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RBF-FD formulas and convergence properties

Victor Bayona, Miguel Moscoso, Manuel Carretero,
Manuel Kindelan

Gregorio Millan Institute, Universidad Carlos III de Madrid, Avenida de la
Universidad 30, 28911 Leganés, Spain

Abstract

The local RBF is becoming increasingly popular as an alternative to the global
version that su ers from ill-conditioning. In this paper, we study analytically the
convergence behavior of the local RBF method as a function of the number of nodes
employed in the scheme, the nodal distance, and the shape parameter. We derive
exact formulas for the rst and second derivatives in one dimension, and for the
Laplacian in two dimensions. Using these formulas we compute Taylor expansions
for the error. From this analysis, we nd that there is an optimal value of the shape
parameter for which the error is minimum. This optimal parameter is independent
of the nodal distance. Our theoretical results are corroborated by numerical exper-
iments.
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1 Introduction

Radial Basis Functions (RBF) originate as a very e cient technique for inter-
polation of multidimensional scattered data (see [8] and references therein).
Later, it became popular as a truly mesh-free method for the solution of par-
tial di erential equations (PDEs) on irregular domains. This application of
RBFs was rst proposed by Edward Kansa [14,15] and it is based on enforc-
ing collocation of the PDE in a set of scattered nodes, to compute a global
solution in the space spanned by a set of identical RBFs translated to a set
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of RBF centers. The main advantages of the method are ease of programming
and potential spectral accuracy, but its main drawback is ill-conditioning of
the resulting linear system. To overcome this drawback a local version of the
method was later proposed by several authors [3,24,26] simultaneously. The
idea of the local RBF method, is to sacri ce the spectral accuracy inherent to
the global method, in order to have a sparse better-conditioned linear system
capable of solving large multidimensional PDEs. Another advantage of the
local version of the method is its suitability for problems with discontinuous
boundary conditions [1,5].

The local RBF method can also be considered as a generalization of the clas-
sical nite di erence (FD) method to scattered node layouts. In classical nite
di erences, derivatives of a function u at a given point are approximated as
linear combinations of the values of u at some surrounding nodes. In 1-D, for
example, the kth-derivative at node x; is approximated by

dku N (k)

—_— W
2 ji
dx _— i

u(x;) J=1 N

where x; is a set of surrounding nodes which usually are equispaced. The
unknown weights w](»ki) are usually computed using polynomial interpolation
[9]. These 1-D formulas can be combined to create FD formulas for partial
derivatives in two or more dimensions, provided that the nodes in the stencil
are located on some kind of structured grid, which severely limits the geo-
metric exibility of the method. In the case of RBF nite di erence formulas
(RBF-FD) this restriction is eliminated since the weights are obtained by RBF
interpolation on the set of surrounding nodes.

Once the weights for the derivatives appearing in the PDE have been deter-
mined for each scattered node, the di erential operator is enforced at each
of those nodes. This procedure leads to a sparse, linear system of equations
whose solution yields the approximate values of u at the nodes. This local
RBF method has been successfully applied to solve a variety of problems
[1,4,5,18,22,24,25].

However, papers addressing the convergence properties of the method are more
scarce. It is well known that the local method lacks the spectral accuracy of
the global RBF method, but the exact dependence of the error with average
distance between nodes h, shape parameter ¢, and number of supporting nodes
N, is not known. We mention, though, that Ding et.al. [6] carried out numerical
experiments using Poisson s equation on an equispaced grid to experimentally
determine these dependencies. They found an error estimate O((h &)™)
in which n is a constant dependent on the number of nodes N used in the
formulas (n 19for6 N 9 n 36for9 < N 27, n 49 for
2T < N 34).



Fornberg and coworkers [7,10] analyzed the behavior of RBF interpolants in
the limit of increasingly at radial functions (c ). They found that in
the 1-D case, with very simple requirements on the basis functions, the inter-
polants converge to the Lagrange interpolating polynomial and, therefore, in
this limit RBF-FDdi erentiation is equivalent to the standard nite di erence
method. Wright and Fornberg [27] used Hermite RBF interpolation method
to derive new nite di erence formulas (RBF-HFD) which also include a lin-
ear combination of derivatives at some surrounding nodes. They used cardinal
RBF interpolants to derive RBF-FD and HFD formulas in some simple cases
and studied their behavior in the limit of at basis functions. They also an-
alyzed numerically the dependence of the error on the shape parameter by
using them to solve some simple elliptic PDE problems.

In this work we address the convergence properties of RBF-FD formulas on
equispaced grids and analyze the dependence of the error with nodal distance
h, shape parameter ¢, and number of supporting nodes N. The main result
of our study is to analytically show the existence of an optimal value of the
shape parameter that minimizes the truncation error. The optimal value is in-
dependent of the nodal distance and only depends on the value of the function
and its derivatives.

The paper is organized as follows. In Section 2 we describe the RBF-FD for-
mulas and how to determine the unknown weighting coe cients. In Section
3 we use Taylor series expansion in the limit ¢ h to derive closed form
expressions of the weighting coe cients for rst and second order derivatives.
A series expansion in powers of h leads to closed form expressions for the error
as a function of h and c. In Section 4 we derive the corresponding expressions
for the error of RBF-FD formulas to approximate the Laplacian. The results
of Sections 3 and 4 are used in Section 5 to derive the optimal value of the
shape parameter. Section 6 extends these results to the case of non-equispaced
nodes. Finally, we summarize the main results of this work in Section 7.

