes shown. The MC limiter obtains results that are intermediate between the 
minmod limiter and the WENO limiter. As in the previous example, both the minmod 

1L ∞
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and MC limiters fail to meet their design accuracy in the L∞  norm. Thus our accuracy 
analysis for this magnetized test problem reinforces our findings from the previous, 
unmagnetized test problem. We see here too that the multidimensional Riemann solver 
meets its design goal. Furthermore, we see that it pays to invest in a better reconstruction 
strategy. 
 
6) Multidimensional Test Problems for Euler Flow 
 
 In this Section we present a couple of multidimensional Riemann problems and 
the double Mach reflection problem. The tests shown here were run with a CFL number 
of 0.65. The ratio of specific heats was set to 1.4 for all of the problems in this Section. 
 
6.1) Multidimensional Riemann Problems 
 
 Schulz-Rinne, Collins and Glaz [49] showed the value of using multidimensional 
Riemann problems for calibrating numerical schemes. Brio, Zakharian and Webb [13] 
provided explicit values for the initial conditions for some of these Riemann problems 
and we catalogue them here. The first multidimensional Riemann problem consists of 
setting  
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The problem initially starts off as two weak shocks and two slip lines. The problem was 
run on a 400×400 mesh that spans [ ] [ ]1,1 1,1− × −  and was stopped at a time of 0.52. The 
MC limiter was used along with the multidimensional Riemann solver designed here. The 
density variable at the latest time in this problem is shown in Fig. 5a. The final solution 
can be interpreted as two Mach reflections and two contact surfaces at the intersections of 
the four shocks. We see that a very pronounced density valley moves to the intersection 
point of the four shocks, which is in keeping with expectations. 
 
 The next multidimensional Riemann problem consists of setting  
 

x y

x y

x

1.5,               P=1.5,        v 0.0,        v 0.0               f r x>0, y>0

0.5323,         P=0.3,        v 0.0,        v 1.206           f r x>0, y<0

0.5323,         P=0.3,        v 1.206,  

o

o

ρ

ρ

ρ

= =

= =

= = y

x y

  v 0.0               for x<0, y>0

0.1379,         P=0.029,    v 1.206,     v 1.206           for x<0, y<0ρ

=

= = =

=

=
. 

 
The problem results in a double Mach reflection and a shock propagating at 45o to the 
mesh. The problem was run on a 400×400 mesh that spans [ ] [ ]1,1 1,1− × −  and stopped at 
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a time of 1.1. The MC limiter was used along with the multidimensional Riemann solver 
designed here. The density variable at the latest time in this problem is shown in Fig. 5b. 
We see that the mushroom cap is captured very crisply in this problem owing to the use 
of the multidimensional Riemann solver. 
 
6.2) Double Mach Reflection Problem 
 
 This very popular test problem has been catalogued in great detail by Woodward 
and Colella [53], consequently we do not repeat the specifics of the initial conditions 
here. It represents a Mach 10 shock front that interacts with an oblique wedge that is put 
in its path. The wedge makes an angle of 60o with the shock front and is located along 
most of the lower x-boundary in Fig. 6. The flow results in a self-similar double Mach 
system of shocks along with an mushroom cap structure. The problem was set up on a 
960×240 mesh on a domain that spans [ ] [ ]0, 4 0,1× . Figs. 6a, 6b, 6c and 6d show the 
density, pressure, x-velocity and y-velocity respectively at a time of 0.2 for part of the 
domain that spans [ ] [ ]0,3 0,1× . The WENO limiter was used. We see that all shocks are 
captured crisply and the roll-up of the Mach stem is also clearly visible. 
 
7) Multidimensional Test Problems for MHD Flow 
 
 We now present several MHD test problems. The tests include a field loop 
advection problem, a rotor problem, the Orzag-Tang problem and a three-dimensional 
blast problem.  
 
