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Abstrat: In this paper we onsider the very high order approximation ofsolutions of the Euler equations. We present a systemati generalization of theResidual Distribution method of [5℄ to very high order of auray, by extendingthe preliminary work disussed in [18℄ to systems and hybrid meshes. We presentextensive numerial validation for the third and fourth order ases with Lagrange�nite elements. In partiular, we demonstrate that we an both have a nonosillatory behavior, even for very strong shoks and omplex �ow patterns,and the expeted auray on smooth problems.Key-words: Very high order shemes for ompressible �uid mehanis, hybridunstrutured meshes, non osillatory shemes.



Développement de shémas distribuant ;e résidud'ordre très élevés pour le alul d'éoulementsompressible sur des maillages non struturéshybridesRésumé : Dans e rapport, nous onsidérons le problème de l'approximationdes équations d'Euler aux moyens de shémas d'ordre très élevés. Nous présen-tons une généralisation systématique des shémas dérits dans [5℄ permettantde onstruire des shémas d'ordre (très) élevé utilisant des maillages non stru-turés hybrides. On montre que le shéma obtenu est stable, même dans le asde d'éoulements ompliqués, et atteint e�etivement la préision reherhée surdes solutions régulières.Mots-lés : Shémas ompats d'ordre élevé pour la méanique des �uidesompressibles, maillages non struturés hybrides, méthodes non osillantes
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4 Abgrall, Larat & Rihiuto1 IntrodutionIn the reent years, there has been a strong e�ort to develop robust and higherorder (> 2) shemes for hyperboli equations, suh as the Euler equations, onunstrutured grids.Examples are the ENO/WENO shemes [1, 2℄ and the Disontinuous Galerkinshemes [3℄. In the ENO/WENO ase, the equations are approximated by a �-nite volume sheme where the entries of the �ux are evaluated by a high orderreonstrution polynomial. The latter is obtained from the ell-data that areinterpreted as approximation of the average value of the solution on ontrolvolumes. In our opinion, the main drawbak of this approah is its algorithmiomplexity and the non ompat nature of the omputational stenil : the av-erage value of the solution in a ell is updated by using its neighbors, and theneighbors of neighbors, and so on, depending on the expeted auray. Thenon ompatness of the stenil is also a serious drawbak for the parallelizationof the ode.In the ase of DG shemes, the solution is approximated by a loal poly-nomial that is disontinuous aross the interfae of the elements of the mesh.The solution is updated by means of a loal Galerkin form of the equations.The disontinuous nature of the representation requires the use of numerial�uxes when integration by parts is performed on the �ux divergene term. TheDG approah involves a very loal formulation, and it is indeed quite �exible.However, it has one main drawbak in the fast growth of the number of degreesof freedom (see also the disussion in [4℄).In this paper we have hosen to use a di�erent strategy based on the ResidualDistribution (RD) approah of [5℄. In the RD method, the stenil is very loal,as in DG, but the number of degrees of freedom grows less quikly. The prie topay is to impose the ontinuity of the approximation (see however [6, 7℄), as instandard �nite element methods. Indeed, the RD shemes an be seen as �niteelements where the test funtions may depend on the solution. This lass ofsheme is having a growing interest (see [8, 9, 10, 11, 12, 13, 14, 15, 5, 16, 17℄,et.). Most of the existing work, however, is limited to seond order of auray,with the exeption of the work disussed in [15, 14, 17℄, and, more reently,in [18℄. In this paper, we extend the preliminary results presented in the lastreferene by disussing their appliation to the ase of the Euler equation, and bypresenting an extensive numerial evaluation of the performane of the shemes.The struture of the paper is as follows. In setion �3 we reall the onstru-tion of very high order RD shemes, following the preliminary work presentedin [18℄ that we extend here to hybrid meshes. Starting from the general formof the RD disretization, we introdue the onditions leading to very high orderof auray and monotoniity, and �nally present the basi onstrution usedin the paper. Some salar numerial tests are also disussed to demonstratethe validity of the approah desribed. The extension of the shemes to hyper-boli systems, and in partiular to the Euler equations, is the objet of setion�4. All the disretization steps desribed in setion �3 are revisited and detailsonerning the implementation are given. An extensive numerial validation isINRIA



Very high order residual distribution shemes on hybrid meshes 5presented in setion �5. The paper is ended with some onlusive remarks, asummary of the future and ongoing developments of the work presented here.2 Mathematial problemWe are interested in the numerial approximation of steady hyperboli problemsof the form div f(u) = S(u) (1a)whih are de�ned on an open set Ω ⊂ Rd, d = 2, 3 with weak Dirihlet boundaryonditions,
u = g. (1b)de�ned on the in�ow boundary1

∂Ω− = {x ∈ ∂Ω, ~n · ∇uf < 0}.In (1), the vetor of unknown u belongs to Rp, and the �ux f is
f = (f1, . . . , fd).In (1a), S is a soure term whih here only depends on the unknown u.The main target example we are interested in is the system of the Eulerequations with the vetor of unknown
u = (ρ, ρ ~u,E)Twhere ρ is the density, ~u is the loal �ow speed, and E is the total energy. Inthe partiular ase d = 2, setting ~u = (u1, u2)

T , the �ux an be written as
f1 =




ρu1

ρu2
1 + p

ρu1u2

u1(E + p)


 , f2 =




ρu2

ρu1u2

ρu2
2 + p

u2(E + p)


 . (2)The system is losed by an equation of state that relates the pressure p to u.Here we assume a perfet gas equation of state,

p = (γ − 1)

(
E − 1

2ρ||~u||
2

)with γ = 1.4.1~n is the inward normal.
RR n° 7236



6 Abgrall, Larat & Rihiuto3 Very high order residual distribution: generalpriniples and the salar ase3.1 Introdution : disrete unknowns and disrete equa-tionsLet τh denote a tessellation of the spatial domain Ω. In this paper τh is assumedto be omposed of triangles and quads in 2D2. A generi element is denoted by
K. Denote by nt the number of elements of the mesh. The mesh parameter hdenotes the maximum radius of the outer irles of the elements K ∈ τh. Theverties of the mesh are denoted by {Mi}i=1,...,ns

. When there is no ambiguity,we denote the verties of an element K by 1, . . . , nK
d .In our approah, the disrete unknowns are a set of loal values of the solutionin some mesh loations, suh as e.g. the verties Mi, edge mid-points et., et.These unknowns are referred to as the Degrees of Freedom (DOF). Denote by

{σl}l=1....,ndof
the list of degrees of freedom. In the ase of a seond order RDsheme, the DOF are the verties of the mesh, that is : σl = Ml , ∀ l. Toonstrut a higher order aurate RD sheme, there are two options :1. The ontribution to the disrete equation of a DOF σl in a generi element

K is obtained by using information outside K. This option has beenfollowed in [19℄, and in [20, 14℄. In this ase, the ompatness of theomputational stenil is redued, with the main drawbak of an inreasedalgorithmi omplexity, espeially when more than third order of aurayis sought for.2. Disrete equations are written in an element by element fashion, withoutusing any input outside eah element. Naturally, in this ase, additionalDOFs need to be stored in eah element, in order to be able to inreasethe auray. This is the approah followed e.g. in [21, 18℄.Here, following our initial work [18℄, we use a loal higher order polynomialinterpolation allowing to keep the loal element-by-element struture of theRD formulation. Several ways of obtaining ontinuous k-th degree polynomialsexist. In this paper, we will fous on the ase of standard Pk and Qk Lagrangeelements de�ned as follows :� Quadrati interpolation : the DOFs are the solution values in the vertiesand the edges mid�points. This yields 3 + 3 points per triangle in 2D and
4+6 points per tetrahedron in 3D. For a quadrangle, we need to add theentroid, leading to 4 + 5 points per elements in 2D. The 3D ase wouldneed 27 DOFs per element.2We have obtained results in 3D, not reported in this paper. We have not yet onsideredthe ase of hybrid meshes in 3D, even though our method should extend without problems tohex, prisms and pyramids. This will be done in a future work. INRIA



Very high order residual distribution shemes on hybrid meshes 7� Cubi interpolation: in the 2D ase, the DOF are the verties, 2 pointsper edge (whih with the verties form three segments of equal length),and the entroid, i.e. 3 + 2 × 3 + 1 DOF per element. In 3D ase, theDOF are the 4 verties, 2 DOF per edge, and the entroid of eah fae,i.e. 4+ 6× 2+ 4 = 20 DOFs. The ase of quadrangle elements leads to 16DOF per elements, the 3D ase would need 64 DOFs per elements.� et.Note that the ontinuity of the standard Lagrange elements requires that all theDOF on element boundaries are shared by neighboring elements.As a onsequene, in the triangular/tet ase, we an ount the total numberof DOF in terms of the number of verties, edges, faes (in 3D) and elements,� in the 2D ase, we have� Quadrati : ns + nedge DOFs,� Cubi : ns + 2nedge + nt DOFs.� in the 3D ase, if in addition nface is the number of faes, we have� Quadrati : ns + nedge DOFs,� Cubi : ns + 2nedge + nface DOFs.Thanks to the Euler formula, it is possible to give, for a regular trian-gulation, an estimate of the asymptoti behavior of the global number ofDOF. It is known that in 2D, we have nedge ≈ 3ns and nt ≈ 2ns andin 3D, nedge ≈ 7ns, nface ≈ 10ns and nt ≈ 6ns. On Table 1, we havereported the asymptoti number of degrees of freedom with respet to thedimension and the degree of interpolation. For the sake of omparison,we have also given the same parameters in the ase of a disontinuousapproximation, as the one used in DG shemes. It is lear that the on-tinuous approximation requires a muh smaller number of DOF to yieldthe same polynomial representation, but the number of DOF inreasemore rapidly for ontinous approximations than disontinous ones. Bothases are asymptotially similar. The same onlusion also holds for thequad/hex.One we have established what our disrete unknowns are, we have to provideeah of them with a disrete equation. We distinguish two ases.1. in the ase of an internal DOF σ, a residual distribution sheme for (1)reads for all σ ∈ τh,
∑

