
Band Gap Optimization of Two-Dimensional Photonic Crystals

Using Semidefinite Programming and Subspace Methods∗

H. Men†, N. C. Nguyen‡, R. M. Freund§, P. A. Parrilo¶, and J. Peraire‖

October 24, 2018

Abstract

In this paper, we consider the optimal design of photonic crystal band structures for two-
dimensional square lattices. The mathematical formulation of the band gap optimization prob-
lem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by
the dielectric material and the wave vector. To make the problem tractable, the original eigen-
value problem is discretized using the finite element method into a series of finite-dimensional
eigenvalue problems for multiple values of the wave vector parameter. The resulting optimization
problem is large-scale and non-convex, with low regularity and non-differentiable objective. By
restricting to appropriate eigenspaces, we reduce the large-scale non-convex optimization prob-
lem via reparametrization to a sequence of small-scale convex semidefinite programs (SDPs)
for which modern SDP solvers can be efficiently applied. Numerical results are presented for
both transverse magnetic (TM) and transverse electric (TE) polarizations at several frequency
bands. The optimized structures exhibit patterns which go far beyond typical physical intuition
on periodic media design.

1 Introduction

The propagation of waves in periodic media has attracted considerable interest in recent years.
This interest stems from the possibility of creating periodic structures that exhibit band gaps
in their spectrum, i.e., frequency regions in which the wave propagation is prohibited. Band
gaps occur in many wave propagation phenomena including electromagnetic, acoustic and elastic
waves. Periodic structures exhibiting electromagnetic wave band gaps, or photonic crystals, have
proven very important as device components for integrated optics including frequency filters [11],
waveguides [10], switches [20], and optical buffers [27].

The optimal conditions for the appearance of gaps were first studied for one-dimensional crys-
tals by Lord Rayleigh in 1887 [18]. In a one-dimensional periodic structure, one can widen the
band gap by increasing the contrast in the refractive index and difference in width between the
materials. Furthermore, it is possible to create band gaps for any particular frequency by changing
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the periodicity length of the crystal. Unfortunately, however, in two or three dimensions one can
only suggest rules of thumb for the existence of a band gap in a periodic structure, since no rigorous
criteria have yet been determined. This made the design of two- or three-dimensional crystals a trial
and error process, being far from optimal. Indeed, the possibility of two- and three-dimensionally
periodic crystals with corresponding two- and three-dimensional band gaps was not suggested until
100 years after Rayleigh’s discovery of photonic band gap in one dimension, by Yablonovitch [25]
and John [14] in 1987.

From a mathematical viewpoint, the calculation of the band gap reduces to the solution of an
infinite-dimensional Hermitian eigenvalue problem which is parametrized by the dielectric function
and the wave vector. In the design setting, however, one wishes to know the answer to the question:
which periodic structures, composed of arbitrary arrangements of two or more different materials,
produce the largest band gaps around a certain frequency? This question can be rigorously ad-
dressed by formulating an optimization problem for the parameters that represent the material
properties and geometry of the periodic structure. The resulting problem is infinite-dimensional
with an infinite number of constraints. After appropriate discretization in space and consideration
of a finite set of wave vectors, one obtains a large-scale finite-dimensional eigenvalue problem which
is non-convex and is known to be non-differentiable when eigenvalue multiplicities exist. The cur-
rent state-of-the-art work done on this problem falls into two broad categories. The first kind tries
to find the “optimal” band structure by parameter studies – based on prescribed inclusion shapes
(e.g., circular or hexagonal inclusions) [9] or fixed topology [26]. The second kind attempts to use
formal topology optimization techniques [19, 7, 4, 15]. Both approaches typically use gradient-
based optimization methods. While these methods are attractive and have been quite successful
in practice, the optimization processes employed explicitly compute the sensitivities of eigenval-
ues with respect to the dielectric function, which are local subgradients for such non-differentiable
problem. As a result, gradient-based solution methods often suffer from the lack of regularity of
the underlying problem when eigenvalue multiplicities are present, as they typically are at or near
the solution.

In this paper we propose a new approach based on semidefinite programming (SDP) and sub-
space methods for the optimal design of photonic band structure. In the last two decades, SDP has
emerged as the most important class of models in convex optimization; see [1, 2, 16, 22, 24]. SDP
encompasses a huge array of convex problems as special cases, and is computationally tractable
(usually comparable to least-square problems of comparable dimensions). There are three distinct
properties that make SDP very suitable for the band gap optimization problem. First, the un-
derlying differential operator is Hermitian and positive semidefinite. Second, the objective and
associated constraints involve bounds on eigenvalues of matrices. And third, as explained below,
we can approximate the original non-convex optimization problem by a semidefinite program for
which SDP can be well applied, thanks to its efficiency and robustness of handling this type of
spectral objective and constraints.

In our approach, we first reformulate the original problem of maximizing the band gap between
two consecutive eigenvalues as an optimization problem in which we optimize the gap in eigenvalues
between two orthogonal subspaces. The first eigenspace consists of eigenfunctions corresponding
to eigenvalues below the band gap, whereas the second eigenspace consists of eigenfunctions whose
eigenvalues are above the band gap. In this way, the eigenvalues are no longer present in our
formulation; however, like the original problem, the exactly reformulated optimization problem
is large-scale. To reduce the problem size, we truncate the high-dimensional subspaces to only
a few eigenfunctions below and above the band gap [5, 17], thereby obtaining a new small-scale
yet non-convex optimization problem. Finally, we keep the subspaces fixed at a given decision
parameter vector and use a reparametrization of the decision variables to obtain a convex semidef-
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inite optimization problem for which SDP solution methods can be effectively applied. We apply
this approach to optimize band gaps in two-dimensional photonic crystals for either the transverse
magnetic (TM) or the transverse electric (TE) polarizations.

