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About the ellipticity of the discrete Laplacian in polar coordinate

with Neumann condition

B. Trouettea,∗, C. Delcartea, G. Labrossea

aUniversité Paris Sud 11, LIMSI-CNRS, B.P. 133, 91403 Orsay Cedex, France

Abstract

The Chebyshev Gauss-Radau discrete version of the polar-diffusion operator,
(

1
r

∂
∂r

(

r ∂
∂r

)

− k2

r2

)

,

k being the azimuthal wave number, presents complex conjugate eigenvalues when it is asso-

ciated with Neumann boundary condition imposed at r = 1. It is shown that this ellipticity

violation of the original continuous problem is genuine and not due to some round-off error.

A way to avoid these complex conjugate eigenvalues is proposed, at the expense of some

loss of accuracy. An evaluation is performed of the impact this approach has on the spectral

accuracy of the solution.

Keywords: polar laplacian, spectral collocation method, ellipticity, mapping

1. Introduction

Temporal discretization of the balance equations which govern the flow dynamics often

leads to elliptic Helmholtz equations. When these multidimensional elliptic problems are

separable, and posed in orthogonal geometries, their numerical solution can be efficiently

obtained by using the Successive Diagonalization Technique (SDT), ([1, 2]). This method

amounts to work in the Helmholtz operator numerical eigenspace, itself being tensiorally

constructed from the eigenspaces of the second derivatives (see [1]). Making use of a spectral

collocation method leads then to cheap accurate numerical solutions of a large variety of

diffusion problems, with any kind of boundary conditions, Dirichlet, Neumann or Robin,
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with constant coefficients. This approach has been extended in [3] to the case where the

boundary conditions involve mixed tangential and normal derivatives.

The key-point which makes this SDT attractive, for easy to implement, is the ellipticity of

the original continuous problem, provided this ellipticity be preserved at the discrete step.

This occurs in most of the cases, for instance in the Cartesian configuration, viz. with ∂2

∂z2

completed with any boundary condition imposed at z = ±1. In cylindrical coordinates,

the easy implementing of the SDT depends therefore upon the ellipticity of the companion

operator of ∂2

∂z2 , namely the polar operator
(

1
r

∂
∂r

(

r ∂
∂r

)

− k2

r2

)

, k being the azimuthal wave

number. The polar ellipticity is preserved in its Chebyshev Gauss-Radau discrete version

when a Dirichlet boundary condition is imposed at r = 1, say. When a Neumann condition is

imposed at r = 1, a few couples of complex conjugated eigenvalues show up for given values

of k when the radial cut-off frequency N gets larger than 12. This paper will show that

the presence of these complex eigenvalues, which violates the ellipticity of the original polar

problem, is genuine and not due to some round-off error amplification associated itself with

the bad conditioning of the Gauss-Radau matrix. A way to avoid these complex conjugated

eigenvalues, in implementing the SDT, is proposed, at the expense of some loss of accuracy.

An evaluation is made of the impact this approach has on the spectral accuracy of the

solution.

2. Continuous problems

2.1. The inhomogeneous problem

Let us consider the diffusion equation in polar coordinates (er,eφ),

(

1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2

∂2

∂φ2

)

u = f(r, φ) with r ∈]0, 1[ and φ ∈ [0, 2π[. (1)

where u(r, φ) and f(r, φ) are real fields. To be quite general a Robin boundary condition is

imposed at r = 1, viz.

a u(r = 1, φ) + b
∂u

∂r

∣

∣

∣

∣

r=1

= c(φ) with φ ∈ [0, 2π[, (2)
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where the real coefficients a and b are assumed to satisfy the ellipticity sufficient condition,

a
b

> 0. Dirichlet or Neumann conditions respectively correspond to fixing (b = 0, a = 1) or

(a = 0, b = 1) in (2). All the fields are necessarily periodic in the azimuthal direction. They

can therefore be expanded in Fourier series, with










u(r, φ)

f(r, φ)

c(φ)











=
∞

∑

|k|=0











ūk(r)

f̄k(r)

c̄k











eikφ , integer k. (3)

Since the left-hand-side fields are real their k 6= 0 Fourier components are complex conju-

gated, •̄k(r) = •̄∗−k(r), • = u, f, c, for k 6= 0. Thus, the unknown fields of the expansion (3)

are those which correspond to k ≥ 0 for example. Plugging (3) into (1) and (2) leads to the

following set of mono-dimensional problems,
(

1

r

∂

∂r

(

r
∂

∂r

)

−
k2

r2

)

ūk = f̄k(r) with r ∈]0, 1[ and for k = 0, · · · ,∞, (4)

each completed with a boundary condition, viz.

