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Abstract
In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck
(PNP) equations with singular permanent charges for electrodiffusion in solvated biomolecular
systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent,
while the Nernst-Planck equation was defined only in the solvent. We applied a stable
regularization scheme to remove the singular component of the electrostatic potential induced by
the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations.
An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the
steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time
integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the
stiffness matrices for the finite element approximations of the two formulations of the Nernst-
Planck equation, and theoretically proved that the transformed formulation is always associated
with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and
its relation with the boundary conditions on the molecular surface, and concluded that a large net
charge concentration is always present near the molecular surface due to the presence of multiple
species of charged particles in the solution. The numerical methods are shown to be accurate and
stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion
problems.
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1. Introduction
Electrodiffusion is a rate-limiting step in numerous biological processes, such as ligand-
enzyme binding, protein-protein diffusive encounter. An example is neurotransmission
within synapses between adjacent nerve cells [6]. The kinetic properties of these processes
are mostly governed by the multi-scale electrodiffusion of charged molecules in aqueous
solution with various ionic concentrations, molecular charges and complicated solvent-
solute interface geometries. The numerical techniques for quantitatively determining the
kinetic parameters generally fall into categories of particle-based and continuum methods.
The former includes Monte Carlo (MC) [23], Brownian dynamics (MD) [16] and Langevin
dynamics (LD) [40]. These methods trace the trajectories of individual particles in
appropriate energy landscape and thus have a nature of discrete and stochastic.
Consequently they might suffer a divergence when applied to systems with a large amount
of particles. The continuum models, in contrast, focus on the average density distribution of
species of charged particles and their description through unified partial differential
equations. It is therefore computationally more efficient to apply the continuum models for
simulating multiple species and large systems. Furthermore, continuum electrodiffusion
models can be readily modified to incorporate more types of physical interactions, such as
varying molecular surface or flow convection, by coupling with elasticity equation or the
Navier-Stokes equations. These appealing features have made the continuum
electrodiffusion models very useful not only for the quantitative analysis of the biologcal ion
channels [18,20] and cellular electrophysiology [38,39], but also for investigating ion
separation membranes in non-biological applications [45] and the transport of electrons and
holes in semiconductors [28].

In this work we adopt the Poisson-Nernst-Planck equations to describe the electrodiffusion
of mobile ions and charged ligands, all modeled as diffusive particles with vanishing size, in
solvated biomolecular systems. Here the electrostatic potential is induced by the mobile
ions, charged ligands, and the fixed charges carried by biomolecules. Figure (1) illustrates a
solvated biomolecular system in an open domain Ω ∈ ℝ3. The open domain Ωm ⊂ Ω
represents the biomolecule(s), and the remaining space Ωs = Ω\Ωm is filled with aqueous
solvent. Domains Ωm and Ωs are separated by a molecular surface Γ, which can be defined
as the solvent accessible surface, Gaussian surface [52], or some other appropriately defined
solvent-molecular interface that is Lipschitz continuous. The diffusive particles are
distributed in Ωs. Charged ligands might react with the biomolecules on a part of the
molecular surface Γa, for which a suitable boundary condition for the diffusion equations of
the particles is needed. On the non-reactive molecular surface Γ\Γa appropriate boundary
condition is needed to model the vanishing macroscopic flux. In a typical solvated
biomolecular system there are multiple species of ions and ligands; each species may have
its own boundary condition on molecular surface. We assume that the exterior boundary ∂Ω
is connected to a particle reservoir maintained at constant concentrations, and hence a
Dirichlet boundary condition for particle concentration can be applied. Compared to the pure
diffusion [51], or the Nernst-Planck equation (also called Smoluchowski equation) [50]
which characterizes diffusional drift by a given fixed potential, the Poisson-Nernst-Planck
model is able to generate a self-consistent electrostatic potential and the non-equilibrium
densities [55]. It is worth noting that the PNP equations for describing the electrodiffusion
around the biomolecules modeled at atomistic level have two unique features, i.e., the
presence of the singular permanent charges inside biomolecules and that the biomolecules
with highly irregular surfaces are not penetrable to diffusive particles. These features have to
be delicately treated to establish sound mathematical analysis and highly accurate, efficient
numerical treatments for the 3-D PNP equations. Thanks to the rapid development of X-ray
crystallography, nuclear magnetic resonance (NMR), Cryo-electron microscopy techniques
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and some accurate structure refinement algorithms, the determination of macromolecular
structures with increasing resolution in the recent decades provides the structural and
geometrical basis for these studies.

Mathematical analyses of the Poisson-Nernst-Planck equations have been developed long
after the introduction of the equation by Nernst and Planck [41,42]. The existence and
stability for the solutions of the steady PNP equations are established by Jerome [29] in
studying the steady Van Roost-broeck model for electron flows in semiconductors, via a
delicate construction of a Schauder fixed point mapping. Although this mapping is not
shown to be contractive, an alternative pseudo-monotone mapping is constructed which
guarantees the convergence of the Galerkin approximations of the equations. It it noted that
the permanent charges in this study are located in the same domain as the diffusion process,
and are assumed to be in L∞ which ensures the H1 ∩ L∞ regularity of the electrostatic
potential and the charge densities. Existence and long time behavior of the unsteady PNP
equations were studied in [7]. The analysis and computation of the PNP equations can be
further simplified by reducing the 3-D system to 1-D models. Singular perturbation methods
and asymptotic analysis can then be applied to study the solution properties of these
simplified 1-D equations. For example, 1-D steady PNP equations for modeling
physiological channels are investigated in [5,33] in the absence of permanent charges by
using various singular perturbation theories. The effects of the permanent charges are
considered in [17,1], where the permanent charge density is vanishing in the reservoirs at the
two ends of the channel and is constant at the center of the channel. The piecewise constant
form of the permanent charges implies that the electrostatic potential and ionic densities are
still differentiable. The reduction of the dimensionality greatly simplifies the mathematical
analysis of the electrodiffusion systems, and the results provide useful guide lines for the
analysis of the corresponding fully 3-D systems at some limit cases. As a trade-off they are
generally unable to reproduce the diffusion and reaction processes that critically depend on
the geometry of the system and complicated boundary conditions.

