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RBF-FD formulas and convergence properties

Victor Bayona, Miguel Moscoso, Manuel Carretero,
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Gregorio Millán Institute, Universidad Carlos III de Madrid, Avenida de la

Universidad 30, 28911 Leganés, Spain

Abstract

The local RBF is becoming increasingly popular as an alternative to the global
version that su�ers from ill-conditioning. In this paper, we study analytically the
convergence behavior of the local RBF method as a function of the number of nodes
employed in the scheme, the nodal distance, and the shape parameter. We derive
exact formulas for the �rst and second derivatives in one dimension, and for the
Laplacian in two dimensions. Using these formulas we compute Taylor expansions
for the error. From this analysis, we �nd that there is an optimal value of the shape
parameter for which the error is minimum. This optimal parameter is independent
of the nodal distance. Our theoretical results are corroborated by numerical exper-
iments.
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1 Introduction

Radial Basis Functions (RBF) originate as a very e�cient technique for inter-
polation of multidimensional scattered data (see [8] and references therein).
Later, it became popular as a truly mesh-free method for the solution of par-
tial di�erential equations (PDEs) on irregular domains. This application of
RBFs was �rst proposed by Edward Kansa [14,15] and it is based on enforc-
ing collocation of the PDE in a set of scattered nodes, to compute a global
solution in the space spanned by a set of identical RBFs translated to a set
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of RBF centers. The main advantages of the method are ease of programming
and potential spectral accuracy, but its main drawback is ill-conditioning of
the resulting linear system. To overcome this drawback a local version of the
method was later proposed by several authors [3,24,26] simultaneously. The
idea of the local RBF method, is to sacri�ce the spectral accuracy inherent to
the global method, in order to have a sparse better-conditioned linear system
capable of solving large multidimensional PDEs. Another advantage of the
local version of the method is its suitability for problems with discontinuous
boundary conditions [1,5].

The local RBF method can also be considered as a generalization of the clas-
sical �nite di�erence (FD) method to scattered node layouts. In classical �nite
di�erences, derivatives of a function u at a given point are approximated as
linear combinations of the values of u at some surrounding nodes. In 1-D, for
example, the kth-derivative at node xj is approximated by

dku

dxk

�

�

�

�

�

x=xj

≈
N
X

i=1

w
(k)
j;i u(xi) j = 1, . . . , N,

where xi is a set of surrounding nodes which usually are equispaced. The
unknown weights w

(k)
j;i are usually computed using polynomial interpolation

[9]. These 1-D formulas can be combined to create FD formulas for partial
derivatives in two or more dimensions, provided that the nodes in the stencil
are located on some kind of structured grid, which severely limits the geo-
metric 
exibility of the method. In the case of RBF �nite di�erence formulas
(RBF-FD) this restriction is eliminated since the weights are obtained by RBF
interpolation on the set of surrounding nodes.

Once the weights for the derivatives appearing in the PDE have been deter-
mined for each scattered node, the di�erential operator is enforced at each
of those nodes. This procedure leads to a sparse, linear system of equations
whose solution yields the approximate values of u at the nodes. This local
RBF method has been successfully applied to solve a variety of problems
[1,4,5,18,22,24,25].

However, papers addressing the convergence properties of the method are more
scarce. It is well known that the local method lacks the spectral accuracy of
the global RBF method, but the exact dependence of the error with average
distance between nodes h, shape parameter c, and number of supporting nodes
N , is not known. We mention, though, that Ding et.al. [6] carried out numerical
experiments using Poisson's equation on an equispaced grid to experimentally
determine these dependencies. They found an error estimate ǫ ≈ O((h/c)n)
in which n is a constant dependent on the number of nodes N used in the
formulas (n ≈ 1.9 for 6 ≤ N ≤ 9, n ≈ 3.6 for 9 < N ≤ 27, n ≈ 4.9 for
27 < N ≤ 34).
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Fornberg and coworkers [7,10] analyzed the behavior of RBF interpolants in
the limit of increasingly 
at radial functions (c → ∞). They found that in
the 1-D case, with very simple requirements on the basis functions, the inter-
polants converge to the Lagrange interpolating polynomial and, therefore, in
this limit RBF-FD di�erentiation is equivalent to the standard �nite di�erence
method. Wright and Fornberg [27] used Hermite RBF interpolation method
to derive new �nite di�erence formulas (RBF-HFD) which also include a lin-
ear combination of derivatives at some surrounding nodes. They used cardinal
RBF interpolants to derive RBF-FD and HFD formulas in some simple cases
and studied their behavior in the limit of 
at basis functions. They also an-
alyzed numerically the dependence of the error on the shape parameter by
using them to solve some simple elliptic PDE problems.

In this work we address the convergence properties of RBF-FD formulas on
equispaced grids and analyze the dependence of the error with nodal distance
h, shape parameter c, and number of supporting nodes N . The main result
of our study is to analytically show the existence of an optimal value of the
shape parameter that minimizes the truncation error. The optimal value is in-
dependent of the nodal distance and only depends on the value of the function
and its derivatives.

The paper is organized as follows. In Section 2 we describe the RBF-FD for-
mulas and how to determine the unknown weighting coe�cients. In Section
3 we use Taylor series expansion in the limit c ≫ h to derive closed form
expressions of the weighting coe�cients for �rst and second order derivatives.
A series expansion in powers of h leads to closed form expressions for the error
as a function of h and c. In Section 4 we derive the corresponding expressions
for the error of RBF-FD formulas to approximate the Laplacian. The results
of Sections 3 and 4 are used in Section 5 to derive the optimal value of the
shape parameter. Section 6 extends these results to the case of non-equispaced
nodes. Finally, we summarize the main results of this work in Section 7.

