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Abstract

In this paper, we consider band-structure calculationegwd by the Helmholtz or Maxwell
equations in piecewise homogeneous periodic materialghdds based on boundary integral
equations are natural in this context, since they dis@étie interface alone and can achieve
high order accuracy in complicated geometries. In ordeatalle thequasi-periodicconditions
which are imposed on the unit cell, the free-space Greem'stion is typically replaced by its
quasi-periodic cousin. Unfortunately, the quasi-pexddieen’s function diverges for families
of parameter values that correspond to resonances of thy emip cell. Here, we bypass this
problem by means of a new integral representation thatsrelighe free-space Green'’s function
alone, adding auxiliary layer potentials on the boundarthefunit cell itself. An important as-
pect of our method is that by carefully including a few neigtibg images, the densities may be
kept smooth and convergence rapid. This framework resulia integral equation of the second
kind, avoids spurious resonances, and achieves spectialaay. Because of our image struc-
ture, inclusions which intersect the unit cell walls may laadiled easily and automatically. Our
approach is compatible with fast-multipole acceleratiygneralizes easily to three dimensions,
and avoids the complication of divergent lattice sums.

Keywords:

1. Introduction

A number of problems in wave propagation require the catmreof quasi-periodicsolu-
tions to the governing partial fierential equation in the frequency domain. For concretenes
let us consider the two-dimensional (locally isotropic)»Meell equations in what is called TM-
polarization|[2[7, 28]. In this case, the Maxwell equatioaduce to a scalar Helmholtz equation

AU(X, Y) + w?euu(x,y) = 0, (1)

*Corresponding author. tel1-603-646-3178. fax1-603-646-1312
Email addressesahb@math.dartmouth.edu (Alex Barnett),greengard@cims.nyu.edu (Leslie Greengard)
URL:http://www.math.dartmouth.edu/~ahb (Alex Barnett),
http://math.nyu.edu/faculty/greengar (Leslie Greengard)

Preprint submitted to J. Comput. Phys. October 24, 2018


http://arxiv.org/abs/1001.5464v1

a) _/ N N4 N N b) - / N / / N
’\\“ D/WD K,ﬂ\\—

B RN
\’ D {> E> \‘ B \
Figure 1: a) Problem geometry: an infinite dielectric criystethe case where the inclusi@hlies within a parallelogram
unit cellU. The (shaded) set of all inclusions in the lattice, denote€R in the text, has refractive index while the
white region has index 1. b) Sketch of our quasi-periodizogeme: we make use of layer potentials on the left (L) and

bottom (B) walls, extended to the additional segments shovitich form a skewed ‘tic-tac-toe’ board, as well as the
near neighbor images 61, outlined in solid lines.
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wheree andy are the permittivity and permeability of the medium, resjpety, and we have
assumed a time dependencedf! at frequencyw > 0. Given a solutiomu to (@), it is straight-
forward to verify that the corresponding electric and mdigrfeeldsE, H of the form

Exyd = E(XY) = (0.0,u(xy)
Hxyd = H(xy) = %(uy(x, ). ~Uy(x.Y).0)

lw,

satisfy the full system

VXE = iwuH
VxH = -iweE.

We are particularly concerned with doubly periodic matenighose refractive index = /eu is
piecewise constant (Fif] 1). Such structures are typicallid state physics, and are of particular
interest at present because of the potential utility of phiatcrystals, where the obstacles are
dielectric inclusions with a periodicity on the scale of tavelength of light|[28]. Photonic
crystals allow for the control of optical wave propagatiorwiays impossible in homogeneous
media, and are finding a growing range of exciting applicetito optical devices, filters [21],
sensors, negative-index and meta-materials [36], and selis [7].

We assume that the crystal consists of a periodic array adoles (2,) with refractive index
n # 1, embedded in a background material with refractive inlexl (denoted byR? \ Q,). We
then rewrite[(lL) as a system of Helmholtz equations

(A+n%w®u = 0 inQ, (2)
A+w?du = 0 inR?\Q, (3)
The expressiom,, above, is used to denote the closure of the dorfjn(the union of the
domain and its boundar§Q,). In this formulation, we must also specify conditions a th
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material interfaces. These are derived from the requiretimmaity of the tangential components
of the electric and magnetic fields acré€, [27,28], yielding

u, U, continuous acroséQ (4)

whereu, = du/anis the outward-pointing normal derivative.

The essential feature of doubly periodic microstructune& (or triply periodic microstruc-
tures in 3D) is that, at each frequency, there may exist lirayevave solutions (Bloch waves)
propagating in some direction defined by a ve&tor

Definition 1. Bloch wavesre nontrivial solutions t2)—(4) that are quasiperiodic, in the sense
that _
u(x) = €<*(x), (5)

wherel is periodic with the lattice period ankl = (ky, ky) is real-valued K is referred to as the
Bloch wavevectar

Bloch waves characterize the bulk optical properties ajdemcyw; they are analogous to
plane waves for free space. If such waves are absent forrafit@tinsk for a givenw, then the
material is said to havelaand-gap48]). Thesizeof a band-gap is the length of the frequency
interval [w1, wz] in which Bloch waves are absent. Crystal structures witargd band-gap are
‘optical insulators’ in which defects may be used as gui@&$, [with the potential for enabling
high-speed integrated optical computing and signal psicgs

Definition 2. Theband-structuref a given crystal geometry is the set of parameter p@irk)
for which nontrivial Bloch waves exist.

The numerical prediction of band structure is a computatilgrchallenging task, yet essen-
tial to the design and optimization of practical devicesetjuires characterizing the nontrivial
solutions to a homogeneous system of partifiedéntial equation$12)13) subject to homoge-
neous interface and periodicity conditioh$ (&, (5) in ctiogted geometry. Solving this eigen-
value problem is the focus of our paper.

In the next section, we briefly review existing approachas,ia sectiofi B, we present and
test a method that relies on the quasi-periodic Green'stimmcWe introduce our new mathe-
matical formulation in sectioll] 4. Numerical results arespreed in sectionl 5, and we conclude
in sectior 6 with some remarks about the potential for wiggnliaation of this approach.

2. Existing approaches

In order to pose the band-structure problem as an eigenpabidem on the unit cell (see
Fig.[), we will require some additional notation. The noralal vectorse;, e, € R? define
a Bravais latticeA := {me; + ne; : mn € Z}. Given a smooth, simply connected inclusion
Q c R?, we may formally define the corresponding dielectric criyisyaQ, = {Q +d : d € A}.
As indicated above, we assume tliy{ has refractive index # 1, and that the background
R2 \ Q4 has refractive index 1. For the moment, we assume@®hatU as illustrated in Fig.11.
We will discuss the case @1 crossingdU in Sectior 5.11.



The quasi-periodicity conditio(5) can be rewritten as taofdoundary conditions on the
unit cellU, coupling the solution on the leftf and right  + e;) walls, as well as on the bottom
(B) and top B + &) walls. More precisely, if we define

a=k-g, a:=6% bi=k-e, pB:=€°,

then quasi-periodicity is written

Uite = aUlL (6)
un|L+el = aUl (7)
Uswe, = PUls (8)
Unlgte, = PBUnl, 9)

where the normals have the senses shown ifFig. 1.