In contrast to the limited amount of work on the mathematical analysis of the PNP equations
for biophysical applications, numerical computations with the PNP and the PNP-like
systems have been widely conducted by computational physicists and biophysicists. Finite
difference methods are particularly popular due to the simplicity in their implementation,
and have been applied to a large extent to 1-D or 3-D ion conduction characteristics of
biological ion channels or other transmembrane pores [14,18,31,10,8]. The lattice nature of
the finite difference method makes it difficult to model the highly irregular surface of the ion
channel or the active sites of the enzymes. This difficulty can be readily overcome by using
finite element methods, which have been well developed for simulating semiconductor
devices [30,19] and were recently introduced to simulate the electrodiffusion with realistic
molecular structures [50,49]. In many of the PNP solvers developed thus far such as
[31,10,8] the electrostatic part is solved by using well-established finite difference or finite
element Poisson-Boltzmann solvers [37,9,3]. These PB solvers use polynomial
interpolations to approximate the singular charges. When the electrostatic solvation energies
are concerned, the errors caused by these interpolations are generally acceptable [22,21].
However, the singular nature of the permanent charges suggests that the electrostatic
potential and its gradient near the molecular surface is large indeed. Proper treatments of
these singular charges must be devised to solve the electrostatic potential with sufficient
accuracy to supply an electric field of high fidelity to the Nernst-Planck equation. It is
proposed [21,13] that the singular component of the electrostatic potential can be removed
through a proper decomposition of the Poisson-Boltzmann equation, and a regular
component can be solved numerically from an elliptic interface problem. The numerical
properties of these decomposition schemes are analyzed [11,27]. In particular, it is shown
that an elegant decomposition of potential into a singular component, a harmonic component
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and the regular component can significantly improve the accuracy of the total potential,
especially the potential in the solvent region [27].

The objective of the this paper is threefold: to introduce the stable regularization to the
numerical solutions of the Poisson-Nernst-Planck equations with singular permanent
charges; to develop finite element methods for solving the regular PNP equations with
realistic biomolecular structures; and to apply the numerical methods to investigate the
properties of the equations, such as the self-adjoint transformation, conditioning, the
electroneutrality assumption and its dependence on the strength of the electrostatic potential
and the boundary conditions. We will show that the electrostatic potential that couples the
Nernst-Planck equation is indeed the regular component. Therefore the framework
established in [29] for general L2 permanent charges could be utilized to show the well-
posedness of the regularized PNP system. An inexact-Newton method will be used to solve
the nonlinear differential equations. Since the Poisson-Nernst-Planck equations can be
derived from the first variations of a free energy functional, the Newton-like methods can
produce a convergent solution that corresponds to the minimization of the free energy.

The rest of the paper is organized as follows. The Poisson-Nernst-Planck equations are
introduced in Section 2 following a brief history of the equations. Two regularization
schemes are then described and their numerical properties are discussed. The properties of
the regular nonlinear equations will be summarized also. Section 3 is devoted to the
Galerkin approximation of the regularized PNP equations. The inexact-Newton method is
applied to bilinear weak form of the equations, for both the steady and the time-dependent
problems. Numerical examples are given in Section 4. The accuracy of the method and the
usefulness of two formulations of the Nernst-Planck equation will be examined. We will
vary the boundary conditions of the sample problems to investigate the validity of the
electroneutrality. The method will be finally applied to compute the diffusion of charged
ligands in the solution around acetylcholinesterase (AChE) enzyme to demonstrate its
usefulness for real biological problems. The paper ends with a summary in Section 5.

2. Mathematical Models
The continuum PNP equations can be derived via different routes. They can be obtained
from the microscopic model of Langevin trajectories in the limit of large damping and
absence of correlations of different ionic trajectories [47,40], or from the variations of the
free energy functional that includes the electrostatic free energy and the ideal component of
the chemical potential [20]. The former gives the PNP model a sound theoretical basis while
the latter provides a flexible framework to include more physical interactions, most
prominently the correlations among particles with finite sizes, into the continuum model. In
this work, we are concentrated in the development of numerical techniques for the standard
nonlinear PNP equations, i.e., we treat all diffusive particles, including mobile ions and
charged ligands, as particles with vanishing size. This is a reasonable assumption in case
that solution is dilute and the characteristic dimension of space for diffusion is much larger
than the particle size.