T∋σ

ΦK
σ = 0 , (3)where the split residuals ΦK

σ in (3) must satisfy the following onservationonstraintfor any K, ∑

σ∈K

ΦK
σ =

∮

∂K

f
h(uh) · ~ndl −

∫

K

Sh(uh)dx := ΦK (4)RR n° 7236



8 Abgrall, Larat & Rihiutowhere f
h(uh) and Sh(uh) are high order aurate approximations of the�ux f(u) and the soure term S(u). Natural hoies are: the Lagrangeinterpolant of f(u) at the degrees of freedom de�ning u

h, or the true �uxevaluated for u
h.2. if σ is a DOF lying on the boundary of Ω, the equation for σ has totake into aount the boundary onditions. Let Γ be any edge/fae ofthe in�ow boundary of Ω. We onsider a numerial �ux F whih dependson the boundary ondition u−, the inward normal ~n and the loal state

u
h. Then we de�ne boundary residuals ΦΓ

σ whih satisfy the followingonservation relationfor any Γ ⊂ ∂Ω,
∑

σ∈Γ

ΦΓ
σ =

∫

∂Γ

(
F(uh,u−, ~n) − f

h(uh) · ~n

)
dl := ΦΓ,(5)At this point we an write for an arbitrary DOF on ∂Ω :for all σ ∈ ∂Ω,

∑

K∋σ

ΦK
σ +

∑

Γ⊂∂Ω−,Γ∋σ

ΦΓ
σ = 0. (6)Then following [21℄, it is easy to show that if the sequene u

h is bounded in L∞when h → 0, and if there exists v suh that u
h → v when h → 0, then v isa weak solution of (1). One essential ingredient of the proof is the ontinuityof the interpolant aross edges. One an however alleviate this onstraint, andde�ne RD shemes on disontinuous elements, see [22, 6, 7℄ for the seond orderase. Additional onstraints, suh as the satisfation of an entropy inequality,ould be set but this will not be onsidered in this paper.Remark 3.1 (Numerial quadrature). Before going further, let us make a re-mark onerning the notation, and the de�nition of the element and boundaryedge residuals ΦK , and ΦΓ, respetively. The de�nitions (4) and, (5) a priori,need exat integration of the disrete �ux and soure. However, in pratie nu-merial quadrature is more often implemented. In this ase, we replae (4) and(5) byfor any K, ∑

σ∈K

ΦK
σ =

∑

e∈∂K

|e|

Gf∑
p=1

ωpfh(uh(xp))·~ne−|K|

Gv∑
p=1

ωpSh(uh(xp)) := Φ̃K .(7a)having denoted by e the generi edge (fae in 3d) of K, andfor any Γ ⊂ ∂Ω−, |Γ|

Gf∑
p=1

ωp(F(uh(xp),u−(xp), ~nΓ)−f
h(uh(xp))·~nΓ

)
:= Φ̃Γ(7b)where the Gf and Gv denote the number of fae and volume Gauss points usedin the numerial quadrature. The hoie of Gf and Gv, viz of the quadratureformulas used in pratie, should not degrade the auray of the disretization.The onstraints on the numerial quadrature are illustrated hereafter. INRIA



Very high order residual distribution shemes on hybrid meshes 93.2 Auray onstraintsIn the previous setion we have introdued the general abstrat form of ourRD disretization. This formulation involves integrals of numerial approxima-tion of the �uxes (and of the soure term) based on the Pk and Qk Lagrangeapproximation of the unknown u
h. These integrals are in pratie evaluatednumerially, and replaed eventually by the quadrature integrals of equations(7a) and (7b).The auray obtained in pratie is of ourse dependent on the type ofquadrature used in the implementation of the shemes. In order to haraterizethis dependene, we follow the trunation error analysis of [21℄. Following thelast referene, one an show that sheme (3), (6), (4) and (5) satis�es, for any

ϕ ∈ C1
0 (Ω)3, the following trunation error

E(wh, ϕh) =
∑

σ∈Ω

ϕ(σ)

(
∑

K∋σ

ΦK
σ +

∑

Γ⊂∂Ω−,Γ∋σ

ΦΓ
σ

)

=

∫

Ω

(div f
h(wh) − Sh(wh)

)
ϕh(x) dx+

∑

K⊂Ω

1

#{σ ∈ K}

∑

σ,σ′∈K

(
ϕ(σ) − ϕ(σ′)

) (
ΦK

σ − ΦK,c
σ

)

+

∫

∂Ω

(
F(wh,w−, ~n) − f

h(wh) · ~n

)
ϕh(x) dl +

∑

Γ⊂∂Ω

1

#{σ ∈ Γ}

∑

σ,σ′∈Γ

(
ϕ(σ) − ϕ(σ′)

)(
ΦΓ

σ − ΦΓ,c
σ

)

= −

∫

Ω

∇ϕh(x) · fh(wh) +

∫

∂Ω

ϕh(x)fh(wh) · ~ndl −

∫

Ω

ϕh(x)Sh(wh)dx

+

∫

∂Ω

(
F(wh,w−, ~n) − f

h(wh) · ~n

)
ϕh(x)dl

+
∑

K⊂Ω

1

#{σ ∈ T }

∑

σ,σ′∈K

(
ϕ(σ) − ϕ(σ′)

) (
ΦK

σ − ΦK,c
σ

)

+
∑

Γ⊂∂Ω

1

#{σ ∈ Γ}

∑

σ,σ′∈Γ

(
ϕ(σ) − ϕ(σ′)

)(
ΦΓ

σ − ΦΓ,c
σ

)
.(8)where w is a lassial solution of the problem, w

h being its Pk/QkLagrangeapproximation, ϕh is the Lagrange interpolant of {ϕ(σ)}σ, ΦK,c
σ and ΦΓ,c

σ arethe Galerkin residuals
ΦK,c

σ =

∫

K

ψσ

(div f(wh)−S(wh)

)
dx and ΦΓ,c

σ =

∫

Γ

ψσ

(
F(wh,w−, ~n)−f(wh)·~n

)
dx ,(9)and ψσ ∈ Pk(K) or Qk(K) is the Lagrange basis funtion relative to the DOF

σ ∈ K. Using the fat that everywhere div f(w) − S(w) = 0, the error an be3C1

0
(Ω) is the set of C1 funtions on Ω with a ompat supportRR n° 7236



10 Abgrall, Larat & Rihiutoeasily deomposed as [21, 23℄
E(wh, ϕh) = −

∫

Ω

∇ϕh(x) ·
(
f
h(wh) − f(w)

)
(�ux approximation error)

−

∫

Ω

ϕh(x)
(
Sh(wh) − S(w)

)
dx (soure approximation error)

+

∫

∂Ω

(
F(wh,w−, ~n) − f(w) · ~n

)
ϕh(x)dl (BC approximation error)

+
∑

K⊂Ω

1

#{σ ∈ K}

∑

σ,σ′∈K

(
ϕ(σ) − ϕ(σ′)

) (
ΦK

σ − ΦK,c
σ

)
(distribution error - interior)

+
∑

Γ⊂∂Ω

1

#{σ ∈ Γ}

∑

σ,σ′∈Γ

(
ϕ(σ) − ϕ(σ′)

)(
ΦΓ

σ − ΦΓ,c
σ

)
(distribution error - boundary).(10)As disussed thoroughly in [21, 23℄, relation (8) is a onsequene of the onser-vation relations (4) and (5). Following again the last referenes, we an provethe following result:Proposition 3.2. Given a regular enough lassial solution w, if the residualsevaluated on the Pk,Qk interpolant w

h satisfy
ΦK

σ (wh) = O(hk+d) (11a)and
ΦΓ

σ(wh) = O(hk+d−1), (11b)and if the approximations f
h(wh), and Sh(wh) are k + 1-order aurate, thenthe trunation error satis�es

|E(wh, ϕh)| ≤ C(ϕ, f ,w) hk+1.The onstant C(ϕ, f ,w) depends only on ϕ, f , and w.Proof. See appendix B.A �rst onsequene of the analysis is obtained by noting that, under thehypotheses of proposition 3.2 (see [21, 23℄ for details) :
ΦK(wh) = O(hk+d) and ΦΓ(wh) = O(hk+d−1)As a onsequene, if there exists a onstant (in the salar ase) or a matrix (inthe system ase) βT

σ suh that
ΦK

σ = βK
σ ΦK (12a)

ΦΓ
σ = βΓ

σΦΓ (12b)INRIA



Very high order residual distribution shemes on hybrid meshes 11then the ondition (11) is ful�lled provided that βT
σ is uniformly bounded. Thisgives a design riterion for high order shemes. For historial reasons, RDdisretizations that an be written as in (12a)-(12b) are referred to LinearityPreserving even-though the interpolant is no longer linear.In pratie, as explained in remark 3.1, one uses of numerial quadrature toevaluate the ell residuals. In this ase, linearity preserving RD shemes read(f. equations (7a) and (7b))

ΦK
σ = βK

σ Φ̃K (13a)
ΦΓ

σ = βΓ
σ Φ̃Γ (13b)To maintain the same error level, we see immediately that the onstraints onthe quadrature formulas used to obtain (7a) and (7b) are the following :� In (13a), we must have

∑

e∈∂T

|e|

Gf∑
p=1

ωpfh(uh(xp)) · ~ne =

∮

∂T

f
h(uh) · ~ndl + O(hk+d) (14a)and

|T |

Gv∑
p=1

ωpSh(uh(xp)) =

∫

T

Sh(uh)dx+ O(hk+d) (14b)� In (13b), we must have for the boundary onditions integrals
|Γ|

Gf∑
p=1

ωp(F(uh(xp),u−(xp), ~nΓ) − f
h(uh(xp)) · ~nΓ

)
=

∫

∂Γ

(
F(uh,u−, ~n) − f

h(uh) · ~n

)
dl + O(hk+d−1) (14)There are of ourse numerous quadrature formulas that an be used to staywithin the error bounds given above. An inferior bound to the polynomialdegree that has to be integrated exatly is given by these bounds.The pratial approah used in this work is to reonstrut in eah element a�ux polynomial based on the Lagrange interpolation of the �ux values evaluatedat the degrees of freedom. The quadrature points oinide with the DOF, andthe quadrature weights are easily omputed one and for all. This is equivalentto a quadrature free approah (f. [24℄). We ome bak to this point in setion5.4 to disuss our atual implementation of the boundary onditions.3.3 Monotoniity preservationIn this paragraph we onsider the issue of guaranteeing the non-osillatory har-ater of the solution. We make use of the theory of positive oe�ient shemesRR n° 7236



12 Abgrall, Larat & Rihiuto[25℄ to design disretizations yielding solutions that verify a disrete maximumpriniple. To do this, we onsider the ase in whih (1) is a salar equationfor the unknown u, and the homogeneous ase S = 0. In this setting, all RDshemes an be re-written as
ΦK

σ =
∑

σ′∈T

cσσ′(uσ − uσ′) (15)so that equation (3) beomes for any σ (and negleting boundary onditions)
∑

T∋σ

∑

σ′∈T

cσσ′ (uσ − uσ′) = 0.In general, the oe�ients cσσ′ depend on the solution, whih means that thelast expression de�nes a set of non linear equations that needs to be solved bymeans of an iterative method. The simplest one is the Jaobi�like iteration
un+1