The rest of the paper is organized as follows. In Section 2 we introduce the governing differential
equations and the mathematical formulation of the band gap optimization problem. We then discuss
the discretization process and present the subspace restriction approach. In Section 3 we introduce
the semidefinite programming formulation of the band structure optimization, and lay out the
optimization steps involved in solving the problem. Numerical results are presented in Section 4
for both the TE and TM polarizations in square lattices. Finally, in Section 5 we conclude with
several remarks on anticipated future research directions.

2 The Band Gap Optimization Problem

2.1 Governing Equations

Our primary concern is the propagation of electromagnetic linear waves in periodic media, and
the design of such periodic structures, or photonic crystals, to create optimal band gaps in their
spectrum. The propagation of electromagnetic waves in photonic crystals is governed by Maxwell’s
equations. The solutions to these equations are in general very complex functions of space and
time. Due to linearity however, it is possible to separate the time dependence from the spatial
dependence by expanding the solution in terms of harmonic modes – any time-varying solution can
always be reconstructed by a linear combination of these harmonic modes using Fourier analysis.
By considering only harmonic solutions, the problem is considerably simplified since it reduces to
a series of eigenvalue problems for the spatially varying part of the solutions (eigenfunctions) and
the corresponding frequencies (eigenvalues).

In the absence of sources and assuming a monochromatic wave, i.e., with magnetic field H(r, t) =
H(r)e−iωt, and electric field E(r, t) = E(r)e−iωt, Maxwell’s equations can be written in the fol-
lowing form:

∇×
(

1
ε(r)

∇×H(r)
)

=
(ω
c

)2
H(r), in R3,

1
ε(r)

∇× (∇×E(r)) =
(ω
c

)2
E(r), in R3,

where c is the speed of light, and ε(r) is the dielectric function. In two dimensions, there are two
possible polarizations of the magnetic and electric fields. In TE (transverse electric) polarization,
the electric field is confined to the plane of wave propagation and the magnetic field H = (0, 0, H)
is perpendicular to this plane. In contrast, in TM (transverse magnetic) polarization, the magnetic
field is confined to the plane of wave propagation and the electric field E = (0, 0, E) is perpendicular
to this plane. In such cases, the Maxwell’s equations can be reduced to scalar eigenvalue problems

TE : −∇ ·
(

1
ε(r)

∇H(r)
)

=
(ω
c

)2
H(r), in R2, (1)

TM : −∇ · (∇E(r)) =
(ω
c

)2
ε(r)E(r), in R2 . (2)

Note that the reciprocal of the dielectric function is present in the differential operator for the TE
case, whereas the dielectric function is present in the right-hand side for the TM case.
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Figure 1: Left: A photonic crystal on a square lattice. The dashed box represents the primitive
unit cell (Ω), where a is the periodicity length of the lattice. Right: The reciprocal lattice, and
the dashed box represents the first Brillouin zone (B). The irreducible zone is the green triangular
wedge, and its boundary is denoted by ∂B.

For two-dimensional square lattices the dielectric function satisfies ε(r) = ε(r + R), where R
are the crystal lattice vectors1. By applying the Bloch-Floquet theory [3, 12] for periodic eigenvalue
problems we obtain that

H(r) = eik·rHk(r), and E(r) = eik·rEk(r),

where Hk(r) and Ek(r) satisfy

TE : (∇ + ik) ·
(

1
ε(r)

(∇ + ik)Hk(r)
)

=
(ω
c

)2
Hk(r), in Ω, (3)

TM : (∇ + ik) · ((∇ + ik)Ek(r)) =
(ω
c

)2
ε(r)Ek(r), in Ω, (4)

respectively. Thus, the effect of considering periodicity is reduced to replacing the indefinite periodic
domain by the unit cell Ω and ∇ by ∇ + ik in the original equation, where k is a wave vector
in the first Brillouin zone B. Note that the unit cell Ω and the Brillouin zone B depend on the
lattice type (e.g., square or triangular lattices) as well as the crystal lattice vectors R. If we further
take into consideration the symmetry group of the square lattice [23], we only need to consider all
possible wavevectors k on the irreducible Brillouin zone, or (under certain conditions) its boundary
[13]. Figure 1 shows an example of the unit cell and the Brillouin zone for a square lattice.

For notational convenience, we write the above equations in the following operator form

Au = λMu, in Ω, (5)

where, for the TE case, u ≡ Hk(r), λ ≡ ω2
TE/c

2, and

A(ε,k) ≡ −(∇ + ik) ·
(

1
ε(r)

(∇ + ik)
)
, M≡ I; (6)

whereas, for the TM case, u ≡ Ek(r), λ ≡ ω2
TM/c

2, and

A(k) ≡ −(∇ + ik) · (∇ + ik), M(ε) ≡ ε(r)I. (7)

Here I denotes the identity operator. We denote by (um, λm) the m-th pair of eigenfunction and
eigenvalue of (5) and assume that these eigenpairs are numbered in ascending order: 0 < λ1 ≤
λ2 ≤ · · · ≤ λ∞.