2 RBF-FD formulation

In this section we describe how the RBF-FD formulas are derived and how the
weights can be exactly computed. Consider a stencil consisting of N scattered
nodes x1, . . . ,xN , and a di�erential operator L. For a given node, say x1, the
objective is to approximate Lu(x1) as a linear combination of the values of u
at the N scattered nodes, so that

Lu(x1) ≈
N
X

i=1

αi u(xi). (1)
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To determine the weighting coe�cients αi, a set of base functions φi(x), i =
1, . . . , N are required. In that base,

Lφj(x1) =
N
X

i=1

αi φj(xi), j = 1, 2, . . . , N. (2)

This is a system of N linear equations on N unknowns whose solution yields
the unknown weighting coe�cients αi. In the following we will use multi-
quadrics as RBFs,

φi(x) =
q

c2+ k x − xi k22

where c is the shape parameter. As c increases the multiquadrics becomes
increasingly 
at and this has an important e�ect in the accuracy of the ap-
proximation. The general behavior is such that the larger the shape parameter
c, the smaller the approximation error. However, the multiquadric RBF ap-
proximation su�ers from a trade-o� principle [21], i.e. increasing the shape
parameter to improve the accuracy results in a more ill-conditioned matrix
and, therefore, to a signi�cant increase of rounding errors.

3 One-dimensional RBF-FD Formulas

In this section we show how to derive the exact RBF-FD formulas for �rst
and second derivatives. We compute the limit of these formulas for c ≫ h,
and perform a Taylor expansion of the error in powers of h.

3.1 First Derivative

Consider an RBF-FD approximation to the �rst derivative using N = 3 equi-
spaced nodes. In this case,

û′(x1) = α1 u(x1 − h) + α2 u(x1) + α3 u(x1 + h) . (3)

Substituting function u by multiquadrics radial basis functions centered at
x1 − h, x1, and x1 + h, results in the following linear system of equations,

h√
h2 + c2

= c α1 +
√
h2 + c2 α2 +

√
4 h2 + c2 α3

0 =
√
h2 + c2 α1 + c α2 +

√
h2 + c2 α3 (4)
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node N = 3 N = 4 N = 5 N = 6

x1 − 2h
1

12h

�

1 +
8h2

c2

�

1

20h

�

1 +
1294h2

77 c2

�

x1 − h − 1

2h

�

1 +
h2

2 c2

�

− 1

3h

�

1 +
5h2

2 c2

�

− 2

3h

�

1 +
2h2

c2

�

− 1

2h

�

1 +
887h2

154 c2

�

x1 0 − 1

2h

�

1 − 3h2

c2

�

0 − 1

3h

�

1 − 720h2

77 c2

�

x1 + h
1

2h

�

1 +
h2

2 c2

�

1

h

�

1 − h2

2 c2

�

2

3h

�

1 +
2h2

c2

�

1

h

�

1 − 73h2

154 c2

�

x1 + 2h − 1

6h

�

1 +
h2

c2

�

− 1

12h

�

1 +
8h2

c2

�

− 1

4h

�

1 +
334h2

77 c2

�

x1 + 3h
1

30h

�

1 +
2223h2

154 c2

�

Table 1
RBF-FD coe�cients for �rst derivative in the limit c ≫ h.

− h√
h2 + c2

=
√
4 h2 + c2 α1 +

√
h2 + c2 α2 + c α3

whose solution is,

α1 = −α3 = − 1

4 h

1 +

s

1 +
4 h2

c2
s

1 +
h2

c2

, α2 = 0 .

In the limit when c ≫ h

α1 = −α3 = − 1

2 h

 

1 +
h2

2 c2

!

, α2 = 0 , (5)

which coincides with the standard central di�erence approximation to the �rst
derivative with a correction term of order h2/c2 (see Table 1).

Including additional nodes simply leads to larger linear systems to determine
the coe�cients of the RBF-FD formulas for the �rst derivatives. Using a sym-
bolic language (such as Mathematica or Maple) it is possible to derive the
exact formulas for the coe�cients with up to at least six equispaced nodes
(the formula for six nodes computed with Mathematica is 45 pages long).
More useful is to compute the Taylor series expression when c ≫ h. These
results are shown in Table 1 for terms up to c−2.

It is interesting to compute the errors resulting from these formulas. For in-
stance, in the case of N = 3, introducing the values of the coe�cients given
by (5) into (3), and expanding u(x1 + h) and u(x1 − h) results in,
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û′(x1)=
1

2h
1+

h2

2c2
[u(x1+h)−u(x1−h)]=

=
1

2h
1+

h2

2c2
2hu′(x1)+

h3

3
u′′′(x1)+... ⇒

⇒ ǫ3(x1)≡û
′(x1)−u

′(x1)≈
h2

6
u′′′(x1)+

h2

2c2
u′(x1) (6)

Thus,itissecondorderinh,likethestandardcentraldifferenceformula,and
secondorderin(h/c)2.

10
0

10
2

10
4

10
−6

10
−4

10
−2

10
0

c/h

|ε
3
|

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

h

Fig.1.ErrorinapproximationoffirstderivativewithRBF-FDformulaforthree
equispacednodes.u(x)=exp(−x2),x=1.Left:c/hdependenceforh=0.01.
Right:hdependenceforc=10.Dashedlineequation(6).

Wecanchecktheseresultsnumericallybycomputingtheerrorinapproximat-
ingthefirstderivativeofu=exp(−x2)atx=1.Figure1showstheerror
asafunctionofc/h(left)andasafunctionofh(right).Bothfiguresshow
thatthenumericalresults(insolidlines)closelyagreewithequation(6)(in
dot-dashedlines)untilacriticalvalueofc/hisreached(c/h≈5000)when
thelinearsystem(4)becomesillconditionedandroundingerrorsdeteriorate
theaccuracyofthesolution.Forsmallvaluesofc/h,thecontributionofthe

secondtermin(6),
h2

2c2
u′(x1),isdominantandtheerrorshownintheleft

sideofFigure1decreasesas(1/c)2.Forlargevaluesofc/h,thecontribution

ofthefirstterm,
h2

6
u′′′(x1),isdominantandtheerrorapproachesaconstant

value.Inthecaseoftheerrordependencewithh,shownintherightsideof
thefigure,thefirsttermisdominantthroughout.
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Noticethattheextraparametercmakesitpossibleto minimizetheapprox-
imationerrorgivenbyequation(6).Infact,forthissimplecasetheerroris
zeroforc2 = −3u′(x1)/u′′′(x1).Ifu′(x1)andu′′′(x1)haveoppositesignsthen
c2ispositiveandthereisarealpositivevalueofcforwhichtheerroriszero
(seeSection5).