a ūk(r = 1) + b
dūk

dr

∣

∣

∣

∣

r=1

= c̄k for k = 0, · · · ,∞. (5)

2.2. The associated homogeneous problems

The associated homogeneous problems read
(

1

r

d

dr

(

r
d

dr

)

−
k2

r2

)

uk = −λ2 uk ; r ∈]0, 1] , k = 0, · · · ,∞, (6)

completed with the homogeneous boundary conditions

a uk(r = 1) + b
duk

dr

∣

∣

∣

∣

r=1

= 0 for k = 0, · · · ,∞. (7)

The analytical solutions to (6)-(7) express in terms of the Bessel functions of the first kind,

uk(r) = Jk(λ r),

where λ is anyone of the roots, in infinite number, of the following equations,

for k = 0 : a J0(λ) = b λ J1(λ),

for k ≥ 1 : a Jk(λ) +
b

2
λ (Jk−1(λ) − Jk+1(λ)) = 0.

All the λ’s are real.
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3. Discretized problems

3.1. The inhomogeneous problems

Let N be the radial cut-off frequency and rp, with p = 0, · · · , N , be the radial location

of the Chebyshev Gauss-Radau collocation points, where

rp =
1

2

(

1 − cos

(

(2p + 1)π

2N + 1

))

, p = 0, · · · , N. (8)

Chosing the Gauss-Radau nodes allows us to avoid the r = 0 singular position which occurs

in the operator (4), the closest node to r = 0 being at r0 = 1
2

(

1 − cos
(

π
2N+1

))

≃
(

π
2(2N+1)

)2

.

The discrete version of (4) and (5) is obtained by introducing the polynomial approximation

of the ūk(r)’s,

ū
(N)
k (r) =

N
∑

p=0

(ūk)p l(N)
p (r) with (ūk)p ≡ ū

(N)
k (rp) ,

the l
(N)
p (r)’s being the Lagrange polynomials based over the Chebyshev Gauss-Radau nodes

(8). Let D and D(2) be the respective Gauss-Radau matrix representations of d
dr

and
(

1
r

∂
∂r

(

r ∂
∂r

))

, the superscript “(2)” indicating that D(2) is not the square of D. The dis-

cretized version of (4) and (5) reads

N
∑

q=0

D(2)
pq (ūk)q −

k2

r2
p

(ūk)p =
(

f̄k

)

p
, p = 0, · · · , N − 1 , for k = 0, · · · ,∞, (9)

and

a (ūk)N + b
N

∑

q=0

DNq (ūk)q = c̄k for k = 0, · · · ,∞, (10)

where
(

f̄k

)

p
≡ f̄k (rp). The matrix system (9) is rectangular. It is made square upon

eliminating the (ūk)N ’s through (10), with

(ūk)N =
c̄k − b

∑N−1
q=0 DNq (ūk)q

a + bDNN

for k = 0, · · · ,∞.

The resulting discrete system reads

N−1
∑

q=0

(

D
(2)
R

)

pq
(ūk)q −

k2

r2
p

(ūk)p =
(

f̄k

)

p
−

c̄k D
(2)
pN

a + bDNN

, p = 0, · · · , N − 1, (11)

where
(

D
(2)
R

)

pq
= D(2)

pq −
bD

(2)
pNDNq

a + bDNN

. (12)
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Figure 1: log10 (|ξn|) as a function of log10 (n), for the Dirichlet and Neumann cases, obtained with various

N ’s and k = 4.

3.2. The homogeneous problems

Implementing the SDT is then based on the eigenvalues, and eigenvectors, of the matrices
(

D
(2)
R − k2

r2

)

which come from the l.h.s. of (11), wherein k2

r2 stands for the diagonal matrix

of entries k2

r2
p
, with p = 0, · · · , N − 1. Let us therefore introduce the discrete eigenvalue

problem,

N−1
∑

q=0

(

D
(2)
R

)

pq

(

Ūk

)

q
−

k2

r2
p

(

Ūk

)

p
= ξ

(

Ūk

)

p
, p = 0, · · · , N − 1 for k = 0, · · · ,∞.

It leads to N numerical eigenvalues, ξn, for n = 1, · · · , N , ordered with increasing absolute

value of their real parts.