1For a square lattice, R denotes the vectors spanned by {ae1, ae2}, where e1 and e2 are the unit basis vectors
and a is the periodicity length of the crystal [13].
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2.2 The Optimization Problem

The objective in photonic crystal design is to maximize the band gap between two consecutive
frequency modes. Due to the lack of fundamental length scale in Maxwell’s equations, it can be
shown that the magnitude of the band gap scales by a factor of s when the crystal is expanded by
a factor of 1/s. Therefore, it is more meaningful to maximize the gap-midgap ratio instead of the
absolute band gap [13]. The gap-midgap ratio between λm and λm+1 is defined as

J(ε(r)) =
infk∈∂B λ

m+1(ε(r),k)− supk∈∂B λ
m(ε(r),k)

infk∈∂B λm+1(ε(r),k) + supk∈∂B λ
m(ε(r),k)

,

where ∂B represents the irreducible Brillouin zone boundary; see Figure 1 for example.
A typical characterization of the dielectric function ε(r) is the distribution of two different

materials. Suppose that we are given two distinct materials with dielectric constants εmin and εmax

where εmin < εmax. We wish to find arrangements of the materials within the unit cell Ω which
result in maximal gap-midgap ratio. To this end, we decompose the unit cell Ω into Nε disjoint
subcells Ki, 1 ≤ i ≤ Nε, such that Ω = ∪Nεi=1Ki and Ki ∩ Kj = ∅ for i 6= j. Here we take this
subcell grid to be the same as the finite element triangulation of the unit cell as we are going to
discretize the continuous eigenvalue problem by the finite element method. Our dielectric function
ε(r) takes a unique value between εmin and εmax on each subcell, namely, ε(r) = εi ∈ R on Ki

and εmin ≤ εi ≤ εmax. However, due to the symmetry of square lattice, we only need to define
the dielectric function ε(r) over part of the unit cell (1/8 of the unit cell). Hence, in general, the
dielectric function ε(r) is discretized into a finite dimensional vector ε = (ε1, . . . , εnε) ∈ Rnε (with
nε ≤ Nε) which resides in the following admissible region:

Qad ≡ {ε = (ε1, . . . , εnε) ∈ Rnε : εmin ≤ εi ≤ εmax, 1 ≤ i ≤ nε}.

This region consists of piecewise-constant functions whose value on every subcell varies between εmin

and εmax. Moreover, to render this problem computationally tractable, we replace the irreducible
Brillouin zone boundary ∂B by a finite subset

Snk = {kt ∈ ∂B, 1 ≤ t ≤ nk},

where kt, 1 ≤ t ≤ nk, are wave vectors chosen along the irreducible Brillouin zone boundary. As a
result, the band gap optimization problem that maximizes the gap-midgap ratio between λm and
λm+1 can be stated as follows:

max
ε

J∗(ε) =
mink∈Snk λ

m+1(ε,k)−maxk∈Snk λ
m(ε,k)

mink∈Snk λ
m+1(ε,k) + maxk∈Snk λ

m(ε,k)

s.t. A(ε,k)uj = λjM(ε)uj , j = m,m+ 1, k ∈ Snk ,
εmin ≤ εi ≤ εmax, 1 ≤ i ≤ nε.

(8)

In this problem a subtle difference between TE and TM polarizations lies in the operators of the
eigenvalue problem: A and M take the form of either (6) for the TE case or (7) for the TM case.
In either case, note that the eigenvalue problems embedded in (8) must be addressed as part of any
computational strategy for the overall solution of (8).

2.3 Discretization of the Eigenvalue Problem

We consider here the finite element method to discretize the continuous eigenvalue problem (5).
This produces the following discrete eigenvalue problem

Ah(ε,k)ujh = λjhMh(ε)ujh, j = 1, . . . ,N , k ∈ Snk , (9)
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where Ah(ε,k) ∈ CN×N is a Hermitian stiffness matrix and Mh(ε) ∈ RN×N is a symmetric positive
definite mass matrix. These matrices are sparse and typically very large (N � 1). We consider
the approximate eigenvalues in ascending order: λ1

h ≤ λ2
h ≤ · · · ≤ λNh .

It is important to note that the dependence of the above matrices on the design parameter
vector ε is different for the TE and TM polarizations. In the TE case, ATE

h depends on ε and MTE
h

does not, whereas in the TM case MTM
h depends on ε and ATM

h does not. More specifically, since
ε(r) is a piecewise-constant function on Ω, the ε-dependent matrices can be expressed as

ATE
h (ε,k) =

nε∑
i=1

1
εi
ATE
h,i (k), MTM

h (ε) =
nε∑
i=1

εiM
TM
h,i , (10)

where the matrices ATE
h,i (k) and MTM

h,i , 1 ≤ i ≤ nε are independent of ε. We note that ATE
h (ε,k)

is linear with respect to 1/εi, 1 ≤ i ≤ nε, while MTM
h (ε) is linear with respect to εi, 1 ≤ i ≤

nε. The affine expansion (10) is a direct consequence of the fact that we use piecewise-constant
approximation for the dielectric function ε(r). (In the TE case, we will shortly change our decision
variables to yi = 1/εi, 1 ≤ i ≤ nε, so as to render ATE

h affine in the variables y1, . . . , ynε .)
After discretizing the eigenvalue problem (5) by the finite element method, we obtain the

following band gap optimization problem:

max
ε
Jh(ε) =

mink∈Snk λ
m+1
h (ε,k)−maxk∈Snk λ

m
h (ε,k)

maxk∈Snk λ
m+1
h (ε,k) + maxk∈Snk λ

m
h (ε,k)

s.t. Ah(ε,k)ujh = λjhMh(ε)ujh, j = m,m+ 1, k ∈ Snk ,
εmin ≤ εi ≤ εmax, 1 ≤ i ≤ nε.