Wecanrepeatthesameprocedureforthecase N =4.Aftersomealgebra

ǫ4(x1)≈ −
h3

12
u(IV)(x1)−

h3

c2
u′′(x1)+

3h3

4c4
u(x1), (7)

whereǫ4(x1)=̂u′(x1)−u′(x1)forN =4.Noticethatinthiscase,theleading
contributionofthetermsoforderO(h/c)2intheexpansionofthecoefficients
(seeTable1)cancelsoutanditisnecessarytoincludetermsoforderO(h/c)4

inthoseexpansions.
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Fig.2.ErrorinapproximationoffirstderivativewithRBF-FDformulawithfour
equispacednodes.u(x) =exp(−x2),x=1.Left: c/hdependenceforh=0.01.
Right:hdependenceforc=10.Dashedlineequation(7).

Figure2showstheerrorintheapproximationofthefirstderivativeofu=
exp(−x2)atx =1usingthe RBF-FDformulaforfourequispacednodes
andcomparesittotheerrorgivenbyequation(7). As wasthecase with
threenodes,thereisacriticalvalueoftheshapeparametercabovewhich
thesystembecomesillconditionedleadingtohigherrors. Noticealsothat

forsmallvaluesofc/hthecontributionofthesecondterm,
3h3

4c4
,isdominant
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and the error shown in the left side of Figure 2 decreases as (1/c)4. For large

values of c/h the contribution of the �rst term,
h3

12
u(IV )(x1), is dominant and

the error approaches a constant value. There is an intermediate region around
c/h ≈ 102, where the three terms are comparable.

The corresponding results for N = 5 and N = 6 are

ǫ5(x1) ≈ − h4

30
u(V )(x1) − 4 h4

3 c2
u′′′(x1) − 5 h4

2 c4
u′(x1) (8)

and

ǫ6(x1) ≈ h5

60
u(V I)(x1) +

37 h5

28 c2
u(IV )(x1) +

255 h5

28 c4
u′′(x1) −

− 165 h5

28 c6
u(x1) . (9)

Thus, the errors of the RBF-FD formulas for N nodes can be written as

ǫN (x1) ≈ hN−1
(N+k−1)=2

X

m=0

Am

c2m
u(N−2m)(x1) (10)

where Am are constants which depend on N , and k = 0 if N odd and k = 1
if N even. There are additional terms not included in this formula which are
O(hN+1−k). Thus, for the smaller values of c/h the last term in the above
expression is dominant and the error behaves as

ǫN (x1) =











O(h/c)N−1 u′(x1) if N odd

O(hN−1/cN) u(x1) if N even
(11)

For large values of c/h the �rst term in the above expression is dominant and
the error approaches a value independent of c. This value coincides with the
corresponding standard �nite di�erence error. For intermediate values of c/h
some of the other terms might become dominant, depending on the particular
function u and the value of h used (see for instance Figure 3).

3.2 Second Derivative

Analogously, we derive the RBF-FD approximation to the second derivative
using three equispaced nodes. In this case
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node N = 3 N = 4 N = 5 N = 6

x1 − 2h − 1

12h2

�

1 +
74h2

7 c2

�

− 1

12h2

�

1 +
5906h2

385 c2

�

x1 − h
1

h2

�

1 +
h2

c2

�

1

h2

�

1 +
13h2

6 c2

�

4

3h2

�

1 +
37h2

14 c2

�

4

3h2

�

1 +
1273h2

308 c2

�

x1 − 2

h2

�

1 +
h2

c2

�

− 2

h2

�

1 +
11h2

4c2

�

− 5

2h2

�

1 +
74h2

35 c2

�

− 5

2h2

�

1 +
1426h2

385 c2

�

x1 + h
1

h2

�

1 +
h2

c2

�

1

h2

�

1 +
9h2

2 c2

�

4

3h2

�

1 +
37h2

14 c2

�

4

3h2

�

1 +
433h2

77 c2

�

x1 + 2h − 7

6c2

�

1− 13h2

7c2

�

− 1

12h2

�

1 +
74h2

7 c2

�

− 1

12h2

�

1 +
2650h2

77 c2

�

x1 + 3h
153

385 c2
Table 2
RBF-FD coe�cients for second derivative in the limit c ≫ h.

d2u

dx2
(x1) = β1 u(x1 − h) + β2 u(x1) + β3 u(x1 + h) . (12)

The RBF-FD formula can be obtained by substituting function u by mul-
tiquadrics radial basis functions centered at x1 − h, x1, x1 + h. Solving the
resulting linear system leads to

β1 = β3 =

2 +

 

h2

c2
+ 2

!

s

1 + 4
h2

c2
+ 5

h2

c2
+ 2

h4

c4

4 h2

 

1 +
h2

c2

!3=2

β2 = −
2 +

 

h2

c2
+ 2

!

s

1 + 4
h2

c2
+ 3

h2

c2

2 h2

 

1 +
h2

c2

! .

In the limit when c ≫ h,

β1 = β3 =
1

h2

 

1 +
h2

c2

!

, β2 = − 2

h2

 

1 +
h2

c2

!

, (13)

which again coincides with the standard central di�erence approximation to
the second derivative with a correction term of order h2/c2. Table 2 shows the
corresponding results for other values of N .

Introducing the values of the coe�cients given by (13) into (12), and expanding
u(x1 + h) and u(x1 − h) we �nd the corresponding error
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ǫ̂3(x1)≈
h2

12
u(IV)(x1)+

h2

c2
u′′(x1)−

3h2

4c4
u(x1), (14)

wherêǫ3(x1)=̂u′′(x1)−u′′(x1)forN =3.Thesameerrordependenceapplies
forN =4(̂ǫ4(x1)≈ǫ̂3(x1)).ForN =5

ǫ̂5(x1)≈ −
h4

90
u(VI)(x1)−

37h4

42c2
u(IV)(x1)−

85h4

14c4
u′′(x1) +

+
55h4

14c6
u(x1), (15)

andthesamedependenceisobtainedforN =6(̂ǫ6(x1)≈ǫ̂5(x1)).
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|ε
5
|
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−4

10
−2
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10
−4

10
−2

10
0

10
2

h

Fig.3.Errorinapproximationofsecondderivative with RBF-FDformula with
fiveequispacednodes.Left:c/hdependenceforh=0.04.Right:hdependencefor
c=0.1.Dot-dashedlineequation(15).Dashedlines:eachofthetermsinequation
(15).