3.3. The numerical eigenvalues of the polar-diffusion problem

3.3.1. In the Neumann case

For the Cartesian operator, d2

dx2 + b.c., the numerical eigenvalues can be expressed an-

alytically, ([4]), whereas, so far, those of
(

D
(2)
R − k2

r2

)

can only be obtained by numerical

experiments. These latter were performed, for the sake of this analysis, for N ≤ 199 and

k ≤ 499. In the Dirichlet case, viz. fixing a = 1 and b = 0 in (7) and (12), the ξn’s were
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found as being all real and negative, ξn = −λ2
n with real λn’s, for any N and k values. The

situation is fairly different in the Neumann case, a = 0 and b = 1 in (7) and (12).

Figure 1 displays the Dirichlet and Neumann numerical spectra obtained with various

values of N , all with k = 4. The eigenvalues are all real and negative. They converge towards

the analytical ones lying along the envelope which is common to all these plots. But taking

now N = 128 and k = 11 for computing the Neumann spectrum leads to (N−2) real negative

eigenvalues, plus a pair of conjugate complex eigenvalues, while the Dirichlet ξn’s remain all

real and negative. This is shown in Fig. 2 where log10 (|Re(ξn)|) and log10 (|Im(ξn)|) are

plotted as functions of log10 (n). Both (equal) imaginary parts are small, but definitely not

compatible with the zero machine. A complete scanning of the k(N) values which lead to

complex eigenvalues of
(

D
(2)
R − k2

r2

)

has been made. The result is given in Fig. 3 : there is

one particular value of k for each value of N , for N ≥ 13, where complex eigenvalues occur

in the Neumann spectrum.
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Figure 2: log10 (|Re(ξn)|) and log10 (|Im(ξn)|) as functions of log10 (n), for the Dirichlet and Neumann cases,

obtained with N = 128 and k = 11.

Should these complex eigenvalues be considered as spurious, and/or simply due to the

bad conditioning of the matrix
(

D
(2)
R − k2

r2

)

? The answer is supplied by two numerical

tests, both performed with k = 39. As indicated by Fig. 3 complex eigenvalues occur
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Figure 3: The set of k(N) values which lead to complex eigenvalues of
(

D
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)

.

with N = 19, 20, 21 for example. First, computing them for N = 20 while increasing the

number of significant digits, as it is made possible by the Mathematica software, shows that

the complex eigenvalues are not sensitive to round-off errors. They definitely converge to

more and more accurately determined values, −11879.8 ± 17.3509 i for example. Second,

computing the eigenvalues for N = 22, now, leads to a purely real spectrum, despite the fact

that the matrix conditioning should be worst than with N = 20. It can thus be concluded

that the complex eigenvalues are genuine eigenvalues of the discrete problem.

3.3.2. In the Robin case

When the Robin conditions (5) are adopted, and discretized using a Gauss-Radau grid

with N+1 nodes, the order of magnitude of the Neumann contribution is bN2. It is therefore

expected that complex eigenvalues will occur in the polar-diffusion problem if bN2 ≫ a.

4. Is there a way to avoid the complex eigenvalues ?

The existence of these complex eigenvalues does not prevent from using the Successive

Diagonalization Technique, but it makes it a bit more fastidious to code. Is there an easy

way to suppress them ? It will be shown that a particular mapping brings a partial answer.
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4.1. The mapping

In [5], D. Kosloff and H. Tal-Ezer proposed a mapping from the internal Gauss-Lobatto

points to a new set of points in order to reduce, from an O (N−2) to an O (N−1) criterion,

the limitation of the time step for solving the 1D hyperbolic equation. This is obtained by

moving the Gauss-Lobatto nodes of abscissae yi to other locations of abscissae xi, according

to the α-mapping relation

xi = g(yi; α) =
arcsin(α yi)

arcsin(α)
∈ [−1, 1] for i = 0, · · · , N with 0 ≤ α < 1.

For α much smaller than 1 the mapping just slightly moves the Gauss-Lobatto nodes, while

values of α close to 1 lead to almost evenly distributed nodes over [−1, 1]. We have applied

this transformation on the Gauss-Radau collocation points of abscissae 0 < ri ≤ 1, with

i = 0, · · · , N , for solving the radial diffusion equation (11). Any function f(r) is then

transformed into h(x) whose first derivative is obtained from

dh

dx
=

1

g′(r; α)

df

dr
with g′(r; α) =

∂g

∂r
.

The radial discrete first derivative D is transformed as

D → A · D

where A is a diagonal matrix whose entries are given by

Aii =
1

g′(ri; α)
=

α

arcsin(α)
√

1 − (α ri)2
, i = 0, · · · , N.