2 RBF-FD formulation

In this section we describe how the RBF-FD formulas are derived and how the
weights can be exactly computed. Consider a stencil consisting of N scattered
nodes x; Xy, and a di erential operator L. For a given node, say xi, the
objective is to approximate Lu(x;) as a linear combination of the values of u
at the NV scattered nodes, so that



To determine the weighting coe cients ;, a set of base functions ;(x), i =
1 N are required. In that base,

L j(x1) = i (%) J

i=1

12 N (2)

This is a system of N linear equations on N unknowns whose solution yields
the unknown weighting coe cients ;. In the following we will use multi-
quadrics as RBFs,

(x) = A+ x  x; 3

where ¢ is the shape parameter. As ¢ increases the multiquadrics becomes
increasingly at and this has an important e ect in the accuracy of the ap-
proximation. The general behavior is such that the larger the shape parameter
¢, the smaller the approximation error. However, the multiquadric RBF ap-
proximation su ers from a trade-o principle [21], i.e. increasing the shape
parameter to improve the accuracy results in a more ill-conditioned matrix
and, therefore, to a signi cant increase of rounding errors.

3 One-dimensional RBF-FD Formulas

In this section we show how to derive the exact RBF-FD formulas for rst
and second derivatives. We compute the limit of these formulas for ¢ h,
and perform a Taylor expansion of the error in powers of h.

3.1 First Deriwative

Consider an RBF-FD approximation to the rst derivative using N = 3 equi-
spaced nodes. In this case,
u(xy) = qu(zy  h) 4+ qu(x) + sulzy + h) (3)

Substituting function u by multiquadrics radial basis functions centered at
x1 h, xy, and x; + h, results in the following linear system of equations,

h

_ 2 2 2 2
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0= h*+c 1+c o+ h+cE 3 (4)



node N =3 N =4 N =5 N =6
1 812 1 1294 K2
2h — 14+ = 4 ==
1 Ln LT & 20h 772
, 1 - h2 1 ) 5 h? 2 - 2 h2 1 N 887 h?
1 oh 22 3n 22 3h 2 oh 154 2
1 32 1 720 h2
1 - S -
1 0 2oh 2 0 3n 772
Ch 1 - h2 1 . h2 2 1+2h2 1 73 h?
x —_— — —_— —_— [ — e —
! 2h 2¢2 h 22 3h 2 h 154 2
1 h? 1 8 h? 1 334 h?
2h - 14+ = — 14+ — S TR
71+ 6n T2 on T e ih 772
1 2223 h?
3h — e
71+ 30 % 154 2
Table 1
RBF-FD coe cients for rst derivative in the limit ¢ h.
h - -
——— = 4h*+ A 1+ R+ A ot
h? + 2

whose solution is,

4 h?
1 I+ 1+ —-
1 3 ih px 2
1+ 6_2
In the limit when ¢
1 h?
f— f— _— 1 _— f—
! ’ Y 2 =0 (5)

which coincides with the standard central di erence approximation to the rst
derivative with a correction term of order h* ¢® (see Table 1).

Including additional nodes simply leads to larger linear systems to determine
the coe cients of the RBF-FD formulas for the rst derivatives. Using a sym-
bolic language (such as Mathematica or Maple) it is possible to derive the
exact formulas for the coe cients with up to at least six equispaced nodes
(the formula for six nodes computed with Mathematica is 45 pages long).
More useful is to compute the Taylor series expression when ¢ h. These
results are shown in Table 1 for terms up to ¢ 2.

It is interesting to compute the errors resulting from these formulas. For in-
stance, in the case of N = 3, introducing the values of the coe cients given
by (5) into (3), and expanding u(z; + h) and u(x; k) results in,




(o) = o (1 " ;—e) fues + ) — u(er — b)) =
1 h? ’ h? "
= 2h (”?) l%“(”“‘” E R B
YY) / — h? " 2 ’
= e3(21) = U(z1) — W) = o u(:) + 55U (@) (6)

Thus, it is second order in h, like the standard central difference formula, and
second order in (h/c)?.
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Fig. 1. Error in approximation of first derivative with RBF-FD formula for three
equispaced nodes. u(z) = exp (—z2), z = 1. Left: ¢/h dependence for h = 0.01.
Right: h dependence for ¢ = 10. Dashed line equation (6).

We can check these results numerically by computing the error in approximat-
ing the first derivative of u = exp (—z?) at z = 1. Figure 1 shows the error
as a function of ¢/h (left) and as a function of h (right). Both figures show
that the numerical results (in solid lines) closely agree with equation (6) (in
dot-dashed lines) until a critical value of ¢/h is reached (¢/h =~ 5000) when
the linear system (4) becomes ill conditioned and rounding errors deteriorate

the accuracy of the solution. For small values of ¢/h, the contribution of the
2

second term in (6), ﬁu'(ml), is dominant and the error shown in the left
c

side of Figure 1 decreases as (1/c)?. For large values of ¢/h, the contribution
2

of the first term, — «"(x,), is dominant and the error approaches a constant

value. In the case of the error dependence with h, shown in the right side of
the figure, the first term is dominant throughout.