Ingeneral,theerrorassociatedtotheRBF-FDformulasusingN nodescan
bewrittenas

ǫN(x1)≈ hN+k−2
(N+k)/2

m=0

Am

c2m
u(N+k−2m)(x1) (16)

whereAm areconstantswhichdependonN,andk=0ifN evenandk=1
ifN odd.Thereareadditionaltermsnotincludedinthisformulawhichare
O(hN+2k−1).
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As an example, Figure 3 shows the error in the approximation of the second
derivative of u = exp (−x2) at x = 1 using the RBF-FD formula for �ve
equispaced nodes and compares it to the error given by equation (15). Again,
the error predicted by the equation (in dot-dashed lines) closely agrees with
the actual numerical error (in solid lines) until a critical value of the shape
parameter is reached above which the system becomes ill-conditioned. Also
shown in the left side of the �gure (thin dashed lines), are the contributions
of each one of the four terms appearing in equation (15) to the total error
ǫ̂5(x1). For the smaller values of c/h the contribution of the last term is domi-
nant and, therefore, the error decreases as (1/c)6. For larger values of c/h the
contribution of the �rst term is dominant and, therefore, ǫ̂5(x1) approaches
a constant (this is not observed in the numerical results because those large
values of c/h lie in the ill-conditioned region). For intermediate values of c/h,
there is a region where the second term is dominant and the error decreases
as (1/c)2.

4 Two-dimensional RBF-FD Formulas

In this section we use the same procedure of the previous Section to derive
RBF-FD formulas for the Laplacian. We compute the limit of these formulas
for c ≫ h, and perform a Taylor expansion of the error in powers of h.

4.1 Laplacian

To compute the errors for the RBF-FD formulas of the Laplacian we can
proceed as in the previous section by computing the exact values of the co-
e�cients with a symbolic program (Mathematica) and using these values to
perform a Taylor series expansion for the corresponding errors. We take the
nodes from a regular, equispaced grid, following the same order convention
used in reference [27] which is shown in Figure 4.

However, this procedure is only possible for a small number of nodes for which
Mathematica is able to calculate the solution. For instance, in the case of the
RBF-FD formula for �ve nodes, the coe�cients in the limit c ≫ h are

α0 = − 4

h2
− 10

3 c2
, αi =

1

h2
+

5

6 c2
, i = 1, . . . , 4 ,

and the error of the approximation is given by
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x1 

x2 

x3 

x4 

x5 

x6 

x7 x8 

x9 

x10 

x11 

x12 

x13 

Fig. 4. Order of nodes in equispaced stencil.

ǫ5 ≈ h2

12

�

u(4;0)(x1) + u(0;4)(x1)
�

+
5 h2

6 c2

�

u(2;0)(x1) + u(0;2)(x1)
�

−

− 7 h2

6 c4
u(x1) , (17)

where u(m;n) denotes the partial derivative of function u with respect to x, m
times and respect to y, n times. For six nodes there is an additional coe�cient
whose value is α5 = −(16/3) h2/c4. This results in a small change of the error,
so that

ǫ6 ≈ ǫ5 − 16 h4

3 c4
u(1;1)(x1) .

Analogously, for N = 7 nodes,

α0 = − 4

h2
− 6

c2
, α1 =

1

h2
+

5

6 c2
, α2 =

1

h2
+

7

2 c2
,

α3 = α4 =
1

h2
+

13

6 c2
, α5 = α6 = − 4

3 c2
,

and the error is

ǫ7 ≈ ǫ5 − 4 h3

3 c2
u(1;2)(x1) − 4 h3

3 c4
u(1;0)(x1) − 2 h4

3 c2
u(2;2)(x1) .

For N > 7 the computational requirements to obtain closed form solutions
for the coe�cients and for the error using Mathematica are too high. How-
ever, it is possible to derive numerically the dependence of the error with h, c
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and with the partial derivatives of the function by choosing appropriately the
function to approximate. For instance, to determine the coe�cient of u(1;2) in
the Laplacian with N nodes, one can use the corresponding RBF-FD formula
to compute numerically the Laplacian of u(x) = x y2 at x1 = (0, 0) for di�er-
ent values of h and c. Fitting the results to a power dependence with h and
c determines the exact form of the coe�cient of u(1;2). In this way, we derive
formulas for the error for any number of nodes N .

The more interesting results are those for N = 9 and N = 13 since then the
symmetries with respect to x and y increase the accuracy of the approximation.
For these particular values,

ǫ9 ≈
�

1

12

�

u(4;0)(x1) + u(0;4)(x1)
�

− 1

5
u(2;2)(x1)

�

h2 +

+0.47
�

u(2;0)(x1) + u(0;2)(x1)
� h2

c2
− 2 h2

3 c4
u(x1) , (18)

and

ǫ13 ≈ − 1

90

h

u(6;0)(x1) + u(0;6)(x1)
i

h4 −

−
h

0.93 u(4;0)(x1) − 0.5 u(2;2)(x1) + 0.93 u(0;4)(x1)
i h4

c2
−

− 4.4
h

u(2;0)(x1) + u(0;2)(x1)
i h4

c4
+ 5.2 u(x1)

h4

c6
. (19)

The error dependence with h and c of the RBF-FD approximation of the
Laplacian with 5-8 nodes is identical to leading order. The nine nodes formula
also has the same dependence O(h2) although the coe�cients are di�erent.
For thirteen nodes the error dependence is O(h4) (see Section 4.2). For h ≪ c
the general behavior of the error dependence of the N nodes RBF-FD formula
for the Laplacian is

ǫN (x1) ≈ hp
p=2+1
X

m=0

p=2+1−m
X

r=0

Am;r

c2m
u(p+2−2 (m+r);2r)(x1) , (20)

where Am;r are constants which depend on N , and p is the smallest even
number that satis�es

(p − 1)2 + 4 ≤ N ≤ (p + 1)2 + 3 .
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Fig.5.RelativeerrorintheapproximationoftheLaplacianwithRBF-FDformula
asafunctionofthenumberofnodesN.x1=(0.1,0.2),c=0.2.Left;h=0.025.
Right;h=0.01.