(11)

Unfortunately, this optimization problem is non-convex; furthermore it suffers from lack of regu-
larity at the optimum. The reason for this is that the eigenvalues λmh and λm+1

h are typically not
smooth functions of ε at points of multiplicity, and multiple eigenvalues at the optimum are typical
of structures with symmetry. As a consequence, the gradient of the objective function J(ε) with
respect to ε is not well-defined at points of eigenvalue multiplicity, and thus gradient-based descent
methods often run into serious numerical difficulties and convergence problems.

3 Band Structure Optimization

In this section we describe our approach to solve the band gap optimization problem based on a
subspace method and semidefinite programming (SDP). In our approach, we first reformulate the
original problem as an optimization problem in which we aim to maximize the band gap obtained by
restriction of the operator to two orthogonal subspaces. The first subspace consists of eigenfunctions
associated to eigenvalues below the band gap, and the second subspace consists of eigenfunctions
whose eigenvalues are above the band gap. In this way, the eigenvalues are no longer explicitly
present in the formulation, and eigenvalue multiplicity no longer leads to lack of regularity. The
reformulated optimization problem is exact but non-convex and large-scale. To reduce the problem
size, we truncate the high-dimensional subspaces to only a few eigenfunctions below and above the
band gap [5, 17], thereby obtaining a new small-scale yet non-convex optimization problem. Finally,
we keep the subspaces fixed at a given decision parameter vector to obtain a convex semidefinite
optimization problem for which SDP solution methods can be efficiently applied.
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3.1 Reformulation of the Band Gap Optimization Problem using Subspaces

We first define two additional decision variables:

λuh := min
k∈Snk

λm+1
h (ε,k) , λ`h := max

k∈Snk
λmh (ε,k) ,

and then rewrite the original problem (11) as

P0 : max
ε,λuh,λ

`
h

λuh − λ`h
λuh + λ`h

s.t. λmh (ε,k) ≤ λ`h , λuh ≤ λ
m+1
h (ε,k), ∀k ∈ Snk ,

Ah(ε,k)umh = λmhMh(ε)umh , ∀k ∈ Snk ,
Ah(ε,k)um+1

h = λm+1
h Mh(ε)um+1

h , ∀k ∈ Snk ,
εmin ≤ εi ≤ εmax, i = 1, . . . , nε,

λuh , λ
`
h > 0.

(12)

Next, we introduce the following matrices:

Φε(k) := [Φε
` (k) | Φε

u(k)] := [u1
h(ε,k) . . . umh (ε,k) | um+1

h (ε,k) . . . uNh (ε,k)],

where Φε
` (k) and Φε

u(k) consist of the first m eigenvectors and the remaining N −m eigenvectors,
respectively, of the eigenvalue problem:

Ah(ε,k)ujh = λjhMh(ε)ujh, 1 ≤ j ≤ N .

We will also denote the subspaces spanned by the eigenvectors of Φε
` (k) and Φε

u(k) as sp(Φε
` (k))

and sp(Φε
u(k)), respectively.

The first three sets of constraints in (12) can be represented exactly as

Φε∗
` (k)[Ah(ε,k)− λ`hMh(ε)]Φε

` (k) � 0, ∀k ∈ Snk
Φε∗
u (k)[Ah(ε,k)− λuhMh(ε)]Φε

u(k) � 0, ∀k ∈ Snk ,

where “�” is the Löwner partial ordering on symmetric matrices, i.e., A � B if and only if A−B
is positive semidefinite. We therefore obtain the following equivalent optimization problem:

P1 : max
ε,λuh,λ

`
h

λuh − λ`h
λuh + λ`h

s.t. Φε∗
` (k)[Ah(ε,k)− λ`hMh(ε)]Φε

` (k) � 0, ∀k ∈ Snk ,
Φε∗
u (k)[Ah(ε,k)− λuhMh(ε)]Φε

u(k) � 0, ∀k ∈ Snk ,
εmin ≤ εi ≤ εmax, i = 1, . . . , nε,

λuh , λ
`
h > 0.

(13)

Although the reformulation P1 is exact, there is however a subtle difference in the interpretation
of P0 and P1: P0 can be viewed as maximizing the gap-midgap ratio between the two eigenvalues
λmh and λm+1

h ; whereas P1 can be viewed as maximizing the gap-midgap ratio between the two
subspaces sp(Φε

` (k)) and sp(Φε
u(k)). The latter viewpoint allows us to develop an efficient subspace

approximation method for solving the band gap optimization problem as discussed below.
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3.2 Subspace Approximation and Reduction

Let us assume that we are given a parameter vector ε̂. We then introduce the associated matrices

Φε̂(k) := [Φε̂
` (k) | Φε̂

u(k)] = [u1
h(ε̂,k) . . . umh (ε̂,k) | um+1

h (ε̂,k) . . . uNh (ε̂,k)] ,

where Φε̂
` (k) and Φε̂

u(k) consist of the first m eigenvectors and the remaining N −m eigenvectors,
respectively, of the eigenvalue problem

Ah(ε̂,k)ujh = λjhMh(ε̂)ujh, 1 ≤ j ≤ N .

