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Abstract

A high-order scheme for direct numerical simulations of turbulent combustion is
discussed. Its implementation in the massively parallel and publicly available Pen-
cilCode is validated with the focus on hydrogen combustion. Ignition delay times
(0D) and laminar flame velocities (1D) are calculated and compared with results
from the commercially available Chemkin code. The scheme isverified to be fifth
order in space. Upon doubling the resolution, a 32-fold increase in the accuracy
of the flame front is demonstrated. Finally, also turbulent and spherical flame
front velocities are calculated and the implementation of the non-reflecting so-
called Navier-Stokes Characteristic Boundary Condition is validated in all three
directions.
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1. Introduction

Modeling of turbulence is one of the largest research areas within flow me-
chanics. Turbulent combustion inherits all the propertiesof non-reacting turbu-
lent flow. The most important addition is linked to the highlynonlinear reaction
processes, and models for this are called combustion models. Two additional
challenges in turbulent combustion are the very sharp changes in density and dif-
ferential diffusion of mass and heat.

For combustion processes it is crucial to be able to simulatethe mixing of
the combustible species correctly. Traditionally this hasbeen done by means of
mixing models in Reynolds Averaged Navier Stokes (RANS) codes by combining,
e.g., thek-ǫ turbulence model and the eddy dissipation concept (or EDC) “mixing”
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model [23, 20, 22], or in Large Eddy Simulation (LES) [27] where a sub-grid
model is used both for the turbulence and for the scalar mixing. There are however
major and still unresolved problems related to modelling ofwhat happens on the
very smallest scales with these methods.

Several RANS codes with detailed chemistry are commercially available [6,
12], and there are a huge number of these codes found as in-house codes at dif-
ferent academic institutions and in many industrial departments around the world.
There are also freely available open-source RANS codes withdetailed chemistry
[19]. The reason for the popularity of RANS is its low demand on computational
resources. Because of this RANS has, for decades, been the most used type of
code for industrial purposes.

Nevertheless, also LES has increased in popularity during the last years, and
this has led, for example, to the inclusion of a LES module in [12]. Most LES
codes for combustion today are, however, in-house codes owned by different aca-
demic institutions.

The most accurate way of simulating turbulent combustion isto use Direct
Numerical Simulation (DNS) [27] instead of RANS or LES. In DNS one resolves
the full range of time and length scales of both the turbulence and the chemistry
(using accurate high-order numerical methods for computational efficiency). The
problem with DNS is however that it is very resource demanding, both on CPU-
hours and memory.

In this paper we present the implementation of a detailed chemistry module
in a finite-difference code [1] for compressible hydrodynamic flows. The code
advances the equations in non-conservative form. The degree of conservation of
mass, momentum and energy can then be used to assess the accuracy of the solu-
tion. The code uses six-order centered finite differences. For turbulence calcula-
tion we normally use the RK3-2N scheme of [32] for the time advancement [5].
This scheme is of Runge-Kutta type, third order, and it uses only two chunks of
memory for each dependent variable. For hydrodynamic calculations, the lengths
of the time step is calculated based on a number of constraints involving maxi-
mum values of velocity, viscosity, and other quantities on the right-hand sides of
the evolution equations. In some cases we use instead a fifth-oder Runge-Kutta-
Fehlberg scheme with an automatic adaptive time step, subject to the aforemen-
tioned hydrodynamic constraints. However, in many cases wefound it advanta-
geous to use a fixed time step whose length is estimated based on earlier trial runs
with an automatically calculated time step.

On a typical processor, the cache memory between the CPU and the RAM is
not big enough to hold full three-dimensional data arrays. Therefore, the Pencil
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Code has been designed to evaluate first all the terms on the right-hand sides of the
evolution equations along a one-dimensional subset (pencil) before going to the
next pencil. This implies that all derived quantities existonly along pencils. Only
in exceptional cases do we allocate full three-dimensionalarrays to keep derived
quantities in memory. However, most of the time, multiple operations including
the calculation of derivatives is performed without using intermediate storage.