We obtain the PNP equations by coupling the Nernst-Planck equation

(1)

and the electrostatic Poisson equation with internal interface Γ = Ω ̄s ∩ Ω ̄m:
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(2)

(3)

where ρi(x, t) is the concentration of the i-th species particles carrying charge qi, Di(x) is the
spatial-dependent diffusion coefficient, and φ is the electrostatic potential. The constant β =
1/(kBT ) is the inverse Boltzmann energy where kB is the Boltzmann constant and T is the
absolute temperature. We assume that the dielectric permittivity is a piecewise constant with
ε = εmε0 in Ωm and ε = εsε0 in Ωs, where ε0 is the dielectric constant of vacuum. This is a
standard assumption in most implicit solvent models [2], and is indispensable to the
regularization schemes to be introduced later. The internal dielectric interface separating the
molecules and solvent regions is defined to be the molecular surface, but other definitions of
dielectric interface might apply also. Typical values of εm and εs are 2 and 80, respectively.
The permanent (fixed) charge distribution

is an ensemble of singular charges qj located at xj inside biomolecules. The characteristic
function λ is equal to 1 in Ωs and 0 in Ωm, suggesting that mobile ions are present only in the
solvent region. If the mobile charge density ρi(x) in Eq. (2) is assumed to follow the
Boltzmann distribution, the equation converts to the nonlinear Poisson-Boltzmann equation.
The readers are referred to [34] for detailed discussions on the derivation and relations of
these equations. The time-dependence of the electrostatic potential is seen from the
appearance of time-dependent particle concentrations in Eq. (2). The ellipticity of the
steady-state equations suggests that the relaxation of electrostatic potential field in response
to the variation of particle concentrations is instantaneous, similar to the relaxation of
pressure in response to varying velocity field of incompressible flow field. This similarity
offers useful guidelines in developing numerical methods for the PNP model, as we shall see
in the next section.

Numerical solution of the electrostatic Poisson equation in the PNP model above warrants
appropriate approximation of the singular charge ρf(x). In many finite difference or finite
element solvers of the Poisson-Boltzmann equation, the singular charges are distributed onto
the grid points near the singular charges by using spline interpolations. These
approximations work well when the electrostatic potentials are used to compute the
electrostatic free energy and other energy quantities [9,54]. If the gradient of the electrostatic
potential is needed, such as the PNP equations studied here, more rigorous treatments of the
singular charges are needed. The first approach is proposed by Gilson et. al. [21]; they
characterize the singular component of the electrostatic potential through a Poisson equation
with singular charges only:

(4)
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Subtracting this singular component from Eq. (2) we get the equation for the regular
component:

(5)

The singular component φs should also be subtracted from the interface conditions (3),
generating the following interface conditions for Eq. (5):

(6)

This approach is applied to solve the Poisson-Boltzmann equation by Zhou et. al. [56] to
completely remove the self-energy so that the equation need not to be solved twice for
computing the electrostatic energy. The removal of the singular potential makes it possible
for the first time to analyze the Poisson-Boltzmann equation rigorously in Sobolev spaces
[11]. However, it is found that this method suffers a numerical instability that will lead to a
substantial error in the numerical solution of the full potential [27]. This is because that the
total potential φ is relatively weak while the singular potential φs and the regular potential
are both strong. In particular, the regular potential in Ωs is larger than the total potential φ by
εs/εm ≈ 40 times. Consequently, when the numerical solution of φh is added to the analytical
solution of φs to get the total potential, the relative numerical error will be amplified by
about 40 times. For this reason we will apply a stable decomposition to the PNP equations in
this study. This decomposition is first introduced by Chern et. al. for solving the Poisson-
Boltzmann equation with an interface method [13].

We define the singular component φs to be the restriction on Ωm of the solution of

(7)

and the harmonic component φh(x) to be the solution of a Laplace equation:

(8)

It is seen that φs(x) can be given analytically by the sum of Coulomb potentials. This φs(x) is
then used to compute the boundary condition for φh(x), the latter is to be solved numerically
from Eq. (8), for which we use a finite element method in this study. Subtracting these two
components from Eq. (2) we get the governing equation for the regular component φr(x):

(9)

and the interface conditions
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(10)

It is worth noting that there is no decomposition of the potential in the solvent region, thus
φ(x) = φr(x) in Ωs. Hence the final regularized Poisson-Nernst-Planck equations consist of
the regularized Poisson equation (9) and

(11)

To simplify the presentation we use φ to denote the electrostatic potential coupled with the
Nernst-Planck equation, but keep in mind that the singular and harmonic components are to
be added to get the full potential inside molecules.

Compared to the original model (1–3), the regularized PNP equations (7–10) has a number
of nice properties. First, the decomposition of electrostatic potential occurs only inside
biomolecules, thus the numerical solution of φr in Ωs does not suffer the instability [27].
Second, the singular and harmonic components only need to be solved one time a priori the
coupled solutions of the regularized PNP equations. Indeed, it is the regular potential in
solvent region that couples the Nernst-Planck equation and the regular Poisson equation.
The singular and harmonic components serve only for providing a fixed interface conditions
for solving the regular component, which varies with the ionic concentrations. Noticing that
the harmonic component satisfies a Laplace equation, its numerical solution could be further
accelerated by taking advantage of various fast numerical methods for boundary integral
equations.