7.1) Field Loop Advection Problem 
 
 The problem was catalogued by Gardiner and Stone [27], hence its specification 
is not repeated here. The problem consists of a two-dimensional loop of magnetic field 
with very low magnetic pressure relative to the gas pressure. It is advected along the 
diagonal of a 128x64 zone mesh that spans the domain [ ] [ ]1,1 0.5,0.5− × − . The magnetic 
pressure inside the loop is constant to begin with and falls abruptly to zero outside the 
loop. The loop is initially confined to a radius of 0.3. The loop starts off at the center of 
the domain. Fig. 7 shows the magnitude of the magnetic field after the loop has been 
advected around the domain once and returned back to the center. The simulation was run 
with the WENO limiter. The simulation shown in Fig. 7 was run with a CFL number of 
0.65, though this application runs stably and without any problems with a CFL number as 
large as 0.95. We see that there is virtually no diffusion of the loop’s boundaries and no 
oscillations in the magnetic pressure within the loop’s interior. We, therefore, conclude 
that the method presented here has adequate multidimensional dissipation for the 
transonic advection of magnetic fields. 
 
7.2) The Rotor Problem 
 
 This problem was first presented in Balsara and Spicer [9]. We present it again 
because it has been claimed by Fuchs, Mishra and Risebro [26] that on very large meshes 
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this problem crashes due to negative pressures. For that reason, this problem is set up on 
a two-dimensional unit square [ ] [ ].5,.5 .5,.5− × −  using a 1000×1000 zone mesh. It 
consists of a dense, rapidly spinning cylinder, in the center of an initially stationary, light 
ambient fluid. The two fluids are threaded by a magnetic field that is uniform to begin 
with and has a value of 2.5 units along the x-axis. The initial gas pressure is set to 0.5 in 
both fluids. The ambient fluid has unit density. The rotor has a constant density of 10 
units out to a radius of 0.1. Between a radius of 0.1 and 0.106 a linear taper is applied to 
the density so that the density in the cylinder linearly joins the density in the ambient. 
The taper is, therefore, spread out over six computational zones and it is advisable to 
keep that number fixed as the resolution is increased or decreased. The ambient fluid is 
initially static. The rotor rotates with a uniform angular velocity that extends out to a 
radius of 0.1. At a radius of 0.1 it has a toroidal velocity of one unit. Between a radius of  
0.1 and 0.106 the rotor’s toroidal velocity drops linearly in the radial velocity from one 
unit to zero so that at a radius of 0.106 the velocity blends in with that of the ambient 
fluid. The ratio of specific heats is taken to be 5/3. The problem was run with a WENO 
limiter using a CFL number of 0.65.  Figs. 8a, 8b, 8c and 8d show the density, pressure, 
magnitude of the velocity and the magnitude of the magnetic field respectively at a time 
of 0.29. We see that the pressure is positive throughout the computational domain. We 
have verified that the pressure remains positive through a time of 0.295, the final time 
quoted by Fuchs, Mishra and Risebro [26]. The results for this problem, when computed 
on a very large mesh, are seen to match those in Balsara and Spicer [9]. The degradation 
in the density variable that was reported in Londrillo and Del Zanna [36] is not seen in 
these simulations just as they were not seen in the original paper that first presented this 
problem. 
 
7.3) The Orzag-Tang Problem 
 
 This well-known problem by Orzag and Tang [38] was initialized on a periodic 
domain spanning [ ] [ ]0, 2 0, 2× with the following parameters 
 
( ) ( ) ( ) ( ) (( )2

x y x y,  v ,  v ,  P, B ,  B  ,  sin ,  sin ,  , sin , sin 2y x yρ γ γ π γ π γ π= − − )xπ . 
 
Here we used 5 / 3γ = . The problem was run to a final time of unity with a CFL number 
of 0.6. The simulation used the MC limiter. To ameliorate concerns about pressure 
positivity we used a large mesh with 1000×1000 zones. Figs. 9a, 9b, 9c and 9d show the 
final density, pressure, magnitude of the velocity and the magnitude of the magnetic field 
respectively. We see that the density and pressure have remained positive. The simulation 
forms a current sheet with oppositely oriented x-components of magnetic field in the 
center of the computational domain, as can be surmised from Fig. 9d. The velocity field 
also shows fluid squirting out in the positive and negative x-directions at the location of 
the current sheet. 
 
