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Abstract

In this paper, we consider band-structure calculations governed by the Helmholtz or Maxwell
equations in piecewise homogeneous periodic materials. Methods based on boundary integral
equations are natural in this context, since they discretize the interface alone and can achieve
high order accuracy in complicated geometries. In order to handle thequasi-periodicconditions
which are imposed on the unit cell, the free-space Green’s function is typically replaced by its
quasi-periodic cousin. Unfortunately, the quasi-periodic Green’s function diverges for families
of parameter values that correspond to resonances of the empty unit cell. Here, we bypass this
problem by means of a new integral representation that relies on the free-space Green’s function
alone, adding auxiliary layer potentials on the boundary ofthe unit cell itself. An important as-
pect of our method is that by carefully including a few neighboring images, the densities may be
kept smooth and convergence rapid. This framework results in an integral equation of the second
kind, avoids spurious resonances, and achieves spectral accuracy. Because of our image struc-
ture, inclusions which intersect the unit cell walls may be handled easily and automatically. Our
approach is compatible with fast-multipole acceleration,generalizes easily to three dimensions,
and avoids the complication of divergent lattice sums.

Keywords:

1. Introduction

A number of problems in wave propagation require the calculation of quasi-periodicsolu-
tions to the governing partial differential equation in the frequency domain. For concreteness,
let us consider the two-dimensional (locally isotropic) Maxwell equations in what is called TM-
polarization [27, 28]. In this case, the Maxwell equations reduce to a scalar Helmholtz equation

∆u(x, y) + ω2ǫµu(x, y) = 0, (1)
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Figure 1: a) Problem geometry: an infinite dielectric crystal, in the case where the inclusionΩ lies within a parallelogram
unit cell U. The (shaded) set of all inclusions in the lattice, denoted by ΩΛ in the text, has refractive indexn, while the
white region has index 1. b) Sketch of our quasi-periodizingscheme: we make use of layer potentials on the left (L) and
bottom (B) walls, extended to the additional segments shown, which form a skewed ‘tic-tac-toe’ board, as well as the
near neighbor images ofΩ, outlined in solid lines.

whereǫ andµ are the permittivity and permeability of the medium, respectively, and we have
assumed a time dependence ofe−iωt at frequencyω > 0. Given a solutionu to (1), it is straight-
forward to verify that the corresponding electric and magnetic fieldsE,H of the form

E(x, y, z) = E(x, y) = (0, 0, u(x, y))

H(x, y, z) = H(x, y) =
1

iωµ
(uy(x, y),−ux(x, y), 0)

satisfy the full system

∇ × E = iωµH

∇ × H = −iωǫE .

We are particularly concerned with doubly periodic materials whose refractive indexn =
√
ǫµ is

piecewise constant (Fig. 1). Such structures are typical insolid state physics, and are of particular
interest at present because of the potential utility of photonic crystals, where the obstacles are
dielectric inclusions with a periodicity on the scale of thewavelength of light [28]. Photonic
crystals allow for the control of optical wave propagation in ways impossible in homogeneous
media, and are finding a growing range of exciting applications to optical devices, filters [21],
sensors, negative-index and meta-materials [36], and solar cells [7].

We assume that the crystal consists of a periodic array of obstacles (ΩΛ) with refractive index
n , 1, embedded in a background material with refractive indexn = 1 (denoted byR2 \ΩΛ). We
then rewrite (1) as a system of Helmholtz equations

(∆ + n2ω2)u = 0 inΩΛ (2)

(∆ + ω2)u = 0 in R
2 \ΩΛ (3)

The expressionΩΛ, above, is used to denote the closure of the domainΩΛ (the union of the
domain and its boundary∂ΩΛ). In this formulation, we must also specify conditions at the
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material interfaces. These are derived from the required continuity of the tangential components
of the electric and magnetic fields across∂ΩΛ [27, 28], yielding

u, un continuous across∂ΩΛ (4)

whereun = ∂u/∂n is the outward-pointing normal derivative.
The essential feature of doubly periodic microstructures in 2D (or triply periodic microstruc-

tures in 3D) is that, at each frequency, there may exist traveling wave solutions (Bloch waves)
propagating in some direction defined by a vectork.

Definition 1. Bloch wavesare nontrivial solutions to(2)–(4) that are quasiperiodic, in the sense
that

u(x) = eik·xũ(x) , (5)

whereũ is periodic with the lattice period andk = (kx, ky) is real-valued.k is referred to as the
Bloch wavevector.

Bloch waves characterize the bulk optical properties at frequencyω; they are analogous to
plane waves for free space. If such waves are absent for all directionsk for a givenω, then the
material is said to have aband-gap[48]). Thesizeof a band-gap is the length of the frequency
interval [ω1, ω2] in which Bloch waves are absent. Crystal structures with a large band-gap are
‘optical insulators’ in which defects may be used as guides [28], with the potential for enabling
high-speed integrated optical computing and signal processing.

Definition 2. Theband-structureof a given crystal geometry is the set of parameter pairs(ω, k)
for which nontrivial Bloch waves exist.

The numerical prediction of band structure is a computationally challenging task, yet essen-
tial to the design and optimization of practical devices. Itrequires characterizing the nontrivial
solutions to a homogeneous system of partial differential equations (2), (3) subject to homoge-
neous interface and periodicity conditions (4), (5) in complicated geometry. Solving this eigen-
value problem is the focus of our paper.

In the next section, we briefly review existing approaches, and in section 3, we present and
test a method that relies on the quasi-periodic Green’s function. We introduce our new mathe-
matical formulation in section 4. Numerical results are presented in section 5, and we conclude
in section 6 with some remarks about the potential for wider application of this approach.

2. Existing approaches

In order to pose the band-structure problem as an eigenvalueproblem on the unit cellU (see
Fig. 1), we will require some additional notation. The nonparallel vectorse1, e2 ∈ R

2 define
a Bravais latticeΛ := {me1 + ne2 : m, n ∈ Z}. Given a smooth, simply connected inclusion
Ω ⊂ R2, we may formally define the corresponding dielectric crystal by ΩΛ := {Ω + d : d ∈ Λ}.
As indicated above, we assume thatΩΛ has refractive indexn , 1, and that the background
R2 \ ΩΛ has refractive index 1. For the moment, we assume thatΩ ⊂ U as illustrated in Fig. 1.
We will discuss the case ofΩ crossing∂U in Section 5.1.
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The quasi-periodicity condition (5) can be rewritten as a set of boundary conditions on the
unit cellU, coupling the solution on the left (L) and right (L+e1) walls, as well as on the bottom
(B) and top (B+ e2) walls. More precisely, if we define

a := k · e1, α := eia, b := k · e2, β := eib ,

then quasi-periodicity is written

u|L+e1 = αu|L (6)

un|L+e1 = αun|L (7)

u|B+e2 = βu|B (8)

un|B+e2 = βun|B , (9)

where the normals have the senses shown in Fig. 1.
The homogeneous equations (2)-(4), (6)-(9) define a partialdifferential equation (PDE) eigen-

value problem on the torusU. By convention, the band structure or Bloch eigenvalues aregener-
ally defined as the subset of the parameter space{(ω, a, b) : ω > 0,−π ≤ a < π,−π ≤ b < π} for
which nontrivial solutionsu : U → C exist. The earlier definition of band-structure, based on
(5), allows for arbitrary values ofk. It is clear, however, that one only needs to consider a single
period ofk’s projection ontoe1, e2, which we have denoted bya, b, to characterize the entire set
(ω, k) of nontrivial Bloch waves. This domain{(a, b) : −π ≤ a < π,−π ≤ b < π} is (essentially)
what is referred to as theBrillouin zone.

Because the PDE is elliptic andU is compact, for eachk there is a discrete set of eigenvalues
{ω j(k)}∞j=1, counting multiplicity, accumulating only at infinity. Each ω j(k) is continuous ink,
so that the bands formsheets.