We apply the following boundary conditions for the PNP equations. The approximate Debye
law is used to compute the value of φr = φ on the exterior boundary ∂Ω:

where  with λd being the Debye length computed from the bulk concentrations of all
species of charged particles. For all species of particles ρi on ∂Ω is given by its bulk
concentration. A zero macroscopic normal flux

is prescribed on the non-reactive molecular surface Γ\Γa with outer normal vector n for all
species. For particles that react with the molecule on the surface Γa we apply the
homogeneous Dirichlet boundary condition, i.e., ρi = 0. This models the fact that the
diffusion time scale is much larger than the reactive time scale, and that in the solution there
is a sufficient large number of solute molecules which are able to hydrolyze all ligands that
migrate to the reaction centers of solute molecules. The non-zero flux on the reactive surface
makes the particle concentrations described by PNP differ fundamentally from the
Boltzmann distribution, which can be reproduced if the macroscopic flux is vanishing
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everywhere [45]. As we shall see, reactive molecular surface and multiple species of
charged particles make the solution near the surface far from electrically neutral. This might
prevent us from using alternative elliptic equation for describing the electrostatics that relies
on the electroneutrality condition [39].

3. Computational Algorithms
The numerical methods we shall develop and analyze are focused at three major aspects of
the PNP model: the self-adjointness of the elliptic operator in NP equation; the nonlinearity
of the system due to the drift term; and the coupling between Poisson and NP equations for
both steady and unsteady diffusions.

3.1. Self-adjointness of the electro-diffusion operator
It is known that by introducing the Slotboom variables

(12)

the Nernst-Planck equation can be transformed to be

(13)

These transformations, frequently used in solving the PNP equations for semiconductor
device simulations [4,28], hence give rise to a self-adjoint, uniformly elliptic operator in
case of a fixed potential. It is anticipated that the discretization in solving the transformed
equation (13) could produce a stiffness matrix with a smaller condition number compared to
the original equation (11) with a non-symmetric elliptic operator, and thus iterative methods
applied to the linear system might converge faster. Although this expectation seems
reasonable, a large variation of the potential on the molecular surface is often seen because
of the fixed charges of different signs inside molecules. Consequently, the transformed
diffusion coefficient D ̄ could vary drastically from its maximum to the minimum, hence the
actual condition number of the stiffness matrix for the self-adjoint formulation (13) may be
not as small as we anticipate. Moreover, the application of transformations (12) to the
electrostatic Poisson equation (9) will lead to

(14)

The corresponding operator is thus no longer self-adjoint in contrast to the equation (9).
While the equation (14) appears identical to the nonlinear Poisson-Boltzmann equation, the
actual particle concentrations, nevertheless, do not follow the Boltzmann distribution if there
is a non-zero macroscopic flux inside the domain or on the boundary. In the next section we
shall numerically compare the primitive asymmetric and transformed self-adjoint
formulations of the steady-state Nernst-Planck equation with regard to the condition number
of the respective stiffness matrix.

It is worth noting that the Slotboom variables are associated with the weighted inner product
in many finite element approximations of semiconductor NP equations [19], for which
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exponential fitting techniques are usually used to obtain numerical solutions free of non-
physical spurious oscillations. Although the solutions in our numerical experiments and
biophysical applications presented below do not show significant non-physical oscillations,
these methods can be adopted if needed.

3.2. Steady-state diffusion
We first consider the finite element solution of the steady state PNP equations (9,11). To this
end we define the solution space

(15)

and its finite dimensional subspace

(16)

where the vector , and P1 is the space consisting of piecewise linear tetrahedral
finite elements. Functions in the space

satisfy the Dirichlet boundary condition on the exterior boundary ∂Ω and the essential or
Dirichlet boundary condition on the molecular surface Γ if there is one. We assume that the
finite elements are regular and quasi-uniform. The weak formulation of the problem now is:

Find u = (φ, ρ) ∈ S such that

(17)

Here the nonlinear mapping F : H ↦ H* and 〈·, ·〉 is the standard duality paring between the
dual space H* and H. Specifically, the nonlinear weak form 〈F(u), v〉 is defined to be

(18)

where

is the jump in electric displacement defined in Eq. (10), 〈·, ·〉Γ denotes the L2 inner product
defined on the interface Γ, and the L2 scalar inner product over the domain Ω or Ωs is
denoted by (·, ·). To solve the nonlinear problem (17) we employ the damped inexact-
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Newton method [26] which necessitates the Gâteaux derivative DF(u) defined by the
bilinear form

(19)

where w = (ϕ, ϱ). With these well-defined operators the complete algorithm can be given as
follows:

Algorithm 3.1
• Choose the initial approximation u = (φ, ρ), the nonlinear tolerance ε, the residual r

in approximately solving the linear system, and the damping factor λ.

• Do until |〈F(u), v)〉| < ε

1. Solve the correction w from 〈DF(u)w, v〉 = −〈F(u), v〉 + r.

2. u ⇐ u + λw.

A constant damping parameter λ = 1 is chosen in this study, with which the convergence is
reached in less than 20 steps in all simulations.

We also consider the finite element solution of transformed PNP equations (13,14). For
which the solution u = (φ, ρ̄) contains the transformed particle concentrations and nonlinear
weak form 〈F(u), v〉 is given by

(20)

where v = (ψ, η ̄). Accordingly, the bilinear form now is

(21)

where w = (ϕ, ϱ̄). The complete algorithm for solving the transformed PNP equations is the
same as Algorithm (3.1) but with 〈F(u), v〉 and 〈DF(u)w, v〉 defined by (20) and (21),
respectively. It is worth noting that the operator DF(u)w defining the linearized equation for
solving correction variable w is not self-adjoint regardless of the transformation due to the
nonlinearity of the PNP model.