7.4) The 3d Blast Problem 
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 A version of this problem was described in Balsara et al. [7]. This problem was 
initialized on the three-dimensional unit domain [ ] [ ] [ ].5,.5 .5,.5 .5,.5− × − × − using a 1293 
zone mesh. A unit density was initialized all over the computational domain. The 
pressure was set to 0.1 all over except within a central sphere of radius 0.1 where it was 
set to 1000. A magnetic field with a magnitude of 40 was initialized along the (1,1,1) 
diagonal of the computational domain. The problem was run with a CFL number of 0.4 to 
a final time of 0.013. A WENO limiter was used. In this three-dimensional problem, 
eqns. (15) and (25) along with their analogues in the other directions were used for the 
flux calculations while eqn. (32) and its analogues in the other directions were used for 
evaluating the electric fields. The variables in the central xy-plane are shown in Fig. 10. 
Figs. 10a, 10b, 10c and 10d show the final density, pressure, magnitude of the velocity 
and the magnitude of the magnetic field respectively. Owing to the very large central 
pressure at the start of the calculation, an extremely strong blast wave propagates 
outwards, leaving a very low density region in the center. The magnetic field is strongly 
compressed as the blast wave propagates outwards. Despite the very low plasma beta and 
the presence of strong shocks, we see that the density and pressure have remained 
positive in our simulation. The correct multidimensional upwinding that is achieved by 
the Riemann solver in the supersonic limit plays a very important role in simulating this 
problem correctly. We have not seen similarly stringent problems performed with several 
other codes, including those that claimed to use multidimensionally upwinded electric 
fields. 
 
8) Conclusions 
 
 We have presented a multidimensional version of the HLLE Riemann solver. This 
has been accomplished via a simple constructive strategy which introduces one constant 
resolved state between the states being considered. The introduction of the constant state 
also introduces adequate dissipation for all equations that are in conservation form. 
Closed form expressions for the resolved fluxes are also provided to facilitate numerical 
implementation. In the Appendix, the Riemann solver is shown to be positively 
conservative when divergence of the fluid velocities is restricted so as to prevent the 
formation of cavitation in the flow. We also apply our method to obtain 
multidimensionally upwinded electric fields for divergence-free formulations of the 
MHD equations. 
 
 An efficient second order scheme for Euler and MHD flows that is based on our 
multidimensional Riemann solver is also presented here and has been implemented in the 
author’s RIEMANN code. It is shown to be cost-competitive with schemes that are based 
on one-dimensional Riemann solvers while permitting larger timesteps. Accuracy 
analysis for multidimensional Euler and MHD problems shows that the scheme meets its 
design accuracy. Several stringent test problems involving Euler and MHD flows are also 
presented and the scheme is shown to perform robustly on all of them. 
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Appendix 
 
 Einfeldt et al. [22] showed that all higher order Godunov schemes obtain their 
updated values from a convex averaging process, applied to the states that occur in the 
solution of the Riemann problem. Consequently, a Riemann solver leads to a positively 
conservative scheme if and only if all the states generated by the Riemann solver are 
physically real. In practice this means that if the left and right states of a Riemann solver 
are physical, i.e. known not to produce a cavitation, then the Riemann solver should also 
produce a physical resolved state, i.e. one without negative densities or pressures. While 
this is exactly true when face-centered fluxes are used, the facial fluxes for the scheme 
described in Section 4 are also obtained through a convex averaging process applied to 
the fluxes that come from the edge-centered multidimensional Riemann solver. As a 
result, we can claim that a multidimensional Riemann solver is positively conservative if 
four physically real states in the four quadrants of Fig. 1 yield a resolved state that has 
positive density and pressure. As shown in Section 2, when all the variations are 
restricted to one dimension, the present Riemann solver reduces to the HLLE Riemann 
solver. As a result, for one-dimensional flows, the present multidimensional HLLE 
Riemann solver is provably positively conservative. 
 