The homogeneous equatiohk @)-(&), (8)-(9) define a pdiffarential equation (PDE) eigen-
value problem on the torug. By convention, the band structure or Bloch eigenvaluegeaner-
ally defined as the subset of the parameter sp@ce,b) : w > 0,-r <a<n,—n < b < x} for
which nontrivial solutionsal : U — C exist. The earlier definition of band-structure, based on
(5), allows for arbitrary values &. It is clear, however, that one only needs to consider asingl
period ofk’s projection ontce;, e,, which we have denoted kay b, to characterize the entire set
(w, k) of nontrivial Bloch waves. This domailifa,b) : - < a < n, -7 < b < n} is (essentially)
what is referred to as th@rillouin zone

Because the PDE is elliptic atdlis compact, for eack there is a discrete set of eigenvalues
{w,—(k)}‘l?‘;l, counting multiplicity, accumulating only at infinity. Elaev;(k) is continuous irk,
so that the bands forsheets

Popular numerical methods for band structure calculatamasreviewed inl[28]. Broadly
speaking, they may be classified as either time-domain quéecy domain schemes. In the first
case, an initial pulse is evolved via the full wave equatiypitally using a finite-dference or
finite-element approximation). If the simulation isfisciently long, Fourier transformation in
the time variable then reveals the full band structure. énstbcond case, the eigenvalue problem
@-@A), (8)-[9) is discretized directly. Such frequenoythin schemes can be further categorized
as

1. PDE-based methods, which involve discretizing the wiitsing finite diference or finite
element methods|[3, 19, [20],

2. plane-wave methods which expand the function (8) as a Fourier series, and apply the
partial diferential operator in Fourier spacel[28, 29],

3. semi-analytic multipole expansion methods which apgigély to cylindrical or spherical
inclusions|[10, 43],

4. methods which use a basis of particular solutions to thE BDa given frequency and
enforce both interface and boundary conditions as a lingstes, such as the “multiple
multipole” or “transfer-matrix” method [23, 46], and

5. boundary integral (boundary element) methods [49], tviicludes the method described
here.

For a fixedk, methods of type (1) and (2) resultin large, sparse gerzechkigenvalue prob-
lems whose lowest few eigenvalues approximate the first favd&w; (k). They have the advan-
tage that they couple easily to existing robust linear algieliechniques. PDE-based methods,
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however, require discretization of the entire cell in a n&rthat accurately resolves the geom-
etry of the inclusiomQ. Plane-wave methods, which perform extremely well whenitidex

of refractionn is smooth, have low order convergence wimeis piecewise constant, as in the
present setting. Both require a large number of degreegefltrm.

Methods of type (3), (4) or (5), on the other hand, repredsmisblution using specialized
functions (solutions of the PDE) whose dependencesda nonlinear. As a result, they can
be much more féicient and high-order accurate, dramatically reducing tinaler of degrees
of freedom required. Unfortunately, however, they resalainonlinear eigenvalue problem
involving all the parameters, a andb, and somewhat non-standard techniques are required to
find values of the parameters for which the system of equaisingular|[47].

We are particularly interested in using boundary integrathds (BIES), since they eas-
ily handle jumps in the index in complicated geometry, hawee#l understood mathematical
foundation, and can achieve rapid convergence, limiteg¢t bylthe order of accuracy of the
guadrature rules used. High order accuracy is importahmly because of the reduction in the
size of the discretized problem, but in carrying out subsetjtasks, such as sensitivity analyses
[17] through the numerical approximation of derivativesdahe computation of band slopes
(group velocity), and band curvatures (group dispersion).

There is surprisingly little historical literature on ugiBIE for band structure calculations,
although the last few years have begun to see some activitysrdirection (see, for example,
[49]). Thereis, however, an extensive literature on iraeégguations foscatteringfrom periodic
structures, which we do not seek to review here. For somateaek and additional references,
seel[14, 42].

3. Integral equations based on the quasi-periodic Green’sihction

An elegant approach to designing integral representafmmguasiperiodic fields involves
the construction of the Green'’s function that imposes treiree conditions[{(6)E]9) exactly. We
first need some definitions [16,/41]. At wavenumbesr 0, the free space Green'’s function for
the Helmholtz equatiorG is defined by-(A + w?)G = §, whered is the Dirac delta function
centered at the origin. In 2D, this yields

G(X) = G¥(x) = j—lH(‘)l)(w|x|), x € R2\ {0}, (10)

WhereHél) is the outgoing Hankel function of order zero. By formallyreming over images of
the Green'’s function placed on the lattiae with correctly assigned phases, we get an explicit
expression for the quasi-periodic Greens function

Ge(X) = Z d¥IG(x - d) = Z a"B"G(X — mey — Ney) . (11)
deA mnezZ

We leave it to the reader to verify th@, does, indeed, satisf{/I(6}}(9). One small caveat: the
series in[(Ill) is conditionally convergent for real The physically meaningful limit is taken
by assuming some dissipatian = w + i in the limit ¢ —» 0* (see |[18] for a more detailed
discussion). It will be useful to distinguish between th@yof the Green'’s function sitting
in the unit cellU and the set of all other images. For this, we define the “refjpkt of the
guasi-periodic Green’s function by

G = > a"B"G(x - me; - ney). (12)

mnez
(m,n)=(0,0)



This function is a smooth solution to the Helmholtz equatigthin U and clearly satisfies
Gor(X) = G(X) + GGu(X) . (13)

A spectral representation also exists [9, 18], built from plane-wave eigenfunctions of the
guasi-periodic torug):
gilk+a)x

1
Corlx) = Vol(U) qezA: k+q2-—w?’

(14)

Here,A* := {mr+nr : m n € Z} is thereciprocal latticewith vectorsr ; defined byg -1 j = 276
fori,j = 1,2. From the denominators if_(14) it is clear ti@&4. may blow up for specific
combinations ofv andk. The quasiperiodic Green’s function is, in fact, well-defirif and only
if those parameters satisfy the following non-resonancoelition.

Definition 3 (empty resonance).A parameter sefw, k), equivalently(w, a, b), is empty reso-
nantif w = |k + g| for someq € A*, otherwise it isempty non-resonant

Our terminology comes from the fact that the blow-uSg. is physically the resonance of the
‘empty’ unit cellU, with refractive index 1 everywhere and quasi-periodicrigary conditions.
That is, G is undefined if and only if ¢, a, b) lies on the band structure of the empty unit
cell. The blow-up of the Green’s function is less appareminfi{11), but is manifested in the
divergence of the series, even in the limit w + ie with ¢ — 0*.
It will be convenient sometimes to refer to a Green’s funtag a function of two variables,
with G(X, y) := G(x—Y), andGy(X, y) := Go:(X—Y). Then, for eacly € R?, the functionGg(-, y)
is quasi-periodic.
We now represent solutions to the PDE eigenvalue prodlér@2)Y8)-(3) by the layer po-
tentials, ) o)
Nw Nw H
u={§(@)o-+1?w) T !nQ _ (15)
w0+ DT  INU\Q

where the usual single and double layer densities [16] ata@wenumbet > 0 are defined by

S = | GVyrtds (16)
0Q
0G
(OW)(X) = f o VTS, (17)
0Q y
and their quasi-periodized versions are likewise
S = [ eenemis (18)
aG(U;)
O = f = (x.y)(y)ds (19)
o0 Ony

Heredsis the usual arc length measured@®, and the derivatives are with respect to the second
variable in the outward surface normal directioryatlt is clear [16] that the above four fields
satisfy the Helmholtz equation at wavenumbkein both Q andU \ Q. Note that we have
chosen anon-periodizedepresentation within the inclusida in (I5), which has some analytic
advantages (see TheorEn 4 and the last paragraph in the digpen
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Sinceu in (I8) satisfied(2)[{3), anHl(6)3(9), all that remains isabve for densities-, T such
that the matching conditionis|(4) are satisfied, which we nderess.