4.2 Numericalexperiments

InthisSectionwecarryoutnumericalexperimentstocomputetheerrorof
theRBF-FDformulasfortheLaplacian,andusethemtochecktheanalytical
resultsderivedintheprevioussection.Asafirstexperimentweusethesame
functionsanalyzedinreference[6].Figure5showsthedependenceofthe
relativeerroratthepointx1=(0.1,0.2)withthenumberofnodesforthe
casec=0.2andh1=0.025(leftside)andh2=0.01(rightside)(h1andc
aretheparameterschoseninFigure5ofreference[6]).Thefunctionsandthe
correspondingsymbolsusedare

✷→ u1=
3

4
exp−

(9x−2)2+(9y−2)2

4
+
3

4
exp−

(9x+1)2

49
−
(9y+1)

10
1

2
exp−

(9x−7)2+(9y−3)2

4
−
2

10
exp−(9x−4)2−(9x−7)2 ,

△→u2= 1−
x

2

6

1−
y

2

6

+1000(1−x)3x3(1−y)3y3+

+y6 1−
x

2

6

+x6 1−
y

2

6

,

∇→u3=sin(πx)sin(πy),

⋄→u4=x
2+y2.

Forclarityofthefigurewedonotincludetheresultsoftheanalyticalex-
pressionsoftheerror,butitshouldberemarkedthattheycloselyagreewith
thenumericalresults.Noticetheexistenceofplateauswheretheerrorsare
approximatelyconstantseparatedbytransitionregionswheretheerrorsde-
creaserapidly.ThisisthesamebehaviorshowninFigure5ofreference[6],
althoughbothresultsarenotidentical.Infact,Figure5showstherelative
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errorinapproximatingtheLaplacianwithRBF-FDformulasataspecificlo-
cationx1,whileFigure5ofreference[6]showstheinfinitynormoftherelative
errorinthesolutionofPoissonequationwiththelocalRBFmethod.

10
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10
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10
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10
0
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|ε
N
|

−−−−
|∆ u| 

Fig.6.RelativeerrorintheapproximationoftheLaplacianwithRBF-FDformula
asafunctionofh.x1=(0.1,0.2),c=0.2.N=5−9dot-dashed,N=10−12
solid,N=13−25dotted,N=26−28dashed,N=29−33dotted.

ThebehaviorobservedinFigure5canbebetterunderstoodbyconsideringthe
errordependencewithhshowninFigure6.ThisfigureissimilartoFigure7of
reference[6],andshowsverysimilarbehavior.Noticethatifh≪ c,theerror
isO(h2)forN =5−12,O(h4)forN =13−28,O(h6)forN =29−33.Thisis
theexpectederrordependenceaccordingtoequation(20).Ifh=O(c)terms
ofhigherorderinhwhichareneglectedinequation(20)becomeimportant
andintroduceacorrectionintheresults.Thisisthereasonwhyplateausin
Figure5aremuchmoreconstantforh= h2thanforh=h1.Noticethat
for(p+1)2+1≤N ≤(p+1)2+3thecorrectionisnotnegligibleand
theerrorformula(20)isnotvalid.Thisisduetothefactthatthelayout
symmetryislostalongthexandyaxes.

Finally,toanalyzethedependenceoftheerrorwithshapeparameterc,we
considerthefunction

u(x)=exp− x−
1

4

2

− y−
1

2

2

cos(2πy)sin(πx), (21)

whichwasusedby WrightandFornberg[27]intheiranalysisofthesolution
ofellipticPDEswithRBF-FDandRBF-HFDformulas.
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Fig.7.ErrorinapproximationofLaplacianatx1 =(0,0)withN =5RBF-FD
formulaasafunctionoftheinverseoftheshapeparameter1/c.Fromtoptobottom,
h=0.2,h=0.1,h=0.05,h=0.02,h=0.01,h=0.005.•;numericalresults.◦;
equation(17).

Figure7showstheerrorasafunctionofcfordifferentvaluesofh.Itis
equivalenttoFigure2ofreference[27]andshowsaverysimilarbehavior.
Asbefore,itshouldberemarkedthatbothresultsshouldnotbeidentical
sinceFigure7showstheerrorinapproximatingtheLaplacianwithRBF-FD
formulasataspecificlocationx1,whileFigure2ofreference[27]showsthe
infinitynormoftheerrorinthesolutionofPoissonequationwiththelocal
RBF method.Noticethatthereisavalueoftheshapeparameterforwhich
theerroris minimum.Thisvalueisapproximatelyconstantexceptforlarge
valuesofh.Noticealsothatforclargeandhsmalltheresultinglinearsystem
becomesill-conditionedandroundingerrordeterioratestheaccuracyofthe
solution.

5 OptimalShape Parameter

SeveralobservationsregardingthedependenceoftheerroroftheRBF-FD
formulaswithrespecttoshapeparametercarereadilyapparentfromFigures
1to3and7:

•Theerrordecreaseswithincreasingcassomepowerwhichdependsonthe
valueofc/h.
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• For large values of c, the conventional �nite di�erence formulas are recovered
as it was shown in [7,10], and the error approaches a constant value which
is the error of conventional �nite di�erences.

• There is a range of values of c for which the error of the RBF-FD formulas
is smaller than the error of conventional �nite di�erences.

• There is an optimal value of the shape parameter for which the error is
minimum.

Notice also that the optimal c∗ is either a value for which dǫN/dc is zero
(Figure 2) or a value at which ǫN = 0 (Figures 1, 3 and 7).

Since we have derived closed form expressions for the error of RBF-FD for-
mulas, it is possible to compute in each case the optimal shape parameter c∗

provided that the value of the function and its derivatives are known. Equa-
tions (10), (16) and (20) have the general form

ǫN (x1) ≈ hp
M
X

m=0

am(x1)

c2m
, (22)

where am are constants which depend on the derivatives and values of the
particular function at x1. Denoting z = 1 / c2, the optimal shape parameter
is obtained from the positive real roots of the polynomials

a1 + 2 a2 z + . . . + M aM zM−1 = 0 , (23)

which implies dǫN/dc = 0, or

a0 + a1 z + a2 z
2 + . . . + aM zM = 0 , (24)

which implies ǫN = 0. Solution of these two polynomials results in 2M − 1
roots for z = 1/c2. It is important to remark that the optimal shape parameter
c∗ only depends on the value of the function and its derivatives at the node.
Therefore, to �rst order, it is independent of the mesh size h. For larger values
of h there is a correction term of order O(h).