 Let us now focus on proving the positivity of the density variable in our 
multidimensional HLLE Riemann solver for Euler and MHD flow. The proof extends to 
all situations where a density-like variable ρ  has x and y-fluxes given by xvρ  and yvρ  
respectively. In other words, our proof of the positivity of the density variable might even 
encompass relativistic hydrodynamics and relativistic MHD. For Euler flow, the signal 
speed for the propagation of fluctuations is isotropic in the fluid’s rest frame, for MHD it 
is not. We want our proof of the positivity of the density variable to encompass both 
cases. As a result, we assume that for a uniform slab of fluid or magnetofluid, the 
extremal speeds in the x-direction are x cxv −  and . Similarly, we assume that the 
extremal speeds in the y-direction are 

xv +cx

yyv c−  and . For Euler flow,  
where “c” is the sound speed. For MHD flow,  and  are the fast magnetosonic 
speeds in the x and y-directions. We also restrict attention to the subsonic case, i.e. 

 and S . We can use eqn. (4) to write the resolved state density, 

yv +c

xc
y cx y= =c c

yc

S S 0R L < S 0U D < ρ∗  , as 
 

( )( )

( )( )
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S v S v v v

S v S v v v1
S S S S S v S v + v v

S v S v + v v

RU R RU U RU RU RU

LD L LD D LD LD LD

R L U D RD R RD D RD RD RD
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ρ

ρ
ρ

ρ

ρ

∗

⎧ ⎫⎡ ⎤− − −⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤+ − − −⎪ ⎣ ⎦= ⎨ ⎬− − ⎡ ⎤+ − − −⎪ ⎪⎣ ⎦⎪ ⎪

⎡ ⎤⎪ ⎪+ − − −⎣ ⎦⎩ ⎭

⎪  . (A.1) 

 
Note that the curly bracket in eqn. (A.1) does not denote a matrix equation; it is just a 
sum of four terms. In what follows we show that ρ∗  is a convex combination of RUρ , 

LDρ , RDρ  and LUρ  in the subsonic case. To accomplish this, we have to show that the 
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terms inside the square brackets in eqn. (A.1) are positive. For notational simplicity we 
define 
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RD R RD D RD RD RD
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≡ − − −

≡ − − −

≡ − − −

≡ − − −

 

 

 

      (A.2) 

 
which allows us to rewrite eqn. (A.1) compactly as 
 
( )( )S S S S a a a aR L U D RU RU LD LD RD RD LU LUρ ρ ρ ρ ρ∗− − = + + +    (A.3) 
 
In the next paragraph we will prove that the first square bracket in eqn. (A.1), i.e. the 
term  from eqn. (A.2), is always positive. Similar arguments can be used to show that 
the other three square brackets in eqn. (A.1) are also positive. 

aRU

 
 In the subsonic case we have 
 

x, x, x, x, S v c   S v c 0R RU RU R RU RU≥ + ⇒ − ≥ >  

0

,     (A.4) 
 

y, y, y, y, S v c   S v cU RU RU U RU RU≥ + ⇒ − ≥ >  ,     (A.5) 
 

( ) ( )x, x, x, y, y, y, x, y, x, y,v c ,  c  and v c ,  c     c  c  >  v  vRU RU RU RU RU RU RU RU RU RU∈ − ∈ − ⇒  

 

. 
           (A.6) 
 
The above three conditions allow us to claim that 
 
( )( )x, y, x, y, x, y,S v S v   c  c  > v vR RU U RU RU RU RU RU− − ≥     (A.7) 
 
which establishes the positivity of the coefficient of RUρ  in eqn. (A.1). Similar arguments 
can be designed for establishing the positivity of the three other square brackets in eqn. 
(A.1). This proves that the density of the resolved state, ρ∗ , is positive definite if the four 
densities RUρ , LDρ , RDρ  and LUρ  are all positive definite. 
 