Notice that the extra parameter ¢ makes it possible to minimize the approx-
imation error given by equation (6). In fact, for this simple case the error is
zero for ¢ = —3/(z;) /u"(z,). If v/(x;) and u”(x,) have opposite signs then
c? is positive and there is a real positive value of ¢ for which the error is zero
(see Section 5).

We can repeat the same procedure for the case N = 4. After some algebra

B3 3 3

€4(z1) = —EU(W)(%) — g v(@) + ul@), (7)

where €4(z1) = @/(x1) — «/(x1) for N = 4. Notice that in this case, the leading

contribution of the terms of order O(h/c)? in the expansion of the coefficients

(see Table 1) cancels out and it is necessary to include terms of order O(h/c)*
in those expansions.
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Fig. 2. Error in approximation of first derivative with RBF-FD formula with four
equispaced nodes. u(z) = exp (—z?), = 1. Left: ¢/h dependence for h = 0.01.
Right: h dependence for ¢ = 10. Dashed line equation (7).

Figure 2 shows the error in the approximation of the first derivative of u =
exp (—z?) at # = 1 using the RBF-FD formula for four equispaced nodes
and compares it to the error given by equation (7). As was the case with
three nodes, there is a critical value of the shape parameter ¢ above which
the system becomes ill conditioned leading to high errors. Nogtice also that
3k
4t

for small values of ¢/h the contribution of the second term, , is dominant



and the error shown in the left side of Figure 2 decreases as (1 ¢)*. For large

h
values of ¢ h the contribution of the rst term, — u'!")(z;), is dominant and

the error approaches a constant value. There is an intermediate region around
¢ h 102, where the three terms are comparable.

The corresponding results for N =5 and N = 6 are

- 4n 5
5(71) %U( (1) T2l (1) 2—C4U<56’1) (8)
and
R 3TH gy 255 h
6(71) @U( en +@U( (1) + g A U (1)
165 h?
W“(%) (9)

Thus, the errors of the RBF-FD formulas for N nodes can be written as

(N+k 1) 2 4
RN 1 N 2m) () (10)

m=0

N(il?l)

where A,, are constants which depend on N, and £k =0 if N odd and k =1
if N even. There are additional terms not included in this formula which are
O(hN*1 F). Thus, for the smaller values of ¢ h the last term in the above
expression is dominant and the error behaves as

O(h )N Yu(x;) if N odd
Sy = OO0 T -
ORN v eNyu(xy) if N even

For large values of ¢ h the rst term in the above expression is dominant and
the error approaches a value independent of ¢. This value coincides with the
corresponding standard nite di erence error. For intermediate values of ¢ h
some of the other terms might become dominant, depending on the particular
function v and the value of h used (see for instance Figure 3).

3.2  Second Derivative

Analogously, we derive the RBF-FD approximation to the second derivative
using three equispaced nodes. In this case



node N =3 N =14 N =15 N =6
1 T4h? 1 5906h2
2h 1
1 e tTTe 12h2 385 2
h 1 1+ h2 1 1+ 13 h? 4 ) 37 h? 4 1+ 1273 h?
" L n- . t Lefon”
! h2 2 h2 6 2 3 h2 142 3 h2 308 2
2 1+ h? 2 ) 11h2 5 1+ T4h? 5 N 1426 h2
" . n- “ 2
! h2 2 h2 4¢2 2h2 35 c2 2 h2 385 ¢2
z1 + h L i * 1+3ﬁ- 4 1+37h2 4 1+433h2
! h2 2 h2 2¢2 312 142 3h2 772
ok 7 13h2 1 - T4h2 1 2650h2
1‘ —_—
! 62 72 1212 7c2 12h2 772
153
x1 + 3h —385 2
Table 2

RBF-FD coe cients for second derivative in the limit ¢ h.

d*u

EE5<$1)::

1 U(l’l

h) +

su(r) + su

(.Tl —+ h)

(12)

The RBF-FD formula can be obtained by substituting function u by mul-
h, x1, x1 + h. Solving the

tiquadrics radial basis functions centered at x;

resulting linear system leads to

In the limit when ¢

h? h? h? h*
S +2 144z +55+27
h2 3 2
A 14+ =
C
h2 2 h2
2+ S +2 1+45 435
h2
202 1+ —
C
h,
h? 2 h?

(13)

which again coincides with the standard central di erence approximation to
the second derivative with a correction term of order h? 2. Table 2 shows the
corresponding results for other values of V.

Introducing the values of the coe cients given by (13) into (12), and expanding

u(zy + h) and u(z,

h) we nd the corresponding error




h2 h? Shg
V) "
Ik (z1) + 2 (z1) — 1 u(zy), (14)

é3($1) ~

where €3(x;) = 4" (z1) — u"(z,) for N = 3. The same error dependence applies

for N = 4 (é4(z,) =~ €3(x;)). For N =5

€s(z1) ~ —%u( zy) — o uTV)(z,) — 1l (z1) +
55 h?
‘1‘@“@1)1 (15)

and the same dependence is obtained for N = 6 (ég(z1) =~ €5(x1)).
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Fig. 3. Error in approximation of second derivative with RBF-FD formula with
five equispaced nodes. Left: ¢/h dependence for h = 0.04. Right: h dependence for
¢ = 0.1. Dot-dashed line equation (15). Dashed lines: each of the terms in equation
(15).