3.3. Unsteady-state diffusion
For time-dependent problems the elliptic equation for the electrostatic potential and
parabolic equations for the particle concentrations are solved sequentially. The weak form of
the unsteady Nernst-Planck equation for i-th species of particle is
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(22)

Various schemes can be used for the time discretization of this equation. For example, Prohl
and Schmuck proposed convergent schemes based on different types of fixed-point
mappings [43]. Due to the nonlinearity of the equation, the application of these and high
order methods such as a third-order Runge-Kutta method or its combination with the
exponential time differencing (ETD) method [15,36] demands solving the electrostatic
potential multiple times in each step of time evolution. To reduce the computational cost and
maintain the stability, we adopt the Crank-Nicolson method for the time discretization. This
gives rise to the following semi-discrete equation at tn+1/2 for n > 0:

(23)

for a constant time increment Δt. Here the electrostatic potential φn+1/2 is solved from the
Poisson equation (9) with particle concentrations at tn+1/2 computed with an Adams-
Bashforth scheme

(24)

We then use the inexact-Newton approach presented above to solve  from the equation

(25)

To this end we need the Gâteaux derivative , which is now defined by

(26)

where . The solutions of (25)–(26) follow Algorithm (3.1) with residual r = 0. Since
equation (23) is linear in , only one solution of w is needed for an arbitrary initial guess
of  at each time step. The application of the inexact-Newton method here makes it easy
to modify the computer codes developed for this linear problem to solve the nonlinear
Nernst-Planck equations with finite particle sizes, such as that in [32]. We note that a similar
Adams-Bashforth-Crank-Nicolson (ABCN) method was used for solving the Navier-Stokes
equations and ensuring divergence-free velocity field [44,53]. The extrapolation of source
term at tn, tn−1 in Eq. (24) is similar to the construction of the pressure Poisson equation at
tn+1/2 in those studies.
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3.4. Finite element implementation and mesh generation
The numerical implementation of Algorithm (3.1) for solving Eq. (17), Eq. (25) and the
Poisson equation (24) is carried out using FETK, an expandable collection of the adaptive
finite element method (AFEM) software libraries [25]. Standard linear finite element spaces
and Galerkin approximation are adopted in these solutions.

The mesh generation technique for the solvated biomolecular system is similar to that
described in our former work [35]. We start with a triangulated molecular surface mesh
generated by MSMS [46]. This initial surface mesh is then processed to remove the
degenerate triangles and improve the regularity and uniformity of the mesh. The improved
surface mesh and the spherical exterior boundary mesh are supplied to TETGEN [48] to
finally generate a quality tetrahedral mesh through adaptive 3-D delaunay triangulation.
While the Poisson equation and the NP equations are solved in different domains, only one
file of the mesh in the entire Ω and conforming to Γ is input to FETK. The mesh of Ω̄s is
extracted by a subprogram.

4. Numerical Experiments and Biophysical Applications
4.1. Conditioning of the Nernst-Planck equation

The elliptic operator in the transformed Nernst-Planck equation (13) is self-adjoint but its
advantages in the numerical solution over the primitive formulation remain to be shown.
Here we shall examine the conditioning of the stiffness matrices resulting from the
discretization of the two elliptic equations

(27)

(28)

where D ̄ and ρ̄ are defined in (12). The function φ is chosen to be the electrostatic potential
induced by a charged unit sphere, i.e.,

where Q is the charge located at the center of the sphere and r is the distance to the center.
We consider the diffusion of a single species of particles in the spherical annulus Ωs
between r = 1 and r = 4, with various boundary conditions on the surface of the unit sphere.
The magnitude of the potential φ is varied by adjusting the singular charge Q. We note that
this potential is given and is not consistent with the particle concentration. The condition
numbers of the sparse stiffness matrices are computed by using the MATLAB function
condest.

Fig. (2) plots the variation of the condition number of the stiffness matrix for two
formulations with different charge Q and boundary conditions on r = 1. It it obvious that the
transformed formulation is related to a larger condition number for all combination of
boundary conditions and particle charges. Indeed, the stiffness matrix Ā for the transformed
Nernst-Planck equation (28) is
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(29)

where A is the stiffness matrix for the Laplace equation −∇ · (D∇ρ̄) = 0, and diag (·) is the
diagonal matrix. φpj is the electrostatic potential at the jth node of the mesh in Ωs, and is
positive in our problem since Q > 0. The condition number of A is determined by the
discretization of Ωs and the finite element space used, and is independent of the permanent
charge Q and the potential φ. We then have the following estimate for the upper bound of
the condition number of Ā:

(30)

Because of the inverse proportional decay of the potential φ with the distance r, the
exponential factor e−βqφ varies significantly from the sphere surface to the exterior
boundary. Consequently, if the diffusive particles carry negative unit charge, the exponential
factor near the unit sphere will be very large compared to that close to the exterior boundary.
In other words,

(31)

suggesting the condition number of the stiffness matrix will be large. Similarly, if the
diffusion particles carry unit positive charge, the exponential factor near the unit sphere will
be very small compared to that close ∂Ω, i.e.,

(32)

indicating that the condition number of the matrix will be large also. The exponential growth
of above two ratios with Q will cause a correspondingly growth of the condition number for
large permanent charge as seen in the charts C and D.