 We are now in a position to obtain the momentum density and energy density in 
the resolved state. Using eqn. (4) for the second and third components of the Euler 
equation gives us 
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           (A.8) 
and 
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           (A.9) 
Eqns. (A.3), (A.8) and (A.9) can be used to obtain closed form expressions for the 
velocities  and  in the resolved state. These velocities would be useful in 
formulating an HLLC-type Riemann solver. The resolved state energy density is given by 
the following equation 

xv∗
yv∗

 
( )( )

( ) (
( )
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. (A.l0) 

 
 We now present a constructive procedure for demonstrating pressure positivity for 
the Euler equations in two dimensions. Realize, however, that in their proof of the 
pressure positivity for the one-dimensional HLLE Riemann solver, Einfeldt et al. [22] 
were helped by the fact that they knew the exact range of diverging velocities that can be 
sustained in a one-dimensional fluid flow before the fluid undergoes a physical 
cavitation. In other words, they knew that a physical cavitation occurs when the velocities 
are divergent at a zone boundary and the Mach number on either side exceeds ( )2 1γ −  . 
The multidimensional Riemann problem has been studied by Schulz-Rinne, Collins and 
Glaz [49] but they do not arrive at closed form conditions for the velocity ranges that 
would prevent a cavitation from forming in the flow. As a result, we cannot identify the 
physically realizable states that would prevent the formation of a cavitation. This is the 
first difficulty that one encounters in demonstrating pressure positivity in 
multidimensions. While the mathematics built up here parallels that in Einfeldt et al. [22] 
and reduces to it for one-dimensional variations, the expressions obtained here are much 
more complicated. As a result, we have to manipulate them numerically on a computer. 
This precludes closed form expressions with a clear analytical proof which is, 
consequently, our second difficulty in demonstrating pressure positivity. Our procedure 
for showing pressure positivity is, therefore, a little less than an ironclad proof.  
 
 Demonstrating the pressure positivity of the resolved state is tantamount to 
showing that the term 
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y
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is always positive. After much algebra, this term can be written as 
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           (A.12) 
 
Eqn. (A.12) is exactly analogous to eqn. (A8) from Einfeldt et al. [22] and for one-
dimensional variations our eqn. (A.12) indeed reduces to their eqn. (A8). As a result, at 
least for one-dimensional variations, the multidimensional HLLE Riemann solver retains 
pressure positivity on an equal footing with the one-dimensional HLLE Riemann solver. 
Notice that eqn. (A.12) is, at least formally, a quadratic function in the velocities. The 
subsonic condition ensures that the coefficients in front of the quadratic velocity terms in 
eqn. (A.12) are all positive definite. If we think of the densities and pressures in the four 
quadrants of Fig. 1 as being specified, we can then view the right hand side of eqn. 
(A.12) as a function in eight variables formed by the velocities  
and  . Denote the right hand side of eqn. (A.12) by the function 

x, x, x, x, v , v , v , vRU LD RD LU

y, y, y, y, v , v , v , vRU LD RD LU

x, x, x, x, v , v , v , vRU LD RD LU( )y, y, y, y, , v , v , v , vRU LD RD LUψ  As a result, the function ψ  defines a 
paraboloid with positive quadratic terms in the velocity variables. We need to show that 
the minimum of ψ  is also positive when all the four input states from the four quadrants 
in Fig. 1 are physical. Because ψ  is, at least formally, quadratic in the velocities. We can 
find the minimum of ψ  by setting  
 

x, x, x, x, y, y, y, y, 

0
v v v v v v v vRU LD RD LU RU LD RD LU

ψ ψ ψ ψ ψ ψ ψ ψ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = = = = = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= . (A.13) 