σ = un
σ − ωσ

(
∑

K∋σ

∑

σ′∈T

cKσσ′ (uσ − uσ′)

)n (16)where ωσ is a relaxation parameter.It is easy to verify that if the sheme satis�es the positivity onditions
∑

K∋σ,K′∋σ′

cKσσ′ ≥ 0 ∀σ, σ′ and 1−ωσ

(
∑

K∋σ

∑

σ′∈K

cKσσ′

)
≥ 0 ∀σ (17)then the solution veri�es the following disrete maximum priniple

min
K∋σ

min
σ′∈K

u0
σ′ ≤ un

σ ≤ max
K∋σ

max
σ′∈K

u0
σ′ (18)having denoted by u0

σ the values of the initial solution in the DOF loations. Amore onvenient approah for the design of the shemes is to replae onditions(17) by loal onstraints. To do this, let us de�ne for eah DOF the followingmedian dual areas :
CK

σ =
|K|

nd
and Cσ =

∑

K∋σ

CK
σObviously, onditions (17) are met if the following loal positivity onditions areveri�ed :

cKσσ′ ≥ 0 ∀σ, σ′ ∈ K and ∀K and ωσ max
K∋σ

[
Cσ

CK
σ

( ∑

σ′∈K

cKσσ′

)]
≤ 1 ∀σ(19)These onditions do not imply that the iterative sheme (16) is onvergent, butonly that the disrete maximum priniple (18) (viz. L∞-stability) is satis�ed.In the rest of the paper, a sheme that veri�es onditions (19) is said to bemonotoniity preserving. INRIA



Very high order residual distribution shemes on hybrid meshes 133.4 Getting high order auray and monotoniity preser-vationIt is known that a sheme that is monotoniity preserving with oe�ients cKσσ′independent on the solution annot satisfy (11). This results is a variant ofGodunov's theorem for RD shemes, of whih a general proof is been given in[26℄. As a onsequene of this, a monotoniity and linearity preserving shememust be non linear. Here we follow [21℄ to obtain nonlinear shemes verifyingboth properties.We start from a monotone �rst order sheme whih residuals are (for S = 0)
ΦL

σ =
∑

σ′∈K

cLσσ′ (uσ − uσ′)the super-sript L standing for Low order. By assumption, the oe�ients cLσσ′are all positive, and, of ourse,
∑

σ∈K

ΦL
σ = ΦKThen, let ΦH

σ denote high order residuals, suh that
ΦH

σ = βσΦK with ∑

σ∈K

βH
σ = 1 (20)By analogy, we introdue the parameters xσ de�ned by

xσ =
ΦL

σ

ΦKfor whih, thanks to the onservation relation, we also have ∑
σ
xσ = 1.The next step is to write the formal identity

ΦH
σ =

ΦH
σ

ΦL
σ

ΦL
σ =

∑

σ′

ΦH
σ

ΦL
σ

cLσσ′ (uσ − uσ′)and we an see that, starting from ΦL
σ , we ould obtain a monotoniity preserv-ing high order sheme, provided that we satisfy the onstraint

ΦH
σ

ΦL
σ

≥ 0 ∀σ ∈ Kbeause then we have for the high order sheme
cHσσ′ =

ΦH
σ

ΦL
σ
cLσσ′ ≥ 0All this an be rephrased in terms of xσs and βσs.RR n° 7236



14 Abgrall, Larat & Rihiuto1. Conservation. ∑

σ∈K

βσ = 1 and ∑

σ∈K

xσ = 12. Monotoniity preservation.
xσβσ ≥ 0 ∀σ ∈ KThese relations an be interpreted geometrially. Sine there is no ambiguity,we an assume that the degrees of freedom an be numbered from 1 to nd, anwe identify the DOF σ to its number ℓ in [1, . . . , nd].Let us onsider in Rnd nd linearly independent points S = {Aℓ}ℓ=1,··· ,nd

.Note they do not have onnetions with any physial points in the mesh. Wean introdue for any point M ∈ Rnd its baryentri oordinates {λℓ(M)} withrespet to S :
M =

nd∑

ℓ=1

λℓ(M)Aℓor equivalently, for any O ∈ Rnd

−−→
OM =

nd∑

ℓ=1

λℓ(M)
−−→
OAℓ.We have by de�nition nd∑

ℓ=1

λℓ(M) = 1. Thus, we an interpret {xl} and {βl} asthe baryentri oordinates of the points L and H suh that
L =

nd∑

ℓ=1

xℓAℓ

H =

nd∑

ℓ=1

βℓAℓand the problem beomes to de�ne a mapping onto Rnd : L 7→ H suh that theonstraints xℓβℓ ≥ 0 are true : the advantage of that interpretation is that theonservation properties are automatially satis�ed.There are many solution to that problem, one partiularly simple one is anextension of the PSI �limiter� of Struijs :
βℓ =

x+
ℓ∑

ℓ′

x+
ℓ′

, x+ = max(x, 0). (21)There is no singularity in the formula sine
∑

ℓ′

x+
ℓ′ =

∑

ℓ′

xℓ′ −
∑

ℓ′

x−ℓ′ ≥ 1.Throughout the paper, we use (21). INRIA



Very high order residual distribution shemes on hybrid meshes 153.5 Spurious modes and iterative onvergene : a numer-ial example and a ounter exampleBefore proeeding further with the onstrution, we onsider two numerialexamples involving the solution of the advetion equation
~λ · ∇u = 0, x ∈ Ω. (22)3.5.1 Case of triangles.Using the Pk interpolant in T

uh =
∑

σ∈T

uσψσ,the total residual ΦT an be written as
ΦT =

∫

T

~λ · ∇uh dx =
∑

σ∈T

uσ

∫

T

~λ · ∇ψσdx.By analogy with what is done with seond order RD shemes [11, 27℄, we set
kσ =

∫

T

~λ · ∇ψσdx,so that
ΦT =

∑

σ∈T

uσkσ. (23)We note that ∑
σ∈T

kσ = 0. To onstrut a nonlinear sheme, we start from thefollowing �rst order (loal) Lax-Friedrih's (LLxF) sheme :
ΦT

σ =
ΦT

nd
+ αT (uσ − ū) (24a)with

ū =

∑

σ′∈T

uσ′

nd
. (24b)Using (23), the LLxF residual (24a) an be reast in the form (15) with

cTσσ′ =
kσ′ − αT

ndand cTσσ′ ≥ 0 if
αT ≥ max

σ∈T
|kσ|. (25)This �rst order sheme is extremely dissipative, but this is the one fromwhih we start for two reasons : it is very heap and simple to ode, even forRR n° 7236



16 Abgrall, Larat & Rihiutosystems, and it easily generalizes to any order of auray (viz. polynomialinterpolation).We test the nonlinear limited LLxF sheme obtained by applying (21) to theLLxF sheme (24a) sheme on two simple linear advetion problems. On thespatial domain Ω = [0, 1]2, we take in the �rst problem
~λ = (1, 2)T and u(x, y) =

{
1 if x = 0 and y > 0
0 if y = 0 and x > 0

(26)The seond problem is obtained by setting
~λ = (y,−x)T and u(x, y) =

{
ϕ0(x) if y = 0

0 otherwise (27)where
ϕ0(x) =

{
cos2(2πx) if x ∈ [0.25, 0.75]

0 elseThe results obtained in the P2 ase are displayed on �gure 1. The behaviorobserved is similar to what has been found, in the seond order ase, in [5℄ :disontinuities are approximated without over- or undershoots, however, weobserve the appearane of plateaus in the numerial results, for both smoothand non-smooth data. This is learly visible in the plots of the outlet data on�gure 1. Other symptoms are : smooth solutions often present a high frequenyosillations (spurious modes), the iterative onvergene is poor : after a veryquik drop of about two orders of magnitude, the iterative residual stagnates toa onstant value. The behavior is the same observed in �nite volume shemeswhen using an over-ompressive limiter. As remarked in [5℄, this behavior isnot due to an L∞ instability : the loal maximum priniple is satis�ed boththeoretially and numerially.As a result of the lak of iterative onvergene, equation (3) is not solvedexatly but within a O(h) error whih an be easily measured experimentally[5℄. Thus the overall auray obtained is only that of a �rst order sheme.3.5.2 Case of quadrangles.This example is maybe more illuminating sine we an exhibit some of thespurious modes. Again, we onsider Ω = [0, 1]2 whih is disretised by uniformquads. The verties are xi,j = ( i
N ,

j
N ) (0 ≤ i, j ≤ N) and the problem writes
∂u

∂x
= 0subjeted to boundary onditions on the left side of Ω. Assuming a general LPsheme, we update the solution by

un+1
σ = un

σ − ω

( ∑

K,σ∈K

βK
σ ΦK

)

INRIA



Very high order residual distribution shemes on hybrid meshes 17Two things need to be preised : the boundary onditions and the initial state
u0. On the left boundary (in�ow), we impose a hek-board like mode, but thisis not really essential as we see at the end of the paragraph), i.e.

uσ = (−1)iσwhere i is the index suh that xσ = ( i
N , 0) and uσ = 0 is σ is any mid point.The initial ondition is de�ned by� either as on �gure 2-a : we �propagate� the boundary ondition along theharateristis of the PDE.� or as on �gure 2-b.We expet to onverge to the �rst initialization. Let us ompute the totalresidual on Q = [xi, xi+1] × [yj, yj+1]. We get

ΦQ =

∫ yj+1

yj

∫ xi+1

xi

∂u

∂x
dxdy =

∫ yj+1

yj

(
u(xi+1, y) − u(xi, y)

)
dx.In our ase, we have, by symmetry, u(xi+1, y) = u(xi, y), so that ΦQ = 0 and

un+1
σ = un

σ. This shows that the sheme annot onverge in this ase . . . . Hene,something more must be done !3.6 Convergent nonlinear shemesFollowing our previous work [5, 18℄, the behavior desribed in the last setionan be orreted by adding to the residuals (13) a term of the form
hK

∫

K

(
~λ · ∇ψσ

)
τ

(
~λ · ∇uh

)
dx, τ > 0. (28)This is a streamline dissipation term, used in SUPG disretizations of hyperboliproblems to suppress the spurious modes of the Galerkin sheme [28℄. As itsname suggests, this term has a dissipative nature. It does not destroy the formalauray of the original disretization. It does not destroy the onservationproperty (4) beause the residuals are now

Φ⋆
σ = ΦH

σ + hK

∫

K

(
~λ · ∇ψσ

)
τ

(
~λ · ∇uh

)
dx (29)with ΦH

σ de�ned by (20) and learly,
∑

σ∈K

Φ⋆
σ = ΦKbeause ∑σ∈K ∇ψσ = 0.In fat, (28) has the good e�et of removing the spurious modes that areexisting, and of improving the quality of the solution (see [5, 18℄ for details).RR n° 7236



18 Abgrall, Larat & RihiutoThe problem of integral (28) is that its exat evaluation requires the exatintegration of a polynomial of degree 2(k − 1) whih is expensive. A betteranalysis of the struture and the role of the dissipative term helps to reduesubstantially its omputational ost. We start by rewriting the nonlinear limitedsheme as
ΦK

σ = ΦK,c
σ + ΦK

σ − ΦK,c
σ ,with ΦK,c

σ still given by (9). Given a funtion ϕ, multiply (3) by ϕ(σ) andadd up all the equations for all the DOF of the mesh. Using the onservationrelations, and negleting boundary onditions, (3) is equivalent to
∫

Ω

ϕh div f
h(uh)dx+

∑

K

qK(ϕh, uh) = 0 (30a)with
qK(ϕh, uh) =

1

nd!