As far as we are aware, no open source high-order DNS code withdetailed
chemistry is currently available. The amount of man-hours for implementing a
fully parallelized DNS code with detailed chemistry is enormous. It is therefore
now timely to make such a code available in the public domain and to encourage
further development by a wider range of scientists. Here we describe the imple-
mentation of such a scheme in the Pencil Code, which is currently maintained un-
der the Google Code subversion repository,http://pencil-code.googlecode.com/.
The code is highly modular and comes with a large selection ofphysics modules.
It is portable to all commonly used architectures using Unixor Linux operating
systems. The code is well documented and independent of external libraries and
any third party licenses. All parts of the code, including the current chemistry im-
plementation, is therefore explicitly open source code. Inparticular, there are no
pre-compiled binary files. Consequently there are no licenses required for running
any part of the code. It is therefore straightforward to download the full source
code from the original subversion repository on google-code. The Message Pass-
ing Interface libraries are needed when running on multipleprocessors, but all
parts of the code can also run on a single processor without these libraries. The
integrity of the code is monitored through the automatic execution of a selection
of test cases on various platforms at different sites. The detailed history of the
code with about 14,000 revisions is accessible.

It should be emphasized that the use of high-order discretization is critical for
optimizing the accuracy at a given resolution. Doubling theresolution of a 3D
explicit code require 16 times more CPU time, but this increases the accuracy by
a factor of 32. In fact, switching to a derivative module witha tenth order scheme
is straightforward and not significantly more expensive.

2. The equations

In this section we present the governing equations togetherwith the required
constituent relations such as the equation of state and expressions for viscosity,
diffusivity and conductivity.
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2.1. Governing equations

The continuity equation is solved in the form

D ln ρ
Dt

= −∇ · U, (1)

where D/Dt = ∂/∂t + U · ∇ is the advective derivative,ρ is the density, andU is
the velocity. The momentum equation is written in the form

DU
Dt
=

1
ρ

(−∇p+ Fvs) + f , (2)

wherep is pressure,f is a volume force (e.g. gravity or a random forcing func-
tion),

Fvs = ∇ · (2ρνS) (3)

is the viscous force, whereSi j =
1
2(∂Ui/∂xj +∂U j/∂xi)− 1

3δi j∇ ·U is the trace-less
rate of strain tensor. The equation for the mass fractions ofeach species is

ρ
DYk

Dt
= −∇ · Jk + ω̇k, (4)

whereY is the mass fraction,J is the diffusive flux, ω̇ is the reaction rate and
subscriptk refers to species numberk. Finally, the energy equation is

(

cp −
R
m

) D ln T
Dt

=
∑

k

DYk

Dt

(

R
mk
− hk

T

)

− R
m
∇ · U + 2νS2

T
− ∇ · q
ρT
, (5)

whereT is the temperature,cp is the heat capacity at constant pressure,R is the
universal gas constant,h is the enthalpy,m is the molar mass, andq is the heat
flux. The reason for solving for the temperature directly, instead of, e.g., the total
energy, is to avoid having to find the temperature from the total energy afterwards.
In this work we use the ideal gas equation state given by

p =
ρRT
m
. (6)

In the following we discuss the detailed expressions for viscosity, reaction rate,
species diffusion, thermal conduction, enthalpy and heat capacity.
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2.2. Viscosity

The viscosityν is the viscosity of the mixture given by [30]

ν =

Ns
∑

k=1

Xkνk
∑Ns

j=1 X jΦk j

, (7)

whereNs is the number of species,νk is the single component viscosity,Xk =

Ykm/mk is the mole fraction of speciesk, and

Φk j =
1
√

8

(

1+
mk

mj

)−1/2














1+

(

νk

ν j

)1/2 (

mj

mk

)1/4














2

. (8)

The single component viscosity is given as [8]

νk =
5
16

√
πkBTmk

πσ2
kΩ

(2,2)∗
k

, (9)

whereσk is the Lennard-Jones collision diameter,kB is the Boltzmann constant,
andΩ(2,2)∗

k is the collision integral that is given by [25]

Ω
(2,2)∗
k = Ω

(2,2)∗
L−J,k +

0.2δ∗k
T∗k
, (10)

whereΩ(2,2)∗
L−J,k is the Lennard-Jones collision integral and

δ∗k =
µ2

k

2ǫkσ3
k

, T∗k =
kBT
ǫk

(11)

are the reduced dipole moment and temperature, respectively. In the above equa-
tions,ǫk is the Lennard-Jones potential well depth andµk is the dipole moment.