 
Notice that for any specified set of densities and pressures in the four quadrants of Fig. 1, 
eqn. (A.12) is only a quadratic at a formal level. Thus eqn. (A.13) will only permit us to 
iterate to the set of velocities that minimize ψ . In practice, as the velocities change, so do 
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SR , ,  and SL SU SD . Consequently, the coefficients in eqn. (A.2) also change. These 
changes are, however, made with the proviso that the subsonic condition is met, thus 
keeping the coefficients in eqn. (A.2) positive. By iterating eqn. (A.13) to convergence 
for any specified set of densities and pressures in the four quadrants of Fig. 1 and 
evaluating ψ  for that minimum point, we can prove the pressure positivity for all 
possible velocities. This discussion suggests that the procedure is very amenable to 
implementation on a computer.  
 
 There are several subtler points that need to be kept in mind for a good computer 
implementation of a demonstration (not proof) of pressure positivity. First, realize that 
the Euler equations are Galilean invariant. As a result, eqn. (A.13) yields a degenerate 
system. All we can do is to specify  and  for one of the four slabs of fluid and 
use the remaining six equations in eqn. (A.13) to obtain the other velocities relative to the 
specified ones. For the sake of simplicity, we set 

x, v RU y, v RU

x, y, v vRU RU 0= = . Eqn. (A.13) is a 
Newton step in a root solver with six free variables and, therefore, we have always 
observed reasonably rapid convergence. Also notice that the Euler equations are scale 
invariant. As a result, we can set PRU 1RUρ = =  for one of the four slabs of fluid. The 
densities and pressures in the other three slabs of fluids are then specified as ratios 
relative to RUρ  and . Thus the independent variables are the six ratios PRU LD RUρ ρ , 
PLD PRU ,  RD RUρ ρ , PRD PRU , LU RUρ ρ  and  PLU PRU . In the computer code, we have 
a six-fold nested loop that causes these ratios to independently span the range 
[ ] 0.1 ,  102.4 . To span this large range efficiently, we use geometric scaling so that each 
loop iteration increases the ratio of the variable it governs by a factor of 2 relative to the 
previous iteration. For each iteration of the sextuply nested loop we can find the 
velocities that minimize ψ . 
 
 Two further subtleties still need to be mentioned. First, notice that if the velocities 
are unconstrained, the physics of the problem is such that ψ  can always attain a negative 
value if the flows in all the four quadrants diverge supersonically from the edge being 
considered. The computer code for minimizing ψ  indeed gravitates to such solutions in 
several cases that we tested. (When variations are restricted to one dimension, we were 
able to verify that the computer code retrieves the full acceptable range of velocities from 
Einfeldt et al. [22].) Because we wish to show pressure positivity in the subsonic case, 
the velocities in the four quadrants have to be restricted to be subsonic. We, therefore, 
need to limit the range of velocities being considered. This effort to restrict velocities to 
some sort of subsonic range reminds us of our second difficulty. Realize that in 
multidimensions we do not have closed form expressions for ranges of velocities that do 
not result in a cavitation. Recall that the proof of pressure positivity in Einfeldt et al. [22] 
was only possible because they were first able to bound the range of velocities so as to 
exclude cavitations. For the multidimensional case, we have no a priori knowledge of 
what that range should be. We, therefore, make the reasonable assumption that: 
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φ

φ φ φ

φ φ φ
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 .   (A.14) 

 
Here  denotes the sound speed of the fluid in the first quadrant, with a similar 
notation extending to the other three slabs of fluid. Notice that 

cRU

φ  is positive, so the six 
conditions in eqn. (A.14) make no restrictions on situations where slabs of fluids collide 
with each other. The above six conditions only restrict how fast slabs of fluid recede from 
each other, resulting in a multidimensional rarefaction. In other words, φ  is a measure of 
the divergence of the multidimensional flow velocity. The condition in eqn. (A.14) only 
restricts large positive values of the divergence in the flow velocity. As a result, larger 
values of φ  permit the undivided divergence in the flow velocity to reach larger positive 
values. Since these velocities are scaled by the local sound speed in eqn. (A.14), φ  also 
controls the Mach number of the undivided divergence of the flow. Consequently, just as 
Einfeldt et al. [22] had to restrict their one-dimensional undivided divergence in the flow 
velocity to lie within a certain range of Mach numbers, our use of φ  enables us to make a 
similar restriction in multiple dimensions. 
 