Popular numerical methods for band structure calculationsare reviewed in [28]. Broadly
speaking, they may be classified as either time-domain or frequency domain schemes. In the first
case, an initial pulse is evolved via the full wave equation (typically using a finite-difference or
finite-element approximation). If the simulation is sufficiently long, Fourier transformation in
the time variable then reveals the full band structure. In the second case, the eigenvalue problem
(2)-(4), (6)-(9) is discretized directly. Such frequency domain schemes can be further categorized
as

1. PDE-based methods, which involve discretizing the unit cell using finite difference or finite
element methods [3, 19, 20],

2. plane-wave methods which expand the function ˜u in (5) as a Fourier series, and apply the
partial differential operator in Fourier space [28, 29],

3. semi-analytic multipole expansion methods which apply largely to cylindrical or spherical
inclusions [10, 43],

4. methods which use a basis of particular solutions to the PDE at a given frequencyω and
enforce both interface and boundary conditions as a linear system, such as the “multiple
multipole” or “transfer-matrix” method [23, 46], and

5. boundary integral (boundary element) methods [49], which includes the method described
here.

For a fixedk, methods of type (1) and (2) result in large, sparse generalized eigenvalue prob-
lems whose lowest few eigenvalues approximate the first few bandsω j(k). They have the advan-
tage that they couple easily to existing robust linear algebraic techniques. PDE-based methods,
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however, require discretization of the entire cell in a manner that accurately resolves the geom-
etry of the inclusionΩ. Plane-wave methods, which perform extremely well when theindex
of refractionn is smooth, have low order convergence whenn is piecewise constant, as in the
present setting. Both require a large number of degrees of freedom.

Methods of type (3), (4) or (5), on the other hand, represent the solution using specialized
functions (solutions of the PDE) whose dependence onω is nonlinear. As a result, they can
be much more efficient and high-order accurate, dramatically reducing the number of degrees
of freedom required. Unfortunately, however, they result in a nonlinear eigenvalue problem
involving all the parametersω, a andb, and somewhat non-standard techniques are required to
find values of the parameters for which the system of equations is singular [47].

We are particularly interested in using boundary integral methods (BIEs), since they eas-
ily handle jumps in the index in complicated geometry, have awell understood mathematical
foundation, and can achieve rapid convergence, limited only by the order of accuracy of the
quadrature rules used. High order accuracy is important, not only because of the reduction in the
size of the discretized problem, but in carrying out subsequent tasks, such as sensitivity analyses
[17] through the numerical approximation of derivatives, and the computation of band slopes
(group velocity), and band curvatures (group dispersion).

There is surprisingly little historical literature on using BIE for band structure calculations,
although the last few years have begun to see some activity inthis direction (see, for example,
[49]). There is, however, an extensive literature on integral equations forscatteringfrom periodic
structures, which we do not seek to review here. For some recent work and additional references,
see [14, 42].

3. Integral equations based on the quasi-periodic Green’s function

An elegant approach to designing integral representationsfor quasiperiodic fields involves
the construction of the Green’s function that imposes the desired conditions (6)-(9) exactly. We
first need some definitions [16, 41]. At wavenumberω > 0, the free space Green’s function for
the Helmholtz equation,G is defined by−(∆ + ω2)G = δ0 whereδ0 is the Dirac delta function
centered at the origin. In 2D, this yields

G(x) = G(ω)(x) =
i
4

H(1)
0 (ω|x|), x ∈ R2 \ {0}, (10)

whereH(1)
0 is the outgoing Hankel function of order zero. By formally summing over images of

the Green’s function placed on the latticeΛ, with correctly assigned phases, we get an explicit
expression for the quasi-periodic Greens function

GQP(x) =
∑

d∈Λ
eik·dG(x − d) =

∑

m,n∈Z
αmβnG(x −me1 − ne2) . (11)

We leave it to the reader to verify thatGQP does, indeed, satisfy (6)-(9). One small caveat: the
series in (11) is conditionally convergent for realω. The physically meaningful limit is taken
by assuming some dissipationω = ω + iε in the limit ε → 0+ (see [18] for a more detailed
discussion). It will be useful to distinguish between the copy of the Green’s function sitting
in the unit cellU and the set of all other images. For this, we define the “regular” part of the
quasi-periodic Green’s function by

Gr
QP(x) =

∑

m,n∈Z
(m,n),(0,0)

αmβnG(x −me1 − ne2) . (12)
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This function is a smooth solution to the Helmholtz equationwithin U and clearly satisfies

GQP(x) = G(x) +Gr
QP(x) . (13)

A spectral representation also exists [9, 18], built from the plane-wave eigenfunctions of the
quasi-periodic torusU:

GQP(x) =
1

Vol(U)

∑

q∈Λ∗

ei(k+q)·x

|k + q|2 − ω2
. (14)

Here,Λ∗ := {mr1+nr2 : m, n ∈ Z} is thereciprocal latticewith vectorsr j defined byei ·r j = 2πδi j
for i, j = 1, 2. From the denominators in (14) it is clear thatGQP may blow up for specific
combinations ofω andk. The quasiperiodic Green’s function is, in fact, well-defined if and only
if those parameters satisfy the following non-resonance condition.

Definition 3 (empty resonance).A parameter set(ω, k), equivalently(ω, a, b), is empty reso-
nantif ω = |k + q| for someq ∈ Λ∗, otherwise it isempty non-resonant.

Our terminology comes from the fact that the blow-up inGQP is physically the resonance of the
‘empty’ unit cellU, with refractive index 1 everywhere and quasi-periodic boundary conditions.
That is,GQP is undefined if and only if (ω, a, b) lies on the band structure of the empty unit
cell. The blow-up of the Green’s function is less apparent from (11), but is manifested in the
divergence of the series, even in the limitω = ω + iε with ε→ 0+.

It will be convenient sometimes to refer to a Green’s function as a function of two variables,
with G(x, y) := G(x−y), andGQP(x, y) := GQP(x−y). Then, for eachy ∈ R2, the functionGQP(·, y)
is quasi-periodic.

We now represent solutions to the PDE eigenvalue problem (2)-(4), (6)-(9) by the layer po-
tentials,

u =

{

S(nω)σ +D(nω)τ in Ω
S(ω)

QP σ +D(ω)
QP τ in U \ Ω (15)

where the usual single and double layer densities [16] at anywavenumberω > 0 are defined by

(S(ω)σ)(x) =

∫

∂Ω

G(ω)(x, y)σ(y)dsy (16)

(D(ω)τ)(x) =

∫

∂Ω

∂G(ω)

∂ny
(x, y)τ(y)dsy (17)

and their quasi-periodized versions are likewise

(S(ω)
QP σ)(x) =

∫

∂Ω

G(ω)
QP (x, y)σ(y)dsy (18)

(D(ω)
QP τ)(x) =

∫

∂Ω

∂G(ω)
QP

∂ny
(x, y)τ(y)dsy . (19)

Hereds is the usual arc length measure on∂Ω, and the derivatives are with respect to the second
variable in the outward surface normal direction aty. It is clear [16] that the above four fields
satisfy the Helmholtz equation at wavenumberω in bothΩ and U \ Ω. Note that we have
chosen anon-periodizedrepresentation within the inclusionΩ in (15), which has some analytic
advantages (see Theorem 4 and the last paragraph in the Appendix).
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Sinceu in (15) satisfies (2), (3), and (6)-(9), all that remains is tosolve for densitiesσ, τ such
that the matching conditions (4) are satisfied, which we now address.

Using superscripts+ and− to denote limiting values on∂Ω, approaching from the positive
and negative normal side respectively, we use the field (15) and the standard jump relations for
single and double layer potentials [16, 22] to write

[

u+ − u−

un
+ − un

−

]

=

( [

I 0
0 I

]

+

[

D(ω)
QP − D(nω) S(nω) − S(ω)

QP

T(ω)
QP − T(nω) D(nω) ∗ − D(ω) ∗

QP

] ) [

τ

−σ

]

=: AQPη (20)

Here I is the identity operator, whileS andD are defined to be the limiting boundary integral
operators (maps fromC(∂Ω) → C(∂Ω)) with the kernelsS andD interpreted in the principal
value sense. (S is actually weakly singular so the limit is already well defined. A standard
calculation [16, 22] shows thatD is weakly singular as well). The hypersingular operatorT has

the kernel∂
2G(x,y)
∂nx∂ny

and is unbounded as a map fromC(∂Ω) → C(∂Ω). In these definitions, as in
(16)-(19), it is implied thatG inherits the appropriate superscripts and subscripts fromS, D and
T. Finally, ∗ indicates the adjoint. The amounts by which the material matching conditions fail
to be satisfied,

m :=

[

u+ − u−

un
+ − un

−

]

, (21)

is a column vector of functions which we call themismatch. We summarize the linear system
(20) bym= AQPη whereη := [τ;−σ]. It is important to note that thedifferenceof hypersingular
kernels,T(ω)

QP − T(nω), in (20) is only weakly singular [16, Sec. 3.8]. This cancellation, achieved
here by using the same pair of densities inside as outside theinclusion, is well known [44].
The result is thatAQP is a compact perturbation of the identity and (20) is a Fredholm system of
integral equations of the second kind.