Using superscripts and— to denote limiting values odQ, approaching from the positive
and negative normal side respectively, we use the field (i&)lae standard jump relations for
single and double layer potentials [16} 22] to write

ur—u ] _ (]I 0] [D¥-pr) st _ gk T _.
[un+—un‘ - ( 0 1|18 700 pea_pr|f|-| T AT (20)

Herel is the identity operator, whil& andD are defined to be the limiting boundary integral
operators (maps frorg(0Q) — C(dQ2)) with the kernelsS and D interpreted in the principal
value sense. § is actually weakly singular so the limit is already well defih A standard
calculation [15, 22] shows thd@ is weakly singular as well). The hypersingular operdtdras

the kernelﬁ;ig"y) and is unbounded as a map fr@m»Q) — C(4Q). In these definitions, as in
(I8)-(19), it is implied tha6 inherits the appropriate superscripts and subscripts 8p® and

T. Finally, = indicates the adjoint. The amounts by which the materiathiag conditions fail

to be satisfied,
_ut—u
m= |at T @)

is a column vector of functions which we call theismatch We summarize the linear system
(20) bym = A,p wherer := [1; —o]. Itis important to note that théifferenceof hypersingular
kernels, T — T() in (20) is only weakly singulat [16, Sec. 3.8]. This canattin, achieved
here by using the same pair of densities inside as outsidenthgsion, is well known|[44].
The result is thaB, is a compact perturbation of the identity ahdl(20) is a Frédigystem of
integral equations of the second kind.

In the above scheme, we might hope that if it is possible torfioitrivial densitieg; whose
field u gives zero mismatcin for a set of parameters(a, b), then that set is a Bloch eigenvalue.
Indeed (as with the case of simpler domain eigenvalue pnub[89, Sec. 8]) we have a stronger
result.

Theorem 4. Let(w, a, b) be empty non-resonant. Thén, a, b) is a Bloch eigenvalue if and only
if Null Age # {0} .

The proof occupies Appendix Appendix| A. This suggests tive o6 a numerical scheme: at
each of a sampling (e.g. a grid) of parametersy( b), find the lowest singular value,,,(Aq) of

a matrix discretizatior,, of A,e. The band structure will then be found wherg,(Aq) is close
to zero.

3.1. Discretization of the integral operators

Since the goal of this work is to explore periodization, weitiourselves to the simplest case
of 9Q being smooth. The methods of this paper extend without mtfontéo other shapes, but
the quadrature issues become more involved. Recallidg (b8 that the kernels i (R0) are the
sum of a component due ® which is weakly singular, plus the remainder duesg which is
smooth (analytic). We will make use of a Nystrom discret@ausing the spectral quadrature
scheme of Kress [31] fdB and the trapezoidal rule f@3y,.



We first remind the reader of the periodic trapezoidal Nystscheme [33], in the context of
a general second kind boundary integral equation

W9+ [ Kxyu)ds = 0. xean

whereoQ is parametrized by then2periodic analytic functiorz : [0,27) — R?. Changing
variable gives

21
() + fo K(stu®dt= (9,  se[0,2n),

whereK(s, t) := k(z(s), z(t)) |z (t)] andz’ = dz/dt. ChoosingN quadrature points = 27j/N
with equal weights 2/N gives theN-by-N linear system for the unknowmé'\'), which approxi-
mate the exact valuggt;), as

N
2n
AR LMY = T, k=1 N (@2)
j=

By Anselone’s theory of collectively compact operators][3Be convergence of errobsgN) -

/J(tj)l inherits the order of the quadrature scheme applied to taetéxtegrand(s, -)u, which is
analytic wherk andf are.

Remark 5. For analytic integrands, the periodic trapezoidal rule h@gponential convergence
with error O(e">N) wherey is the smallest distance from the real axis of any singufdritthe
analytic continuation of the integrand. [33, Thm. 12.6].

The above discretization is used to populate the matrixesnin [20) that are due to the
smooth compomer@,.. (We explain how to compute this kernel itself in Secfiori 8.2

For non-smooth kernels, such @sthe rule [22) must be replaced by a quadrature that cor-
rectly accounts for the singularity in order to retain higider accuracy. There are a variety
of such schemes, such as those of [2,[24, 30]. By fixing therafaccuracy, they allow for
straightforward coupling to fast multipole acceleratid® [ 13, 14| 42] by making local mod-
ifications of a simple underlying quadrature rule (such &stthpezoidal rule or a composite
Gaussian rule). In the present context, we ignore such deretions and use a global rule due
to Kress|[31] that achieves spectral accuracy in the Idgaiitally singular case.

The essential idea of Kress’ scheme (after transformafiearables to the interval [@r])
is to split a logarithmically singular kern&l(s, t) in the form

K(s 1) = log (4 sir? ST_t) Ki(st) + Ka(s 1) (23)

with K; andK; periodic and analyticK; is (again) handled with the trapezoidal rule. Kar,
the Kussmaul-Martensen quadrature rule is spectrallyrateu

- i St )
fo log (4 Sir? T)g(t)dt ~ % RM(9() (24)
with quadrature weights (deriving from the Fourier seriEthe log factor) given by
N/2-1
2 2 N
(N) — A —(s—t;
R} (9 = - ;1 = cosm(s - t;) N 0052 (s—tj). (25)
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Figure 2: Convergence for quasi-periodic Greens functibesie of Se€]3. a) Absolute errorcmm(:&op) vsN the num-
ber of quadrature nodes @@, for Bloch parametera = 7/2 and the two dferentb values labeled. The unit cell with
e = (1,0),e = (0.4,1), and inclusion, described by the radial functigf) = 0.2(1+ 0.3 cos ), are shown in the inset.
Index isn = 3 and frequency = 4.5. Forb = 2, error is taken relative to the converged valu@l879908530381247;
for b = by, relative to 0. The matri)AQp has 2-norm of about 25. bn)mm(AQp) vs difference in parametds from the
Bloch eigenvaluéy, for several dferent numbers of quadrature poifts Note the horizontal log scale. This shows that
it is the convergence rate at the Bloch eigenvalue that alsntne accuracy with which the minimum can be found. c)
Relative error € symbols) in evaluation of lattice suBg by the method of Sef._3.2 vs the maximum orten (27).
Parameters are as in Table 1l bf|[38], whose cl&m= 2.13097899279352 5.66537068305984s taken as the true
value. Also, relative error(symbols) forSs which excludes the 8 3 block of neighbors (parameters are the same; true
value is taken as the converged valué at 50).

Thus, the matrix elements in discretizifigl(23) K tj) = R(J!\'_)kl(O)Kl(tk, tj)+Ko(tk, tj). Finally,
it is always the dierence of two hypersingular operatdrshat appears in the integral equation
(20). This diference is only logarithmically singular, so that Kresserahn be used for every
block of (20). We refer the reader 10 [31] for further details

In summary, a matrix discretizatio@%p of Ao is formed by using the above quadrature rules
for each of the 2-by-2 integral operator blocks[inl(20). Triatrix maps density values to field
values. However, in order to create a matrix whose singudres approximate those 8§,
we must instead normalize such th&t-dimensional Euclidean 2-norms correctly approximate

L%(0Q)-norms. This is done by symmetrizing using quadrature ltsitp give our final matrix
Age = WAL W12 (26)

whereW is diagonal with diagonal elementg = wj,n = (27/N)|Z'(t;)|, for j=1,...,N.