The values ofǫk, µk andσk must be given as input [24], while the Lennard-
Jones collision integral is represented by

Ω
(2,2)∗
L−J,k =















7
∑

i=0

a(2)
i (ln T∗k )i















−1

, (12)

where the coefficientsa(2)
i are found from Table 1.
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i a(1)
i a(2)

i

0 6.96945701× 10−1 6.33225679× 10−1

1 3.39628861× 10−1 3.14473541× 10−1

2 1.32575555× 10−2 1.78229325× 10−2

3 −3.41509659× 10−2 −3.99489493× 10−2

4 7.71359429× 10−3 8.98483088× 10−3

5 6.16106168× 10−4 7.00167217× 10−4

6 −3.27101257× 10−4 −3.82733808× 10−4

7 2.51567029× 10−5 2.97208112× 10−5

Table 1: Theai coefficients are used in Eqs. (12) and (20) and are taken from the paper of [10].

2.3. Reaction rate

The reaction rate of speciesk is given by

ω̇k = mk

Nr
∑

s=1

(ν′′ks− ν
′
ks)

















(

ρk

mk

)

∑Ns
i=1(ν′ki)

k+s

Ns
∏

j=1

X
ν′js
j −

(

ρk

mk

)

∑Ns
i=1(ν′′ki)

k−s

Ns
∏

j=1

X
ν′′js
j

















, (13)

whereNr is the number of chemical reactions,mk is the molar mass of species
k, pk is the partial pressure of speciesk, nk = ρk/mk is the molar concentration
of speciesk, andρk is the density of speciesk. Furthermore,ν′ks andν′′ks are the
stoichiometric coefficients of speciesk of reactions on the reactant and product
side, respectively. The rates of reactions are given by the Arrhenius expression

ks = BnT
αn exp(−Ean/RT), (14)

whereBn is the pre-exponential factor,αn is the temperature exponent, andEan

is the activation energy and they are all empirical coefficients that are given by
the kinetic mechanism. For hydrogen-air combustion, an example of a kinetic
mechanism is found in [17].

2.4. Species diffusion

The diffusion flux isJk = ρYkVk. Following [31], the diffusion velocity,Vk, is
found by solving

∇Xp =

Ns
∑

k=1

XpXk

Dpk

(

Vk − Vp

)

+
(

Yp − Xp

) ∇p
p
+
ρ

p

Ns
∑

k=1

YpYk( fp − fk), (15)
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where the Soret effect is neglected. The first term on the right hand side cor-
responds to ordinary diffusion, the second term is the so called baro-diffusion,
while the last term is due to unequal body-forces per unit mass among the species.
Unfortunately the CPU cost of solving Eq. (15) numerically scales asN2

s for each
grid point and time-step, and simplifications are thereforerequired in order to be
able to run reasonably sized simulations.

In the mixture averaged approximation the diffusion velocity is expressed as
[16]

Vk = −
Dkdk

Xk
, dk = ∇Xk + (Xk − Yk)

1
p
∇p, (16)

where the body force term has been neglected,Dk is the diffusion coefficient for
speciesk

Dk =
1− Yk

∑Ns
j,k X j/D jk

, (17)

andDk j is the binary diffusion coefficient that is given by [16]

Dk j =
3
16

√

2πk3
BT3/mjk

Pπσ2
jkΩ

(1,1)∗
jk

, (18)

whereσ jk = (σ j + σk)/2 is the reduced collision diameter,mjk is the reduced
molecular mass for the (j, k) species pair

mjk =
mjmk

mj +mk
, (19)

Ω(1,1)∗ is the collision integral that is given by [10]

Ω
(1,1)∗
jk = Ω

(1,1)∗
L−J +

0.19δ∗jk
T∗jk

, Ω
(1,1)∗
L−J =















7
∑

i=0

a(1)
i (ln T∗)i















−1

, (20)

where the coefficientsa(1)
i are also found from Table 1. The reduced dipole mo-

ment and the reduced temperature are given by

δ∗jk =
1
2
µ∗2jk and T∗jk =

kBT
ǫ jk
, (21)

respectively, whereµ∗2jk = µ
∗
jµ
∗
k is the nondimensional 2-species dipole moment,

ǫ jk =
√
ǫ jǫk is the 2-species Lennard-Jones potential, andµ∗k = µk/

√

ǫkσ
3
k is the

nondimensional dipole moment.
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2.5. Thermal conduction