In the above scheme, we might hope that if it is possible to findnontrivial densitiesη whose
field u gives zero mismatchm for a set of parameters (ω, a, b), then that set is a Bloch eigenvalue.
Indeed (as with the case of simpler domain eigenvalue problems [39, Sec. 8]) we have a stronger
result.

Theorem 4. Let (ω, a, b) be empty non-resonant. Then(ω, a, b) is a Bloch eigenvalue if and only
if Null AQP , {0} .

The proof occupies Appendix Appendix A. This suggests the core of a numerical scheme: at
each of a sampling (e.g. a grid) of parameters (ω, a, b), find the lowest singular valueσmin(ÃQP) of
a matrix discretizatioñAQP of AQP. The band structure will then be found whereσmin(ÃQP) is close
to zero.

3.1. Discretization of the integral operators

Since the goal of this work is to explore periodization, we limit ourselves to the simplest case
of ∂Ω being smooth. The methods of this paper extend without much effort to other shapes, but
the quadrature issues become more involved. Recalling (13), note that the kernels in (20) are the
sum of a component due toG which is weakly singular, plus the remainder due toGr

QP which is
smooth (analytic). We will make use of a Nyström discretization using the spectral quadrature
scheme of Kress [31] forG and the trapezoidal rule forGr

QP.
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We first remind the reader of the periodic trapezoidal Nystr¨om scheme [33], in the context of
a general second kind boundary integral equation

µ(x) +
∫

∂Ω

k(x, y)µ(y)dsy = f (x), x ∈ ∂Ω,

where∂Ω is parametrized by the 2π-periodic analytic functionz : [0, 2π) → R2. Changing
variable gives

µ(s) +
∫ 2π

0
K(s, t)µ(t)dt = f (s), s ∈ [0, 2π),

whereK(s, t) := k(z(s), z(t)) |z′(t)| andz′ = dz/dt. ChoosingN quadrature pointst j = 2π j/N
with equal weights 2π/N gives theN-by-N linear system for the unknownsµ(N)

j , which approxi-
mate the exact valuesµ(t j), as

µ
(N)
k +

2π
N

N
∑

j=1

K(tk, t j)µ
(N)
j = f (tk), k = 1, . . . ,N . (22)

By Anselone’s theory of collectively compact operators [33], the convergence of errors
∣

∣

∣µ
(N)
j −

µ(t j)
∣

∣

∣ inherits the order of the quadrature scheme applied to the exact integrandK(s, ·)µ, which is
analytic whenk and f are.

Remark 5. For analytic integrands, the periodic trapezoidal rule hasexponential convergence
with error O(e−2γN) whereγ is the smallest distance from the real axis of any singularity in the
analytic continuation of the integrand. [33, Thm. 12.6].

The above discretization is used to populate the matrix entries in (20) that are due to the
smooth compomentGr

QP. (We explain how to compute this kernel itself in Section 3.2.)
For non-smooth kernels, such asG, the rule (22) must be replaced by a quadrature that cor-

rectly accounts for the singularity in order to retain high order accuracy. There are a variety
of such schemes, such as those of [2, 24, 30]. By fixing the order of accuracy, they allow for
straightforward coupling to fast multipole acceleration [12, 13, 14, 42] by making local mod-
ifications of a simple underlying quadrature rule (such as the trapezoidal rule or a composite
Gaussian rule). In the present context, we ignore such considerations and use a global rule due
to Kress [31] that achieves spectral accuracy in the logarithmically singular case.

The essential idea of Kress’ scheme (after transformation of variables to the interval [0, 2π])
is to split a logarithmically singular kernelK(s, t) in the form

K(s, t) = log
(

4 sin2 s− t
2

)

K1(s, t) + K2(s, t) (23)

with K1 andK2 periodic and analytic.K2 is (again) handled with the trapezoidal rule. ForK1,
the Kussmaul-Martensen quadrature rule is spectrally accurate:

∫ 2π

0
log

(

4 sin2 s− t
2

)

g(t)dt ≈
N

∑

j=1

R(N)
j (s)g(t j) (24)

with quadrature weights (deriving from the Fourier series of the log factor) given by

R(N)
j (s) = −

N/2−1
∑

m=1

2
m

cosm(s− t j) −
2
N

cos
N
2

(s− t j) . (25)
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Figure 2: Convergence for quasi-periodic Greens function scheme of Sec. 3. a) Absolute error inσmin(ÃQP) vsN the num-
ber of quadrature nodes on∂Ω, for Bloch parametersa = π/2 and the two differentb values labeled. The unit cell with
e1 = (1, 0), e2 = (0.4, 1), and inclusion, described by the radial functionr(θ) = 0.2(1+0.3 cos 3θ), are shown in the inset.
Index isn = 3 and frequencyω = 4.5. Forb = 2, error is taken relative to the converged value 0.01879908530381247;
for b = b0, relative to 0. The matrixÃQP has 2-norm of about 25. b)σmin(ÃQP) vs difference in parameterb from the
Bloch eigenvalueb0, for several different numbers of quadrature pointsN. Note the horizontal log scale. This shows that
it is the convergence rate at the Bloch eigenvalue that controls the accuracy with which the minimum can be found. c)
Relative error (+ symbols) in evaluation of lattice sumS3 by the method of Sec. 3.2 vs the maximum orderL in (27).
Parameters are as in Table II of [38], whose claimS3 = 2.13097899279352+ 5.66537068305984i is taken as the true
value. Also, relative error (◦ symbols) forS̃3 which excludes the 3× 3 block of neighbors (parameters are the same; true
value is taken as the converged value atL = 50).

Thus, the matrix elements in discretizing (23) areK(tk, t j) = R(N)
| j−k|(0)K1(tk, t j)+K2(tk, t j). Finally,

it is always the difference of two hypersingular operatorsT that appears in the integral equation
(20). This difference is only logarithmically singular, so that Kress’ rule can be used for every
block of (20). We refer the reader to [31] for further details.

In summary, a matrix discretization̂AQP of AQP is formed by using the above quadrature rules
for each of the 2-by-2 integral operator blocks in (20). Thismatrix maps density values to field
values. However, in order to create a matrix whose singular values approximate those ofAQP

we must instead normalize such that 2N-dimensional Euclidean 2-norms correctly approximate
L2(∂Ω)-norms. This is done by symmetrizing using quadrature weights to give our final matrix

ÃQP =W1/2ÂQPW
−1/2 (26)

whereW is diagonal with diagonal elementsw j = w j+N = (2π/N)|z′(t j)|, for j = 1, . . . ,N.
The net result of the preceding discussion is that with the use of specialized quadratures on

smooth boundaries, the singular values ofÃQP are spectrally accurate approximations to those
of AQP. We demonstrate this convergence for a small trefoil-shaped inclusion in Fig. 2a; the
convergence is spectral, until the error is approximately machine precision times the matrix 2-
norm. The rate appears to be faster at a Bloch eigenvalue (in this case on the fourth band) than
far from one. Fig. 2b shows that the minimum locates the parameterb to 14 digit accuracy for
N ≥ 70.
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3.2. New method for evaluation of the quasi-periodic Greensfunction

In order to compute the elements ofÃQP, one must evaluateGr
QP defined by (12); in this

section, we present a surprisingly simple (and apparently new) method for this. Since the sums
(11) and (14) converge too slowly to be numerically useful, many sophisticated schemes have
been devised. Some of these are based on the Fourier representation (such as [9]), but most are
based on the observation that

Gr
QP(r, θ) =

L
∑

l=−L

Sl Jl(ωr)eilθ , (27)

where (r, θ) are the usual polar coordinates, andJl the regular Bessel function of orderl. As
L→ ∞, this expression is uniformly convergent in the unit cellU, as long as there exists a circle
about the origin which containsU but encloses no points inΛ \ {0}. The coefficientsSl in this
expansion are know aslattice sums, given by

Sl =
∑

m,n∈Z
(m,n),(0,0)

αmβn H(1)
l (ωrmn)e

−ilθmn,

where (rmn, θmn) are the polar coordinates ofme1 + ne2, andH(1)
l is the outgoing Hankel function

of order l. Thus, the issue of evaluatingGr
QP has been reduced to that of tabulating the lattice

sums. This problem itself has a substantial literature (see, for example, [15, 18, 34, 38, 40]).
Nevertheless, very few papers discuss the problem of empty resonances, at which point the lat-
tice sumsSl blow up. One notable exception is the work of Linton and Thompson [35], who
analyze this blowup for periodic one-dimensional arrays intwo dimensional scattering. They
also propose a regularization method to overcome it.