The net result of the preceding discussion is that with tleeaispecialized quadratures on
smooth boundaries, the singular valuesigf are spectrally accurate approximations to those
of A.. We demonstrate this convergence for a small trefoil-stiapelusion in Fig[®a; the
convergence is spectral, until the error is approximatedgimme precision times the matrix 2-
norm. The rate appears to be faster at a Bloch eigenvalubi§itase on the fourth band) than
far from one. Fig[Pb shows that the minimum locates the peatarb to 14 digit accuracy for
N > 70.



3.2. New method for evaluation of the quasi-periodic Grdanstion

In order to compute the elements Af,, one must evaluate, defined by [(IPR); in this
section, we present a surprisingly simple (and apparethy) method for this. Since the sums
(@I1) and [I#) converge too slowly to be numerically usefudnsnsophisticated schemes have
been devised. Some of these are based on the Fourier rejatese(such as [9]), but most are
based on the observation that

L
GL(r.6) = > Sidi(wr)e", (27)

=L

where ¢, 6) are the usual polar coordinates, ahdhe regular Bessel function of order As

L — oo, this expression is uniformly convergent in the unit ¢¢las long as there exists a circle
about the origin which contairlg but encloses no points it \ {0}. The codficientsS; in this
expansion are know dattice sumsgiven by

S = § a8 HY (wr mp)e1om,
mnez
(m,n)#(0,0)

where ¢mn, Omn) are the polar coordinates ok, + ne, andHl(l) is the outgoing Hankel function
of orderl. Thus, the issue of evaluatir@,, has been reduced to that of tabulating the lattice
sums. This problem itself has a substantial literature, (Breexample, |[15] 18, 34, 38, 40]).
Nevertheless, very few papers discuss the problem of eregtynances, at which point the lat-
tice sumsS; blow up. One notable exception is the work of Linton and Thearp[35], who
analyze this blowup for periodic one-dimensional arraysaio dimensional scattering. They
also propose a regularization method to overcome it.

We present here the construction of a small linear systense/Bolution yields the lattice
sums rather easily (away from empty resonances). In physoas, we compute the field
induced by the free-space Green'’s funci@®rdetermine how it fails to satisfy quasi-periodicity,
and use the representati@nl(27) to enforce quasi-pertpdicimerically. More precisely, given a
field u, we define theliscrepancyoy

f Ul — 071U|L+e1
f/ _ -1
d = . UnlL — @ “UnlL+e, 28)
g ' ulB _B_1U|B+e2
g/ La|n|B _ﬂ_lun|B+e2

We can interpref, f’ as functions on walL andg, g’ as functions on walB. We construct a
4M-component column vectatby sampling these four functions at Gaussian quadraturggoi
1M onL, andy®M  onB. If we let the fieldu(x) = G(x), then form = 1,..., M, themth
element ofd is G(yY) - e 1G(y%Y + e1). The remaining B! entries ind are computed in the
analogous fashion.

Now letH be a (complex) matrix of sizeM x (2L + 1), defined as follows. Fdr= —-L, ..., L,
fill the (I + L + 1)th column in the same mannerdsbut using the fieldi(x) = Jj(wr)€". Letting
S:i= {S|}|L:7L, it is straightforward to verify that the linear system

Hs=-d (29)
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yields values for the lattice sums that annihilate the @jsancy induced by the sourG& We
solve the linear system in the least squares sense. This ha@sdone with some care, since the
Bessel functiong, become exponentially small for largieA simple fix is to right-precondition
the system by scaling thé{ L + 1)th column ofH by the factotp, := 1/J(min[wR, 1]), where

R := maxcy [X| is the unit cell radius. The entire procedure may be intéegras finding the
representatio {27) which minimizes th&-norm of the discrepancy of the resultiGgs.

Fig.[2b shows that the error in evaluatiBg for | = 3, has exponential convergence.inWe
fixed M = 24 (large enough that further increase had fieat). 14 digits of relative accuracy
are achieved foL. > 46, comparable in accuracy to [38]. Although the maximumiewable
accuracy foiS, deteriorates exponentially §sincreases, the resulting accuracy@yf computed
via (21) is close to 14 digits everywherelih@ We do not claim that our method is optimal in
terms of speed (although at 0.05 sec to solve foGalfalues, it is adequate), merely that it is
accurate, convenient and robust. To our knowledge it habew®r proposed in the literature.

The convergence rate in the boundafynorm of expansions such ds127) depends on the
(conformal) distance from the domain to the nearest fieldudarity (a result of Vekua’s theory
and approximation in the complex plané [8, Ch. 6]). Thusr#te may be improved by increas-
ing this distance by removing the rest of thex3 block of nearest neighbors from the lattice
sum, and representing

L
G == > G- jer-ke) = > §d(wr)e. (30)

(i.K € Z2\(-1,0,1)2 I=—L

To solve for{S}}, the right-hand side of the linear system is now chosen théelirect summa-
tion of these neighborsix) = G(X) := ¥je-101 @'BG(X — je1 - key). We may then evaluate
Ge = G + G,.. As Fig.[2c shows, the convergence rateSarand hence foG:, is now a factor

2-3 better. Hence we use this method below, fixing 30.

3.3. The empty resonance problem

Given a photonic crystal (inclusid2with indexn), using the methods of Sectidnsi3.1 3.2
we are able to construct the mat#, for any given frequency and Bloch parametersd, b).
Fig.[3a shows the minumum singular value of this matrix asnation over thel, w) plane, for
constant: the band structure is visible as the zeros of this functiba have also superimposed
the band structure of the empty unit cell (dotted lines).arkal4 guarantees that, away from the
empty unit cell band structure, no spurious modes will bexthand that no modes are missed.

However, zooming in to one of the many intersections of the $ets of curves (Fid.] 3b),
we see that in the neighborhood of the empty band structneedé¢sired singular values take
on arbitrary fluctuating values that obscure the theortienavior near their intersection. This
prevents any attempt to locate the desired zero set to amaagcbetter tharO( v/€.e), Where
Emaen 1S the machine precision. As Figl. 3c shows, this is explalmethe blowup of the entries
of the matrixA,. as one approaches the empty band structure. This, in tuisesainbounded
rounddt error when computing small singular values in finite-prieciarithmetic.

1This is to be expected from arguments similar[to [4, Eq. (% residual of the linear system, around %0
approximates the boundary error norm, which in turn costté interior error norm when using a basis of particular
solutions to the Helmholtz equation.
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Figure 3: Breakdown of quasi-periodic Greens function suhefor the system of Fifll 2a except wih = (0.5,1). a)
Minimum singular value of&Qp vsb = k - & andw, as a log density plot over a slice with fixed= 0.8. Dark curves
indicate the band structure, and superimposed dottedtliee®mpty’ band structure whef@ye blows up. b) Zooming
in by a factor of 10 to the region shown by the dot in a), showing failure to resdiand structure at the intersection.
c) log 1-norm of the matri»&Qp plotted over the same region as b); it is of order the invefsbendistance to the empty
band structure.

Remark 6. The above demonstrates a fundamental flaw inherent in thefilse quasi-periodic
Greens function in band structure problems; there are ermgdgnant parameter sets (sheets in
the spacdw, a, b)) where the desired band structure cannot be computed. Eortbre, loss of
accuracy is inevitable near these parameter sets.

This motivates the development of a more robust scheme.