For instance, let us consider the RBF-FD approximation of the second deriva-
tive of u = exp (−x2) at x = 1 with �ve equispaced nodes, which is shown in
Figure 3. The coe�cients of the polynomials are given by (15), so that

a0 = − 1

90
u(V I)(x1), a1 = − 37

42
u(IV )(x1),

a2 = − 85

14
u′′(x1), a3 =

55

14
u(x1) .
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In this case, the two roots of the �rst polynomial (23) are complex (1.03 ±
0.658 i), and the three roots of the second polynomial (24) are two complex
(1.482±1.383 i) and one real, z = 0.1266. Thus, the optimal shape parameter
is c∗ = 1/

√
0.1266 = 2.81, which is shown as a vertical dash-dotted line in

Figure 3. The optimal shape parameters for the �rst derivative using three
and four nodes can be analogously computed (c∗ = 1.2247 and c∗ = 0.8666,
respectively) and are also shown with vertical lines in Figures 1 and 2.

In the case of the N = 5− 8 Laplacian RBF-FD formula,

a0 =
1

12

�

u(4;0)(x1) + u(0;4)(x1)
�

, a1 =
5

6

�

u(2;0)(x1) + u(0;2)(x1)
�

,

a2 = − 7

6
u(x1) .

The solution of equations (23) and (24) in terms of the derivatives are,

(c∗)2 =
14 u(x1)

5 d2
(25)

(c∗)2 =
14 u(x1)

5 d2 ±
q

25 d22 + 14 d4 u(x1)
(26)

where,

d2 = u(2;0)(x1) + u(0;2)(x1) , d4 = u(4;0)(x1) + u(0;4)(x1) .

Thus, for the �ve nodes RBF-FD approximation to the Laplacian of function
(21) at x1 = (0, 0),

a0 =
1

12
(− 71.8014) = − 5.9835, a1 =

5

6
2.2984 = 1.9153 , a2 = 0

Solution of equation (24) gives z = − a0/a1 = 3.1239, and the optimal shape
parameter is, therefore 1/c∗ =

√
3.1239 = 1.7675 which is shown in Figure

7.

As a last example we consider the function

u(x) =
25

25 + (x − 0.2)2 + 2 y2
,

which is the solution of the problem described in Section 5.2 of reference [27].
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formulaasafunctionoftheinverseoftheshapeparameter1/c.h=0.1.•;numerical
results.◦;equation(18).

Figure8showstheerrorinapproximationoftheLaplacian withthenine
nodesRBF-FDformulaasafunctionoftheinverseoftheshapeparameter.
ThisdependenceisverysimilartothatobservedinFigure4ofreference[27].
Alsoshownistheoptimalvalueoftheshapeparameterwhich,usingequation
(18),resultsin1/c∗ =

√
0.0685 =0.2617.

Theproblemofhowtoselectappropriatevaluesfortheshapeparameter
hasbeenofprimaryconcernbothfromthetheoreticalandfromtheappli-
cationspointofview.FortheglobalRBF method[14,15],ithasbeenoften
assumedthatthevalueoftheshapeparametercshouldvarylinearlywith
nodespacingh.Forinstance,forinterpolationproblems,Hardy[12]suggests
theuseofc=0.815d,wheredistheaveragedistancetothenearestneigh-
bor(d=hforequispacednodes).Franke[11]ontheotherhandrecommends
c=1.25D/

√
N,whereD isthediameterofthesmallestcirclecontaining

alldatapoints(c=1.25
√

2hforequispacednodes).Otherauthorsproposed
techniquestoselectgoodvaluesoftheshapeparameter[2,17,20]. Withre-
gardstothesolutionofPDEs,theworkofHuanget.al.[13]usingarbitrary
precisioncomputations,isofparticularrelevance.Fromtheirnumericalre-
sultstheyderiveaformulafortheerrordependenceonshapeparameterc
andnodalspacingh.Fromthisformulatheyobtaintheoptimalvalueofthe
shapeparameterthatminimizestheerror;c=−logλ/(3ah),whereaandλ
areconstantsthatdependoftheproblem.
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However, our results show that, at least for the local RBF method, the value of
c is independent of h. Nevertheless, it should be pointed out that, in practical
applications, the node density is often increased (h decreased) in regions where
the solution varies rapidly. In these boundary layer type regions, the solution
varies in small characteristic lengths (l ≪ L). Thus, d2 = O(L/l)2, d4 =
O(L/l)4 and, therefore, from (25)-(26) the optimal shape parameter is c∗ =
O(l/L). In those regions, therefore, the shape parameter should be taken small
not because h is small, but because the solution varies rapidly.

6 Unstructured nodes

In this Section we extend our results to the relevant case of unstructured nodes.
For instance, in the case of three non-equispaced nodes [x1 − h, x1, x1 + λh],
the coe�cients of the RBF-FD formula for the �rst derivative in the limit
c ≫ h are

α1 = − λ

h (1 + λ)

 

1 +
λ

2

h2

c2

!

, α2 =
λ − 1

hλ

 

1 +
λ

2

h2

c2

!

,

α3 = − 1

hλ (1 + λ)

 

1 +
λ

2

h2

c2

!

, (27)

which coincides with the standard 3-node �nite di�erence approximation to
the �rst derivative with a correction term of order h2/c2. Also notice that
for λ = 1 we recover the results of equation (5). The corresponding error of
approximation is

ǫ3(x1) ≈ λ
h2

6
u′′′(x1) + λ

h2

2 c2
u′(x1) + λ (λ − 1)

h3

24
u(IV )(x1) +

+ λ (λ − 1)
h3

8 c4
u(x1) , (28)

which coincides with equation (6) for λ = 1. Similarly, for N = 4 nodes
[x1 − h, x1, x1 + λ1h, x1 + (λ1 + λ2)h] the error is

ǫ4(x1) ≈ −λ1 (λ1 + λ2)
h3

24
u(IV )(x1) − λ1 (λ1 + λ2)

h3

2 c2
u′′(x1) +

+3 λ1 (λ1 + λ2)
h3

8 c4
u(x1) , (29)

which coincides with equation (7) for λ1 = 1, λ2 = 1.
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Fig.9.ErrorinapproximationoffirstderivativewithRBF-FDformulaforthree
non-equispacednodesasafunctionofc/h.u(x)=exp(−x2),x=1,h=0.01.