We present here the construction of a small linear system whose solution yields the lattice
sums rather easily (away from empty resonances). In physical terms, we compute the field
induced by the free-space Green’s functionG, determine how it fails to satisfy quasi-periodicity,
and use the representation (27) to enforce quasi-periodicity numerically. More precisely, given a
field u, we define thediscrepancyby

d =





























f
f ′

g
g′





























:=





























u|L − α−1u|L+e1

un|L − α−1un|L+e1

u|B − β−1u|B+e2

un|B − β−1un|B+e2





























. (28)

We can interpretf , f ′ as functions on wallL andg, g′ as functions on wallB. We construct a
4M-component column vectord by sampling these four functions at Gaussian quadrature points
{y(L)

m }Mm=1 on L, and{y(B)
m }Mm=1 on B. If we let the fieldu(x) = G(x), then form= 1, . . . ,M, themth

element ofd is G(y(L)
m ) − α−1G(y(L)

m + e1). The remaining 3M entries ind are computed in the
analogous fashion.

Now letH be a (complex) matrix of size 4M×(2L+1), defined as follows. Forl = −L, . . . , L,
fill the (l + L+1)th column in the same manner asd, but using the fieldu(x) = Jl(ωr)eilθ. Letting
s := {Sl}Ll=−L, it is straightforward to verify that the linear system

Hs = −d (29)

10



yields values for the lattice sums that annihilate the discrepancy induced by the sourceG. We
solve the linear system in the least squares sense. This has to be done with some care, since the
Bessel functionsJl become exponentially small for largel. A simple fix is to right-precondition
the system by scaling the (l + L + 1)th column ofH by the factorρl := 1/Jl(min[ωR, l]), where
R := maxx∈U |x| is the unit cell radius. The entire procedure may be interpreted as finding the
representation (27) which minimizes theL2-norm of the discrepancy of the resultingGQP.

Fig. 2b shows that the error in evaluatingSl , for l = 3, has exponential convergence inL. We
fixed M = 24 (large enough that further increase had no effect). 14 digits of relative accuracy
are achieved forL ≥ 46, comparable in accuracy to [38]. Although the maximum achievable
accuracy forSl deteriorates exponentially as|l| increases, the resulting accuracy ofGr

QP computed
via (27) is close to 14 digits everywhere inU.1 We do not claim that our method is optimal in
terms of speed (although at 0.05 sec to solve for allSl values, it is adequate), merely that it is
accurate, convenient and robust. To our knowledge it has notbeen proposed in the literature.

The convergence rate in the boundaryL2-norm of expansions such as (27) depends on the
(conformal) distance from the domain to the nearest field singularity (a result of Vekua’s theory
and approximation in the complex plane [8, Ch. 6]). Thus, therate may be improved by increas-
ing this distance by removing the rest of the 3× 3 block of nearest neighbors from the lattice
sum, and representing

G̃r
QP(x) :=

∑

( j,k) ∈ Z2\{−1,0,1}2
α jβkG(x − je1 − ke2) =

L
∑

l=−L

S̃l Jl(ωr)eilθ . (30)

To solve for{S̃l}, the right-hand side of the linear system is now chosen to be the direct summa-
tion of these neighbors,u(x) = G̃(x) :=

∑

j,k∈{−1,0,1} α
jβkG(x − je1 − ke2). We may then evaluate

GQP = G̃+ G̃r
QP. As Fig. 2c shows, the convergence rate forS̃l , and hence forGQP, is now a factor

2–3 better. Hence we use this method below, fixingL = 30.

3.3. The empty resonance problem

Given a photonic crystal (inclusionΩwith indexn), using the methods of Sections 3.1 and 3.2
we are able to construct the matrix̃AQP for any given frequency and Bloch parameters (ω, a, b).
Fig. 3a shows the minumum singular value of this matrix as a function over the (b, ω) plane, for
constanta: the band structure is visible as the zeros of this function.We have also superimposed
the band structure of the empty unit cell (dotted lines). Theorem 4 guarantees that, away from the
empty unit cell band structure, no spurious modes will be found, and that no modes are missed.

However, zooming in to one of the many intersections of the two sets of curves (Fig. 3b),
we see that in the neighborhood of the empty band structure, the desired singular values take
on arbitrary fluctuating values that obscure the theoretical behavior near their intersection. This
prevents any attempt to locate the desired zero set to an accuracy better thanO(

√
εmach), where

εmach is the machine precision. As Fig. 3c shows, this is explainedby the blowup of the entries
of the matrixÃQP as one approaches the empty band structure. This, in turn, causes unbounded
roundoff error when computing small singular values in finite-precision arithmetic.

1This is to be expected from arguments similar to [4, Eq. (5)]:the residual of the linear system, around 10−14,
approximates the boundary error norm, which in turn controls the interior error norm when using a basis of particular
solutions to the Helmholtz equation.
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Figure 3: Breakdown of quasi-periodic Greens function scheme, for the system of Fig. 2a except withe2 = (0.5, 1). a)
Minimum singular value ofÃQP vs b = k · e2 andω, as a log density plot over a slice with fixeda = 0.8. Dark curves
indicate the band structure, and superimposed dotted linesthe ‘empty’ band structure whereGQP blows up. b) Zooming
in by a factor of 107 to the region shown by the dot in a), showing failure to resolve band structure at the intersection.
c) log 1-norm of the matrix̃AQP plotted over the same region as b); it is of order the inverse of the distance to the empty
band structure.

Remark 6. The above demonstrates a fundamental flaw inherent in the useof the quasi-periodic
Greens function in band structure problems; there are empty-resonant parameter sets (sheets in
the space(ω, a, b)) where the desired band structure cannot be computed. Furthermore, loss of
accuracy is inevitable near these parameter sets.

This motivates the development of a more robust scheme.

4. Periodizing using auxiliary densities on the unit cell walls

4.1. Inclusion images and a new linear system
Section 3.2 illustrated the fact, well known in the fast multipole literature [6, 14, 12, 13, 18],

that summing the nearest neighbors directly (i.e. excluding them from the quasi-periodic field
representation) results in much improved convergence rates. This motivates defining general-
izations of (16) and (17) that include summation over the appropriately phased 3× 3 nearest
neighbor images, as shown in Fig. 1b,

(S̃(ω)σ)(x) =

∫

∂Ω

∑

j,k∈{−1,0,1}
α jβkG(ω)(x, y + je1 + ke2)σ(y)dsy (31)

(D̃(ω)τ)(x) =

∫

∂Ω

∑

j,k∈{−1,0,1}
α jβk∂G

(ω)

∂ny
(x, y + je1 + ke2) τ(y)dsy (32)

We now choose a layer potential representation foru that involves only free space kernels:

u =

{

S(nω)σ +D(nω)τ in Ω
S̃(ω)σ + D̃(ω)τ + uQP[ξ] in U \Ω (33)

The auxiliary fielduQP will be represented by a new set of layer potentials that lie on the “tic-tac-
toe” stencil of Fig. 1b, consisting of the boundary ofU and its closest extensions, none lying in

12



the interior ofU. We will return to this in section 4.2. For the moment, let us denote the unknown
densities that determineuQP by ξ. By construction, the representation (33) satisfies (2) and(3)
in U, so that it remains only to impose both the matching/continuity conditions (4) and quasi-
periodicity (6)-(9). Imposing the mismatchm defined by (21) and the discrepancyd defined by
(28) onu, the unknowns in (33) must satisfy a linear system of the form:

E

[

η

ξ

]

:=

[

A B
C Q

] [

η

ξ

]

=

[

m
d

]

, (34)

where, as before,η := [τ;−σ], We will describe the operatorsA, B, C, andQ in more detail
shortly. For the moment, note that if there exists a density [η; ξ] which generates a nontrivial
field with vanishing mismatch and discrepancy, then it is a solution to (2)-(4) and (6)-(9) and the
corresponding parameters (ω, a, b) must be a Bloch eigenvalue. Numerical evidence supports the
following stronger claim, the analog of Theorem 4.