 Using the computer code we wrote for demonstrating pressure positivity, we were 
able to guarantee that with 0.43φ ≤  the pressures remain positive when the six ratios 

LD RUρ ρ , P PLD RU ,  RD RUρ ρ , PRD PRU , LU RUρ ρ  and  P PLU RU  independently span 
the range [ ] 0.1 ,  102.4  . Admittedly, setting 0.43φ ≤  produces a range of diverging 
velocities that is smaller than the corresponding range of divergent velocities that is 
allowed in one-dimensional flow. However, we do not have an available theory for two-
dimensional rarefaction flows that we can draw on. The range that we have demonstrated 
is still quite good for practical work. We have experimented with larger values of φ  and 
find that all the situations where pressure positivity is relinquished occur when the 
computer code finds flow velocities in all the quadrants that are diverging away from the 
edge being considered, i.e. multidimensional rarefactions. We have no theory to tell us 
whether those situations are physically realizable of not. When 0.6φ =  was handed in to 
the code, we found that only 0.1% of the cases tested yielded negative pressures. When 

0.75 and 0.9φ =  were handed in to the code, we found that only 0.52% and 1.15% 
respectively of the cases tested yielded negative pressures. Because of the heuristic 
bounds given in eqn. (A.14) please note that we have no criterion for telling whether the 
very divergent velocities in the code are physically realizable or not. Even so, when very 
divergent velocities are allowed, the cases where pressure positivity is lost are indeed 
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very small in number. The code for demonstrating pressure positivity is available by 
emailing the author from a bona fide academic email address. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 1 depicts a situation where four neighboring zones meet at an edge. (Think of the zones as 
having an extension in the third dimension.) The four zones lie in each of the four quadrants of 
the xy-plane. The origin O of the xy-plane denotes the edge shared by the four zones. The 
solution vector and fluxes in the first quadrant are denoted by a subscript RU (right-up); those 
in the second quadrant are shown by a subscript LU (left-up); those in the third quadrant have 
a subscript LD (left-down); those in the fourth quadrant carry a subscript RD (right-down). The 
waves start propagating outward from the origin at t=0. In a time t=T, the waves propagate out 
to x = SR T and x = SL T along the x-axis and out to y = SU T and y = SD T along the y-axis. The 
rectangle QMNR bounds the domain that will be affected by the waves.
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Fig. 2. The left panel shows the wave model that we adopt for the propagation of waves in two 
space dimensions and one temporal dimension. Points in space-time that are contained within 
the inverted, dark gray, rectangular pyramid in this figure are within the range of influence of 
the initial discontinuity. The wave model circumscribes the actual waves propagating out of the 
initial discontinuity at O. The right panel shows the plane x=0 from the left panel along with 
the x-directional fluxes that propagate through different portions of that face. Thus the resolved 
flux F* propagates through the unshaded area; the flux          propagates through the light gray 
area and the flux          propagates through the dark gray area.
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Fig. 3 shows the evolution of Riemann problems at all the faces and all the corners of a two- 
dimensional zone for a time Δt . As time Δt increases, the multidimensional Riemann problems at 
each of the corners make an increasingly larger contribution to the facially and temporally 
averaged fluxes at the zone faces. This is especially true in the subsonic cases shown here. The 
solid arrows in this figure show the propagation of waves; the dashed arrows show the fluxes.