Under the presumption that sp(Φε̂
` (k)) and sp(Φε̂

u(k)) are reasonable approximations of sp(Φε
` (k))

and sp(Φε
u(k)) for ε near ε̂, we replace Φε

` (k) with Φε̂
` (k) and Φε

u(k) with Φε̂
u(k) to obtain

P ε̂
2 : max

ε,λuh,λ
`
h

λuh − λ`h
λuh + λ`h

s.t. Φε̂∗
` (k)[Ah(ε,k)− λ`hMh(ε)]Φε̂

` (k) � 0, ∀k ∈ Snk ,
Φε̂∗
u (k)[Ah(ε,k)− λuhMh(ε)]Φε̂

u(k) � 0, ∀k ∈ Snk ,
εmin ≤ εi ≤ εmax, i = 1, . . . , nε,

λuh , λ
`
h > 0.

(14)

Note in P ε̂
2 that the subspaces sp(Φε̂

` (k)) and sp(Φε̂
u(k)) are approximations of the subspaces

sp(Φε
` (k)) and sp(Φε

u(k)) and are no longer functions of the decision variable vector ε.
Note also that the semidefinite inclusions in P ε̂

2 are large-scale, i.e., the rank of either the first
or second inclusion is at least N/2, for each k ∈ Snk , and N will typically be quite large. In order
to reduce the size of the inclusions, we reduce the dimensions of the subspaces by considering only
the “important” eigenvectors among u1

h(ε,k) . . . umh (ε,k), um+1
h (ε,k) . . . uNh (ε,k), namely those

ak eigenvectors whose eigenvalues lie below but nearest to λmh (ε,k) and those bk eigenvectors
whose eigenvalues lie above but nearest to λm+1

h (ε,k), for small values of ak, bk, typically chosen
in the range between 2 and 5, for each k ∈ Snk . This yields reduced matrices

Φε̂
ak+bk

(k) := [Φε̂
ak

(k) | Φε̂
bk

(k)] = [um−ak+1
h (ε̂,k) . . . umh (ε̂,k) | um+1

h (ε̂,k) . . . um+bk
h (ε̂,k)].

Substituting Φε̂
ak

(k) in place of Φε̂∗
` (k) and Φε̂

bk
(k) in place of Φε̂∗

u (k) in the formulation P ε̂
2 yields

the following reduced optimization formulation:

P ε̂
3 : max

ε,λuh,λ
`
h

λuh − λ`h
λuh + λ`h

s.t. Φε̂∗
ak

(k)[Ah(ε,k)− λ`hMh(ε)]Φε̂
ak

(k) � 0, ∀k ∈ Snk ,
Φε̂∗
bk

(k)[Ah(ε,k)− λuhMh(ε)]Φε̂
bk

(k) � 0, ∀k ∈ Snk ,
εmin ≤ εi ≤ εmax, i = 1, . . . , nε,

λuh , λ
`
h > 0.

(15)

In this way the formulation P ε̂
3 seeks to model only the anticipated “active” eigenvalue con-

straints, in exact extension of active-set methods in nonlinear optimization. The integers ak, bk are
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determined indirectly through user-defined parameters rl > 0, and ru > 0, where we retain only
those eigenvectors whose eigenvalues are within 100rl% beneath λmh (ε̂,k) or whose eigenvalues are
within 100ru% above λm+1

h (ε̂,k). This translates to choosing ak, bk ∈ N+ as the smallest integers
that satisfy

λmh (ε̂,k)− λm−ak+1
h (ε̂,k)

λmh (ε̂,k)
≤ rl ≤

λmh (ε̂,k)− λm−ak
h (ε̂,k)

λmh (ε̂,k)
,

λm+bk
h (ε̂,k)− λm+1

h (ε̂,k)
λm+1
h (ε̂,k)

≤ ru ≤
λm+bk+1
h (ε̂,k)− λm+1

h (ε̂,k)
λm+1
h (ε̂,k)

.

The dimensions of the resulting subspaces sp(Φŷ
ak(k)) and sp(Φŷ

bk
(k)) are typically very small

(ak, bk ∼ 2, . . . , 5). Furthermore, the subspaces are well-spanned by including all relevant eigenvec-
tors corresponding to those eigenvalues with multiplicity at or near the current min/max values.

We observe that P ε̂
3 has significantly smaller semidefinite inclusions than if the full subspaces

were used. Also, the subspaces are kept fixed at ε̂ in order to reduce the nonlinearity of the
underlying problem. Furthermore, we show below that for the TE and TM polarizations that P ε̂

3

can be easily re-formulated as a linear fractional semidefinite program, and hence is solvable using
modern interior-point methods.

3.3 Fractional SDP Formulations for TE and TM Polarizations

We now show that by a simple change of variables for each of the TE and TM polarizations, problem
P ε̂

3 can be converted to a linear fractional semidefinite program and hence can be further converted
to a linear semidefinite program.

TE polarization. We introduce the following new decision variable notation for convenience:

y := (y1, y2, . . . , yny) := (1/ε1, . . . , 1/εnε , λ
`
h, λ

u
h) ,

and set ymin = 1/εmax and ymax = 1/εmin. We also amend our notation to write various functional
dependencies on y instead of ε such as Φŷ

` (k), etc. Utilizing (10), we re-write P ε̂
3 for the TE

polarization as

P ŷ
TE : max

y

yny − yny−1

yny + yny−1

s.t. Φŷ∗
ak(k)

[∑ny−2
i=1 yiA

TE
h,i (k)− yny−1M

TE
h

]
Φŷ
ak(k) � 0, ∀k ∈ Snk ,

Φŷ∗
bk

(k)
[∑ny−2

i=1 yiA
TE
h,i (k)− ynyMTE

h

]
Φŷ
bk

(k) � 0, ∀k ∈ Snk ,
ymin ≤ yi ≤ ymax, i = 1, . . . , ny − 2,

yny−1 , yny > 0.