Figure9showstheerrorasafunctionofc/hintheapproximationofthe
firstderivativewithRBF-FDformulacorrespondingtothreenon-equispaced
nodes.Theresultscorrespondtothenumericalsolution.Theanalyticalresults
correspondingtoequation(28)arenotshownforclarityofthefigurebutthey
coincidewiththenumericalresults.Itcanbeobservedthatforlargevalues
ofc/htheerrorofstandardfinitedifferenceformulasisrecovered.Forsmaller
valuesofc/htheerrordecreasesas(h/c)2.Noticealsothattheoptimalvalue
oftheshapeparameterisindependentofλ.Thisistobeexpectedsinceall
thetermsoforderh2inequation(28)containthefactorλ,andtherefore
thisfactordisappearswhenequatingtheerrortozero.Similarly,theoptimal
valueoftheshapeparameterinthecaseoffournon-equispacednodesisalso
independentofλsinceallthetemsoforderh3inequation(29)containthe
factorλ1(λ1+λ2).

Inthecaseofthesecondderivative,thecoefficientsoftheRBF-FDformula
inthelimitc≫husingthreenon-equispacednodes[x1−h,x1,x1+λh]are

α1=
2

h2(1+λ)
1−

λ(λ2+λ)

2

h2

c2
,

α2=−
2

h2λ
1−

λ2−4λ+1

2λ

h2

c2
,

α3=
2

h2λ(1+λ)
1+

3λ−1

2

h2

c2
. (30)
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Thecorrespondingformulafortheapproximationerroris

ǫ3(x1)≈
λ−1

3
hu′′′(x1)+(λ−1)

h

c2
u′(x1)+

+[λ(λ−1)+1]
h2

12
u(IV)(x1)+λ

h2

c2
u′′(x1)+[λ(λ−5)+1]

h2

4c4
u(x1).(31)

Thisformulacoincidewithequation(14)whenλ=1.Noticethatifλ=1
thedependenceoftheerrorwithhisonlyfirstorder.Noticealsothat,tofirst
order,theoptimalvalueoftheshapeparameter,c∗,isindependentofλsince
allthetermsoforderhinequation(31)containthesamefactor(λ−1).

Similarformulascanbederivedforapproximatingthefirstandsecondderiva-
tiveswithmorenodes.Forinstance,the4-nodeRBF-FDapproximationto
thesecondderivativeusingnodes[x1−h,x1,x1+λ1h,x1+(λ1+λ2)h]is

ǫ4(x1)≈[λ2−λ1(λ1+λ2−2)]
h2

12
u(IV)(x1)+

h2

c2
u′′(x1)−

3h2

4c4
u(x1).(32)

Asinpreviouscasesthevalueofc∗isindependentofthelocationofthenodes
andofthelocaldistanceh.In1Dthisresultisgeneral.
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Fig.10.OptimalvalueoftheshapeparameterintheapproximationoftheLaplacian
offunction(21)atx1=(0,0)withN=5non-equispacedRBF-FDformula.

However,in2Dthevalueofc∗dependsonthelocationofthenodesinthe
stencilbutnotonthenodaldistanceh.Considerforinstancetheequispaced
5-nodestencilapproximationoftheLaplacian,inwhichwemovethelocation
ofonenode.Thus,thecoordinatesofthefivenodesare[(x1,y1),(x1,y1+
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λ h), (x1+h, y1), (x1, y1−h), (x1−h, y1)]. Figure 10 shows the value of c∗ as
a function of λ corresponding to the Laplacian of function (21). For λ = 1, the
value of c∗ for equispaced nodes is recovered (c∗ = 1/1.7675 = 0.5658). For
other values of λ the value of c∗ varies continuously. Notice that when c∗ ≫ h,
the value of c∗ is independent of h. For c∗ = O(h) there are corrections of
higher order that come into play. In the case of fully arbitrary nodes the
analysis is more complex but can be carried out in the same manner described
in Section 4.

To understand the relationship between standard �nite di�erences and RBF-
FD formulas, consider the function value at a node xi expressed by a Taylor
expansion

u(xi) = u(x1) + ∇u(x1) · �xi +
1

2
∇2u(x1) : (�xi · �xT

i ) + ei ,

where �xi = xi − x1, and ei is the error in the expansion. Here, we have
denoted the matrix scalar product by ':'. A linear combination with coe�cients
{αi}i=1;:::;N equals

N
X

i=1

αi u(xi) = u(x1)

 

N
X

i=1

αi

!

+ ∇u(x1) ·
 

N
X

i=2

αi �xi

!

+

+
1

2
∇2u(x1) :

 

N
X

i=2

αi (�xi · �xT
i )

!

+

 

N
X

i=2

αi ei

!

This FD formula approximates the Laplacian to �rst order exactly (i.e.
PN

i=1 αi u(xi) = �u(x1)) for constant, linear and quadratic functions, provided
that the coe�cients satisfy the following conditions:

N
X

i=1

αi = 0,
N
X

i=2

αi �xi = 0,
N
X

i=2

(�xi · �xT
i )αi = 2 I . (33)

These are a total of 6 conditions which have to be satis�ed for the approxi-
mation to be consistent [23]. In matrix form, with �xi = (�xi, �yi), we can write
(33) as
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Thus, if six nodes are used in the stencil and the matrix has full rank, there is
a unique set of coe�cients αi that satisfy the constraints (33). If N < 6 there
is no solution and if N > 6 there are in�nitely many solutions. In this case, a
unique set of coe�cients can be derived, for instance, by the generalized �nite
di�erence method (GFDM) [19] or by moving least squares methods [16]. If
Taylor series is carried out until next order and the FD formula is required to
be exact also for cubic functions, then four additional constraints have to be
satis�ed (corresponding to the coe�cients of u(3;0), u(0;3), u(2;1), u(1;2)). Thus,
a unique solution will exist for N = 10. In general, if the system is full rank a
unique solution of order p exists for N = (p+ 2) (p+ 3) / 2 (so called triangle
numbers).