Conjecture 7. (ω, a, b) is a Bloch eigenvalue if and only ifNull E , {0}.

This suggests, as in Section 3, computing the band structureby locating the parameter families
where (a discretization of)E is singular. The point of the new scheme is that it should be robust;
if the conjecture holds, then (in contrast to the quasiperiodic Green’s function approach), there
will be no spurious parameter values where the method breaksdown.

To discuss the operators inE, we need some additional notation. We assume that the wavenum-
berω and quasiperiodicity parameters (a, b) are given. LetW be a curve inR2 on which single
and double layer densities are defined, with the corresponding potentials written as

(SWσ)(x) =

∫

W
G(x, y)σ(y)dsy (35)

(DWτ)(x) =

∫

W

∂G
∂ny

(x, y)τ(y)dsy . (36)

LettingV be a (possibly distinct) target curve inR2, we define the operators

(SV,Wσ)(x) =

∫

W
G(x, y)σ(y)dsy x ∈ V (37)

(DV,Wτ)(x) =

∫

W

∂G
∂ny

(x, y)τ(y)dsy x ∈ V (38)

(D∗V,Wσ)(x) =

∫

W

∂G
∂nx

(x, y)σ(y)dsy x ∈ V (39)

(TV,Wτ)(x) =

∫

W

∂2G
∂nx∂ny

(x, y)τ(y)dsy x ∈ V . (40)

WhenV =W, these operators are to be understood in the principal valuesense. By analogy with
(31), (32), versions of these operators whose kernels include the phased sum over 3× 3 images
of the source are indicated with a tilde (∼): that is,S̃V,W, D̃V,W, D̃∗V,W, andT̃V,W.

We are now in a position to provide explicit expressions for the operatorsA, B,C,Q in (34).
Comparing (33) to (15), it is clear that the operatorA is the same asAQP in (20) but with the re-
placement ofS(ω)

QP , D(ω)
QP andT(ω)

QP , by S̃∂Ω,∂Ω, D̃∂Ω,∂Ω andT̃∂Ω,∂Ω, respectively. It is straightforward
to verify thatA is a compact perturbation of the identity.
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Figure 4: Discrepancy cancellation due to neighbor image sums. Each arrow represents the influence of a source density
on a target segment. a) For the four upper sub-blocks ofC, the six nearest source images (dotted) contribute to the
discrepancy on the left wallL. b) The six nearest source images (dotted) contribute exactly the same field (suitable
phased) to the right wall (L + e1). The net result is that only the distant sources, shown in bold, have a non-zero effect.
The same holds for all four upper sub-blocks ofC. A rotated version applies to the lower four sub-blocks ofC. c,d)
Contributions to the sub-blocksQLL andQLB of Q. The seven indicated terms (dotted source segments) cancelin the
two diagrams, leaving only the contributions from distant wall segments shown in bold. A rotated version applies to the
sub-blocksQBL andQBB.

The operatorC describes the effect of the inclusion densities on the discrepancyd. Its eight
sub-blocks are found by inserting (31) and (32) into (33) then evaluating (28), giving

C =































D̃L,∂Ω− α−1D̃L+e1,∂Ω −S̃L,∂Ω+ α
−1S̃L+e1,∂Ω

T̃L,∂Ω− α−1T̃L+e1,∂Ω −D̃∗L,∂Ω+ α
−1D̃∗L+e1,∂Ω

D̃B,∂Ω− β−1D̃B+e2,∂Ω −S̃B,∂Ω+ β
−1S̃B+e2,∂Ω

T̃B,∂Ω− β−1T̃B+e2,∂Ω −D̃∗B,∂Ω+ β
−1D̃∗B+e2,∂Ω































Consider now the any of the four upper sub-blocks ofC. There are nine phased copies of∂Ω
which contribute to the field on the left (L) and right (L+e1) wall. From symmetry and translation
invariance considerations, however, it is easy to check that the contributions from the six left-
most images onL (dotted curves in Fig. 4a) are equal to the contributions of the six right-most
images onL + e1 (dotted curves in Fig. 4b). In the (1, 1) sub-block, for example, we have:

D̃L,∂Ω − α−1D̃L+e1,∂Ω =
∑

k∈{−1,0,1}
βk

(

αDL,∂Ω+e1+ke2 − α−2DL,∂Ω−2e1+ke2

)

A rotated version of the analysis applies to the lower four sub-blocks inC. The result is that the
entries inC involve only source-target interactions at distancesgreaterthan the size of the unit
cell, ensuring the rapid convergence of a representation interms of smooth functions.

We next discuss the representation ofξ anduQP[ξ] in more detail, which will determine the
form of blocksQ andB of the full system matrixE.

4.2. Choice of auxiliary densities and their images

The auxiliary fielduQP is determined by the choice of layer potentials on the boundary of (and
outside of)U. We will use double and single layer densities on both the left (L) and bottom (B)
boundaries ofU, as well as on the other segments of the “tic-tac-toe” board in Fig. 1b. More
precisely, we define the vector of unknownsξ by ξ := [τL;−σL; τB;−σB], and set

uQP =
∑

j∈{0,1}
k∈{−1,0,1}

α jβk
(

SL+ je1+ke2σL +DL+ je1+ke2τL
)

+
∑

j∈{−1,0,1}
k∈{0,1}

α jβk
(

SB+ je1+ke2σB +DB+ je1+ke2τB

)

(41)
The inclusion of the image segments leads to cancellations that are numerically advantageous in
the operatorQ, just as we found that images helped with the operatorC in the preceding section.
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We should first clarify the definition (28) of the discrepancyfunctions: field values should
be interpreted as their limiting values on the wall approaching from inside U, since it is the
field in U that (33) and (41) represent. For example,f := u+|L − α−1u−|L+e1, where, as before
u±(x) := limε→0+ u(x ± εn), andn is the normal atx.

Recall now that the operatorQ expresses the effect of the four densities inξ on the four dis-
crepancy functionsf , f ′, g, g′. If (41) contained only the termsj = k = 0, this would correspond
to densitiesσL andτL placed onL, andσB andτB placed onB. While this is mathematically
acceptable, it results in various complicated self-interactions and interactions between segments
that share a common corner. This would lead to singularitiesin densities requiring more compli-
cated discretization and quadrature. Although there has been significant progress in this direction
(see, for example, [11, 25]), in the present context we have the luxury of including the ten addi-
tional image segments in (41), which cancel both the self andnear-field corner interactions. As
a result, our implementation is simpler and involves fewer degrees of freedom. The cancellation
mechanism is shown in Fig. 4. The effect onu+|L of the seven segments touchingL, for example,
cancels the effect onu−|L+e1 of the seven segments touchingL + e1, leaving only ten far field
contributions.