(16)

We note that the objective function is a linear fractional expression and the constraint functions
are linear functions of the variables y. Therefore P ŷ

TE is a linear fractional SDP. Using a standard
homogenization [6, 8], a linear fractional SDP can be converted to a linear SDP.2

2Indeed, for notational simplicity consider a linear fractional optimization problem of the form maxx
cT x
dT x

subject

to b − Ax ∈ K1, x ∈ K2, where dTx > 0 for all feasible x and K1, K2 are convex cones. Then this problem is
equivalent to the problem maxw,θ c

Tw subject to bθ − Aw ∈ K1, w ∈ K2, dTw = 1, θ ≥ 0, under the elementary
transformations x← (w/θ) and (w, θ)← (x/dTx, 1/dTx), see [6, 8].
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TM polarization. We introduce slightly different decision variable notation for convenience:

z := (z1, z2, . . . , znz) := (ε1, . . . , εnε , 1/λ
`
h, 1/λ

u
h),

and set zmin = εmin and zmax = εmax. Similar to the TE case, we amend our notation to write
various functional dependencies on z instead of ε such as Φẑ

` (k), etc. Noting that

λuh − λ`h
λuh + λ`h

=
znz−1 − znz
znz−1 + znz

,

utilizing (10), and multiplying the semidefinite inclusions of (15) by znz−1 and znz , respectively, we
re-write P ε̂

3 for the TM polarization as

P ẑ
TM : max

z

znz−1 − znz
znz−1 + znz

s.t. Φẑ∗
ak

(k)
[
znz−1A

TM
h (k)−

∑nz−2
i=1 ziM

TM
h,i

]
Φẑ
ak

(k) � 0, ∀k ∈ Snk ,

Φẑ∗
bk

(k)
[
znzA

TM
h (k)−

∑nz−2
i=1 ziM

TM
h,i

]
Φẑ
bk

(k) � 0, ∀k ∈ Snk ,
zmin ≤ zi ≤ zmax, i = 1, . . . , nz − 2,

znz−1 , znz > 0.

(17)

Here again the objective function is a linear fractional form and the constraint functions are linear
functions of the variables z. Therefore P ẑ

TM is a linear fractional SDP with format similar to that
of P ŷ

TE.
Since both P ŷ

TE and P ẑ
TM are linear fractional semidefinite programs, they can be solved very

efficiently by using modern interior point methods. Here we use the SDPT3 software [21] for this
task.

3.4 Main Algorithm

We summarize our numerical approach for solving the band gap optimization problem of the TE
polarization in the following table. Essentially the same algorithm (with the modifications described
in the previous section) is used to solve the band gap optimization problem of the TM polarization.

4 Results and Discussions

4.1 Model Setup

We consider a two-dimensional photonic crystal confined in the computational domain of a unit cell
of the square lattice, and with square domain Ω ≡ [−1, 1]× [−1, 1]. The domain Ω is decomposed
into a uniform quadrilateral (in particular, we use square elements for the square lattice) grid of
dimensions 64× 64, which yields a mesh size of h = 1/32 and 4096 linear square elements.

The dielectric function ε is composed of two materials with dielectric constants εmin = 1 (air)
and εmax = 11.4 (GaAs). As mentioned earlier in Section 2.2, the symmetry of the lattice can be
exploited to further reduce the dielectric function to be defined in only 1/8 of the computation
domain. The number of decision variables relating the dielectric material (εi, i = 1, 2, . . . , nε) is
thus reduced to nε = (1 + 32) × 32/2 = 528. Figure 2 shows an illustration of a coarse mesh

10



Implementation Steps

Step 1. Start with an initial guess y0 and an error tolerance εtol, and set ŷ := y0.

Step 2. For each wave vector k ∈ Snk , do:

Determine the subspace dimensions ak and bk.

Compute the matrices Φŷ
ak(k) and Φŷ

bk
(k).

Step 3. Form the semidefinite program P ŷ
TE.

Step 4. Solve P ŷ
TE for an optimal solution y∗.

Step 5. If ‖y∗ − ŷ‖ ≤ εtol, stop and return the optimal solution y∗.

Else update ŷ ← y∗ and go to Step 2.

Table 1: Main algorithm for solving the band gap optimization problem.

(16 × 16) and dielectric function for the square lattice to aid visualization; note that the actual
computational mesh (64× 64) is finer than this one. The shaded cells represent those modeled by
ε, and the rest are obtained through symmetry. Furthermore, in this case, the irreducible Brillouin
zone B is the triangle shown in Figure 1, with nk = 12 k-points taken along the boundary of this
region (∂B). Band diagrams plotted in the figures below show the eigenvalues moving along the
boundary of B, from Γ to X to M and back to Γ.

Figure 2: An illustration of a coarse mesh (16 × 16) and dielectric function for the square lattice.
The shaded cells indicate the decision variables relating the dielectric material (εi, i = 1, 2, . . . , nε).
Note that the actual computational mesh (64× 64) is finer than this one.