∑

σ,σ′∈K

(ϕ(σ) − ϕ(σ′))

(
βK

σ ΦK − ΦK,c
σ

) (30b)with ΦK,c
σ the Galerkin residuals (9). The modi�ation introdued in [5℄ amountsto adding term (28) to the quadrati form qK . The problem is to know underwhih onditions the resulting sheme is dissipative, keeps the original auray,and preserves the non osillatory behavior of (30a).The most natural way of proeeding is to replae (28) by an approximationobtained by means of a �quadrature� formula :

dK(ϕh, uh) = |K|
∑

xquad ωquad[(~λ · ∇ϕσ

)
(xquad) τ(xquad)

(
~λ · ∇uh

)
(xquad)](31)suh that

(ϕh, uh) 7→

∫

Ω

ϕh div f
h(uh)dx+

∑

K

(
qK(ϕh, uh) + θKhKdK(ϕh, uh)

)is dissipative. We have put quadrature between quotes beause as we see laterin the text, these �quadrature� formula do not need to be onsistent as approx-imation of integrals.Instead of studying the overall behavior of the sheme, we an make use ofthe ompat nature of the disretization and fous our attention on the quadratiform
(ϕh, uh) 7→ qK(ϕh, uh) + θKhKdK(ϕh, uh)Here, hK is a the radius of the irle/sphere irumsribed to K. The pa-rameter θK has the role of ativate the extra dissipation in smooth regions,while deativating it aross disontinuities, where the original sheme has nounder/overshoots. Hene, we should have θK ≈ 1 in orrespondene of smoothvariations of the solutions, while θK ≪ 1 aross disontinuities.Conerning auray on smooth solutions, whatever �quadrature� formulawe use, and thanks to the term θKhK in front of dK , if uh is the interpolant ofINRIA



Very high order residual distribution shemes on hybrid meshes 19a smooth enough funtion suh that ~λ · ∇u = 0, then one an show (see [18℄ fordetails) that ∣∣∣∣∣θKhKdK(ϕh, uh)

∣∣∣∣∣ ≤ C(u)||∇ϕ|| hk+d+1
K ,so that the formal auray is not spoiled. Lastly, to ensure onvergene, onean ask the bilinear form

(ϕh, uh) 7→ dK(ϕh, uh)to be positive de�nite whenever ∣∣∣∣~λ · ∇u

∣∣∣∣ > 0. In partiular, following [5, 18℄,we will require that ωquad > 0 and that dK(ϕh, uh) is positive de�nite whenever
~λ · ∇uh 6= 0.This amounts at requiring a number of quadrature points allowing an exatrepresentation of the term ~λ · ∇uh over K. Hene, one quadrature point isenough for k = 1, 3 points are needed for k = 2, 6 for k = 3 and so on : one hasto be exat on polynomials of degree k − 1. In the 3D ase, one quadraturepoint is enough for k = 1, 3 for k = 2, and so on.There is no need for the �quadrature� formula to be onsistent with theintegral ∫

K

(~λ · ∇ϕ) τ (~λ · ∇u)dx.We hoose these points so that the disrete formula is independent of the num-bering of the mesh points. In our examples, and for triangles and tets, we hoosethe verties of T for k = 2 ; we add to these points the mid edge points for k = 3:sine these points are degrees of freedom, the additional ost is minimized. Inthe ase of quads, we also hoose the verties for k = 2. The weights ωquad usedin (31) are ωquad = 1/#{quad points}.In the following, we denote
ΨK

σ = |K|
∑

xquad ωquad[(~λ · ∇ψσ

)
(xquad) τ(xquad)

(
~λ · ∇uh

)
(xquad)]. (32)Conerning the hoie of the parameter θK , we have used in pratie thefollowing de�nition ;

θK = 1 − max
σ∈T

[
max
T ′∋σ

(
|uσ − ūK |

|uσ| + |ūK | + ε

)] (33)with ε of the order of mahine zero and ūK =
( ∑

σ∈K

uσ

)
/nd. Typially, θ =

O(hK) in a smooth region and θ ≡ 1 in a disontinuity. The relation (33)depends on values of u outside K, thus it seems that the formula is not ompat.Indeed this is true, but from an algorithmi point of view, what is important isthat the implementation an be made ompat.RR n° 7236



20 Abgrall, Larat & Rihiuto3.7 Summary of the �nal sheme for salar problems.The algorithm 1 summarizes the main operations performed for an expliitimplementation, and show that the ompatness of the method is not destroyed.This an easily be generalized to other type of iterative shemes.Algorithm 1 Sketh of the expliit implementation of the shemes. The eval-uation of θK (f. equation (33)) is kept ompat by updating and swapping themonitors θσ and θ̃σ.1: Initialize by θσ = 1 for all DOFs.2: for Do for k = 1 to kmax (maximum number of iterations) do3: Set θ̃σ = 0 for eah σ and Resσ = 04: for For eah K do5: evaluate quantities βK
σ , ΦK , hK , ΨK

σ , and θK , with
θK = 1 − max

σ∈K
θσ6: evaluate

ΦK
σ = βK

σ ΦK + θKhKΨK
σ , (34a)7: evaluate

ξσ = max(θ̃σ,
|uσ − ūK |

|uσ| + |ūK | + ε
) (34b)8: set θ̃σ = ξσ,9: update

Resσ = Resσ + ΦK
σ .10: end for11: Swap : θσ = θ̃σ,12: Update : un+1

σ = un
σ − ωσResσ13: end forFor any K, the total residual is de�ned by (7). The split residuals ΦK

σ arede�ned by (13) and βK
σ by (21). The term ΨK

σ is de�ned by (32). The algorithmsolves (3) for the interior degrees of freedom and (4) for the boundary ones.When the loal Lax Friedrihs sheme is used as a �rst order building blok,as for all the results of this paper, the sheme is denoted by LLxFf (for LoalLax Friedrihs �ltered).4 Numerial illustrations for the salar ase.We start again with the advetion problem with initial states and advetionspeeds de�ned by (26) and (27). The results obtained for P2 interpolation whenadding the term (32) (f. also equation (34a)) are displayed on �gure 3. TheINRIA



Very high order residual distribution shemes on hybrid meshes 21left piture shows that, for the disontinuous solution of problem (26), we donot get any spurious osillations. The right piture instead shows, for prob-lem (27), the bene�e e�et of the extra term in smoothing the ontours thatnow are perfetly irular. We have also run a grid re�nement study on thisproblem using P2 and P3 approximations. The results are summarized on ta-ble 3. The least squares slopes obtained on�rm the expeted onvergene rates.To better visualize the improvement in the solution when going from P1 to P2spatial interpolation, we onsider, on the spatial domain [0, 2]× [0, 1], the solidbody rotation of the inlet pro�le u(x) = sin(10πx). In this ase the advetionspeed is set to ~λ = (y, 1− x). The ontours of the numerial solutions obtainedare reported on �gure 4. Note that the P1 run has been performed on the meshobtained by sub-triangulating the P2 mesh so that exatly the same numberof DOF is used in the two ases. The dramati improvement brought by the
P2 approximation is learly visible in the ontour plots, and also in the outletpro�les reported on �gure 5.We have also run the linear advetion test ase (26)-(27) on hybrid meshmade of triangles and non orthogonal quadragles.The details of the meshes, interm of triangles and quad, are desribed in table 2.The �gure 6 shows the errors done with seond, third and fourth ordershemes. We reover the expeted order. We have also ompared these errorswith the results obtained when all the quad are ut into two triangles. It appearsthat the hybrid results are a little bit more aurate. This is not however ade�nite advantage.We test further the de�nition of the smoothness sensor θT by solving the 2DBurgers's problem

∂u

∂y
+

1

2

∂u2

∂x
= 0 if x ∈ [0, 1]2

u(x, y) = 1.5 − 2x on y = 0.The exat solution onsists in a fan that merges into a shok whih foot isloated at (x, y) = (3/4, 1/2). More preisely, the exat solution is
u(x, y) =





if y ≥ 0.5





−0.5 if − 2(x− 3/4) + (y − 1/2) ≥ 0

1.5 elseelse max

(
− 0.5,min

(
1, 5,

x− 3/4

y − 1/2

))The results obtained on the mesh of �gure 1 are displayed on �gure 7. Forthe sake of omparison, we give the seond and third order results on the samemesh (hene the P2 results have more degrees of freedom). There are no spuriousosillation aross the shok.RR n° 7236



22 Abgrall, Larat & RihiutoThe method also works on more omplex problems suh as the GukenheimerRiemann problem. This is a well-known non-onvex onservation law. Weprovide this example for two reasons : the solution struture is more omplex,in partiular a fan is ended by a shok. The seond reason is that, even thoughwe do not have any analytial proof of the entropy stability of the sheme, thenumerial results seem to indiate that the entropy ondition is properly met.The problem is originally time dependent, and desribed by
∂u

∂t
+

1

2

∂u2

∂x
+

1

3

∂u3

∂y
= 0

u(x, y, 0) =





0 if 0 < arctan
(

y
x

)
< 3π

4

1 if 3π
4 < arctan

(
y
x

)
< 3π

2

−1 if 3π
2 < arctan

(
y
x

)
< 2π

(35)
The solution is self similar, and it an be reast as

u(x, y, t) = v(
x

t
,
y

t
) = v(ξ, ν) ,where the funtion v satis�es

−ξvξ − νvν +
1

2

∂v2

∂ξ
+

1

3

∂v3

∂ν
= 0 (36a)with the boundary onditions

lim
r→+∞

v(r cos θ, r sin θ) = u(cos θ, sin θ, 0). (36b)Solving (36) amounts to solve (35) at t = 1. This problem has been disussed in[29℄ and has been drawn to our attention by M. Ben Artzi (Hebrew Universityof Jerusalem). The �ux g(u) = u3