4. Periodizing using auxiliary densities on the unit cell wés

4.1. Inclusion images and a new linear system

Sectior 3R illustrated the fact, well known in the fast ripdte literaturel[6, 14, 12, 13, 18],
that summing the nearest neighbors directly (i.e. exclydirem from the quasi-periodic field
representation) results in much improved convergencs.raf@is motivates defining general-
izations of [I6) and[(17) that include summation over therappately phased & 3 nearest
neighbor images, as shown in Hig. 1b,

S“)(x) = j{;ﬂ Z B G,y + jer + key) o(y)ds, (31)
jkel=1,0,1)

. . 0G@ :

(D)(x) = fag 2, oF gn, Y+ et ke T)ds (32)
jke(-1,01)

We now choose a layer potential representationuftirat involves only free space kernels:

{ S g+ Pihw) ¢ inQ
u =

SWa + DT+ u[é] INU\Q (33)

The auxiliary fieldug will be represented by a new set of layer potentials thatrli¢he “tic-tac-
toe” stencil of Fig[dLb, consisting of the boundarylbfand its closest extensions, none lying in
12



the interior ofU. We will return to this in section4l.2. For the moment, let esdte the unknown
densities that determing,, by £. By construction, the representatidn](33) satisfiés (2) @hd
in U, so that it remains only to impose both the matcldogtinuity conditions[{4) and quasi-
periodicity [8)-[9). Imposing the mismatch defined by[(2ll) and the discrepantylefined by
(28) onu, the unknowns in{33) must satisfy a linear system of the form

nf._ (A Bln|_|[m
El = = , 34
f=le ol [d o
where, as before; := [r; —o], We will describe the operatois, B, C, andQ in more detalil
shortly. For the moment, note that if there exists a dengitg][which generates a nontrivial
field with vanishing mismatch and discrepancy, then it islatgm to (2)-[4) and[(6)E(9) and the

corresponding parametetis, @, b) must be a Bloch eigenvalue. Numerical evidence suppaats th
following stronger claim, the analog of TheorEin 4.

Conjecture 7. (w, a,b) is a Bloch eigenvalue if and onlyMull E # {0}.

This suggests, as in Sectibh 3, computing the band strubjulecating the parameter families
where (a discretization of} is singular. The point of the new scheme is that it should best
if the conjecture holds, then (in contrast to the quasigciGreen’s function approach), there
will be no spurious parameter values where the method bickaka.

To discuss the operatorsk) we need some additional notation. We assume that the wawvenu
berw and quasiperiodicity parametess ) are given. LeW be a curve irR? on which single
and double layer densities are defined, with the correspgrgbtentials written as

Swd) = [ ctyomds (35)
0G
@O = [ eyt (36)
LettingV be a (possibly distinct) target curvelk?, we define the operators

G = [ sxyot)ds  xev (37)

oG
Ounw = [ eyrds  xev (38)
O = [ Dyotids  xev (39)

%G
Twn@) = | Z=merds  xeV. (40)

WhenV = W, these operators are to be understood in the principal ¢&luge. By analogy with
(31), (32), versions of these operators whose kernelsdediie phased sum over<33 images
of the source are indicated with a tilde)( that is,Svw. Dyw. Dy, andTyw.

We are now in a position to provide explicit expressions fer dperatorg\, B, C, Q in (24).
Comparing[(3B) to[(15), it is clear that the operakds the same a8, in (20) but with the re-
placement 08%, DY) andT, by Ss0 40, Dan.sa andTsq.qq, respectively. It is straightforward
to verify thatAis a compact perturbation of the identity.

13



Figure 4: Discrepancy cancellation due to neighbor imagessiEach arrow represents the influence of a source density
on a target segment. a) For the four upper sub-block§,dhe six nearest source images (dotted) contribute to the
discrepancy on the left wall. b) The six nearest source images (dotted) contribute lgxtiet same field (suitable
phased) to the right wallL(+ e1). The net result is that only the distant sources, shown id, iave a non-zerofkect.

The same holds for all four upper sub-blocks@f A rotated version applies to the lower four sub-block<Cofc,d)
Contributions to the sub-block®_ | and Q g of Q. The seven indicated terms (dotted source segments) canibel

two diagrams, leaving only the contributions from distaailvsegments shown in bold. A rotated version applies to the
sub-blocksQg| andQgp.

The operatoC describes thefect of the inclusion densities on the discrepadcyts eight
sub-blocks are found by insertirlg {31) ahd|(32) ifid (33hteealuating(28), giving

~ e “ e
DLoo— @ "Driego  —SLoa+ @ Siie 00
~ 1% = 10

TLoo-a l-[L+61ﬁQ Dot lE)L+e1,ﬁﬂ
Deon—B Deiega  —Spioat B Ssre.do

—1 -1
Teoa—B Tereoo —DpyotB Do o

Consider now the any of the four upper sub-block€ofThere are nine phased copiesisi
which contribute to the field on the left) and right L +e;) wall. From symmetry and translation
invariance considerations, however, it is easy to checkttteacontributions from the six left-
most images o (dotted curves in Fid.]4a) are equal to the contributiondefdix right-most
images orl + e; (dotted curves in Fid.l4b). In the (1) sub-block, for example, we have:

= 145 K -2
DiLoo —a "Dirie o = Z B (Q'DL,(’)QJreﬁkez -« DL,(')Q*ZerkeZ)
ke{-1.0,1}

A rotated version of the analysis applies to the lower folr-blocks inC. The result is that the
entries inC involve only source-target interactions at distangesaterthan the size of the unit
cell, ensuring the rapid convergence of a representatiterins of smooth functions.

We next discuss the representatioréandug[£] in more detail, which will determine the
form of blocksQ andB of the full system matrix.

4.2. Choice of auxiliary densities and their images

The auxiliary fieldu,e is determined by the choice of layer potentials on the bonynafe(and
outside of)U. We will use double and single layer densities on both thig(l§fand bottom B)
boundaries ofJ, as well as on the other segments of the “tic-tac-toe” boarEig.[Ab. More
precisely, we define the vector of unknowhiBy ¢ := [r; —o; T8; —0g], and set

Ugp = Z ajﬂk (SL+je1+ke20'L + DL+je1+kezTL) + Z (1]‘,3k (SB+je1+ke20'B + DB+jel+kezTB)
j€{0,1} je{-1,0,1}
ke{-1,0,1} ke{0,1}
(41)
The inclusion of the image segments leads to cancellati@tsare numerically advantageous in
the operatoR), just as we found that images helped with the opei@tiorthe preceding section.
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We should first clarify the definitiod (28) of the discreparfonctions: field values should
be interpreted as their limiting values on the wall apprdargtirom inside U, since it is the
field in U that [33) and{41) represent. For examfdle= u*|. — @ *u7| ;¢,, Where, as before
u*(x) := lim,_0+ U(X £ gn), andn is the normal ak.

Recall now that the operat@ expresses theffect of the four densities ié on the four dis-
crepancy functions$, f’, g, g. If (A1) contained only the termjs= k = 0, this would correspond
to densitiess. andr placed onL, andog andrg placed onB. While this is mathematically
acceptable, it results in various complicated self-intBoas and interactions between segments
that share a common corner. This would lead to singulaiitidensities requiring more compli-
cated discretization and quadrature. Although there has Significant progress in this direction
(see, for example, [1L, P5]), in the present context we hlagduxury of including the ten addi-
tional image segments i (41), which cancel both the selfraa-field corner interactions. As
a result, our implementation is simpler and involves fenagrées of freedom. The cancellation
mechanism is shown in Figl 4. Thect onu®|_ of the seven segments touchingior example,
cancels the féect onu™| ., Of the seven segments touchihgr e, leaving only ten far field
contributions.