The partial charge carried by any atom in a biomolecule is generally smaller than 2 (i.e., two
fold of the elementary charge), suggesting that we do not have large Q in most real
biophysical problems. But the ratio in Eq. (30) can still be extremely large if there are
positive and negative permanent charges presented inside biomolecules. To prove this
numerically we choose φ to be the electrostatic potential induced by a molecule comprising
of two unit spheres located at (1.5, 0, 0) and (−1.5, 0, 0) respectively. A solvent probe of
radius of 1.4 is chosen and thus the molecular surface is formed by two spherical caps
connected by a circular reentrant surface. The left sphere carries a charge Q at its center
while the right one carries a charge −Q. The radius of the exterior sphere is 4. Fig. (3) shows
the distribution of φ for Q = 2 on the x – y plane and on the surface of molecule. It is seen
that φmax > 5 and φmin < −5, and hence
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(33)

assuming that q = ±1 and a value β = 1.6774 at room temperature T = 300K. This justifies
the quick growth of the condition number for the transformed formulation as shown in Fig.
(4). Since any biomolecule carries both positive and negative charges, the transformed
formulation will always lead to an ill-conditioned stiffness matrix. For this reason we shall
use the primitive formulation in all the following computations. It is also seen that the
reactive boundary condition is always associated with a smaller condition number than the
non-reactive boundary condition. We note that the transformation with Slotboom variables
is associated with the weighted inner product in many finite element approximations of
semiconductor NP equations [19]. Exponential fitting techniques or other up-winding
techniques are usually necessary for obtaining numerical solutions free of non-physical
spurious oscillations. Although the solutions in our numerical experiments and biophysical
applications presented below do not show significant non-physical oscillations, these
stabilization methods can be adopted if needed.

4.2. Steady-state diffusion: numerical accuracy and electroneutrality
Due to the intrinsic nonlinearity of the equation, the analytical solutions for the steady-state
PNP equations are not available in general, even for the simplest problems such as the
electrodiffusion in the spherical annulus exterior to a charged sphere. Here we choose two
examples to examine the accuracy of our algorithm. The first example is to solve the Nernst-
Planck system for the concentration of a single species at a given potential φ(r) = Q/(εsr) in a
spherical annulus:

(34)

where ρ0 is the bulk concentration. Note here we are applying a reactive boundary condition
on the whole sphere r = r1. The analytical solution for Eq. (34) is

(35)

The reactive rate constant kr is then computed from the flux J(r) on the reactive surface via

(36)

where SA is the reactive surface. In this case we choose r1 = 1, r2 = 40, εs = 78ε0, ρ0 =
50mM, D = 78000Å/μs, q = −1, Q = 1, and thus the exact kr = 2.5315 × 1011M−1min−1.
Table (1) lists the relative L2 errors of the computed particle concentration, the asymptotic
order of error reduction and the reaction rate constants. These results demonstrate that our
finite element method is convergent for this problem, with an asymptotic rate of
convergence close to 2 as anticipated for a linear finite element method. It is also noticed
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that the errors in the computed reactive rate constant are large for all the mesh sizes
considered. This is related to the very large gradient of concentration close the reactive
surface, as seen in Fig. (5) where the exact and computed concentration profiles are plotted.
Physically, this large gradient is induced by the electrostatic attraction of the negatively
charged particles to the positively charged sphere. In this study we use finite element meshes
refined toward the molecular surface to improve the local numerical resolution. Other higher
order methods can also be introduced to this problem to resolve this large gradient and
improve the numerical accuracy.

The second example is to solve the full steady-state PNP equations for two species of
particles, one carries charge −1 and the other has charge +1, in the same spherical annulus as
in the last example. We prescribe the flux J(r) = 0 for both species on the unit sphere, and
the particle concentrations on the exterior boundary are set to be the respective bulk
concentrations. The macroscopic flux of either species of particles is therefore zero
everywhere in the domain, and thus the PNP model shall produce the nonlinear Poisson-
Boltzmann equation and the particle concentrations shall follow the Boltzmann distribution.
This criterion is used to examine the numerical solutions of the PNP equations. We would
note that there is no analytical solution of the potential available for the nonlinear Poisson-
Boltzmann equation. Rather, we will compare the computed concentration profiles of the
PNP equations and those predicted by using the Boltzmann distribution and the computed
electrostatic potential. In particular, let the numerical solutions of the potential and the
particle concentration be φ and ρ, and the exact solutions of them be φ ̂ and ρ̂, respectively.
Let the particle concentration computed from the solved potential φ be ρ̃, then the error we
are measuring is ρ − ρ̃. It follows that for any Sobolev norm || · || we have

(37)

where the constant C is independent of the numerical methods. This estimate suggests that
the error we are measuring has the same rate of convergence as the error of solutions of the
PNP equations. Tab. (2) shows that the rate with respect to L2 norm is about 1, which is
close to the one predicted for the linear elliptic interface problems in [12]. Fig. (6) plots the
computed particle concentration and that predicted by the Boltzmann distribution. The
flattening of the profile close to r = 1 indicates the vanishing concentration due to the
electrostatic repulsion and the vanishing macroscopic flux as prescribed by the boundary
condition.

We move to the investigation of the electroneutrality and its relation to the boundary
conditions. For this purpose we first consider three diffusion problems in the spherical
annulus 1 ≤ r ≤ 40: (1) 50mM:50mM symmetrical solution without reaction on sphere; (2)
50mM:50mM symmetrical solution with the negatively charged particles reactive on sphere;
and (3) 50mM:25mM:25mM asymmetrical solution with the third species of particle reactive
on sphere. Here the ratios refer to the bulk concentrations of particles. In the third problem
the first species of particles is positively charged and the other two are negatively charged.
The computed net charge concentration
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is plotted in Fig. (7) for all three solutions.