The heat flux is given by

q =
∑

k

hkJk − λ∇T, (22)

whereλ is the thermal conductivity, which is found from the thermalconductivi-
ties of the individual species as

λ =
1
2















Ns
∑

k=1

Xkλk +
1

∑Ns
k=1 Xk/λk















. (23)

Here, the individual species conductivities are composed of transitional, rotational
and vibrational contributions and are given by [29]

λk =
νk

mk
( ftrans.Cv,trans. + frot.Cv,rot. + fvib.Cv,vib.). (24)

2.6. Enthalpy and heat capacity

The enthalpy of the ideal gas mixture can be expressed in terms of isobaric
specific heatcp and temperature as

hi = h0
i +

∫ T

T0

cp,idT, h =
Ns
∑

i=1

Yihi , (25)

whereh0
i is the enthalpy of formation of speciesi at temperatureT0.

To calculate the heat capacitycp we use a Taylor expansion,

cp =
R
m

5
∑

i=1

aiT
i−1, (26)

whereai are coefficients found in [15].

3. Scaling in the Pencil Code

3.1. General remarks

For direct numerical simulations (DNS) it is crucial to havehigh accuracy.
This is due to the fact that we are interested in resolving thesmallest scales, and
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consequently we can not allow for these scales to be lost due to low accuracy. Fur-
thermore, for many situations it is important to know the actual Reynolds number
of the simulation. The Reynolds number is defined as

Re=
ul
ν
, (27)

whereu and l are characteristic velocity and length scale, respectively, andν is
the viscosity. High accuracy is obtained by the use of high order discretization. In
the Pencil Code, sixth order discretization is normally used [4]. However,for the
density a fifth order upwinding scheme us used.

3.2. One-step reaction model, R→ P.

In order to verify that the code recovers correct scaling, weuse simplified
chemistry and compare against known results. Following Doom et al. [9], we
consider a one-step laminar premixed flame model. The irreversible reaction can
be presented asR → P, whereR is the reactant andP is a product. Using the
approach of Ferziger and Echekki [11], we neglect viscous effects, and takeρ,
λ, Cp and thex-component of the velocity to be constant. Then the system of
equations takes the form

∂Yp

∂t
+ Ux

∂Yp

∂x
=

1
Le
∂2φ

∂x2
+ Ω̇, (28)

∂ ln T
∂t
+ Ux

∂ ln T
∂x

= −
ρU2

xCpβ(β − 1)

λ

(T∞ − T0)
T

+
λ

ρCpT
∂2T
∂x2
, (29)

where the reaction rate is defined as

Ω̇ =

{

ρU2
xCpλ

−1β(β − 1)(1− Yp) if T > Tc

0 otherwise,
(30)

whereβ = (T∞ − T0)/(T∞ − Tc), while T0 andT∞ are the temperature of the un-
burned and burned gas, respectively,Tc is the critical temperature,Yp is a mass
fraction of the product, Le= λ/(ρDCp) is the Lewis number,D is the mass diffu-
sion coefficient. Taking Le= 1, one obtains the following analytical solution

T̃ =

{

1− β−1 exp(x/δ) if x < 0,
1− β−1 exp[(1− β)x/δ] otherwise,

(31)

whereT̃ = (T − T0)/(T∞ − T0) andδ = λ/(ρUCp) is a characteristic thickness.
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Figure 1: One-step laminar premixed flame model.Left panel: temperature as a function ofx ob-
tained numerically (solid curve) and analytically (asterisks).Right panel: error of the calculation
as a function of the mesh spacingδx is shown by asterisks, and the expected dependence of error
(proportional toδx6) is indicated by the solid line.

In the left hand plot of Fig. 1 we compare the numerical results with the ana-
lytical solution forT0 = 300 K, T∞ = 2000 K,Tc = 440 K,β = 1.09,Cp = 108

erg g−1 K−1, λ = 104 erg cm−1 K−1 s−1, D = 2 cm2 s−1, ρ = 5× 10−4 g cm−3 and
Ux = 100 cms−1. It can be seen that there is good agreement between the numer-
ical and analytical results. To show the high-order spatialaccuracy provided by
the Pencil Code, we obtain the set of solutions for 33, 65, 129, 257, 513 and 1025
grid points, and compare them pairwise (”33” with ”65”, ”65”with ”129” and so
on). In every pair we compare only the points which are collocated, that is, we do
the comparison for all the grid points of the coarser grid against half of the grid
points of the finer grid. The time step is controlled by the chemistry and is here
fixed atδt = 10−8 s. The size of the domain is 3 cm. The maximum absolute value
of the difference between the corresponding solutions in common points is taken
as the error. In the right-hand panel of Fig. 1 the error as a function ofδx is shown
by the symbols. One can see that sixth-order accuracy is obtained (see solid line).