3 is non onvex and this indues soni shoks.The exat solution onsists in� A shok oming out from the line y = 0 that moves at the speed 1/3 inthe positive diretion,� a steady shok at x = 0,� A shok oming out from the line x + y = 0. The analysis of [29℄ usingthe self-similarity of the solution indiates that the loation of this shokis x+ y − 5/6t, with in our ase, t = 1. INRIA



Very high order residual distribution shemes on hybrid meshes 23To simulate this problem, we rewrite (36a) as
∂F (u)

∂ξ
+
∂G(u)

∂ν
+ 2u = 0 (37)with F (u) = 1

2u
2− ξu and G(u) = 1

3u
3− νu. The total residual on T takes nowinto aount the presene of the soure term :

ΦT =

∫

∂T

(
F (u)nx +G(u)ny

)
dxdy + 2

∫

T

udxdyThe integral on ∂T has been evaluated by means of a 3 point Gaussian quadra-ture formula, while the volume integral an be easily omputed exatly.The solution is displayed on �gure 8. We see that even for this non onvexproblem, there are no osillations lose to the disontinuities. More interestingly,the orret entropy solution is obtained. This is a topi for further investigation :it is known that the upwind RD shemes may yield solutions that do not respetthe entropy inequality [30℄. This does not seem to be the ase with our �entered�approah, most likely due to the presene of the term (32).5 Extension to systemsIn this setion, we desribe the sheme for the system of the steady Euler equa-tions desribed by (1a) with the �ux (2) and the onserved variables u =
(ρ, ρ~u,E)T . We assume a perfet gas equation of state, and γ = 1.4 in theappliations. We denote by A (resp. B) the Jaobian matrix of the �ux f1(resp. f2) with respet to the state u.The sheme is a diret extension of what is done in the salar ase, with amajor modi�ation beause the natural unknown is a vetor, not a salar. Weprovide the details of the sheme desription on a single element K sine thereis no ambiguity.All the results obtained in the system ase are given for quadrati inter-polants. It is of ourse possible to use ubi (or larger degree) interpolant, butsine we deal with steady problems, we do not expet major improvement in thesolution. This statement is ertainly not orret for unsteady problems whihis the topi of a oming paper.5.1 The �rst order building blokThe �rst order sheme is onstruted on the Lax�Friedrihs sheme, i.e., for anydegree of freedom σ ∈ K,

Φσ =
1

nK
d

∮

∂K

f(uh) · ~ndl + αK(uh − ū). (38)Here nK
d is the number of degrees of freedom in K, hene nK

d = 6 for a triangleand nK
d = 9 for a quadrangle: we have run the third order version of the shemeRR n° 7236



24 Abgrall, Larat & Rihiutoin the examples. The total residual ∮
∂K

f(uh) · ~ndl is evaluated by Simpsonformula: if Γ = [a, b] is an edge of K and c = a+b
2 , we set

∫

Γ

f(x)dl ≡
1

6

(
f(a) + 4f(c) + f(b)

)
,whih amounts, in our ase, to use a quadrati interpolant of f in K. Theaverage state is

ū =

∑

σ∈T

uσ

nK
d

,and αK is larger than the spetral radius of the �ux Jaobians at the degreesof freedom. In pratie, it is set to twie this maximum.5.2 Controlling the osillationsIn the salar part, the ontrol of osillations is ahieved by �limiting� the ratios
Φσ/Φ. In the system ase, this quantity has no meaning. Hene, we adapt theproedure presented in [26℄. Using the average state ū, we ompute the average�ow diretion, i.e.

~̄n =
~̄u

||~̄u||
= (n1, n2).Then we evaluate the Jaobian matrix

K~̄n = A(ū)n1 +B(ū)n2 (39)whih is diagonalizable in R. The eigenvetors are rp for p = 1, · · · , 4 assoiatedto the eigenvalues
λ1,2 = ~̄u · ~̄n = ||~̄u||, λ3 = ||~̄u|| − c̄, λ4 = ||~̄u|| + c̄.Last, we denote by ℓp the right eigenvetors of the system, i.e. the linear formssuh that any state vetor X ∈ R4 an be deomposed as

X =

4∑

p=1

ℓp(X)rp.Our method is then the following:1. We deompose the �rst order residuals Φσ into �harateristi� residuals,for eah σ,Φσ =

4∑

p=1

ℓp(Φσ)rp.We denote the harateristi residual by ϕp
σ = ℓp(Φσ), they satisfy theonservation relation:for eah p ∈ {1, · · · , 4},

∑

σ∈K

ϕp
σ = ℓp(Φ) := ϕp INRIA



Very high order residual distribution shemes on hybrid meshes 252. For any p = 1, · · · , 4, we �limit� the harateristi sub-residual by the sameproedure as in the salar ase:
βp

σ :=

(
ϕp

σ

ϕp

)+

∑
σ′∈T

(
ϕp

σ′

ϕp

)+3. We onstrut the limited residual by
Φ⋆

σ :=

4∑

p=1

βp
σϕ

prp. (40)The property (11) is satis�ed in a suitable norm. Indeed, if A0 denotes theHessian of the mathematial entropy evaluated at ū, we know that we an �nda set of eigenvetors rl that are orthogonal for the metri de�ned by A0. Wereall this in the annex A. Indeed, if we denote by ( . , . )A0
the salar produtassoiated to A0. We have

ϕp
σ = (rp,Φσ)A0so that

||Φ⋆
σ||

2
A0

=
∑

p

|βp
σ|

2|; |ϕp|2

≤
∑

p

|ϕp|2

≤ ||Φ||2A0

(41)where of ourse we have assumed that the eigenbasis {rp} is orthonormal.The matrix A0 is not uniform, but we an nevertheless state that if theonserved state is suh that the density and the pressure are bounded fromabove and below, all the norms de�ned by the A0(ū) are equivalent and the LPproperty is uniformly satis�ed.The last step is to get an expliit form of suh a basis. As realled in theannex A, the standard eigenvetors of the Euler equations are simple and goodandidates for that sine it an easily be shown that they are orthogonal for thequadrati form de�ned by the entropy. Hene, this is our pratial hoie. Theyare evaluated as the eigenvetors of (39) where ~n is the normalized averagedveloity. It the ase of a stagnation point, we hoose the x diretion.5.3 Spurious mode �ltering proedure.As for the salar ase, the sheme (7b)�(40) produes very good results in dis-ontinuous regions, and very poor one in the smooth parts of the �ow. IndeedRR n° 7236



26 Abgrall, Larat & Rihiutothe iterative onvergene is very poor, and the results are at most �rst orderaurate.To the same problem, we use the same ure. We add to (Φσ)⋆ a orretionof the type
hK

∫

K

(
(A,B) · ∇ϕσ

)
τ

(
(A,B) · ∇u

)
dx (42)where the matrix τ is a saling matrix.Several hoies have been tested. The simplest one is a diagonal saling,

τ = αIdwhere α has the dimension of the inverse of a speed. We an take α as theinverse of the largest possible eigenvalue of the system, i.e. α = (||~u||+ c)−1. Abetter hoie seems to be
τ = h−1

K Nwhere the N matrix is
N =

( ∑

~n normal to ∂K

K+
~n

)−1

= 2

( ∑

~n normal to ∂K

|K~n|

)−1

. (43)In this relation, the summation is the edges of K (i.e. 3 for triangles, and 4 forquadrangles) and if ~n is any saled inward vetor normal to the boundary ∂Kof K, we have set
K~n = (A,B)~n = Anx +Bny.The Jaobian matrix are evaluated at the averaged state

ρ̄ =
1

nK
d

∑

σ∈K

ρσ, ~u =
1

nK
d

∑

σ∈K

~uσ, p̄ =
1

nK
d

∑

σ∈K

pσIt is shown in [12℄ that if the veloity ~u 6= 0, the matrix ∑
~n normal to ∂K

K+
~n isalways invertible. To avoid this situation, we slightly modify the eigenvalues λ+appearing in the evaluation of Li by

λ+ → λ̃+ =





λ+ if |λ| > ε

(λ + ε)2

4ε
else.This is reminisent of Harten's entropy �x, but the role here is di�erent. Here εis a small number of the form α(||~u||+ c) with α ≡ 0.01 in the numerial appli-ations, but the simulations do not seem to be very sensitive to this parameter4. Note that we apply this to eah of the eigenvalues, even though only the

λ = ~u · ~ni needs to be modi�ed.4Indeed, one ould avoid this by noting that, using again [12℄ where a deomposition usingthe entropy wave is desribed. INRIA



Very high order residual distribution shemes on hybrid meshes 27The seond thing we do is to simplify the expression (42) in the spirit of(31). Namely, the residual is
Φ⋆⋆

σ = Φ⋆
σ + θKΨσ (44a)with

Ψσ = |K|
∑

x̂quadωquad[((A,B)(x̂quad)J−1(x̂quad)∇K̂ ψ̂σ

)
(x̂quad)

N

(
(A,B)(x̂quad)J−1(x̂quad)∇K̂u

h

)
(x̂quad)]| det(J−1(x̂quad))|.(44b)where J is the Jaobian of the transformation between the referene element K̂and the element K.As in the salar ase, we have taken the smallest set of quadrature points, i.e.the verties of K. This also simpli�es the evaluation of the Jaobian matries.The last feature is the parameter θK . It has to be of the order of unity in thesmooth regions, and of the order of zero when the gradient of the solution islarge. In the numerial experiments, we have hosen a sensor on the density,

θK = 1 − max
σ∈K

(
max

K′,σ∈K′

max
σ′∈K′

|ρσ′ − ρTK |

|ρσ′ | + |ρK′ |

)
. (44)or on the entropy

θK = 1 − max
σ∈K

(
max

K′,σ∈K′

max
σ′∈K′

|sσ′ − sK′ |

sσ′ + sK′

)
. (44d)where s = pρ−γ (in order to have a positive quantity). Both hoies give verysimilar results, the seond one being leaner. Conservation is guarantied auto-matially.5.4 Boundary onditionsWe have used a simpli�ed version of the boundary onditions. If an element Khas an edge, ΓK , on the boundary, we need to add to the degrees of freedom on

ΓK a boundary residual. We denote it by ΦΓK
σ . These residuals should satisfythe onservation relation