Chart A shows that near the reactive surface the net charge concentration is close to zero.
This is a result of the depletion of positively charged particle due to the electrostatic
repulsion and the depletion of negative charged particle due to the reaction boundary
conditions ρi = 0. On the other hand, the electrostatic attraction causes the aggregation of the
negatively charged particles toward the sphere, as can be seen at the peak of excessive
negative charges. The balance of oppositely charged particles are gradually built with the
increase of distance to the unit sphere. If the negatively charged particles are non-reactive,
these particles will aggregate near the unit sphere, which in turn gives rise to a large
concentration of negative charged particles as shown in the blue profiles in Chart B. If only
a part of the negatively charged particles are reactive, very large concentration of the non-
reactive negatively charged particles is still seen in the red profile of the chart B. It it also
seen that the two profiles in Chart B are very close, suggesting that part of the negatively
charged particles being reactive does not significantly change the electroneutrality of the
solution. This is not surprising since the non-reactive negatively charged particles can still
be attracted to the sphere to generate a large concentration.

Noticing that the observations above are made from the solutions of different problems, we
now consider a model problem defined in the spherical annulus 1 ≤ r ≤ 4 with both reactive
and nonreactive boundary conditions, on r = 1, as shown in Fig. (8). The unit sphere with a
unit positive charge at its center models the molecular surface. The reactive boundary is the
spherical cap to the right of the plane x = 0.9165, and the remaining spherical surface is
nonreactive. We consider a 1:1 symmetric solution with bulk concentrations being 50mM.
Fig. (8) features the aggregation of the negatively charged particles on the nonreactive
molecular surface as well as the depletion of these particles on the reactive surface. The net
charge concentration along x-axis is plotted in Fig. (9), where in the right chart we observe
the neutrality close to x = 1 due to the reactive boundary condition and the peak of the
excessive negative charge. We also compute the problem with a 2 : 1 : 1 solution defined as
above. The appearance of non-reactive negative charges completely changes the neutrality
close to x = 1, since these charges will be attracted to the entire surface including the
reactive surface and aggregate. Consequently for x ∈ [1,4] we shall observe a profile similar
to the left chart of Fig. (9). In a biological solution there are many species of non-reactive
particles carrying charges of the same sign as the reactive particles, and therefore a large
concentration near the charged molecular surface is always present.

4.3. Accuracy for solving the unsteady-state diffusion
To examine the accuracy of the time integration method we design a problem that has the
essential features of the PNP and admits an analytical solution:

(38)

(39)

Lu et al. Page 16

J Comput Phys. Author manuscript; available in PMC 2011 September 20.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



This equation is solved in the spherical annulus 1 ≤ r ≤ 4. The analytical solutions for φ and
ρ are prescribed to be

(40)

(41)

These two analytical solutions determine the functions f(r), g(r) and the Dirichlet boundary
conditions for both equations. A very fine mesh with 40859 unknowns is used to ensure that
the error due to the time discretization is dominant in the numerical approximation. The
equations are integrated to t = 200 with various time increments Δt and fixed parameter δ =
0.01. The relative L2 errors are collected in Tab. (3), which features a convergence of
approximately second-order for both variables. This agrees with the convergence of the
ABCN scheme applied for solving the Navier-Stokes equations [44]. It is worth noting that
here we are using large time increments in time integration; the convergence properties we
observed in this study agree with the theoretical analysis [24] which proves that the ABCN
for time-dependent Navier-Stokes equations is almost unconditionally stable.

4.4. Biophysical applications
Finally we apply the regularized PNP solver to compute the reaction rate constant of
neurotransmitter acetylcholine (ACh) at the reaction center of the enzyme
acetylcholinesterase (AChE). The steady-state diffusion problems for this has been studied
by using the Smoluchowski equation [50] and a hybrid finite element/boundary element
method [35,55]. In the latter approach the boundary element method is used to solve the
singular component of the electrostatic potential. We treat the ACh molecules as particles
with +1 charge. The computation domain is chosen to be a ball with a radius 400Å centered
at the geometric center of the AChE molecule. We consider two other species of non-
reactive particles, one with +1 charge and the other with −1 charge. The boundary
conditions for these two species of particles are therefore Ji(r) = 0 on the whole surface of
AChE. The reaction center of the AChE is signified in Fig. (10) in red where ρi = 0 is set for
ACh as the reactive boundary conditions, and on the rest surface the Ji(r) = 0 is prescribed.
The bulk concentrations of all three species of particles are set to be 50mM. The same mesh
as that in [55] is used in this study. The electrostatic potential on the surface of AChE is
shown in Fig. (10) along with the surface mesh and a close view of the potential around the
reaction center. The surface potential is smooth overall and the negative potential near the
reaction center is well reproduced. The reaction rate constant is 1.72 × 1011, which well
matches that computed by using the hybrid finite element/boundary element method [55]. It
is seen that the value of electrostatic potential ranges from −10 to 3. This confirms that a
large variation of the potential φ can be seen in real solvated biomolecular system and thus
the transformed formulation of the Nernst-Planck is inappropriate in real applications
because its ill-conditioned stiffness matrix.