4.2 Choices of Parameters

4.2.1 Initial configuration

Because the underlying optimization problem may have many local optima, the performance of
our method can be sensitive to the choice of the initial values of the decision variables y0, which
in turn depend on the initial configuration ε0. Indeed, different initial configurations do lead to
different local optima as shown in Figure 3 for the second TE band gap and in Figure 4 for the

11



fourth TM band gap. Therefore, the choice of the initial configuration is important. We examine
here two different types of initial configurations: photonic crystals exhibiting band gaps at the low
frequency spectrum and random distribution.

The well-known photonic crystals (e.g., dielectric rods in air – Figure 4(a), air holes in dielectric
material, orthogonal dielectric veins – Figure 3(d)) exhibit band-gap structures at the low frequency
spectrum. Such a distribution seems to be a sensible choice for the initial configuration as it
resembles various known optimal structures [4]. When these well-known photonic crystals are
used as the initial configuration, our method easily produces the band-gap structures at the low
frequency mode (typically, the first three TE and TM modes). On the other hand, maximizing the
band gap at the high frequency mode (typically, above the first three TE and TM modes) tends
to produce more complicated structures which are very different from the known photonic crystals
mentioned above. As a result, when these photonic crystals are used as the initial configurations
for maximizing the band gap at the high frequency mode, the obtained results are less satisfactory.

Random initial configurations such as Figures 3(a) and 4(d)) have very high spatial variation
and may thus be suitable for maximizing the band gap at the high frequency mode. Indeed, we
observe that random distributions often yield larger band gaps (better results) than the known
photonic crystals for the high frequency modes. Of course, the random initialization does not
eliminate the possibility of multiple local optima intrinsic to the physical problem. In view of this
effect, we use multiple random distributions to initialize our method. In particular, we start our
main algorithm with a number of uniformly random distributions as initial configurations to obtain
the optimal structures in our numerical results discussed below.

(a) Initial crystal configuration #1 (b) Optimized crystal structure #1
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(c) Optimized band structure #1

(d) Initial crystal configuration #2 (e) Optimized crystal structure #2
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(f) Optimized band structure #2

Figure 3: Two locally optimal band gaps between λ2
TE and λ3

TE in the square lattice
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(a) Initial crystal configuration #1 (b) Optimized crystal structure #1
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(c) Optimized band structure #1

(d) Initial crystal configuration #2 (e) Optimized crystal structure #2
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(f) Optimized band structure #2

Figure 4: Two locally optimal band gaps between λ4
TM and λ5

TM in the square lattice

4.2.2 Subspace dimensions

The dimensions of the subspaces sp(Φŷ
ak(k)) and sp(Φŷ

bk
(k)) are determined indirectly by the

parameters rl and ru. A good choice of rl (and ru) is one that returns ak � N (and bk � N ), and
at the same time includes the “important” eigenvectors to enhance convergence to an optimum. In
our numerical experiments, we choose ru = rl = 0.1 which in turn leads to the resulting subspace
dimensions ak and bk in the range of [2, 5]. Moreover, we find that choosing larger values of ru and
rl (e.g., rl = ru = 0.2), which in turn increases ak and bk and hence increases computational cost,
does not yield fewer iterations than choosing ru = rl = 0.1.

4.3 Computational Cost

With all the programs implemented in MATLAB and the computation performed on a Linux PC
with Dual Core AMD Opteron 270, 1.99GHz, a successful run of the algorithm can typically be
done in 2–30 minutes including 5–30 outer iterations, i.e., passes of Steps 2-5 of the main algorithm
in Table 1. An example of the computational cost and outer iterations for different band gap
optimization is shown in Table 2 as a general illustration of our computational experience.

We point out that these numbers merely represent one set of possibilities; variations in the
numerical results are likely to occur with different random initial configurations. Nevertheless, the
computation cost does serve as an indication of the general level of difficulty of finding a solution
in each problem. In general, lower eigenvalue band gap optimization problems are easier to solve
(at least to local optima). Moreover, the table illustrates that TM problems usually solve faster
and require fewer outer iterations. This latter observation is consistent with the result reported in
[15], and is possibly due to the high non-convexity of the original TE optimization problem.

Before ending this section, we point out some possible ways to improve the computational cost
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∆λTE1,2 ∆λTE2,3 ∆λTE3,4 ∆λTE4,5 ∆λTE5,6 ∆λTE6,7 ∆λTE7,8 ∆λTE8,9 ∆λTE9,10 ∆λTE10,11

Execution time (min) 5.7 2.5 8.9 20.4 17.9 20.5 19.4 27.3 26.4 25.8

Outer Iterations 11 8 29 26 18 25 15 27 19 23

∆λTM1,2 ∆λTM2,3 ∆λTM3,4 ∆λTM4,5 ∆λTM5,6 ∆λTM6,7 ∆λTM7,8 ∆λTM8,9 ∆λTM9,10 ∆λTM10,11

Execution time (min) 1.8 5.6 3.5 5.4 11.7 9.5 10.8 3.9 11.2 9.5

Outer Iterations 4 9 5 7 16 9 9 9 12 10

Table 2: Example of computation time and the number of outer iterations of a successful run
for optimizing various band gaps, for both TE and TM polarization. Here ∆λTEi,i+1 denotes the
gap-midgap ratio between the ith and (i+ 1)st eigenvalue for the TE polarization.
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TM
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(b)

Figure 5: (a) Random starting structure with translation, rotation, and reflection symmetry, 3× 3
unit cells in square lattice. (b) Band structure before optimization.

of our procedure. For the eigenvalue calculation, it is probably helpful to apply a more efficient
eigensolver (we used MATLAB’s eigs function in the current implementation). Another promising
approach is to explore mesh adaptivity and incorporate non-uniform meshing for the representation
of the dielectric function, as well as the eigenvalue calculation. As further discussed in Section 5,
it should be possible to significantly reduce the number of decision variables and computation cost
with this approach.