In general, the error associated to the RBF-FD formulas using N nodes can
be written as

(N+k)/2 4

EN(xl) ~ hN-Hc—Z Z Q_EU(N—f—k—Qm)(xl) (16)
m=0 c

where A, are constants which depend on N, and £ =0 if N even and k =1

if N odd. There are additional terms not included in this formula which are

O(hN+2k_1).

10



As an example, Figure 3 shows the error in the approximation of the second
derivative of u = exp( 2?) at * = 1 using the RBF-FD formula for ve
equispaced nodes and compares it to the error given by equation (15). Again,
the error predicted by the equation (in dot-dashed lines) closely agrees with
the actual numerical error (in solid lines) until a critical value of the shape
parameter is reached above which the system becomes ill-conditioned. Also
shown in the left side of the gure (thin dashed lines), are the contributions
of each one of the four terms appearing in equation (15) to the total error
5(x1). For the smaller values of ¢ h the contribution of the last term is domi-
nant and, therefore, the error decreases as (1 ¢)°. For larger values of ¢ h the
contribution of the rst term is dominant and, therefore, s5(x;) approaches
a constant (this is not observed in the numerical results because those large
values of ¢ h lie in the ill-conditioned region). For intermediate values of ¢ h,
there is a region where the second term is dominant and the error decreases
as (1 ¢)2.

4 Two-dimensional RBF-FD Formulas

In this section we use the same procedure of the previous Section to derive
RBF-FD formulas for the Laplacian. We compute the limit of these formulas
for ¢ h, and perform a Taylor expansion of the error in powers of h.

4.1  Laplacian

To compute the errors for the RBF-FD formulas of the Laplacian we can
proceed as in the previous section by computing the exact values of the co-
e cients with a symbolic program (Mathematica) and using these values to
perform a Taylor series expansion for the corresponding errors. We take the
nodes from a regular, equispaced grid, following the same order convention
used in reference [27] which is shown in Figure 4.

However, this procedure is only possible for a small number of nodes for which
Mathematica is able to calculate the solution. For instance, in the case of the
RBF-FD formula for ve nodes, the coe cients in the limit ¢ A are

4 10 1 ) :

and the error of the approximation is given by

11
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Fig. 4. Order of nodes in equispaced stencil.

5 h?
w0 (x)) +u®Y(xy) + 6 w9 (x;) + u®?(2y)

h2
12

oA u(xy)  (17)

where u(™™ denotes the partial derivative of function u with respect to z, m
times and respect to y, n times. For six nodes there is an additional coe cient

whose valueis 5 = (16 3)h? ¢*. This results in a small change of the error,
so that
16 bt
-~ ,an
6 5 3 A u M (x1)

Analogously, for N = 7 nodes,

4 15 _ 1
07 p2 c? L g2 6 c2 2T 2 2 2
B B 1 13 B B 4
B4 h? 6 2 5T 607 32
and the error is
4 h3 4 h3 2h4
-0 12 =10 A1 (22
’ b 32 ut 2 x) 3¢t u! )<X1) 3¢? u! )(Xl)

For N > 7 the computational requirements to obtain closed form solutions
for the coe cients and for the error using Mathematica are too high. How-
ever, it is possible to derive numerically the dependence of the error with h, ¢

12



and with the partial derivatives of the function by choosing appropriately the
function to approximate. For instance, to determine the coe cient of ©*? in
the Laplacian with /N nodes, one can use the corresponding RBF-FD formula
to compute numerically the Laplacian of u(x) = zy* at x; = (0 0) for di er-
ent values of h and c. Fitting the results to a power dependence with h and
¢ determines the exact form of the coe cient of u! ). In this way, we derive
formulas for the error for any number of nodes V.

The more interesting results are those for N =9 and N = 13 since then the
symmetries with respect to x and y increase the accuracy of the approximation.
For these particular values,

1
w0 (x;) +u® (%) : u®P(x;) B+
h? 2 h?
+O 47 U(20)<X1)+U(02)(I‘1) 0_2 @U(Xﬁ (18>

P12

and

1
13 — U(G 0)<X1> +U(O 6)<X1) h4
90
h4
093uV(x;)  05u®?(zy) + 093uY(x) =
h* ht
44 u(”)(xl) + u(“)(xl) — + 5 2u(x) = (19)

The error dependence with h and ¢ of the RBF-FD approximation of the
Laplacian with 5-8 nodes is identical to leading order. The nine nodes formula
also has the same dependence O(h?) although the coe cients are di erent.
For thirteen nodes the error dependence is O(h?') (see Section 4.2). For h ¢
the general behavior of the error dependence of the N nodes RBF-FD formula
for the Laplacian is

p 241 p 2+1 mA
mr

= P2 2(m+r) 2r) (x1) (20)
C m

N (Xl) h?

m=0 r=0

where A,,, are constants which depend on N, and p is the smallest even
number that satis es

p 1+4 N (p+1*+3

13
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Fig. 5. Relative error in the approximation of the Laplacian with RBF-FD formula
as a function of the number of nodes N. x; = (0.1, 0.2), ¢ = 0.2. Left; h = 0.025.
Right; h = 0.01.