It is important to note that the local terms due to the jump relations do not cancel: e.g. a
density functionτL placed onL contributes a term1

2τL to u+|L, while ατL placed onL + e1

contributes− 1
2ατL to u−|L+e1. These two terms add to contributeτL to f . One may check in this

fashion that the jump relations contribute an identity to the diagonal sub-blocks ofQ. This yields
the crucial result thatQ is the identity plus a compact operator, with the compact part generated
by interactions at a distance greater than the size of the unit cell. After the above cancellations
and simplification, we have,

Q = I +

[

QLL QLB

QBL QBB

]

where

QLL =









































∑

j∈{−1,1},k∈{−1,0,1}
jα jβkDL,L+ je1+ke2 −

∑

j∈{−1,1},k∈{−1,0,1}
jα jβkSL,L+ je1+ke2

∑

j∈{−1,1},k∈{−1,0,1}
jα jβkTL,L+ je1+ke2 −

∑

j∈{−1,1},k∈{−1,0,1}
jα jβkD∗L,L+ je1+ke2









































QLB =







































∑

k∈{0,1}
βk(αDL,B+e1+ke2 − α−2DL,B−2e1+ke2

)

∑

k∈{0,1}
βk(−αSL,B+e1+ke2 + α

−2SL,B−2e1+ke2

)

∑

k∈{0,1}
βk(αTL,B+e1+ke2 − α−2TL,B−2e1+ke2

)

∑

k∈{0,1}
βk(−αD∗L,B+e1+ke2

+ α−2D∗L,B−2e1+ke2

)







































15



QBL =









































∑

j∈{0,1}
α j(βDB,L+ je1+e2 − β−2DB,L+ je1−2e2

)

∑

j∈{0,1}
α j(−βSB,L+ je1+e2 + β

−2SB,L+ je1−2e2

)

∑

j∈{0,1}
α j(βTB,L+ je1+e2 − β−2TB,L+ je1−2e2

)

∑

j∈{0,1}
α j(−βD∗B,L+ je1+e2

+ β−2D∗B,L+ je1−2e2

)









































QBB =









































∑

j∈{−1,0,1},k∈{−1,1}
kα jβkDB,B+ je1+ke2 −

∑

j∈{−1,0,1},k∈{−1,1}
kα jβkSB,B+ je1+ke2

∑

j∈{−1,0,1},k∈{−1,1}
kα jβkTB,B+ je1+ke2 −

∑

j∈{−1,0,1},k∈{−1,1}
kα jβkD∗B,B+ je1+ke2









































Finally, we discuss theB operator from (34), which describes the effect of the auxiliary
densitiesξ on the mismatch. As withA, since the mismatch involves values on only a single
curve∂Ω, there is no opportunity for cancellation. Inserting (41) into (21) we get

B =
∑

j∈{0,1},k∈{−1,0,1}
α jβk

[

D∂Ω,L+ je1+ke2 −S∂Ω,L+ je1+ke2 0 0
T∂Ω,L+ je1+ke2 −D∗

∂Ω,L+ je1+ke2
0 0

]

+

∑

j∈{−1,0,1},k∈{0,1}
α jβk

[

0 0 D∂Ω,B+ je1+ke2 −S∂Ω,B+ je1+ke2

0 0 T∂Ω,B+ je1+ke2 −D∗
∂Ω,B+ je1+ke2

]

(42)

Summarizing the above,E is a compact perturbation of the identity. Its blocksC and Q
involve interaction distances greater than the unit cell size. Its blockA involves distances con-
trolled by the shape of the inclusion and its nearest approach to its neighboring images. Its block
B involves distances determined by the nearest approach of∂Ω to ∂U.

4.3. Numerical implementation and discretization of B

We discretize the four blocks of the integral operatorE in (34) to give the matrixẼ ∈
C

(2N+4M)×(2N+4M) as follows. We sample the densities on∂Ω at equispaced points with respect to
the given definition of the curve, as in Section 3.1. We samplethe densities on the wallsL and
B at M standard Gaussian nodes, as in Section 3.2.A is then discretized in the same way asAQP

in Section 3.1 with a mix of the periodic trapezoidal rule andKress’ singular quadratures for the
self-interaction of∂Ω. The (Nyström) method (22) may be used for the off-diagonal blockC,
and also for the wall’s self-interactionQ. No special singular quadratures are needed inQ, due
to the cancellations discussed above.

The B operator (42) involves computing the field due to source densities on wallsL andB
(and their images shown in Fig. 1b) at targets on∂Ω. When the distance from the inclusion
to boundary dist(∂Ω, ∂U) is large, the plain Nyström method may be used to constructthe dis-
cretized matrixB̂. We will refer to this as discretization method B1. With nodesym and weights
wm on wallL, and nodesx j on∂Ω, for example, the termS∂Ω,L in the (1,2)-block of (42) becomes
the matrixŜ ∈ CN×M with elementŝS jm =

i
4H(1)

0 (ω|x j − ym|)wm.
When dist(∂Ω, ∂U) becomes small, of course, the convergence rate of method B1will be-

come unacceptably poor. However, by construction, for a Bloch eigenfunction the field (41)
generated by the wall densities inξ has no singularities in the 3× 3 neighboring block of unit
cells. Hence these densities remain smooth, poor convergence being merely due to inaccurate
evaluation of their field close to the walls. This leaves roomfor a large number of options:

16



B2) For the rows of̂B corresponding to target points on∂Ω that are distanced0 or closer to∂U,
use adaptive Gauss-Kronrod quadrature2 with integrand given by the product of the kernel
function and the Lagrange polynomial interpolant [32, Sec.8.1] for the density at theM
quadrature points.d0 is someO(1) constant. For the other rows, use method B1.

B3) Project onto an order-L cylindrical J-expansion at the origin. This is done by computing
a representation (27) for each of the point monopole or dipole sources in the quadrature
approximation to the source densities on the walls, and thenevaluating this at the target
quadrature points on∂Ω to fill the elements of̂B. The example term discussed for B1 gives
Ŝ = RP, where the “source-to-local” matrixP ∈ C(2L+1)×M has elements

Plm =
i
4

H(1)
l (ω|ym|)e−ilθmwm

and converts single layer density values toJ-expansion coefficients. This follows from
Graf’s addition formula [1, Eq. 9.1.79]. The expansion matrix R ∈ CN×(2L+1) has ele-
mentsRjl = Jl(ω|x j |)eilφ j . In the aboveθm, φ j are polar angles of pointsym, x j respectively.
Similar formulae apply for double layers and evaluation of derivatives. To reduce dy-
namic range (hence roundoff error) we in fact scale theJ-expansion by the factorsρl of
Section 3.2 (this does not change the mathematical definition of Ŝ.)

B4) Use a more sophisticated quadrature approach, such as those of [5, 26, 37].

Methods B2-B4 evaluateuQP due to a spectral interpolant of the discretized wall densities, with
an accuracy that persists up to the boundary ofU. Note that this does not increase the numberM
of degrees of freedom associated with each such density. Since the underlying density is smooth
(in fact analytic), the convergence rate is high and we are able to keepM very modest.

We have implemented methods B1, B2 and B3. We use the quadrature weights to scale the
matrix Ê to give Ẽ in an analogous fashion to (26), so that singular values ofẼ approximate
those ofE.

Finally, there are many possible ways to locate parameter values (ω, a, b) whereẼ is singular.
In this paper, we will simply plot its smallest singular valueσmin(Ẽ) vs the Bloch parameters, as
in Section 3.