∑

σ∈ΓK

ΦΓK
σ =

∫

Γσ

(
Fn(uh) − f(uh) · ~n

)
dlwhere Fn is a boundary �ux. In the examples of this paper, two types ofboundary are onsidered:RR n° 7236



28 Abgrall, Larat & Rihiuto� Wall boundary onditions . The ondition ~u · ~n = 0 is weakly imposed sothat
Fn(uh) =




0
p(uh)nx

p(uh)ny

0


� In�ow/out�ow boundary onditions. The state at in�nity is U∞ and wetake here the modi�ed Steger-Warming �ux

Fn(uh) =
(
A(uh) · ~n

)+
uh +

(
A(uh) · ~n

)+
u∞.By analogy with what is done in [12℄, we have hosen a 'entered' version of theboundary residuals, namely

ΦΓK
σ =

∫

ΓK

(
Fn(uh) − f(uh) · ~n

)
ψσ(x)dlwhere again ψσ is the Lagrange basis funtion de�ned in K for σ. This isapproximated by a quadrature formula with positive weights. The quadratureformula should be of order k+ d− 1, i.e. 3 for a third order sheme in 2D. Theatual residual is

ΦΓK
σ = |ΓK |

∑quadrature pointsωquad

(
Fn(uh) − f(uh)

)
(xquad) · ~n. (45)In the ase of interest (P2/Q2 interpolation), we approximate these relationwith Simpson's formula : only one term appears in the sum and it orrespondsto σ.All the meshes we have used are made of triangles or quadrangles. In thispaper, we have used two type of boundary representation. In the �rst one, see�gure 9-(a), is to adopt a pieewise linear representation of the boundary. Asit an be seen, we might be quite far from the true geometry. In the seondrepresentation, see Figure 9-(b), we use a quadrati representation of the geom-etry. In priniple, the situation should be better, but one has to be aware oftwo di�ulties. First, the �numerial� representation of the boundary is not C1in general, even if the boundary is C∞. An example is provided on �gure 10where we approximate the boundary of a NACA012 airfoil near the symmetryaxis. The seond problem is that even very simple geometries, suh as irle,will not be represented exatly.The seond drawbak ould be solved by using NURBS representation of theboundary, the �rst one is here solved as follows: instead of trying to interpolateexatly in eah boundary segment the boundary urve as in �gure 9-a, we use aBézier representation whih amount to interpolate at the boundary points andrespet the tangents at these points as in �gure 9-b. We get an approximatequadrati representation of the boundary. INRIA



Very high order residual distribution shemes on hybrid meshes 29In order to simplify the oding, we have used use an isoparametri represen-tation of eah element, even for the interior elements. The �ltering operator isthe adapted to this ontext : we need a exat evaluation of the gradient anddivergene operators.Sine the loal representation is governed by the loation of the degreesof freedom in any single element, we an use the same algorithm to representurved elements and triangle elements. In any ase, internal elements are stilltriangles and quadrangles.The modi�ations of the sheme we have presented so far are minimal :� Evaluation of the total residual and boundary residuals. They amount toevaluating integrals like ∫

Γ

f · ~ndlwhere Γ is a possibly urved line and ~n is the outward unit normal. Byusing the loal transformation between Γ and [0, 1] (denote it by φ) wehave ∫

Γ

f · ~ndl ≈
∑

xqquad pointsωqf(φ(xq)) · (φ
′)⊥(xq).Here (φ′)⊥ is normal to φ′ and in the same diretion as ~n.� Evaluation of the �ltering terms using (44b).5.5 Summary of the �nal sheme for the system ase.This setion is a ut and past of setion 3.7 for the salar ase. We an repeatalgorithm 1 where the main steps are modi�ed as follows, besides that thevariables are now vetors.� At the degrees of freedom, we store the primitive variables : the density,veloity and pressure. From that are de�ned the Lagrange interpolant ofthese variables and the onservative variables. In partiular, this enableto ompute the total residual and the LxF residual (38).� The residual are �limited� aording to (39) and (40).� the �ltering operator (42) is added with τ = N , see (43) so that we have(44).� The boundary onditions (45).The onserved variables are updated thanks to a linearised impliit shemesimilar to what is done in [5℄. From the onserved variables are deoded theprimitive variables. Curved element are handled as explained in �5.4.
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30 Abgrall, Larat & Rihiuto6 Numerial results for systemsIn all the simulations (unless spei�ed), we have used (44d). The meshes usetriangles only unless spei�ed.6.1 A onvetion problemOur �rst example is the solution of the Euler system on [0, 1] × [0, 1] with thefollowing in�ow ondition at y = 0, x = 1 and x = 0:
ρ = 2 + sin(πx), u = 10, v = 0, p = 1The �ow is assumed to be supersoni at y = 1. The exat solution is

ρ(x, y) = 2 + sin(πx), u(x, y) = 10, v = 0, p(x, y) = 1, (46)the problem is a simple onvetion one. However, we use the full Euler systemand the sheme developed above to ompute the solution. The sheme is reallythird order aurate as it an be seen from the L2 errors on �gure 11.6.2 Computation of jetIn this example, the domain is a square Ω = [0, 1]2. The boundary onditionsare :� If y > 0.5 and x = 0, the Mah number is set to M∞ = 4, the density is
ρ∞ = 0.5 and the veloity is (u∞ = M∞c∞, 0) with c∞ =

√
γp∞/ρ∞.� If y ≤ 0.5 and x = 0, the Mah number is set to 2.4, the veloity is (u∞, 0)and the density set to 1� The other boundary are assumed to be supersoni.In suh a on�guration, the �ow is steady and supersoni. We have a shokwave on the bottom, followed by a slip line and then a fan, see �gure 12. Sinethe �ow is supersoni, the x− oordinate plays the role of time : if one makes aross�setion x = onst, we have a self-similar solution of the same type as whatone gets for a one dimensional shok tube. It is lear that there is no osillationat all on the density. The same onlusion holds for the other variables (notdisplayed).6.3 Subsoni examples6.3.1 A subsoni example : �ow over a sphereWe have run the ase of a �ow at M∞ = 0.35 over a sphere. In that ase,the �ow is symmetri with respet to the x�axis of the domain, but also withrespet to the y axis. This is a well known GAMM test ase. We have run thisase with a seond order sheme, a third order sheme, and again the seondINRIA



Very high order residual distribution shemes on hybrid meshes 31order sheme on the mesh that has the same degrees of freedom as those of the
P2 sheme. In other words, we subdivide eah triangle into 4 smaller triangleswhih verties are those of the large triangle and the mid�edges points. Theinitial mesh has 2719 nodes, 5308 elements and 100 nodes on ylinder. It isdisplayed on �gure 13.We see on Figure 14 whih displays the pressure oe�ient isolines the im-provement of the solution quality when the sheme is upgraded from seondorder to third order. More important, the same Figure indiates learly thatthe seond order sheme on the re�ned mesh gives less aurate results than thethird order one. Note that we have the same degrees of freedom in both ases.This result is on�rmed by Figure 15 whih displays the entropy variationalong the boundary. Exept at the forefront stagnation point, the entropy de-viation of the third order sheme is muh loser than the exat one.We have re-run this test ase on an hybrid mesh using the seond order andthe third order shemes. In both ases, the same degrees of freedom are used(i.e. we use the DOFs of the sub-triangulation for the seond order sheme).The results are shown on �gure 16. The mesh use 81 points on the sphere. Weget the same onlusions as before.6.3.2 Subsoni �ow over two aligned spheresIn order to better see the in�uene of the order of the sheme, we have runa variation of the previous ase with a more omplex geometri on�guration.The Mah number at in�nity is still 0.35, but instead of a single sphere, we havetwo now. More preisely, the geometrial on�guration is as follow:� Radius of the sphere: 1� The enter of the �rst sphere is (0, 0), the seond sphere is (10, 0).� The outer boundary is also a irle of enter (10, 0) and radius 35.The geometrial setup and a zoom of the mesh are shown on �gure 17. Themesh is symmetri with respet to the x axis. The half mesh has� 50 regularly spaed points on the outer boundary,� 30 regularly spaed points on eah half irle,� The segment between the two irle has 60 regularly spaed points,� the segment on the left has 50 points with a geometri ratio of 0.95,� the segment on the right has 70 points with a ratio of 1.03.Using the em25 mesh generator, this reates a mesh with a total of 11007verties and 21796 triangles, that is 43811 P2 degrees of freedom.5http://www-roq1.inria.fr/gamma/drom/www/em2/fra.htmRR n° 7236



32 Abgrall, Larat & RihiutoWe have used the seond order and third order shemes for omparisons.This mesh has been used for the third order sheme, i.e. additional degreesof freedom sitting on the mid-edge points has been used. In the ase of theseond order sheme, we have used the same degrees of freedoms, exept on theboundaries where they have been projeted onto the orret physial boundary.See �gure 18. Saying this, we see that the mesh for seond order runs is �better�than for third order runs.The �gure 19 show the pressure oe�ient for the two shemes. There is nolear di�erenes exept that a loser inspetion at the stagnation points seemsto indiate that the third order solution is more symmetri with respet tothe vertial axis than the seond order one (we have the same isolines). Moreinteresting are the entropy isolines, see �gure 20Again the same isolines have been used, and we see that the third ordersolution is muh less dissipated than the seond order one.On �gure 21, we have displayed on the top, the entropy deviation over the leftirle and the right irle. The bottom plots represent (i) the entropy deviationdistribution on the vertial axis that is in the middle of the two irles, and (ii)the same quantity at the exit of the omputational domain. It is lear that,despite we have the same numbers of degrees of freedoms and the fat thatthe seond order mesh is better that what we have used for the third ordersimulations, the third order solution is of a muh better quality.6.4 A transoni NACA0012 airfoils aseOur next examples is a �ow over a NACA012 airfoil. It is transoni, and has thefollowing onditions at in�nity: M = 0.8, angle of attak of 1.25◦ The meshhas 10959 points and 21591. This orresponds to 43509 degrees of freedom.On �gure 22, we have displayed the Mah number, the pressure oe�ientsen relative entropy deviation for the third order version of the sheme. Thesame quantities plotted on the airfoil an be seen on �gure 23. The solutionsare �ne. Note however a non physial overshoot in the entropy aross the uppershok.We have run many other tests as the following (results not shown). If weompare the seond order` solution run with a mesh onstruted from the meshwe have used where the element is sub-triangulated so that we have the samenumber of degrees of freedom, we an see an exellent agreement between thesolutions with a main di�erene however. In both ases, the shok with is oneelement, but one element for the third order solution is roughly twie as largeas an element for the seond order one. Hene, the shok look more di�used inthe third order ase. However, the entropy levels are muh lower, as we havealready seen in the two sphere subsoni ase.6.5 The Ringleb test aseAnother ase is the Ringleb �ow. It has been devised by F. Ringleb [31℄ in1940, see [32℄ for a derivation of more general solutions. This is an isentropi,INRIA