In the same way, the matrix D2 which represents d2

dr2 is modified according to

D2 → A2 · D2 + B · D,

the diagonal matrix B being defined by

Bii = −
g′′(ri; α)

[g′(ri; α)]3
, i = 0, · · · , N,

where

g′′(ri; α) =
α3

arcsin(α)
·

ri

[1 − (α ri)2]3/2
.
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Figure 4: The set of k(N) values leading to complex eigenvalues of
(

D
(2)
R − k2

r2

)

, with (α = 0.99) and

without mapping.

4.2. Its impact on the polar-diffusion spectrum

Figure 4 shows the way the k(N) configuration which leads to complex eigenvalue has

been modified with the α = 0.99 mapping. Complex eigenvalues are still occurring, but for

higher values of N , viz. N > 80, and also for much larger values of k.

Thus, thanks to the mapping, spectra which were previously “polluted” by complex

eigenvalues are now purely real. But does this mapping affect, and to what extent, the

spectrum itself of the polar-diffusion operator ? Let us denote ξ(α) the set of the numerical

eigenvalues obtained from an α-mapping and compare them to those, ξ, obtained without

mapping. One of the Neumann cases presented in Fig. 1 is chosen, the one which corre-

sponds to N = 128, k = 4. In Fig. 5 are plotted the relative differences
∣

∣

∣

ξ
(α)
n −ξn

ξn

∣

∣

∣
obtained

for several values of α. Two regions clearly show up. The first region is the part of the

spectra where the numerical eigenvalues are in good agreement with the analytical ones, the

common envelope in Fig. 1. The mapping significantly affects the accuracy of the numerical

eigenvalues, but at a level which is without any practical importance. The second region

lies in the purely numerical part of Fig. 1, wherein the eigenvalues strongly depart from the

analytical ones. This is the region of Fig. 5 which exhibits a very steep increasing of the
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relative differences. Are there practical consequences of this behavior ? The largest absolute

value of the numerical eigenvalues obtained with the Gauss-Radau grid is expected to scale,

asymptotically with N , as O (N4). This is what makes the (Chebyshev) spectral method

able of efficiently capturing the boundary layers close the solid boundaries of the flow. Fig-

ure 6 shows that this scaling drifts, as expected, to an asymptotic law O (N2) when the

mapping is performed with α extremely close to 1. Discrepancies are therefore expected, in

boundary layer regions, between numerical flows obtained with and without this mapping.

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

 0  0.5  1  1.5  2  2.5
log10(n)

α = 0.1
α = 0.2
α = 0.3
α = 0.4
α = 0.5
α = 0.6
α = 0.7
α = 0.8
α = 0.9

α = 0.99

Figure 5: Relative differences
∣

∣

∣

ξ(α)
n

−ξn

ξn

∣

∣

∣
, for the Neumann cases, obtained with various N ’s and k = 4 with

several values of α.

4.3. Mapping and accuracy

Choosing the Gauss-Radau (or Gauss-Lobatto) nodes for discretizing the differential

equations is not made by convenience. It is indeed well known ([6]) that using these nodes

is at the heart of the high level of numerical accuracy the spectral methods are able to

achieve. It is therefore expected that the mapping should degrade the overall accuracy of

the Gauss-Radau scheme, more and more with increasing α.
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Figure 6: Scaling laws in O
(

Nβ
)

of the largest |ξn| and |ξ
(α)
n |, for the Neumann cases, obtained with

α = 0.9999999999. They suggest the asymptotic laws maxn|ξn| ≃ O
(

N4
)

and maxn|ξ
(α)
n | ≃ O

(

N2
)

.

4.3.1. Comparison with an analytical solution of the polar-diffusion problem

Consider the equation

(

1

r

∂

∂r

(

r
∂

∂r

)

−
k2

r2

)

u = f(r) , r ∈]0, 1[, (13)

where the source term is chosen as being f(r) = (N2 − k2) rN . The analytical solution is

a polynomial, u(r) = rN , which will coincide (within the zero machine accuracy) with the

numerical solution provided by the Gauss-Radau Chebyshev solver of (13). This solution of

(13) can be considered with the Neumann boundary condition du
dr

∣

∣

r=1
= N . It is then very

easy with this analytical solution to compute the error coming from the α-mapping solver,

wheresoever are located the associated nodes. Let u(N)(rp), for p = 0, · · · , N , be the nodal

values obtained from this latter solver, and E = maxp=0,··· ,N−1

∣

∣

∣

u(N)(rp)−rN
p

rN
p

∣

∣

∣
be the relative

error in absolute norm between the analytical and numerical solutions. Figure 7 shows the

error E as a function of the mapping parameter α for various N values. For small α values

or large N the error is very small.
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Figure 7: Maximum relative error E for different N as functions of α, for k = 4.