5. Results of proposed scheme

We first test the convergence of the new scheme for the same small inclusion used in Sec-
tion 3, with the simplest discretization method forB, namely B1. As before, we test two Bloch
parameterb values, one which is far from an eigenvalue, and one of which is guaranteed to be
an eigenvalue according to Theorem 4. FixingN = 70, which was found in Section 3.1 to be
fully converged when at an eigenvalue, we first varyM, the number of nodes per unit cell wall.
Fig. 5a shows the convergence of the minimum singular value of the discretized matrix̃E to its
converged value (when far from an eigenvalue), or to zero (when at an eigenvalue). The conver-
gence is spectral, and in both cases full machine accuracy isreached atM = 30. (ForN > 70
the results are unchanged.) Thus for a matrix of order 2N + 4M = 260, we are able to locate
the desired band structure with relative error around 10−15 in the Bloch parameters (a, b). Filling

2This was implemented with MATLAB’squadgk, which uses a pair of 15th and 7th order formulae, with relative
tolerance set to 10−12.
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Figure 5: Convergence of new periodizing scheme using auxilliary densities (described in Section 4), using method B1,
for the same geometry and parameters as in Fig. 2a. The meaning of the two curves is also the same as in the earlier
figure. a) Absolute error inσmin(Ẽ) vs M the number of nodes on each unit cell wall, for fixedN = 70 nodes on∂Ω. b)
Same as a) except convergence vsN, for fixed M = 30. c) Same as Fig. 3b but using the new scheme: note the absence
of pollution by the empty band structure.

such a matrix takes around 0.45 sec and computing the complexSVD around 0.15 sec.3 Fur-
thermore, by storing coefficient matrices in the expansioñE =

∑

−1≤ j,k≤2α
jβkẼ( j,k) at fixedω, we

can fill Ẽ for newa, b values in 0.05 sec.
Fig. 5b shows that, withM in the new quasi-periodizing scheme sufficient to yield machine

precision, the error convergence rate with respect toN is the same as that of the old scheme.
Fig. 5c demonstrates the robustness of the scheme, by plotting the smallest singular value over
the same region of parameter space as Fig. 3b. Notice that thelocation of the desired band
structure (black line) is unchanged, but that the divergentbehavior near the empty resonant band
structure has entirely vanished.

5.1. Inclusions approaching and intersecting the unit cellwall

Given a crystal of inclusions, it may be impossible to choosea parallelogram unit cellU
whose boundary does not come close to or even intersect∂Ω. Although this is not an issue for
the scheme of Section 3, for the new scheme which relies on∂U it is a potential problem.

We first show that, as expected, with method B1 the error performance deteriorates exponen-
tially as∂Ω approaches∂U. In Fig. 6a we plot the minimum singular value at a Bloch eigenvalue,
as a function of distanced that the inclusion has been translated in thex direction (translation
does not affect the Bloch eigenvalue.) Numerical parametersN andM are held fixed. The loga-
rithm of the error grows roughly linearly withd and reachesO(1) for dist(∂Ω, ∂U) = 0, indicated
by the dotted vertical line at aroundd = 0.23. Method B2, also shown in Fig. 6a, uses adaptive
quadrature for accurate evaluation ofuQP in all of U. For very smalld, the inclusion is still cen-
trally located (far from the wall) and B2 is identical to B1, with an error of 10−15. The error is
around 10−12 as one approaches the wall (more or less independent ofd), limited by the accuracy

3All timings are reported for a laptop running MATLAB 2008a with a 2GHz Intel Core Duo CPU.
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Figure 6: a) Dependence ofσmin(Ẽ) on x-translation distanced of ∂Ω relative to the system of Fig. 2a, for fixedN = 70,
andM = 30. The vertical line shows where∂Ω starts to touch∂U. B is discretized as follows: method B1 (+ symbols),
method B2 withd0 = 0.2 (� symbols), method B3 withL = 16 (◦ symbols), method B3 withL = 22 andM = 40 (∗
symbols). Inset shows unit cell and inclusion atd = 0.6. b) Band structure for crescent-shaped photonic crystal shown in
c), indexn = 2, shape (0.265 cos 2πt + 0.318 cos 4πt, 0.53 sin 2πt), 0 ≤ t < 1, unit celle1 = (1, 0), e2 = (0.45, 1). A tour
ΓXMΓ of the Brillouin zone is shown, whereΓ is (a, b) = (0, 0), X is (π,0), andM is (π, π). d) Contours of the Bloch
mode Re[u] with parameters shown by the dot on the band diagram.
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of quadgk. This proves that the deterioration seen with B1 is associated with theB operator
block, and can be remedied merely by careful discretizationof B without increasing the matrix
size. We did not bother continuing the computation with B1 orB2 after the inclusion crosses
the wall; here they fail because (41), as constructed, representsuQP only insideU (jump relations
cause the values outsideU to be different). We note that to use B1 or B2 correctly, one would
have to wrap the boundary points outsideU back into the cell, evaluate at the wrapped point, and
correct for phase. Method B2 is not very useful in practice since the call to a black box adaptive
quadrature routine causes the matrix fill time to increase to55 sec.

Finally we use method B3 withL = 16,M = 30 and withL = 22,M = 40. In the first
case, errors grow slowly to around 10−12 as dist(∂Ω, ∂U) reaches zero, and then continue to grow
slowly to a plateau at around 10−9, even though most of∂Ω now fallsoutsideof the unit cell. The
cost of B3 is not much more than B1, taking 0.7 sec to fillẼ. Note that theJ-expansion used to
representuQP has effectively carried out analytic continuation beyondU. This is stable because
our image structure has pushed the singularities out beyondthe nearest image cells. It is perhaps
worth observing that some care must be taken in settingL. With M = 30, increasingL above
16 would worsen errors (not shown). The reason is that the coefficients|l| > 16 involve more
oscillatory integrands which are not resolved byM = 30 points. IncreasingM to 40 permits
increased precision withL = 22, as seen in Fig. 6a.

There is another potential pitfall with method B3 as implemented; if bothL andd get larger,
there may arise singular values ofẼ which become exponentially small, associated with highly
oscillatory non-physical densities on the farthest part of∂Ω. For illustration, withL = 16 andd =
0.6, the second-smallest singular value is 10−4; with L = 22 the second smallest singular value
shrinks to 10−6. (Whend = 0, the second smallest singular value is 10−1.) This is troublesome for
eigenvalue search methods that trackσmin(Ẽ) vs Bloch parameters, since the desired minima will
be obscured by these spurious small singular values everywhere except in a small neighborhood
of the desired band structure. We will discuss search methods less sensitive to this problem in a
future paper. For now the lesson is that, when parts of an inclusion extend far beyondU, there is
a price to pay for making use of analytic continuation.

5.2. Application to band structure

We compute the band structure of a more difficult crystal in Fig. 6b.Ω is far from circular,
hence simple multipole methods [23] would not be accurate. The closest approach to its neigh-
bors is only 0.06, so thatN = 150 points are needed in discretizing the inclusion boundary. Note
that any parallelogram unit cell must intersect∂Ω, so the method of [49] cannot be used without
modification. We use method B3 withM = 35 andL = 18. As illustrated before in Fig. 2b,
the minimum values ofσmin(Ẽ) on the band structure indicate the size of the errors in the Bloch
parameters found. By this measure, sampling 100 random points on the first 15 bands, we find
a median error of 3× 10−10 and a maximum 1.6× 10−9. 1.7 sec were required to fill the matrix
Ẽ of order 440 once for a givenω, a, b (and 0.13 sec for subsequent values ofa, b). The SVD
required 0.7 sec for a matrix of this size. We located the bandstructure using 8000 such evalu-
ations and a specialized search algorithm, which we will describe in a forthcoming paper. The
search algorithm is also accelerated by computing the determinant ofẼ rather than the SVD, at
a cost of 0.1 sec for each matrix. The total CPU time required was 35 minutes.

Fig. 6d shows a single Bloch mode on the 11th band for this crescent-shaped crystal. This
took 16 sec to evaluate on a 100×100 grid overU using (33), and theJ-expansion for (41) (with
no fast multipole acceleration).
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6. Conclusions

We have presented two algorithms for locating the band structure of a two-dimensional pho-
tonic crystal, in thez-invariant Maxwell setting. The first (Section 3) uses the quasi-periodic
Green’s function. Theorem 4 guarantees the success of this method (no spurious or missed
modes) as long as the band structure for the empty unit cell isavoided, where we have shown
that the method fails. The second method (Section 4) introduces a small number of additional
degrees of freedom on the walls to represent the periodizingpart of the field: numerical evi-
dence suggests that it is immune to breakdown for any Bloch parameters (Conjecture 7). The
two schemes are connected by the following observation.

Remark 8. Computing the Schur complement formula for the operator system(34) recovers the
quasi-periodic Green’s function approach described by(20). In particular,

AQP = A− BQ−1C.

The quasi-periodic Green’s function approach fails when Q becomes singular and AQP blows up.
The full system(34), on the other hand, remains well-behaved.