Very high order residual distribution shemes on hybrid meshes 33irrotational two dimensional �ow. It is de�ned from the streamline funtion (θis the veloity angle with respet to a given diretion and v is the norm of theveloity) ψ = sin θ
v . From this, it is possible to get the expliit form of thestreamlines
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2 q2, ρ = c2/(γ−1)The pressure is determined by the equal entropy assumption. We see that theisotah lines are the irles

(
x−

J

2

)2
+ y2 =

1

4ρ2q4From this it is possible to determine the exat solution: given a point (x, y), wedetermine the speed of sound c suh that (x, y) belongs to the irle of enter
(J(c)/2, 0) and radius 1/2(ρq2). One this is done, we an get all the othervalues.We have run this ase in the (symmetri) domain de�ned by� the irle q = 0.3 on the top and the bottom,� the extreme stream lines k = 0.4 and k = 0.8.The simulation has been onduted with two series of meshes. The �rst one ismade of quads ut into two triangles, always in the same diretion. The meshis then made sym-etri. In the seond one, we only onsider the quads. In bothases, we have 2×P points on the streamlines k = 0.3 and 0.8 and P points onthe irles q = 0.3. Here we have taken P = 15, 30, 60 and 100. The error (inthe L2 norm for the density are shown on �gure 24. We see a slope of −3 forthe third order sheme and −1.5 for the seond order sheme. We also note thatthough the formal auray in both ase is as expeted, the e�etive aurayon the quad meshes is muh superior to what is obtained for triangle meshes.6.6 A more omplex aseWe have run the same sheme on a sramjet�like on�guration using an hybridmesh as shown on Figure 25. This example has already been run in [5℄. Thein�ow mah number is set to 3.5. The geometry is suh that many waves oexistand interat in very omplex �ow patterns. This situation is partiularly learon the upper part of the internal body where shoks, fans and their re�etion dueRR n° 7236



34 Abgrall, Larat & Rihiutoto wall interat. Again, in both ases, the same number of degrees of freedomhave been used. One again, the sheme has been run starting from a uniform�ow on�guration. Figure 26 shows the Mah number isolines. As expeted,there is no real di�erene between the solutions sine the �ow is basially madeof shok, fans, slip lines and onstant states : this is not an auray ase, buta ase that shows that, despite the �ow omplexity, the third order sheme isrobust.However, one an see a small di�erene between the solutions : the slipline reated by the interation of two shoks after the blade is a little bit moretwisted for the third order sheme than the seond order one. We also see thatthe resolution of the disontinuities is in both ase approximately one ell width.7 ConlusionWe have desribed a systemati way of onstrution high order Residual distri-bution shemes of unstrutured hybrid meshes. The onstrution use a ontin-uous representation of data. From this information, we evaluate a total �utu-ation and a high order mehanism for distribution these residual to the degreesof freedom is proposed and evaluated.The auray of the sheme is evaluated on salar problems and a standardauray test ase. We have shown that for a given number of degree of freedom,our third order sheme is more aurate that a seond order version of thesheme. The hybrid mesh solver is more aurate when quadrangles are usedinstead of only triangles.The robustness of the method has been evaluated on subsoni, transoni,supersoni �ow problems, as well as on omplex on�gurations where many�ow interations our.The extension to the Navier Stokes equations and to unsteady problem willbe onsidered in separate publiations.AknowledgmentsRA and MR have been �naned in part by the EU Strep ADIGMA (ontratAST5-CT-2006-030719). RA has been �naned by the ERC grant ADDECCO(grant # 226316). AL has been �naned by the EU Strep ADIGMA. The meshesof the NACA012 ase have been produed by ARA in the same ontext. Wewould like to thank the three referees for their omments and ritiisms.Referenes[1℄ A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy. Uniformlyhigh order aurate essentially non-osillatory shemes. III. (Reprint). J.Comput. Phys., 131(1):3�47, 1997. INRIA
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∂u

∂t
+

d∑

i=1

Ai
∂u

∂xi
= 0 (47)equipped with an entropy S. We denote by v the entropy variables,

v = ∇uSand by A0 the Hessian of S with respet to u. The Hessian is a positive de�nitesymmetri matrix. This entropy symetrises (47), that is
A−1

0

∂v

∂t
+

d∑

i=1

AiA
−1
0

∂v

∂xi
= 0 (48)is a system where the matries AiA

−1
0 are symetri.Take a diretion ~n = (n1, · · · , nd)

T and set Kn =
∑

iAini We see that thesymetri matrix
A

1/2
0

(
KnA

−1
0

)
A

1/2
0 = A

1/2
0 KnA

−1/2
0is similar to Kn: one an �nd a set of vetors {Rj} and {rj}� the eigenvetors Rj of A1/2

0

(
KnA

−1
0

)
A

1/2
0 are orthonormal,� the eigenvetors rj of Kn satisfy

Rj = A
1/2
0 rjRR n° 7236
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RjR

T
k =

(
A

1/2
0 rj

)(
A

1/2
0 rk

)T

= rjA0r
T
k = δk

j .If all the eigenvalues of Kn are single, suh a deomposition is unambiguous. Inthe ase of an eigenvalue with multipliity larger than 1, this results shows thatone an �nd suh a deomposition.In the ase of the Euler equations, the eigenvetors are well known :
r1un

=




1
u
v

u2 + v2

2


 , r2un

=




0
−ny

nx

−nyu+ nxv


 , r+c =




1
un + cnx

un + cny

H + unc


 , r−c =




1
un − cnx

un − cny

H − unc


 .The above analysis shows that r±c are mutually orthogonal (with respet to thequadrati form de�ned by the Hessian of the entropy) and also orthogonal to

r1un
and r2un

. It is a simple but tedious exeries to hek that
(r2un

)TA0r
1
un

= 0so that the set of eigenvetors is an orthogonal basis for this quadrati form. Forthat reason, the transformations from onservative to �harateristi� variablesand vie�versa are well de�ned. This is the reason why we have hosen todeompose the residual onto harateristi variables.B Proof of the error estimates.Proof of proposition 3.2. This inequality is a onsequene of (8) beause wehave
−

∫

Ω

∇ϕh(x) · fh(uh) +

∫

∂Ω

ϕh(x)fh(uh) · ~ndl +

∫

Ω

ϕh(x)Sh(uh)dx =

(
−

∫

Ω

∇ϕh(x) · f(u) +

∫

∂Ω

ϕh(x)f(u) · ~ndl +

∫

Ω

ϕh(x)Sh(u)dx

)

+

(
−

∫

Ω

∇ϕh(x) ·

(
f(u) − f

h(uh)

)

+

∫

∂Ω

ϕh(x)
(
f(u) − f

h(uh)
)
· ~ndl +

∫

Ω

ϕh(x)
(
Sh(u) − Sh(uh)

)
dx

)(49)where u
h is the Lagrange interpolant of u. From standard interpolation re-sults [33℄, we have |ϕh| ≤ C and |∇ϕh| ≤ C′, |fh(uh) − f(u)| ≤ C(u, f)hk+1INRIA



Very high order residual distribution shemes on hybrid meshes 39and |Sh(uh) − S(u)| ≤ C(u, S)hk+1. So that (49) is in norm smaller that
C(u, f , S)hk+1 for a suitable onstant C(u, f , S).The seond point is to notie that we have, for any K and Γ, |ΦK,c

σ | ≤
C(u, f , S)hk+d and |ΦΓ,c

σ | ≤ C(u, f , S)hk+d−1 where d is the spae dimension,see lemma B.1.Then, for any K,
|
∑

σ,σ′∈K

(
ϕ(σ) − ϕ(σ′)

) (
ΦK

σ − ΦK,c
σ

)
| ≤

∑

σ,σ′∈K

(
|ϕ(σ) − ϕ(σ′)|

) (
|ΦK

σ | + |ΦK,c
σ |

)
|

≤ # of elements ×N × ||∇ϕ||∞h× C(ϕ, f , S)hk+dwhere N is the number of degree of freedom in eah element. In a regular meshfor a bounded domain, the number (#) of elements sizes like h−d so that in theend, we an �nd a onstant (again denoted by C) whih depends on u, f , S and
Ω suh that

|
∑

σ,σ′∈K

(
ϕ(σ) − ϕ(σ′)

) (
ΦK

σ − ΦK,c
σ

)
| ≤ C(u, f , S,Ω)hk+1.The last estimation is to be done for the boundary terms. Using the onsis-teny of the numerial �ux, we �rst have

∣∣∣∣
∫

∂Ω

(
F(uh,u−, ~n) − f

h(uh, ~n)

)
ϕh(x)dl

∣∣∣∣ ≤
∫

∂Ω

(∣∣∣∣F(uh, u−, ~n) −F(uh,uh, ~n)

∣∣∣∣
)
ϕh(x)dl

≤ L

∫

∂Ω

|uh − u−| ≤ C(u, f , ∂Ω)hk+1Similarly, we have, for any boundary edge, |ΦΓ,c
σ | ≤ C(u, f)hk+d, (see lemmaB.1. If the boundary of Ω is regular, the number of boundary faes is of theorder of h−(d−1).Thus, we get, using again the same arguments,

∣∣∣∣
∑

Γ⊂∂Ω

∑

σ,σ′∈Γ

(
ϕ(σ)−ϕ(σ′)

)(
ΦΓ

σ−ΦΓ,c
σ

)∣∣∣∣ ≤ C(u, f , ∂Ω)h−d+1hk+d = C(u, f , ∂Ω)hk+1.This ompletes the proof.Lemma B.1. Under the assumptions of proposition 3.2, we have� |ΦK,c
σ | ≤ C(u, f)hk+d� |ΦΓ,c
σ | ≤ C(u, f , S)hk+d−1Proof. We only show the �rst result.

ΦK,c
σ =

∫

K

ψσ

(div f(wh) − S(wh)
)
dx

=

∫

K

ψσdiv (f(wh) − f(w)
)
dx

= −

∫

K

∇ψσ ·
(
f(wh) − f(w)

)
+

∫

∂K

ψσ

(
f(wh) − f(w)

)
· ~ndl.RR n° 7236



40 Abgrall, Larat & RihiutoSine f(wh) − f(w) = O(hk+1), ∇ψσ = O(h−1), |K| = O(hd) and |∂K| =
O(hd−1, we see that eah integral sales like O(hk+d) for a smooth mesh.
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Figure 1: Convetion problem : Results obtained with sheme (20)�(21) for P2interpolation. Top : mesh. Middle : result for problem (26). Bottom : resultsfor problem (27). The �rst order sheme is (24a).
RR n° 7236



42 Abgrall, Larat & Rihiuto

PSfrag replaements
111

000

−1−1
−1

PSfrag replaements
1

1 0

00

0

0

−1

−1

(a) (b)Figure 2: Two initialisations showing the reation of spurious modes. We showan elementary quad. The global initialisation is obtained by reproduing peri-odialy the pattern.