4.3.2. Comparison on a physical configuration

We now consider the axi-symmetric floating-zone problem in microgravity environment

which is described in detail in [7] and [8]. A cylindrical liquid bridge, of height 2H and radius

R, is maintained by surface tension between two horizontal isothermal solid disks. Its lateral

free surface is submitted to a steady and uniform heat flux. This triggers and maintains a

thermo-capillary flow : the surface tension variations, due to the thermal gradients on the

free surface, generate tangential stresses and then viscous driving of the liquid. The flow

is generally studied in a two-parameter space : the Prandtl number (Pr), ratio between

momentum and thermal diffusivities, and the Marangoni number (Ma), ratio between ther-

mocapillary and thermal diffusion velocities. The axi-symmetric velocity and temperature

fields of the flow were deeply studied on a large domain of the parameters space in [7] and

[8]. The impact of the numerical treatment of the vorticity singularity which occurs at the

junction of the free surface with the rigid disks was explored in [9] and [10].

The axi-symmetric physical problem is governed by the following non-dimensional Navier-

12



Stokes and energy equations, in the Boussinesq approximation framework,

∂u

∂t
+ (u.∇) u = −∇p + Pr

(

∇
2 −

er

r2

)

u, (14)

∂θ

∂t
+ (u.∇) θ = ∇

2θ, (15)

∇.u = 0, (16)

where u, θ and p respectively are the non-dimensionnal velocity, temperature and pressure.

The unit vectors er and ez define respectively the radial and axial directions, their origin

being located at the center of the liquid bridge. The operators are defined as follows:

∇ = er (∂/∂r)+ez (∂/∂z), ∇
2 = (1/r)(∂/∂r)[(r(∂/∂r))]+∂2/∂z2. Noting u = v er +w ez,

one has also ∇.u = (1/r)[∂(rv)/∂r] + (∂w/∂z) and u.∇ = v(∂/∂r) + w(∂/∂z).

To complete the set (14)-(16), boundary conditions are specified:

• z = ±1







u = 0 (no-slip conditions),

θ = 0 (imposed temperature),

• r = 1























v = 0 (non-deformable free surface),
∂w

∂r
= −Ma

∂θ

∂z
f(z) (stress condition),

∂θ

∂r
= q(z) (heat flux).

(17)

with q(z) = (1 − z2)2 the heat flux. The parameter values are Pr = 0.01 and Ma = 106.

The function f(z) = (1 − z2n)2 is introduced for regularizing the vorticity singularity, n

being here fixed to 13 according to the results of [9] and [10].

The system (14) - (17) is space-discretized with a Chebyshev collocation method based

on radial Gauss-Radau and axial Gauss-Lobatto grids. Uncoupling the velocity and pres-

sure fields is made with the Projection-Diffusion method, ([11]). The time integration is

performed with an usual second order finite difference scheme. Let wij be the set of the

axial velocity nodal values obtained in this way, and wmap
ij the corresponding set obtained

from a mapping applied on the radial grid, the α parameter being fixed to 0.99.
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Figure 8: Maximum relative error E on the axial velocity field w and iso-w lines for Ma = 106 and Pr = 0.01.

Figure 8 shows the relative error

E =
maxi,j |w

map
ij − wij|

maxi,j |w
map
ij |

(18)

obtained with 70 and 100 grid points in the radial and axial directions respectively. In

this figure are superimposed the iso-w lines supplied by the mapped (α = 0.99) Gauss-

Radau grid. As expected from the comment made from Fig. 5 the maximum of the error is

located in the regions of steep vorticity gradient. Yet this relative error is small. The grid

transformation can thus be used in order to avoid complex conjugate eigenmodes.

5. Conclusion

The Chebychev Gauss-Radau discrete version of the polar-diffusion operator, L =
(

1
r

∂
∂r

(

r ∂
∂r

)

− k2

r2

)

,

associated with a Neumann boundary condition at r = 1, does not preserve the ellipticity

which is expected for L in the continuous realm. Numerical complex conjugate eigenval-

ues are indeed obtained for a set of values of both the azimuthal wave-number k and the

14



Gauss-Radau cut-off frequency. We have shown that these complex eigenvalues are genuine

eigenvalues of the discrete version of L. It is proposed in this paper to avoid them through a

transformation of the Gauss-Radau grid. Although this mapping affects significantly the L

eigenvalues of largest absolute value, its impact on the solution numerical accuracy, measured

on an analytical test, is very small, in case of moderate shifts of the Gauss-Radau points.

The evaluation of the error, in a physical problem presenting steep vorticity gradients, shows

that the grid transformation can be used to avoid the complex conjugate eigenvalues.
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