, 1/2, 1/2SR i j t+ + Δ

, 1/2, 1/2SL i j t+ + Δ

, 1/2, 1/2SD i j t+ + Δ

, 1/2, 1/2SU i j t+ + Δ

, 1/2, 1/2SR i j t+ − Δ
, 1/2, 1/2SD i j t+ − Δ

, 1/2, 1/2SL i j t+ − Δ , 1/2, 1/2SU i j t+ − Δ

, 1/2, 1/2SR i j t− + Δ

, 1/2, 1/2SL i j t− + Δ , 1/2, 1/2SU i j t− + Δ

, 1/2, 1/2SD i j t− + Δ

, 1/2, 1/2SR i j t− − Δ
, 1/2, 1/2SD i j t− − Δ

, 1/2, 1/2SU i j t− − Δ
, 1/2, 1/2SL i j t− − Δ

( ),  i j , 1/2,SR i j t+ Δ, 1/2,SL i j t+ Δ

, , 1/2SU i j t+ Δ

, , 1/2SD i j t+ Δ

, 1/2,SR i j t− Δ, 1/2,SL i j t− Δ

, , 1/2SU i j t− Δ

, , 1/2SD i j t− Δ

1/2,i j
∗
+F

1/2, 1/2i j
∗
+ +F

1/2, 1/2i j
∗
+ −F



Fig. 4 showing the collocation of face-centered magnetic fields and edge-centered electric 
fields in a constrained transport method.
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Figs. 5a and  5b show contour plots of the final densities from the first and second 
multidimensional Riemann problems at the latest times in those simulations. The whole domain 
had 4002 zones. 20 contours are displayed for both figures. In Fig. 5a, the contours span 
[0.531, 1.70]. In Fig. 5b they span the range [0.138,1.77]. Fig. 5b only shows the lower left 
quadrant of the computational domain since the rest of the computational domain does not 
develop any interesting structures in the fluid variables.



Figs. 6a, 6b, 6c and 6d show contour plots of the final density, pressure, x-velocity and y-velocity 
respectively for the double Mach reflection problem. A resolution of 960×240 zones was used. 
We only show part of the mesh that spans [0,3]×[0,1]. 20 contours were used to show the density 
which ranges over [1.4,20.8]; the pressure which ranges over [1.0,566.5]; the x-velocity which 
ranges over [0.0,15.8] and the y-velocity which ranges over [-3.77,2.03].



Fig. 7 shows the magnitude of the magnetic field as a grayscale image for the field loop 
advection problem. The loop is advected along the diagonal of the rectangular domain shown 
here. A 128×64 zone mesh was used. The plot shows the field loop after it has executed one 
complete orbit around the computational domain.



Figs. 8a, 8b, 8c and 8d show
 the final density, pressure, m

agnitude of 
the velocity and m

agnitude of the m
agnetic field for the rotor problem

 
on a 1000

2zone m
esh. 20 contours are show

n in each plot. The density 
spans the range [0.277,11.83]; the pressure ranges over 
[0.0091,0.764]; the m

agnitude of the velocity has the range [0.0,0.703]; 
the m

agnitude of the m
agnetic field has the range [0.246,4.25].



Figs. 9a, 9b, 9c and 9d show
 the final density, pressure, m

agnitude of 
the velocity and m

agnitude of the m
agnetic field for the O

rzag-Tang 
problem

 on a 1000
2zone m

esh. 20 contours are show
n in each plot. The 

density spans the range [1.06,6.23]; the pressure ranges over 
[0.334,6.40]; the m

agnitude of the velocity has the range 
[0.00037,1.70]; the m

agnitude of the m
agnetic field has the range 

[0.016,10.55].



Figs. 10a, 10b, 10c and 10d show
 the final density, pressure, m

agnitude 
of the velocity and m

agnitude of the m
agnetic field for the three 

dim
ensional m

agnetized blast problem
 on a 129

3zone m
esh. The 

variables are show
n in the xy-plane that passes through the m

iddle of 
the dom

ain. 20 contours are show
n in each plot. The density spans the 

range [0.095,1.37]; the pressure ranges over [0.096,60.1]; the 
m

agnitude of the velocity has the range [0.0,6.79]; the m
agnitude of the 

m
agnetic field has the range [7.17,44.5].
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