It is important to note that the local terms due to the jumptiehs do not cancel: e.g. a
density functionr placed onL contributes a terrr%n to u*|_, while ar_ placed onL + e
contributesr%an to u7| 4. These two terms add to contributeto f. One may check in this
fashion that the jump relations contribute an identity ®dfagonal sub-blocks @. This yields
the crucial result tha®) is the identity plus a compact operator, with the compadt geamerated
by interactions at a distance greater than the size of thecalti After the above cancellations
and simplification, we have,

Q=1+ Qu Qs
QsL Qsr
where
i 8D ) iaigks, |
Ja’ﬂ L,L+jer+ke - Ja’ﬂ L,L+jer+ke
je{-1,1},ke{-1,0,1) je{-1,1},ke{-1,0,1)
Qu =
©jpk ke
JBTL L jer ke, - Z J&'B DL | je, ke,
| je{-1.1}ke{-1,0,1} jef-1,1},ke{-1,0,1}
[ K@D 2D K(—aS -23
ﬂ ((I L,B+ej+ke, — & L,B—2e1+ke2) ﬂ (_a LB+ej+ke, T & L,B—2e1+ke2)
ke(0,1) ke{0,1}
Qs =
k( T _ —2-|- ) k(_ D* —ZD* )
BaTLBre+ke, — @ “TLB-26 +ke, B (—aD| gie ke, T @ "Dl g 26 +ke,
L ke{0,1} ke{0,1}
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_ ) > ) L
Z @ (BDg.L+jerve, = B DaiLrjer-2e,) Z @ (-BSeL+jerre, + B “SeLtje-20)
j€(0,1) j€l0,1)

QeL =

j . -2 i j * —2 I~
a (:BTB,L+IE1+62 -B TB,LHerZez) a (—IBDB,L+je1+e2 +B DB,L+je1—2e2)
| je{0.1) jefo,1
ka'*Dg gy | ka'B*Sg as
@ ,3 B,B+je;+kep - a ﬂ B,B+je;+ke;
je{-1,0,1},kef-1,1} je{-1,0,1},ke{-1,1}
Qee =
ka'B“Tg gy ka!B“Ds:
@' TB B+ jer+ke - a'p B,B+je +ke;
| je{-1,0,1}ke{-1,1) je(-1,0,1} ke{-1,1}

Finally, we discuss thd® operator from[(34), which describes thffeet of the auxiliary
densitiest on the mismatch. As with, since the mismatch involves values on only a single
curvedQ, there is no opportunity for cancellation. Insertingl (41pi(21) we get

B = Z a’jﬂk +

[D(’)Q,L+je1+kez -SoaLl+jeke, 0 O
j€(0.1),ke{-1,0,1}

. _D*
TooL+jerrke; Dag,L+je1+ke2 00

alpk (42)

[0 0 Donprje+kes —SaqB+jer+ke
je{-1,0,1},ke{0,1}

. _D*
0 0 T(’)Q,B+Jel+kez D,')Q’BJrjelJrkez

Summarizing the above is a compact perturbation of the identity. Its blodRsand Q
involve interaction distances greater than the unit cek.sits blockA involves distances con-
trolled by the shape of the inclusion and its nearest apprtzaits neighboring images. Its block
B involves distances determined by the nearest approa@f td oU.

4.3. Numerical implementation and discretization of B

We discretize the four blocks of the integral operafoin (34) to give the matrixt e
C@N+aMX(@N+4M) 55 follows. We sample the densities@ at equispaced points with respect to
the given definition of the curve, as in Sectlonl3.1. We sartipedensities on the walls and
B at M standard Gaussian nodes, as in Sedtioh 8.2.then discretized in the same way/Ag
in Sectior 3.1 with a mix of the periodic trapezoidal rule &rdss’ singular quadratures for the
self-interaction 0©9Q. The (Nystrom) method (22) may be used for thediagonal blockC,
and also for the wall’s self-interactid@. No special singular quadratures are needeq,idue
to the cancellations discussed above.

The B operator[{4PR) involves computing the field due to source itieason wallsL and B
(and their images shown in Figl 1b) at targetsah When the distance from the inclusion
to boundary disf{Q2, dU) is large, the plain Nystrom method may be used to consthactlis-
cretized matrixB. We will refer to this as discretization method B1. With neglg and weights
Wm onwallL, and nodeg; ondQ, for example, the terrB,q . in the (1,2)-block of[(4R) becomes
the matrixS € CNM with elementsSjm = LH(wIXj — Y Wen.

When distfQ, 0U) becomes small, of course, the convergence rate of methodlilBhe-
come unacceptably poor. However, by construction, for aBleigenfunction the field (41)
generated by the wall densities§rhas no singularities in the 8 3 neighboring block of unit
cells. Hence these densities remain smooth, poor conveedexing merely due to inaccurate
evaluation of their field close to the walls. This leaves rdoma large number of options:
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B2) For the rows of3 corresponding to target points 6£ that are distancey or closer tadU,
use adaptive Gauss-Kronrod quadratwveh integrand given by the product of the kernel
function and the Lagrange polynomial interpolant [32, S=t] for the density at thd/
guadrature pointsgy is someO(1) constant. For the other rows, use method B1.

B3) Project onto an orddr-cylindrical J-expansion at the origin. This is done by computing
a representatiof (27) for each of the point monopole or digolrces in the quadrature
approximation to the source densities on the walls, and ¢vatuating this at the target
quadrature points of( to fill the elements oB. The example term discussed for B1 gives
S = RP, where the “source-to-local” matriR € C@-+D*M has elements

i .
Pim = ZH,(l)(wlyml)e"“*mwrn

and converts single layer density valuesJtexpansion co@cients. This follows from
Graf’s addition formulal[1, Eq. 9.1.79]. The expansion nxaR ¢ CN*-+1) has ele-
mentsR; = J, (a)lxj|)e"¢i. In the aboveéy, ¢; are polar angles of pointg,, X; respectively.
Similar formulae apply for double layers and evaluation efigatives. To reduce dy-
namic range (hence rounfi@rror) we in fact scale thd-expansion by the factoyg of
SectiorL3.R (this does not change the mathematical defirofi§.)

B4) Use a more sophisticated quadrature approach, sucbss di[5, 26, 37].

Methods B2-B4 evaluate,. due to a spectral interpolant of the discretized wall désitvith
an accuracy that persists up to the boundary oNote that this does not increase the numider
of degrees of freedom associated with each such densitye Sie underlying density is smooth
(in fact analytic), the convergence rate is high and we aletatkeepM very modest.

We have implemented methods B1, B2 and B3. We use the quaslragiights to scale the
matrix E to give E in an analogous fashion t6 {26), so that singular value§ approximate
those ofE.

Finally, there are many possible ways to locate parametees4v, a, b) whereE is singular.
In this paper, we will simply plot its smallest singular valu,,,(E) vs the Bloch parameters, as
in Sectior 8.

5. Results of proposed scheme

We first test the convergence of the new scheme for the samlkisntasion used in Sec-
tion[3, with the simplest discretization method ®rnamely B1. As before, we test two Bloch
parameteb values, one which is far from an eigenvalue, and one of wriduaranteed to be
an eigenvalue according to Theorgin 4. FixMg= 70, which was found in Sectidn 3.1 to be
fully converged when at an eigenvalue, we first vitythe number of nodes per unit cell wall.
Fig.[Ba shows the convergence of the minimum singular vaftlesodiscretized matrik to its
converged value (when far from an eigenvalue), or to zere(wdt an eigenvalue). The conver-
gence is spectral, and in both cases full machine accuraeached aM = 30. (ForN > 70
the results are unchanged.) Thus for a matrix of ordér24M = 260, we are able to locate
the desired band structure with relative error arourdid the Bloch parametersyb). Filling

2This was implemented with MATLAB'sjuadgk, which uses a pair of 15th and 7th order formulae, with redati
tolerance set to 182,
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Figure 5: Convergence of new periodizing scheme using laryildensities (described in Sectibh 4), using method B1,
for the same geometry and parameters as in[Fig. 2a. The ngeahthe two curves is also the same as in the earlier
figure. a) Absolute error iom,(E) vs M the number of nodes on each unit cell wall, for fixdd= 70 nodes odQ. b)
Same as a) except convergence\ydor fixed M = 30. ¢) Same as Fifll 3b but using the new scheme: note the absenc
of pollution by the empty band structure.

such a matrix takes around 0.45 sec and computing the corgMBxaround 0.15 sed Fur-
thermore, by storing cdcient matrices in the expansi@n= 3, ;_; <, /f<E(¥ at fixedw, we
can fill E for newa, b values in 0.05 sec.