With RBF-FD this limitation does not exist. In fact, adding a new node to an
existing stencil also adds the corresponding RBF to the basis of the functional
space. Therefore the matrix associated to system (2) is always square and,
provided it is of full rank, it has a unique solution. For values of N for which
the standard �nite di�erence formulation has a unique solution, the coe�cients
of RBF-FD in the limit c → ∞ are identical to the coe�cients of standard
�nite di�erences. Thus, the order of RBF-FD formulas coincide with the order
of the corresponding �nite di�erence formulas (order 1 for 6 ≤ N ≤ 9, order
2 for 10 ≤ N ≤ 14, order 3 for 15 ≤ N ≤ 20, . . .).

Consider, for instance, the case of 6 nodes. Following the same procedure
described in Section 4, the error of approximation in the limit c ≫ h can be
expressed as

ǫ6 ≈ h
h

A0;0 u
(3;0)(x1) + A0;1 u

(2;1)(x1) + A0;2 u
(1;2)(x1) +

+A0;3 u
(0;3)(x1)

i

+
h

c2

h

A1;0, u
(1;0)(x1) + A1;1 u

(0;1)(x1)
i

, (34)

where the coe�cients Ai;j are constants which can be computed for a given
node distribution. Notice that the error is of order h, like with standard �nite
di�erences. The coe�cients A0;i satisfy the compatibility constraints (33) and
therefore coincide with the coe�cients of the standard 6-node FD formula.
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Fig.11. Approximationerrorfor Laplacianoffunction(21)at x1 = (0,0)
with N = 6 non-equispaced RBF-FDformula. x [(0,0),(−1.17h,0.72h),
(−0.82h,−1.21h),(0.4h,−0.5h),(1.16h,0.28h),(0,1.19h)].Left:dependencewith
c/h(h=0.01). Right:dependencewithh(c=2).Solidline;numericalresults.
Dot-dashedline:equation(34).Dashedline:finitedifferences.Dottedline:optimal
valuec∗.

Figure11comparestheanalyticalapproximationoftheerrorgivenbyequation
(34)(dot-dashedline)withtheactualnumericalerror(solidline)foraspecific
nodedistributionshownintherightsideofthefigure.Similarlytowhatwas
observedforthecaseofequispacednodes(Figure7)thereisanoptimalvalue
oftheshapeparameter(c∗=0.1754)forwhichtheerrorbecomeszero.This
valueisshownbyadottedlineintheleftsideofthefigure.Totheleftof
thatminimumtheerrordecreasesasc−2andtotherightofthatminimumit
approachestheerrorcorrespondingtostandardfinitedifferences.Asbefore,
thevalueofc∗issimplyobtainedbyequatingtozeroequation(34).

TherightsideofFigure11comparesthedependenceoftheerror with h
givenbyequation(34)tothenumericallycomputeddependence.Toobtain
thenumericaldependencewithhweusethesamedistributionshowninthe
insetofthefigurebutvaryitsscalewithh.Bothresultsareingoodagreement
untiltheonsetofill-conditioningandshowthattheerrorreductionisO(h).

SimilarresultscanbeobtainedforanyvalueofN.Infact,itispossibleto
deriveageneralformulafortheerrorinapproximatingtheLaplacianwithN
non-equispacednodesinthelimitc≫ h.Thisformulaistheanalogousof
equation(20)forunstructuredgrids;
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ǫN (x1) ≈ hp
(p−k)=2+1

X

m=0

p+2(1−m)
X

r=0

Am;r

c2m
u(p+2(1−m)−r ;r)(x1) , (35)

where k = 0 if p even and k = 1 if p odd, and

(p + 2) (p + 3)

2
≤ N <

(p + 3) (p + 4)

2
.

Equation (35) has the same form than equation (22) and, therefore, the pro-
cedure described in Section 5 for computing the optimal value of the shape
parameter is also applicable to the case of non-equispaced nodes.

7 Conclusions

We have derived series solutions in powers of the shape parameter c, and nodal
distance h, for the error in approximating di�erential operators with RBF-FD
formulas at a certain location x1. The main conclusions of our work are the
following:

• RBF-FD formulas approach conventional �nite di�erence formulas in the
limit of in�nitely 
at basis functions (c ≫ h).

• For each formula, there is a range of values of the shape parameter for which
RBF-FD formulas are signi�cantly more accurate than the corresponding
conventional �nite di�erence formulas.

• In the case of equispaced nodes, Ding et.al. [6] concluded that the error de-
pendence with c and h of the local multiquadric-based di�erential quadra-
ture (LMQDQ) method for the Laplacian is ǫN = O(h/c)n, with n ≈ 1.9
for 6 ≤ N ≤ 9, n ≈ 3.6 for 9 < N ≤ 27, n ≈ 4.9 for 27 < N ≤ 34. However,
we �nd that ǫN = O(hp/cq), where p is only a function of N , and q is a
function of N , h, and the value of the function and its derivatives at x1.

• For equispaced nodes; p = 2 for 5 ≤ N ≤ 12, p = 4 for 13 ≤ N ≤ 28, and
p = 6 for 29 ≤ N ≤ 52, . . . .

• For non-equispaced nodes; p = 1 for 6 ≤ N ≤ 9, p = 2 for 10 ≤ N ≤ 14,
p = 3 for 15 ≤ N ≤ 20, . . . .

• There are speci�c values ofN for which the error is signi�cantly smaller than
the error for N − 1. These values should be used in practical applications.
For equispaced nodes; N = (p − 1)2 + 4, where the order p is any even
number. For non-equispaced nodes; N = (p + 2) (p + 3) / 2 where the order
p is any integer.

• For each RBF-FD formula there is an optimal value of the shape parameter,
c∗ for which the error is minimum. This value is independent of h and only
depends on the value of the function and its derivatives at x1.
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It should be pointed out, that in order to use the optimal value of the shape
parameter at each location, it is necessary to know the value of the function
and its derivatives which, in practical cases, it is not known a priori. However,
in the solution of linear elliptic problems with the RBF-FD method, one could
�rst compute an approximate solution using a constant value of the shape pa-
rameter, and then use this approximate solution to compute the optimal value
of the shape parameter at each node. With these values a new more accurate
solution can be computed applying again the RBF-FD method. In non-linear
problems, where some type of iterative procedure is needed, the updating of
the shape parameter at each location can be e�ciently incorporated into the
iterative algorithm.
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