4.2  Numerical experiments

In this Section we carry out numerical experiments to compute the error of
the RBF-FD formulas for the Laplacian, and use them to check the analytical
results derived in the previous section. As a first experiment we use the same
functions analyzed in reference [6]. Figure 5 shows the dependence of the
relative error at the point x; = (0.1, 0.2) with the number of nodes for the
case ¢ = 0.2 and hy = 0.025 (left side) and he = 0.01 (right side) (h; and ¢
are the parameters chosen in Figure 5 of reference [6]). The functions and the
corresponding symbols used are

3
D—)ulzzexp

4 4 B

(92 -2+ (9y—2)2) +§ exp (_(9::::+1)2 9y + 1))
49 10

%em(_(gm—n?:(ﬁay—?ﬂ? B %em(_(gx_4)2 - @z 77,
A<y = (1 _ g)a (1 _ %)ﬁ 1000 (1— 2)223 (1 — )P4 +

6 6
+y ( 3 +x 5)
V — uz = sin (7 z) sin (1y),

o— uy = 22 + 12,

For clarity of the figure we do not include the results of the analytical ex-
pressions of the error, but it should be remarked that they closely agree with
the numerical results. Notice the existence of plateaus where the errors are
approximately constant separated by transition regions where the errors de-
crease rapidly. This is the same behavior shown in Figure 5 of reference [6],
although both results are not identical. In fact, Figure 5 shows the relative

14



error in approximating the Laplacian with RBF-FD formulas at a specific lo-
cation x;, while Figure 5 of reference [6] shows the infinity norm of the relative
error in the solution of Poisson equation with the local RBF method.

0

10° ———

10— -
107 h 107

Fig. 6. Relative error in the approximation of the Laplacian with RBF-FD formula
as a function of h. x; = (0.1, 0.2), ¢ = 0.2. N =5 — 9 dot-dashed, N = 10 — 12
solid, N = 13 — 25 dotted, N = 26 — 28 dashed, N = 29 — 33 dotted.

The behavior observed in Figure 5 can be better understood by considering the
error dependence with h shown in Figure 6. This figure is similar to Figure 7 of
reference [6], and shows very similar behavior. Notice that if h < ¢, the error
is O(h?) for N = 5—12, O(h?*) for N = 13—28, O(h®) for N = 29—33. This is
the expected error dependence according to equation (20). If h = O(c) terms
of higher order in h which are neglected in equation (20) become important
and introduce a correction in the results. This is the reason why plateaus in
Figure 5 are much more constant for h = h, than for h = h;. Notice that
for (p+1)2+1 < N < (p+ 1)? + 3 the correction is not negligible and
the error formula (20) is not valid. This is due to the fact that the layout
symmetry is lost along the z and y axes.

Finally, to analyze the dependence of the error with shape parameter ¢, we
consider the function

u(x) = exp l— (:E — 3)2 — (y — %)Ql cos (2my) sin (7 x), (21)

which was used by Wright and Fornberg [27] in their analysis of the solution
of elliptic PDEs with RBF-FD and RBF-HFD formulas.

15
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Fig. 7. Error in approximation of Laplacian at x; = (0, 0) with N = 5 RBF-FD
formula as a function of the inverse of the shape parameter 1/c. From top to bottom,
h=0.2,h=0.1, h=0.05 hAh=0.02, h =0.01, h = 0.005. e; numerical results. o;
equation(17).

Figure 7 shows the error as a function of ¢ for different values of h. It is
equivalent to Figure 2 of reference [27] and shows a very similar behavior.
As before, it should be remarked that both results should not be identical
since Figure 7 shows the error in approximating the Laplacian with RBF-FD
formulas at a specific location x;, while Figure 2 of reference [27] shows the
infinity norm of the error in the solution of Poisson equation with the local
RBF method. Notice that there is a value of the shape parameter for which
the error is minimum. This value is approximately constant except for large
values of h. Notice also that for ¢ large and h small the resulting linear system
becomes ill-conditioned and rounding error deteriorates the accuracy of the
solution.

5 Optimal Shape Parameter

Several observations regarding the dependence of the error of the RBF-FD
formulas with respect to shape parameter ¢ are readily apparent from Figures
1 to 3 and T:

e The error decreases with increasing ¢ as some power which depends on the
value of ¢/h.
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For large values of ¢, the conventional nite di erence formulas are recovered
as it was shown in [7,10], and the error approaches a constant value which
is the error of conventional nite di erences.

There is a range of values of ¢ for which the error of the RBF-FD formulas
is smaller than the error of conventional nite di erences.

There is an optimal value of the shape parameter for which the error is
minimum.

Notice also that the optimal ¢ is either a value for which d y dc is zero
(Figure 2) or a value at which n =0 (Figures 1, 3 and 7).

Since we have derived closed form expressions for the error of RBF-FD for-
mulas, it is possible to compute in each case the optimal shape parameter ¢
provided that the value of the function and its derivatives are known. Equa-
tions (10), (16) and (20) have the general form

A (27)
C2m

N($1) h?

m=0

(22)

where a,, are constants which depend on the derivatives and values of the
particular function at z;. Denoting z = 1 ¢?, the optimal shape parameter
is obtained from the positive real roots of the polynomials

a; + 2asz + + MayM 1t =0 (23)

which implies d y dc = 0, or

ap + a1z + ax 2* + +ayM =0 (24)

which implies n = 0. Solution of these two polynomials results in 2M 1
roots for z = 1 2. It is important to remark that the optimal shape parameter
¢ only depends on the value of the function and its derivatives at the node.
Therefore, to st order, it is independent of the mesh size h. For larger values
of h there is a correction term of order O(h).