We have shown spectral convergence for both schemes, achieving close to machine precision
accuracy on simple crystals using only a few hundred degreesof freedom, hence CPU times of
less than 1 sec for testing at a single parameter set (ω, a, b). In the new scheme we have shown
(method B3) how to handle the passage of the inclusion through the unit cell boundary, with-
out much sacrifice in accuracy, without much extra numericaleffort, and with no bookkeeping
needed to determine which points of∂Ω lie in U. The latter is convenient for larger-scale or
three-dimensional (3D) computations if existing scattering codes are to be used to fill theA op-
erator block. Other ways to handle this intersection problem exist, such as a variant of B2 which
wraps points on∂Ω back intoU, with which we have preliminary success.

We have not discussed the methods we use for the nonlinear eigenvalue problem, due to space
constraints. The scheme of Yuan et al [49] uses a quadratic eigenvalue problem, and factorizes
the scattering matrix of the inclusion at eachω, hence may be faster than our scheme for small
systems. However, moving to large-scale systems with more than 104 degrees of freedom, such
a factorization would be impractical compared to an iterative version of our scheme.

Some generalizations of what we present are straightforward, such as multiple inclusions per
unit cell, non-simply connected inclusions, or inclusionswith corners (using quadrature rules
such as [11, 25]). There exist regimes, however, that would require some modification. These
include two phase dielectrics one or more of which are connected through the bulk (sometimes
called bicontinuous), and unit cells which are highly skew or have large aspect ratios.

Our new representation for quasi-periodic fields can also beused for scattering calculations
from periodic one-dimensional arrays of inclusions in 2D and one or two-dimensional arrays in
3D. Because we rely entirely on the free-space Green’s function, it should be straightforward to
create quasi-periodic solvers from existing scattering codes. We will describe such solvers at a
later date.
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Appendix A. Proof of Theorem 4

Recall the Green’s representation formulae [16, Sec. 3.2].If u satisfies (∆ + ω2)u = 0 inΩ,
recalling thatu− andu−n signify limits on∂Ω approaching from the inside, and the normal always
points outwards fromΩ, then

− S(ω)u−n +D(ω)u− =

{

−u in Ω
0 in R2 \Ω (A.1)

The exterior representation has the opposite sign: letu satisfy (∆ + ω2)u = 0 in R2 \ Ω and the
Sommerfeld radiation condition, that is,

∂u
∂r
− iωu = o(r−1/2), r := |x| → ∞ (A.2)

holds uniformly with respect to directionx/r. Then,

− S(ω)u+n +D(ω)u+ =

{

0 inΩ
u in R2 \Ω (A.3)

We will need the following quasi-periodic analogues.

Lemma 9. Let u satisfy(∆ + ω2)u = 0 in Ω, andΩ ⊂ U, Then for each Bloch phase(α, β),

− S(ω)
QP u−n +D

(ω)
QP u− =

{

−u in Ω
0 in U \Ω (A.4)

Proof: Write GQP using (11) and notice that each term other than (m, n) = (0, 0) contributes zero.
This is because all points inU lie outside each closed curve∂Ω −me1 − ne2, and we may apply
the second (extinction) case of (A.1) to show that they have no effect inU. �

Lemma 10. Let u satisfy(∆+ω2)u = 0 in U \Ω and quasi-periodicity(6)-(9), andΩ ⊂ U. Then

− S(ω)
QP u+n +D

(ω)
QP u+ =

{

0 inΩ
u in U \Ω (A.5)

Proof: We follow the usual method of proof [16, Thm. 3.3] but with thequasi-periodicity con-
dition playing the role of the radiation condition. Apply Green’s 2nd identity to the functionsu
andGQP(x, ·) in the domainU \Ω if x ∈ Ω, or the domain{y ∈ U \ Ω : |x − y| > ε} if x ∈ U \ Ω.
In the latter case the limitε → 0 is taken, and (11) shows that only the (m, n) = (0, 0) term
contributes to the limit of the integral over the sphere of radiusε. In both cases the boundary
integrals contain the term

∫

∂U

∂GQP

∂ny
(x, y)u(y) −GQP(x, y)un(y) dsy , (A.6)

which vanishes by cancellation on opposing walls, sinceu is quasi-periodic with phases (α, β),
butGQP(x, ·) is anti-quasiperiodic, i.e. quasi-periodic with phases (α−1, β−1). �
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Turning now to Theorem 4, to prove theif part, we show that whenever the operator has a
nontrivial nullspace, a Bloch eigenfunctionu may be constructed, i.e. a solution to (2)-(9) that
we must take care to show is nontrivial. Letη = [τ;−σ] , 0 be a nontrivial density such that
AQPη = 0. Immediately we have that the resulting fieldu given by (15) satisfies (2)-(9). We now
define a complementary field over the whole plane minus∂Ω,

v =

{

S(ω)
QP σ +D(ω)

QP τ in Ω
−S(nω)σ −D(nω)τ in R2 \Ω (A.7)

Supposeu ≡ 0. Thenu− = u−n = 0 and by the jump relations forS(nω)σ +D(nω)τ we getv+ = −τ
andv+n = σ. Similarly, sinceu+ = u+n = 0 by the jump relations forS(ω)

QP σ+D(ω)
QP τ we getv− = −τ

andv−n = σ. It is easy to check thatv solves the (swapped-wavenumber) transmission problem,

(∆ + ω2)v = 0 inΩ (A.8)

(∆ + n2ω2)v = 0 in R
2 \Ω (A.9)

∂v
∂r
− inωv = o(r−1/2), r → ∞, uniformly in direction (A.10)

v+ − v− = h (A.11)

v+n − v−n = h′ (A.12)

with homogeneous boundary discontinuity datah = h′ = 0. By uniqueness for this problem [16,
Thm. 3.40] we get thatv ≡ 0 in R2, from which the jump relations back tou imply σ = τ = 0,
which contradicts our assumption of nontrivial density. Thusu is a Bloch eigenfunction.

To prove theonly if part we show that, given the existence of a Bloch eigenfunction, we
may exhibit a (nontrivial) densityη such thatAQPη = 0. Let w be a Bloch eigenfunction with
eigenvalue (ω, a, b). Then letv solve (A.8)-(A.12) with the inhomogeneous datah = −2w|∂Ω and
h′ = −2wn|∂Ω. (Note thatw obeys continuity (4), hencew|∂Ω = w+ = w− andwn|∂Ω = w+n = w−n ).
By [16, Thm. 3.41] we know that a unique solution exists. We now claim that the densities

σ = wn|∂Ω + v+n (A.13)

τ = −w|∂Ω − v+ (A.14)

generate precisely the eigenfunctionw, i.e. the representationu of (15) obeysu ≡ w in U.
We show this by substituting the densities into (15), then applying (A.1) and (A.3) inΩ, and
Lemma 10 inU \Ω:

u =

{

S(nω)wn|∂Ω − D(nω)w|∂Ω + S(nω)v+n −D(nω)v+ in Ω
S(ω)

QP wn|∂Ω −D(ω)
QP w|∂Ω + S(ω)

QP v+n −D
(ω)
QP v+ in U \Ω

=

{

w in Ω
−w + S(ω)

QP v+n −D
(ω)
QP v+ in U \Ω

On the remaining term, we usev’s known jumpsh andh′ to get

S(ω)
QP v+n − D

(ω)
QP v+ = S(ω)

QP v−n −D
(ω)
QP v− − 2S(ω)

QP wn|∂Ω + 2D(ω)
QP w|∂Ω

= −2w
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where we applied Lemma 9 to the first pair, and Lemma 10 to the second as before. Substituting
this above shows thatu ≡ w in U. Sincew has zero mismatch, the density vectorη := [τ;−σ]
satisfiesAQPη = 0. Finally,η must be nontrivial sinceη = 0 would implyu ≡ 0 by (15) which
contradicts it being equal to the eigenfunctionw. �

We close with a couple of remarks about the proof. Barring a sign,v in (A.7) is the extension
of u’s representation (15) into its nonphysical regions, a trick originating, in the homogeneous
context, with the proof in [16, Thm. 3.41]. Because (15) usesGQP outside, butG inside, the
complementary problem is anonperiodictransmission problem, which has known existence and
uniqueness. The related analysis of [45] usesGQP both inside and outside. This results in a
periodic problem as the complementary problem, and it is notso clear that one can eliminate the
possibility of spurious modes.
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