Fig.[Bb shows that, wittM in the new quasi-periodizing schemefeient to yield machine
precision, the error convergence rate with respedtl s the same as that of the old scheme.
Fig.[Bc demonstrates the robustness of the scheme, byngldlie smallest singular value over
the same region of parameter space as[Hig. 3b. Notice thdbd¢hdon of the desired band
structure (black line) is unchanged, but that the divergehtwvior near the empty resonant band
structure has entirely vanished.

5.1. Inclusions approaching and intersecting the unit eelll

Given a crystal of inclusions, it may be impossible to choagmarallelogram unit celU
whose boundary does not come close to or even intefiseclthough this is not an issue for
the scheme of Sectidn 3, for the new scheme which relie¥ .bi is a potential problem.

We first show that, as expected, with method B1 the error pgidace deteriorates exponen-
tially asoQ approache8U. In Fig.[8a we plot the minimum singular value at a Bloch eigdne,
as a function of distance that the inclusion has been translated in xhgirection (translation
does not fect the Bloch eigenvalue.) Numerical parametémndM are held fixed. The loga-
rithm of the error grows roughly linearly witthand reache®(1) for dist@Q, dU) = 0, indicated
by the dotted vertical line at arourd= 0.23. Method B2, also shown in Figl 6a, uses adaptive
quadrature for accurate evaluationugf in all of U. For very smalld, the inclusion is still cen-
trally located (far from the wall) and B2 is identical to Bljtvan error of 10%°. The error is
around 102 as one approaches the wall (more or less independeijt kirhited by the accuracy

3All timings are reported for a laptop running MATLAB 2008attvia 2GHz Intel Core Duo CPU.
18



a) 10

/5

Gmin(E)

B3 (L=22, M=40);

0 0.1 0.2 0.3 0.4 0.5 0.6 r X M r

Figure 6: a) Dependence of,,(E) on x-translation distancd of dQ relative to the system of Fiff] 2a, for fixédi= 70,
andM = 30. The vertical line shows whet® starts to touctdU. B is discretized as follows: method B: §ymbols),
method B2 withdy = 0.2 (O symbols), method B3 with. = 16 (o symbols), method B3 witlh. = 22 andM = 40 (x
symbols). Inset shows unit cell and inclusiordat 0.6. b) Band structure for crescent-shaped photonic crystabs in
c), indexn = 2, shape (265 cos 2t + 0.318 cos 4t, 0.53 sin t), 0 < t < 1, unit celle; = (1,0), & = (0.45,1). A tour
I'XMI of the Brillouin zone is shown, wheféis (a, b) = (0,0), X is (r,0), andM is (7, 7). d) Contours of the Bloch
mode Re{]] with parameters shown by the dot on the band diagram.
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of quadgk. This proves that the deterioration seen with B1 is assediatith theB operator
block, and can be remedied merely by careful discretizaifoB without increasing the matrix
size. We did not bother continuing the computation with BIB@rafter the inclusion crosses
the wall; here they fail becaude{41), as constructed, sepitaUy only insideU (jump relations
cause the values outsitleto be diferent). We note that to use B1 or B2 correctly, one would
have to wrap the boundary points outsididack into the cell, evaluate at the wrapped point, and
correct for phase. Method B2 is not very useful in practioesithe call to a black box adaptive
quadrature routine causes the matrix fill time to increagsbtsec.

Finally we use method B3 with = 16, M = 30 and withL = 22,M = 40. In the first
case, errors grow slowly to around1das distpQ, sU) reaches zero, and then continue to grow
slowly to a plateau at around 19 even though most @fQ now fallsoutsideof the unit cell. The
cost of B3 is not much more than B1, taking 0.7 sec tcHillNote that thel-expansion used to
representi,. has dfectively carried out analytic continuation beyodd This is stable because
our image structure has pushed the singularities out beiyendearest image cells. It is perhaps
worth observing that some care must be taken in settingvith M = 30, increasind- above
16 would worsen errors (not shown). The reason is that théficieats|l| > 16 involve more
oscillatory integrands which are not resolved My= 30 points. Increasing/l to 40 permits
increased precision with = 22, as seen in Figl 6a.

There is another potential pitfall with method B3 as impleted; if bothL andd get larger,
there may arise singular values Bfwhich become exponentially small, associated with highly
oscillatory non-physical densities on the farthest paéaf For illustration, withL = 16 andd =
0.6, the second-smallest singular value is@vith L = 22 the second smallest singular value
shrinks to 108. (Whend = 0, the second smallest singular value is1PThis is troublesome for
eigenvalue search methods that tragk(E) vs Bloch parameters, since the desired minima will
be obscured by these spurious small singular values evengsxcept in a small neighborhood
of the desired band structure. We will discuss search metlesd sensitive to this problem in a
future paper. For now the lesson is that, when parts of ansiah extend far beyonid, there is
a price to pay for making use of analytic continuation.

5.2. Application to band structure

We compute the band structure of a morfidilt crystal in Fig[6b.Q is far from circular,
hence simple multipole methods [23] would not be accuratee dlosest approach to its neigh-
bors is only 0.06, so thad = 150 points are needed in discretizing the inclusion boundéote
that any parallelogram unit cell must intersétt, so the method of [49] cannot be used without
modification. We use method B3 witdl = 35 andL = 18. As illustrated before in Fidl] 2b,
the minimum values of-,,(E) on the band structure indicate the size of the errors in thetB
parameters found. By this measure, sampling 100 randomspoimthe first 15 bands, we find
a median error of % 1071% and a maximum B x 10°°. 1.7 sec were required to fill the matrix
E of order 440 once for a given, a, b (and 0.13 sec for subsequent valuesdf). The SVD
required 0.7 sec for a matrix of this size. We located the Isingture using 8000 such evalu-
ations and a specialized search algorithm, which we wiltdbs in a forthcoming paper. The
search algorithm is also accelerated by computing the miétant of E rather than the SVD, at
a cost of 0.1 sec for each matrix. The total CPU time requiradl 86 minutes.

Fig.[8d shows a single Bloch mode on the 11th band for thiscergsshaped crystal. This
took 16 sec to evaluate on a 1RQ00 grid ovelJ using [33), and thd-expansion forl{41) (with
no fast multipole acceleration).
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6. Conclusions

We have presented two algorithms for locating the band streof a two-dimensional pho-
tonic crystal, in thez-invariant Maxwell setting. The first (Sectigh 3) uses thasjtperiodic
Green’s function. Theorei 4 guarantees the success of #iisoah (no spurious or missed
modes) as long as the band structure for the empty unit cellagled, where we have shown
that the method fails. The second method (Sedfion 4) intesla small number of additional
degrees of freedom on the walls to represent the periodizamgof the field: numerical evi-
dence suggests that it is immune to breakdown for any Blocanpeters (Conjectufd 7). The
two schemes are connected by the following observation.