For instance, let us consider the RBF-FD approximation of the second deriva-
tive of u = exp ( z?) at * = 1 with ve equispaced nodes, which is shown in
Figure 3. The coe cients of the polynomials are given by (15), so that

ag — %U(VU(Il) a]; = EU(IV)CIH)
85 55
az = U (1) as = ﬁu(xl)
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In this case, the two roots of the rst polynomial (23) are complex (1 03

0 6581), and the three roots of the second polynomial (24) are two complex
(1482 13831) and one real, z = 0 1266. Thus, the optimal shape parameter
isc =1 01266 = 2 81, which is shown as a vertical dash-dotted line in
Figure 3. The optimal shape parameters for the rst derivative using three
and four nodes can be analogously computed (¢ = 12247 and ¢ = 0 8666,
respectively) and are also shown with vertical lines in Figures 1 and 2.

In the case of the N =5 8 Laplacian RBF-FD formula,

1 5
ag = 5 w0 0x) +u(x) an = o u? () +u®? ()
7
Ay = EU<X1)

The solution of equations (23) and (24) in terms of the derivatives are,

(c )2 = 14 u(x;)

5do
(c ) = 14 u(xy) (26)
5d2 25 d% + 14d4u(x1)

(25)

where,
dg = u(2 0) (Xl) + U(O 2) (fEl) d4 = u(4 0) (Xl) + U(O 4) (Xl)

Thus, for the ve nodes RBF-FD approximation to the Laplacian of function
(21) at x; = (0 0),

1 5
aozﬁ( 718014) = 59835 a1:622984:19153 ay = 0

Solution of equation (24) gives z =  ag a; = 3 1239, and the optimal shape
parameter is, therefore 1 ¢ = 31239 = 17675 which is shown in Figure
7.

As a last example we consider the function

25

W) = G 0o T 2

which is the solution of the problem described in Section 5.2 of reference [27].
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Fig. 8. Error in approximation of Laplacian at x; = (0, 0) with N = 9 RBF-FD
formula as a function of the inverse of the shape parameter 1/c. h = 0.1. ; numerical
results. o; equation(18).

Figure 8 shows the error in approximation of the Laplacian with the nine
nodes RBF-FD formula as a function of the inverse of the shape parameter.
This dependence is very similar to that observed in Figure 4 of reference [27].
Also shown is the optimal value of the shape parameter which, using equation

(18), results in 1/¢* = v/0.0685 = 0.2617.

The problem of how to select appropriate values for the shape parameter
has been of primary concern both from the theoretical and from the appli-
cations point of view. For the global RBF method [14,15], it has been often
assumed that the value of the shape parameter ¢ should vary linearly with
node spacing h. For instance, for interpolation problems, Hardy [12] suggests
the use of ¢ = 0.815d, where d is the average distance to the nearest neigh-
bor (d = h for equispaced nodes). Franke [11] on the other hand recommends
¢ = 1.25D/v/N, where D is the diameter of the smallest circle containing
all data points (¢ = 1.25+/2h for equispaced nodes). Other authors proposed
techniques to select good values of the shape parameter [2,17,20]. With re-
gards to the solution of PDEs, the work of Huang et.al. [13| using arbitrary
precision computations, is of particular relevance. From their numerical re-
sults they derive a formula for the error dependence on shape parameter ¢
and nodal spacing h. From this formula they obtain the optimal value of the
shape parameter that minimizes the error; ¢ = —log A/(3a h), where a and A
are constants that depend of the problem.
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However, our results show that, at least for the local RBF method, the value of
c is independent of h. Nevertheless, it should be pointed out that, in practical
applications, the node density is often increased (h decreased) in regions where
the solution varies rapidly. In these boundary layer type regions, the solution
varies in small characteristic lengths (I L). Thus, dy = O(L 1)?, dy =
O(L 1)* and, therefore, from (25)-(26) the optimal shape parameter is ¢ =
O(l L). In those regions, therefore, the shape parameter should be taken small
not because h is small, but because the solution varies rapidly.

6 Unstructured nodes

In this Section we extend our results to the relevant case of unstructured nodes.
For instance, in the case of three non-equispaced nodes [x;  h x1 z1+ hl,
the coe cients of the RBF-FD formula for the rst derivative in the limit
¢ hare

B L” B R
! h(l+ ) 2 2 T h 2 2
1 h2

= — 14 -— 27

= raxr taw &)

which coincides with the standard 3-node nite di erence approximation to
the 1st derivative with a correction term of order h? 2. Also notice that
for = 1 we recover the results of equation (5). The corresponding error of
approximation is

h? h? h?
3(21) o (z1) + ﬁu(ﬂfl) + 1) ﬂu(zw(xl) +
h3
which coincides with equation (6) for = 1. Similarly, for N = 4 nodes
[zy h 21 x14+ 1h 21+ ( 1+ 2)h] the error is
h? h?
a(z1) 1(1+ 2) ﬂu(lv)(fb’l) 1 (14 2) 52 Y (z1) +
h3
+3 1 (1+ 2) @U(ﬂfl) (29)

which coincides with equation (7) for | =1, 5=1.
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Fig. 9. Error in approximation of first derivative with RBF-FD formula for three
non-equispaced nodes as a function of ¢/h. u(x) = exp (—z?), z = 1, h = 0.0L.