INRIA



Very high order residual distribution shemes on hybrid meshes 43

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

u

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

PSfrag replaements OutletdataLLxFf(P2)Exat

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

u

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

PSfrag replaements
OutletdataLLxFf(P2)Exat

Figure 3: Rotation problem : Results obtained with the sheme (20)�(21)�(34)for P2 interpolation. Top : result for problem (26) (min = −1.0094, max =
1.01). Bottom : results for problem (27) (min = −0.1735 10−4). The �rst ordersheme is (24a).
RR n° 7236



44 Abgrall, Larat & Rihiuto

x

y

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

PSfrag replaements
LLxFf(P1)

x

y

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

PSfrag replaementsLLxFf( )
LLxFf(P2)

Figure 4: Rotation of the smooth pro�le: uin = sin(10x). Top: limited LLxFsheme, P1 approximation (LLxFf(P1)). Bottom: limited LLxF sheme, P 2approximation (LLxFf(P2)). Computations run on the same number of degreesof freedom. Referene mesh size h = 1/80

INRIA



Very high order residual distribution shemes on hybrid meshes 45

x

u

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PSfrag replaements ExatLLxFf(P1)LLxFf(P2)
Figure 5: Rotation of the smooth pro�le: uin = sin(10πx). Computed out-let pro�le. All omputations run on the same number of degrees of freedom.Referene mesh size h = 1/80.

Figure 6: Mesh onvergene for the onstant advetion problem (22) with ~λ =
(0, 1)T . The mean square slope are alulated with the errors measured on thehybrid meshes (represented by irles, squares and triangles). The star pointsorrespond to the same simulations on triangular grids (same problem, samenumber of verties).RR n° 7236



46 Abgrall, Larat & Rihiuto

PSfrag replaements PSfrag replaementsLLxFf(P1) LLxFf(P2)
x

u

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5

PSfrag replaements LLxFf(P1)LLxFf(P2)
x

u

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5

PSfrag replaements LLxFf(P1)LLxFf(P2)ut at y = 0.3 at y = 0.6Figure 7: Burger equation, solution obtained with a P1 and P2 lagrange inter-polant and the LLxFf sheme
INRIA



Very high order residual distribution shemes on hybrid meshes 47

x

y

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

x

y

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

P1 without (32) P2 without (32)
x

y

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

x

y

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

P1 with (32) P2 with (32)Figure 8: Burger equation, solution obtained with a P1 and P2 lagrange inter-polant and the LLxFf sheme
(a) (b)Figure 9: Boundary representation. The loations of the degrees of freedom arerepresented by the blak irles. (a): pieewise linear representation, (b) P 2isoparametri representation.RR n° 7236



48 Abgrall, Larat & Rihiuto
0 0,01 0,02 0,03 0,04

0

0,01

0,02

0,03

Control points
P2 representation
Exact

Figure 10: Comparison with the true geometry between the two boundary rep-resentation methods used in this paper. The degrees of freedom are representedby irles.
 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 100

L2
 E

rr
or

 E
st

im
at

io
n

1/h, slopes : [-1.790785, -2.847617, -3.920369 ]

2nd Order
3rd Order
4th OrderPSfrag replaements

1

1

1
−1.79

−2.85

−3.92

− log(h)

lo
g
(ε

L
2
)

Figure 11: Transport equation : L2 error for the seond, third order and fourthorder version of the LLxFf sheme.

seond order third orderFigure 12: Jet problem : isolines of the density, seond and third order LLxFfsheme. All the degrees of freedom are plotted. and the same isolines are plottedINRIA



Very high order residual distribution shemes on hybrid meshes 49

Figure 13: Subsoni sphere problem : Zoom of the mesh for the sphere problem.The mesh has no symetry.

RR n° 7236



50 Abgrall, Larat & Rihiuto

p,  min = 0.594864,  max = 1.08936PSfrag replaements p,  min = 0.701164,  max = 1.08882wPSfrag replaementsSeond order Seond order using the P 2 dofs

p,  min = 0.688306,  max = 1.09286wPSfrag replaements third order shemeFigure 14: Subsoni sphere problem : Isolines of the pressure oe�ient. Wehave the same isolines on eah �gure.
-1 -0,5 0 0,5 1

-0,005

-0,004

-0,003

-0,002

-0,001

0

0,001

0,002

0,003

0,004

0,005PSfrag replaements
P 2 elements
P 1 elementsP 1 elements (sub-triangulation)s

xFigure 15: Subsoni sphere problem : Entropy variation along the boundary.INRIA



Very high order residual distribution shemes on hybrid meshes 51

X

Y

Z

Pressure oe�ient
Entropy variatinon seond order third orderFigure 16: Subsoni sphere problem, hybrid mesh : Pressure oe�ient andentropy variation on an hybrid mesh, M∞ = 0.35.

RR n° 7236



52 Abgrall, Larat & Rihiuto

x

y

-10 0 10 20

-20

-15

-10

-5

0

5

10

15

20

x

y

-1 0 1 2
-2

-1

0

1

2

(a) (b)Figure 17: Subsoni two sphere problem. (a): Geometrial setup, (b): zoom ofthe mesh.

x

y

-0.92 -0.9 -0.88 -0.86 -0.84

0.42

0.44

0.46

0.48

0.5

PSfrag replaements Seond orderThird order
Figure 18: Subsoni two sphere problem. Loation of the degrees of freedom onthe boundary for the seond and third order shemes.

INRIA



Very high order residual distribution shemes on hybrid meshes 53

x

y

-15 -10 -5 0 5 10 15 20 25
-20

-15

-10

-5

0

5

10

15

20

x

y

-15 -10 -5 0 5 10 15 20 25
-20

-15

-10

-5

0

5

10

15

20

Seond order Third orderFigure 19: Subsoni two sphere problem. Pressure oe�ient isolines. The sameisolines have been used in the two ases.
x

y

-15 -10 -5 0 5 10 15 20 25
-20

-15

-10

-5

0

5

10

15

20

x

y

-15 -10 -5 0 5 10 15 20 25
-20

-15

-10

-5

0

5

10

15

20

Seond order Third order
x

y

0 5 10 15 20 25
-10

-5

0

5

10

x

y

0 5 10 15 20 25
-10

-5

0

5

10

Zoom ZoomFigure 20: Subsoni two sphere problem, entropy isolines. The same isolineshave been used in the two ases.RR n° 7236



54 Abgrall, Larat & Rihiuto

x

s

-1 -0.5 0 0.5 1

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

PSfrag replaements
Seond orderThird order

x

s

9 9.5 10 10.5 11

0

0.002

0.004

0.006

0.008

PSfrag replaements
Seond orderThird order

over the left irle over the right irle
s

y

0 0.001 0.002

-10

-5

0

5

10

PSfrag replaements Seond orderThird order
s

y

0 0.001 0.002 0.003

-15

-10

-5

0

5

10

15

PSfrag replaements Seond orderThird orderbetween the irle at the outletFigure 21: Subsoni two sphere problem, entropy on the boundaries of the diss,on the vertial axis in the middle between the two irles, at the outlet.
INRIA



Very high order residual distribution shemes on hybrid meshes 55

x

y

-1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

x

y

-1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

Mah number Pressure
x

y

-1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

x

y

0 0.5 1 1.5 2 2.5 3 3.5

-1.5

-1

-0.5

0

0.5

1

1.5

Density entropyFigure 22: Transoni NACA012 problem. Isolines of the Mah number, pressure,density and entropy for the NACA012 ase.
RR n° 7236



56 Abgrall, Larat & Rihiuto

x

C
r

0 0.2 0.4 0.6 0.8 1

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

x

C
p

0 0.2 0.4 0.6 0.8 1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Density pressure oe�ient
x

M
a

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

x

s

0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0.025

Density pressure oe�ientFigure 23: Transoni NACA012 problem. Plots on the pro�le, subsoni testase.
INRIA



Very high order residual distribution shemes on hybrid meshes 57

0.1
1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

Tri O3
Tri  O2
Quad O2
Quad O3
slope 2
slope 3Figure 24: Ringleb �ow problem. L2 error on the density for the Ringleb �ow.Tri stands for triangle, Quad for quadrangle. O2 stands for seond order, O3for third order.

RR n° 7236



58 Abgrall, Larat & Rihiuto
x

10 11Figure 25: Zoom of the mesh for the sramjet problem.

x

y

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

limited LF plus stabilization - Mach number. Top : P2/Q2. Bot tom : P1/Q1

x

7 8 9 10 11 12 13
0

1

2

3

4

limited LF plus stabilization - Mach number.
Top : P2/Q2. Bottom : P1/Q1

zoomFigure 26: Sramjet problem. Mah number distribution. Top : the third ordersolution, bottom the seond order solution. The same isolines are plotted.

INRIA



Very high order residual distribution shemes on hybrid meshes 592D 3DOrder DG RDS DG RD2 6ns ns 24ns ns3 12ns 4ns 40ns 8ns4 20ns 9ns 80ns 27nsTable 1: Number of degrees of freedom for third and fourth order approximationfor triangular meshes.
h Verties Triangles Quadrangles0.1 114 190 36 770.05 468 858 128 3650.025 1784 3410 480 14650.0125 7777 15236 1982 66270.01 11454 22510 2858 9826Table 2: Number of verties, triangles and quadrangles for the di�erent meshesused for the grid onvergene. The left number in the olumn Triangles orre-sponds to the number of triangles in the triangular mesh, while the right one isthe number of triangles in the hybrid grid. Hybrid grids have then about twotimes less elements than the triangular twin ones.

h ǫL2(P 1) ǫL2(P 2) ǫL2(P 3)1/25 0.50493E-02 0.32612E-04 0.12071E-051/50 0.14684E-02 0.48741E-05 0.90642E-071/75 0.74684E-03 0.13334E-05 0.16245E-071/100 0.41019E-03 0.66019E-06 0.53860E-08
Ols

L2 =1.790 Ols
L2 =2.848 Ols

L2 =3.920Table 3: L2 errors for (22)�(26) with u(x) = ϕ0(x) on the in�ow.
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