Remark 8. Computing the Schur complement formula for the operatdaesy§4) recovers the
quasi-periodic Green’s function approach described®). In particular,

Ayr=A-BQ'C

The quasi-periodic Green'’s function approach fails whene@dmes singular andAblows up.
The full systeng34), on the other hand, remains well-behaved.

We have shown spectral convergence for both schemes, aah@ese to machine precision
accuracy on simple crystals using only a few hundred degregeedom, hence CPU times of
less than 1 sec for testing at a single parameterset, b). In the new scheme we have shown
(method B3) how to handle the passage of the inclusion thralig unit cell boundary, with-
out much sacrifice in accuracy, without much extra numeaefiakt, and with no bookkeeping
needed to determine which points @® lie in U. The latter is convenient for larger-scale or
three-dimensional (3D) computations if existing scatigiiodes are to be used to fill theop-
erator block. Other ways to handle this intersection pnokdist, such as a variant of B2 which
wraps points odQ back intoU, with which we have preliminary success.

We have not discussed the methods we use for the nonlinesmeilyie problem, due to space
constraints. The scheme of Yuan etlal [49] uses a quadrggnealue problem, and factorizes
the scattering matrix of the inclusion at eashhence may be faster than our scheme for small
systems. However, moving to large-scale systems with niane 1@ degrees of freedom, such
a factorization would be impractical compared to an itgeatiersion of our scheme.

Some generalizations of what we present are straightfakvgaich as multiple inclusions per
unit cell, non-simply connected inclusions, or inclusiavith corners (using quadrature rules
such asl|[11, 25]). There exist regimes, however, that woeddire some modification. These
include two phase dielectrics one or more of which are coteakthrough the bulk (sometimes
called bicontinuous), and unit cells which are highly skevhave large aspect ratios.

Our new representation for quasi-periodic fields can alsodeel for scattering calculations
from periodic one-dimensional arrays of inclusions in 20 ame or two-dimensional arrays in
3D. Because we rely entirely on the free-space Green’sifumgt should be straightforward to
create quasi-periodic solvers from existing scatterindeso We will describe such solvers at a
later date.
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Appendix A. Proof of Theorem[4

Recall the Green’s representation formulae [16, Sec. ¥.2{satisfies A + w?)u = 0inQ,
recalling thau~ anduj, signify limits ondQ approaching from the inside, and the normal always
points outwards fron, then

-u inQ

— S @y = —
SYu; + D {0 inR2\ 0 (A1)

The exterior representation has the opposite sigrn $gttisfy A + w?)u = 0 in R\ Q and the
Sommerfeld radiation condition, that is,

% —iwu=o0(r"1?), =[x — o (A.2)

holds uniformly with respect to directiogyr. Then,

0 inQ

_ S+ @+ = —
S“ul + D“u {u inR2\ 0 (A.3)

We will need the following quasi-periodic analogues.
Lemma 9. Let u satisfy(A + w?)u = 0in Q, andQ c U, Then for each Bloch phage, ),

-u inQ

- SYu + DYy = { 0 InU\D (A.4)

Proof: Write G using [11) and notice that each term other thamj = (0, 0) contributes zero.
This is because all points ld lie outside each closed curdg€ — me; — ne;, and we may apply
the second (extinction) case @I (A.1) to show that they havefiect inU. O

Lemma 10. Let u satisfy(A + w?)u = 0in U \ Q and quasi-periodicity6)-(), andQ c U. Then

0 inQ

- SWut + DYyt = { 4 InU\D (A.5)

Proof: We follow the usual method of proaf [16, Thm. 3.3] but with dpeasi-periodicity con-
dition playing the role of the radiation condition. Apply &m’s 2nd identity to the functions
andGq(x, -) in the domairJ \ Q if x € Q, or the domaify e U\ Q : [x —y| > &} if x e U \ Q.

In the latter case the limi¢ — O is taken, and{11) shows that only the, f)) = (0,0) term
contributes to the limit of the integral over the sphere afiuas. In both cases the boundary
integrals contain the term

T2 6, Y)uly) ~ Gerlk, YY) 0 (A6
ouU y

which vanishes by cancellation on opposing walls, siné® quasi-periodic with phases,(8),
but Gg(X, ) is anti-quasiperiodic, i.e. quasi-periodic with phases (571). O
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Turning now to Theorerml4, to prove tlifepart, we show that whenever the operator has a
nontrivial nullspace, a Bloch eigenfunctiormay be constructed, i.e. a solution fd (2)-(9) that
we must take care to show is nontrivial. Lgt= [1; —o] # 0 be a nontrivial density such that
A.-n = 0. Immediately we have that the resulting fieldiven by [15) satisfie$12)4(9). We now
define a complementary field over the whole plane mittas

(w) () i
v = ST+ Dy T !nQ2 . A7)
~SWg — P inR2\ Q
Supposeai = 0. Thenu™ = u; = 0 and by the jump relations f&™)o + DM™)r we getvt = -1

andv} = o. Similarly, sinceu* = u} = 0 by the jump relations faﬁgz)o-+2)g$)r wegetv = -1
andv; = o. Itis easy to check thatsolves the (swapped-wavenumber) transmission problem,

A+w’v = 0 inQ (A.8)
A+r?w?)v = 0 inR?\Q (A.9)
% —inwv = o(r?), r — oo, uniformly in direction (A.10)
vi—-v: = h (A.11)
vi-v, = N (A.12)

with homogeneous boundary discontinuity data h" = 0. By uniqueness for this problem [16,
Thm. 3.40] we get that = 0 in R?, from which the jump relations back toimply o = 7 = 0,
which contradicts our assumption of nontrivial densityu$h is a Bloch eigenfunction.

To prove theonly if part we show that, given the existence of a Bloch eigenfangtive
may exhibit a (nontrivial) density such thatA,z = 0. Letw be a Bloch eigenfunction with
eigenvalued, a, b). Then letv solve [A.8){A.12) with the inhomogeneous data —2w|sq and
h = —2wp|sq. (Note thatw obeys continuity[(4), henoglso = w" = w™ andwplsgg = W, = Wj,).
By [1€, Thm. 3.41] we know that a unigue solution exists. Wevotaim that the densities

o = Wylga + V; (A13)
T = —VVI[)Q —v' (A14)
generate precisely the eigenfunction i.e. the representatiom of (I5) obeysu = w in U.

We show this by substituting the densities irffal (15), theplyapg (A1) and [A3) inQ, and
LemmdI0 inU \ Q:

u - SMIWlgq — DMz + STV — DOV inQ
T S9laq - DWW + SWVE - DUV inUN\Q

w in Q
-w + SYvi - DY inu\Q
On the remaining term, we usts known jumpsh andh’ to get

SV =DV = SN — DV - 28 Walaa + 2D whe
—2w
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where we applied Lemnia 9 to the first pair, and Lerimja 10 to tbenskas before. Substituting
this above shows that = win U. Sincew has zero mismatch, the density vecor= [1; —o]
satisfiesA,n = 0. Finally, 7 must be nontrivial sincg = 0 would implyu = 0 by (I3) which
contradicts it being equal to the eigenfunctian O

We close with a couple of remarks about the proof. Barringa,siin (A.7) is the extension
of u's representatiorl (15) into its nonphysical regions, &tddginating, in the homogeneous
context, with the proof inl[16, Thm. 3.41]. Becau§el(15) uSgsoutside, buiG inside, the
complementary problem isreonperiodidransmission problem, which has known existence and
uniqueness. The related analysis |of [45] u&gs both inside and outside. This results in a
periodic problem as the complementary problem, and it isaaiear that one can eliminate the
possibility of spurious modes.
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