Figure 9 shows the error as a function of ¢/h in the approximation of the
first derivative with RBF-FD formula corresponding to three non-equispaced
nodes. The results correspond to the numerical solution. The analytical results
corresponding to equation (28) are not shown for clarity of the figure but they
coincide with the numerical results. It can be observed that for large values
of ¢/h the error of standard finite difference formulas is recovered. For smaller
values of ¢/h the error decreases as (h/c)?. Notice also that the optimal value
of the shape parameter is independent of A. This is to be expected since all
the terms of order h? in equation (28) contain the factor A, and therefore
this factor disappears when equating the error to zero. Similarly, the optimal
value of the shape parameter in the case of four non-equispaced nodes is also
independent of A since all the tems of order A* in equation (29) contain the

factor Ay (A1 + Ag).

In the case of the second derivative, the coefficients of the RBF-FD formula
in the limit ¢ > h using three non-equispaced nodes [z, — h, z,, z; + Ah] are

2 (1_)\(/\2+/\)h_2)

N STCIEEBY 2 &
V2 1_)\2—4A+1h_2
27 Rz 2\ 2
) 3\ — 1A
W= AT (1+72 g) (30)
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The corresponding formula for the approximation error is

A—1 h
e3(zy) =~ —a hu"(z1) + (A — 1) gu’(xl) +

This formula coincide with equation (14) when A = 1. Notice that if A # 1
the dependence of the error with h is only first order. Notice also that, to first
order, the optimal value of the shape parameter, ¢*, is independent of A since
all the terms of order h in equation (31) contain the same factor (A —1).

Similar formulas can be derived for approximating the first and second deriva-
tives with more nodes. For instance, the 4-node RBF-FD approximation to
the second derivative using nodes [z1 — h, z1, 1 + Ah, 1 + (A1 + A2)h] is

64(.’13'1) ~ [AQ — )\1 ()\1 + )\2 — 2)] EU ($1) + g’u ("L'l) - @U("L’l)

As in previous cases the value of ¢* is independent of the location of the nodes
and of the local distance h. In 1D this result is general.

0.75 . . .
- ——h=0.005
ol —A—h=0.01 |
—&—h=0.02
—6—h=0.05

—6—h=0.1

0.55¢

0.5+

0.45 ' ; '
0 0.5 1 A 19 2 2.5

Fig. 10. Optimal value of the shape parameter in the approximation of the Laplacian
of function (21) at x; = (0, 0) with N = 5 non-equispaced RBF-FD formula.

However, in 2D the value of ¢* depends on the location of the nodes in the
stencil but not on the nodal distance h. Consider for instance the equispaced
5-node stencil approximation of the Laplacian, in which we move the location
of one node. Thus, the coordinates of the five nodes are [(z1, y1), (z1, 11 +

22
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h) (x1+h y1) (z1 v1» h) (z1 h y1)]. Figure 10 shows the value of ¢ as
a function of  corresponding to the Laplacian of function (21). For =1, the
value of ¢ for equispaced nodes is recovered (¢ = 1 17675 = 0 5658). For
other values of the value of ¢ varies continuously. Notice that when ¢ h,
the value of ¢ is independent of h. For ¢ = O(h) there are corrections of
higher order that come into play. In the case of fully arbitrary nodes the
analysis is more complex but can be carried out in the same manner described
in Section 4.

To understand the relationship between standard nite di erences and RBF-
FD formulas, consider the function value at a node x; expressed by a Taylor
expansion

Ly

u(x;) = u(xy) +  u(xy) x; + 5 u(xy) (x5 X]) + e

where x; = X; X1, and e; is the error in the expansion. Here, we have
denoted the matrix scalar product by : . A linear combination with coe cients
i i=1 N equals

N N N
qu(x;) = u(xy) .+ ou(xy) iXi +
i=1 =1 =2
N N
+ = 2u(x1) i (% X;r) + i €
i=2 i=2

This FD formula approximates the Laplacian to rst order exactly (i.e.
N su(x;)) = wu(x;)) for constant, linear and quadratic functions, provided

that the coe cients satisfy the following conditions:

;=0 ix; =0 (x; x;) ;=21 (33)

These are a total of 6 conditions which have to be satis ed for the approxi-
mation to be consistent [23]. In matrix form, with x; = (x; y;), we can write

(33) as
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1 1 1 1 1 0
0 zo o3 TN 2 0
0 v2 ys YN s 0
0 moy2 x3ys  TNYN 4 0
0 x5 a3 3 2
0 9 3 YA N 2

Thus, if six nodes are used in the stencil and the matrix has full rank, there is
a unique set of coe cients ; that satisfy the constraints (33). If N < 6 there
is no solution and if N > 6 there are in nitely many solutions. In this case, a
unique set of coe cients can be derived, for instance, by the generalized nite
di erence method (GFDM) [19] or by moving least squares methods [16]. If
Taylor series is carried out until next order and the FD formula is required to
be exact also for cubic functions, then four additional constraints have to be
satis ed (corresponding to the coe cients of u®9 4©3) 42D ¢(12) Thus,
a unique solution will exist for N = 10. In general, if the system is full rank a
unique solution of order p exists for N = (p+2) (p+3) 2 (so called triangle
numbers).