5. Conclusions
We have developed a finite element method for solving the Poisson-Nernst-Planck (PNP)
equations with permanent charges. The electrostatic Poisson equations is regularized by
analytically removing the singular component of the electrostatic potential from the
numerical solution. A harmonic component is defined inside biomolecules to partially
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compensate the removed singular component such that the remaining electrostatic
component is continuous on the molecular surface. This remaining regular component is
governed by an elliptic interface problem, with interface conditions computed once only
from the singular and the harmonic components. It is shown that the diffusion in the solvent
region is completely drifted by the regular component, which gives rise to regularized
Poisson-Nernst-Planck equations. An inexact-Newton method was used to solve the regular
PNP for steady diffusion. For unsteady diffusion we proposed a second-order Adams-
Bashforth-Crank-Nicolson method for time integration. Due to the limited availability of the
analytical solutions to 3-D PNP, we constructed various test problems to examine the
accuracy and the stability of the proposed finite element methods and time integration
scheme.

We numerically compare the usefulness of the primitive and transformed formulations of the
Nernst-Planck equation, by studying the conditioning of the associated stiffness matrices. It
is shown that the transformed formulation is always related to a large condition number of
the stiffness matrix. This can be caused by a large magnitude of the permanent charge, or
more generally the existence of both positive and negative charges inside molecules. The
primitive formulation of the Nernst-Planck equation is therefore preferred in real simulation
although its differential operator is not self-adjoint. Furthermore, we find that given the co-
existence of multiple species of charged particles in a biological solution the reactive
boundary condition has negligible effects on the electroneutrality of the solution. There are
always sufficient nonreactive charged particles being attracted to the reactive surface to
generate a high density of net charge. We currently use locally refined mesh to resolve these
large gradients of concentrations, while numerical schemes of high resolution are always in
demand for this purpose.

It is noticed that the regularized electrostatic Poisson equation appears a Laplace equation
inside molecules. This suggests that we can readily map the solution of this Laplace
equation to the molecular surface, and eventually cast the regular PNP equations to be
integro-differential equations with appropriate Dirichlet-Neumann mapping. The integration
of this new formulation with the inexact-Newton approach and the advantage of the overall
algorithm are to be explored. In case that the electrodiffusion occurs in solvated system with
moving molecules specialized finite element methods could be introduced to solve the
equations on a fixed mesh having varying intersections with moving molecular surfaces.
Applications of the proposed method to electrodiffusion in real biophysical problems,
possibly with effects of finite particle sizes, are also underway.
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Figure 1.
2-D schematic illustration of the computational domain modeling a solvated biomolecular
system. The biomolecule(s) is located in domain Ωm and the aqueous solution is in domain
Ωs. The molecular surface is Γ. The active reaction center Γa ⊂ Γ is highlighted in red. The
circles with plus or minus sign inside represent the diffusive charged particles which move
only in Ωs. The singular charges inside molecules are signified by plus or minus sign in Ωm.
The minimum distance between the molecular surface Γ and the exterior boundary ∂Ω is
much larger than the diameter of the molecule so that approximate boundary condition for
the electrostatics can be applied.
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Figure 2.
Change of condition number of the stiffness matrix with the permanent charge Q (in the unit
of elementary change). The curves marked with squares are for the reactive boundary
condition on the sphere and the curves marked with triangles are for the non-reactive
boundary. A: primitive formulation and negatively-charged particle; B: primitive
formulation and positively-charged particle; C: transformed formulation and negatively-
charged particle; D: transformed formulation and positively-charged particle. More
sampling points of the charge Q are used when local extrema of condition number are
detected in Chart A and B.
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Figure 3.
Electrostatic potential on the x – y plane (left) and on the surface of a model molecule
(right).
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Figure 4.
Change of condition number of the stiffness matrix with the Q(in the unit of elementary
change) for the primitive formulation (left) and for the transformed formulation (right). The
curves marked with squares are for the reactive boundary condition on the entire molecular
surface and the curves marked with triangles are for the non-reactive boundary condition.
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Figure 5.
The exact and computed concentration profiles for the Nernst-Planck equation in the
spherical annulus 1 < r < 40 for a given potential. The x-axis is truncated at r = 10 in the
illustration. hmax = 3.277.
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Figure 6.
Computed concentration profiles and the Boltzmann distribution for particles with q = 1.
hmax = 3.277.
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Figure 7.
Profiles of net charge concentrations in mM(milli-mol/L) for three solutions. A: symmetrical
solution with reactive negatively charged particles; B: symmetrical solution without
interaction (blue) and 2:1:1 asymmetrical solution (red).
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Figure 8.
Left: The surface mesh of the unit sphere on the background of the mesh (pink) of the
exterior sphere. The non-reactive boundary is colored cyan and the reactive boundary is
colored red. Right: Concentration of the reactive particle on the x – y plane.
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Figure 9.
Profiles of the net charge concentration of reactive particles in mM along x-axis. Left: −4 ≤
x ≤ −1. Right: 1 ≤ x ≤ 4.
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Figure 10.
The discretized molecular surface of AChE with the region around the reaction center
colored red (left); The electrostatic potential on the surface (middle) and the surface
potential around the reaction center (right).
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Table 3

Numerical error and asymptotic order of convergence for time integration.

Δt eφ order eρ order

2 5.33(−3) 1.16(−2)

1 1.47(−3) 1.86 3.65(−3) 1.67

0.5 3.86(−4) 1.93 9.33(−4) 1.97

0.25 1.02(−4) 1.92 2.52(−4) 1.89
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