4.4 Optimal Structures

We start the optimization procedure with a random distribution of the dielectric, such as the one
shown in Figure 5(a). The corresponding band structures of the TE and TM fields are shown
in Figure 5(b). In Figure 6, we present an example of the evolution of the crystal structure as
the optimization process progresses. (The light color indicates the low dielectric constant and the
dark color denotes the high dielectric constant.) As illustrated in Figure 7, the gap-midgap ratio
starts from a negative value (−8.93%) corresponding to the random configuration (Figure 7(a)) and
increases up to +43.90% corresponding to the optimal configuration (Figure 7(f)) at which time
the optimization process terminates successfully. Another example of the optimization evolution
for TE polarization is shown in Figure 8 and Figure 9, in which the gap-midgap ratio increases
from −39.21% to +29.23%.
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(a) (b) (c)

(d) (e) (f)

Figure 6: The evolution of the square lattice crystal structure for optimizing the gap-midgap ratio
between λ7

TM and λ8
TM.
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(f)

Figure 7: The corresponding band structure (of Figure 6)) and the gap-midgap ratio between λ7
TM

and λ8
TM in the square lattice.
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(a) (b) (c)

(d) (e) (f)

Figure 8: The evolution of the square lattice crystal structure for optimizing the gap-midgap ratio
between λ3

TE and λ4
TE.
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Figure 9: The corresponding band structure (of Figure 8)) and the gap-midgap ratio between λ3
TE

and λ4
TE in the square lattice.
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(a) Optimal crystal structure
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(b) Optimal band structure

Figure 10: Optimization of band gap between λ6
TM and λ7

TM in the square lattice.
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(b) Optimal band structure

Figure 11: Optimization of band gap between λ7
TM and λ8

TM in the square lattice.

In Figures 10 through 19, we present only plots of the final optimized crystal structures and
the corresponding band structures for the 6th through 10th optimized band gaps for TE and TM
polarizations. We see that the optimized TM band gaps are exhibited in isolated high-ε structures,
while the optimized TE band gaps appear in connected high-ε structures. This observation has also
been pointed out in [13] (p75) “the TM band gaps are favored in a lattice of isolated high-ε regions,
and TE band gaps are favored in a connected lattice”, and observed in [15] previously. For both TE
and TM polarizations, the crystal structures become more and more complicated as we progress
to higher bands. It would be very difficult to create such structures using physical intuition alone.
The largest gap-midgap ratio for the TM case is 43.9% between the seventh and eighth frequency
bands, while the largest ratio for the TE case is 44.1%, also between the seventh and eighth bands.
The results presented here are not guaranteed to be globally optimal, as pointed out in Section
4.2.1. While most crystal structures in the TM cases appear similar to those presented in [15], we
have shown quite different TE structures. A qualitative comparison between the two results in the
background indicates larger band gaps (both in absolute value and in the gap-midgap ratio) in our
results.
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(a) Optimal crystal structure
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(b) Optimal band structure

Figure 12: Optimization of band gap between λ8
TM and λ9

TM in the square lattice.
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(b) Optimal band structure

Figure 13: Optimization of band gap between λ9
TM and λ10

TM in the square lattice.
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(b) Optimal band structure

Figure 14: Optimization of band gap between λ10
TM and λ11

TM in the square lattice.

18



(a) Optimal crystal structure
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(b) Optimal band structure

Figure 15: Optimization of band gap between λ6
TE and λ7

TE in the square lattice.
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(b) Optimal band structure

Figure 16: Optimization of band gap between λ7
TE and λ8

TE in the square lattice.
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(b) Optimal band structure

Figure 17: Optimization of band gap between λ8
TE and λ9

TE in the square lattice.
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(a) Optimal crystal structure
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(b) Optimal band structure

Figure 18: Optimization of band gap between λ9
TE and λ10

TE in the square lattice.
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(b) Optimal band structure

Figure 19: Optimization of band gap between λ10
TE and λ11

TE in the square lattice.

20



5 Conclusions and Future Work

We have introduced a novel approach, based on reduced eigenspaces and semidefinite programming,
for the optimization of band gaps of two-dimensional photonic crystals on square lattices. Our
numerical results convincingly show that the proposed method is very effective in producing a
variety of structures with large band gaps at various frequency levels in the spectrum.

Since our computational techniques make essential use of the finite element method, we antic-
ipate that notions of mesh adaptivity can be easily incorporated into our approach, and thus its
computational efficiency will be improved even further. For example, one can start with a relatively
coarse mesh and converge to a near-optimal solution, and then judiciously refine the finite element
mesh (e.g., refining elements at the interface of dielectric materials) using the current optimal solu-
tion at the coarser mesh as the new initial configuration. We intend to explore this approach and
report the details and results in a forthcoming paper.

The main strengths of our proposed approach to solve eigenvalue gap optimization problem
is the fact that SDP-based methods do not require explicit computation of (sub-)gradients of the
objective function (which are ill-defined in the case of eigenvalue multiplicities), hence maintaining
the regularity of the formulation. The approach proposed in this paper can also be readily extended
to deal with more general problems, such as the optimization of photonic crystals in combined TE
and TM fields, optimizing multiple band gaps, dealing with other types of lattices (e.g. triangular),
as well as modeling and optimizing the design of three-dimensional photonic crystals.
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