With RBF-FD this limitation does not exist. In fact, adding a new node to an
existing stencil also adds the corresponding RBF to the basis of the functional
space. Therefore the matrix associated to system (2) is always square and,
provided it is of full rank, it has a unique solution. For values of N for which
the standard nite di erence formulation has a unique solution, the coe cients
of RBF-FD in the limit ¢ are identical to the coe cients of standard

nite di erences. Thus, the order of RBF-FD formulas coincide with the order

of the corresponding nite di erence formulas (order 1 for6 N 9, order
2for10 N 14,order3for15 N 20 ).

Consider, for instance, the case of 6 nodes. Following the same procedure
described in Section 4, the error of approximation in the limit ¢ h can be
expressed as

6 h Aoou(go)(xl) + A01U(2 1)(X1) + Aogu(l 2)(X1)+

h
-+ AO 3 U(O 3) (Xl) + -5 A1 0 u(l 0) (Xl) —+ Al 1 U(O 1 (l’l) (34)

c
where the coe cients A;; are constants which can be computed for a given
node distribution. Notice that the error is of order h, like with standard nite

di erences. The coe cients Ay ; satisfy the compatibility constraints (33) and
therefore coincide with the coe cients of the standard 6-node FD formula.
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Fig. 11. Approximation error for Laplacian of function (21) at x3 = (0, 0)
with N = 6 non-equispaced RBF-FD formula. x [(0,0), (—1.17h,0.72h),

(—0.82h,—1.21h), (0.4h,—0.5h), (1.16Ah,0.28h), (0,1.19h)]. Left: dependence with
¢/h (h = 0.01). Right: dependence with h (¢ = 2). Solid line; numerical results.
Dot-dashed line: equation (34). Dashed line: finite differences. Dotted line: optimal
value c*.

Figure 11 compares the analytical approximation of the error given by equation
(34) (dot-dashed line) with the actual numerical error (solid line) for a specific
node distribution shown in the right side of the figure. Similarly to what was
observed for the case of equispaced nodes (Figure 7) there is an optimal value
of the shape parameter (¢* = 0.1754) for which the error becomes zero. This
value is shown by a dotted line in the left side of the figure. To the left of
that minimum the error decreases as ¢~2 and to the right of that minimum it
approaches the error corresponding to standard finite differences. As before,
the value of ¢* is simply obtained by equating to zero equation (34).

The right side of Figure 11 compares the dependence of the error with h
given by equation (34) to the numerically computed dependence. To obtain
the numerical dependence with h we use the same distribution shown in the
inset of the figure but vary its scale with h. Both results are in good agreement
until the onset of ill-conditioning and show that the error reduction is O(h).

Similar results can be obtained for any value of N. In fact, it is possible to
derive a general formula for the error in approximating the Laplacian with N
non-equispaced nodes in the limit ¢ > h. This formula is the analogous of
equation (20) for unstructured grids;
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(p k) 241 p+2(1 m) A
Amr

v(xi) P prallm) ) (%) (35)

2m
m=0 r=0 ¢

where k = 0 if p even and k = 1 if p odd, and

(p +2)(p+ 3) N < (p+3)(p+4)
2 2

Equation (35) has the same form than equation (22) and, therefore, the pro-
cedure described in Section 5 for computing the optimal value of the shape
parameter is also applicable to the case of non-equispaced nodes.

7 Conclusions

We have derived series solutions in powers of the shape parameter ¢, and nodal
distance h, for the error in approximating di erential operators with RBF-FD
formulas at a certain location x;. The main conclusions of our work are the
following:

RBF-FD formulas approach conventional nite di erence formulas in the
limit of in nitely at basis functions (¢ = h).

For each formula, there is a range of values of the shape parameter for which
RBF-FD formulas are signi cantly more accurate than the corresponding
conventional nite di erence formulas.

In the case of equispaced nodes, Ding et.al. [6] concluded that the error de-
pendence with ¢ and A of the local multiquadric-based di erential quadra-
ture (LMQDQ) method for the Laplacian is y = O(h ¢)", withn 19
for6 N 9 n 36for9< N 27,n 49for27< N 34. However,
we nd that y = O(h? ), where p is only a function of N, and ¢ is a
function of N, h, and the value of the function and its derivatives at x;.
For equispaced nodes; p=2for5 N 12, p=4for13 N 28, and
p=6for29 N 52, ....

For non-equispaced nodes; p=1for6 N 9, p=2for10 N 14,
p=3forls N 20,....

There are speci ¢ values of N for which the error is signi cantly smaller than
the error for N 1. These values should be used in practical applications.
For equispaced nodes; N = (p  1)? + 4, where the order p is any even
number. For non-equispaced nodes; N = (p + 2) (p + 3) 2 where the order
p is any integer.

For each RBF-FD formula there is an optimal value of the shape parameter,
¢ for which the error is minimum. This value is independent of h and only
depends on the value of the function and its derivatives at x;.
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It should be pointed out, that in order to use the optimal value of the shape
parameter at each location, it is necessary to know the value of the function
and its derivatives which, in practical cases, it is not known a priori. However,
in the solution of linear elliptic problems with the RBF-FD method, one could

rst compute an approximate solution using a constant value of the shape pa-
rameter, and then use this approximate solution to compute the optimal value
of the shape parameter at each node. With these values a new more accurate
solution can be computed applying again the RBF-FD method. In non-linear
problems, where some type of iterative procedure is needed, the updating of
the shape parameter at each location can be e ciently incorporated into the
iterative algorithm.
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