3.3. One-dimensional premixed flame with the Li mechanism
In this section we study a one-dimensional problem with detailed chemistry.

We consider hydrogen-air combustion using the Li mechanism[17]. The fresh
hydrogen-air mixture enters the domain under stoichiometric conditions (YH2 =

10



Figure 2: Accuracy of calculation as a function ofδx for the Li mechanism. An error of cal-
culations as a function of the mesh spacingδx is shown by asterisks, and the solid line is the
dependence of the error, which is proportional toδx5.

2.4 %, YO2 = 23 % andYN2 = 74.6 %) at a temperature ofTu = 298K and a
pressure ofp = 1 atm. To avoid reflection of acoustic waves at the boundaries
non-reflecting boundary conditions are required. Here the Navier-Stokes Charac-
teristic Boundary Conditions (NSCBC) [26, 18] have been used.

To check the spatial accuracy in the case of the Li mechanism,we perform
numerical experiment as described in Sec. 3.2 for 65, 129, 257, 513, 1025 and
2049 grid points. The time step is fixed atδt = 10−10s. The error as a function of
δx is presented in Fig. 2, where one can see that the fifth-order spatial accuracy is
achieved. The reason we get only fifth order, and not sixth order, is that we are
using upwinding for the density, which has the effect of decreasing the order of
the discretization to fifth order [5].

4. Validation of the chemistry implementation in the PencilCode

In this section the chemistry module will be verified quantitatively by compar-
ison with the commercially available simulation tool [7]. In order to minimize the
effect of the fluid flow, and to focus as much as possible on the chemistry, these
tests have been restricted to zero and one dimensional testscases.
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Figure 3: Dependence of the gas temperature on time, computed with the 6-step mechanism (di-
amonds), the 8-step mechanism (asterisks), and the Li mechanism (triangles). The numerical
results are compared with Chemkin for the 6-step mechanism (three doted-dashed curve), for the
8-step mechanism (doted-dashed curve), and for the Li mechanism (solid curve).

4.1. Zero-dimensional test: ignition delay

First a zero-dimensional ignition delay test for different chemical mechanisms
is studied and compared with the results obtained with Chemkin for the same
setup. One assumes hydrogen-air combustion in a closed homogeneous reactor at
constant volume, and consider the 6-step and 8-step mechanisms of [28] together
with the Li mechanism [17]. The initial values arep = 1 atm for the pressure,
φ = 1 for the equivalence ratio, andT = 1200 K for the temperature. As the
minimum time step varies greatly with the progress of the combustion process the
time step is here chosen automatically using the adaptive Runge-Kutta-Fehlberg
method. The results are presented in Fig. 3, where one can seegood agreement
with the Chemkin results.

4.2. One-dimensional test: laminar flame speed

Next, we consider a one-dimensional flame front. The cold premixed gas en-
ters at one end of the domain at given velocity. Inside the domain there is a flame
front where the fuel is consumed and the temperature increases to the mixture
flame temperature. The mechanism of [17] is used and the inletvalues of temper-
ature, pressure and mixture compositions are the same as described in Sec. 3.3.

12



Figure 4: Flame speed velocity as a function of pressurep. Chemkin results are shown by asterisks.

The inlet velocity is adjusted such that the flame front becomes stationary inside
the domain. The flame velocity is thus arranged to be equal to the inlet velocity.

We find that the flame front should be resolved by at least 10 grid points in
order to ensure a well resolved flame. For a thickness of the flame front of about
0.01 cm, and a domain of∆x = 0.1 cm, the optimal grid size is found to be 150
points. The flame speed as a function of pressure is shown in Fig. 4 where the
current results are found to compare well with those of Chemkin.

5. Three-dimensional flame front simulations

5.1. Plane flame front

In this section we study a 3D representation of the initiallyflat flame front.
The settings of the problem is similar to that in Section 4.2,i.e. initially the tem-
perature, density and velocity change in thex direction, and are constant in they
andz directions. We use periodic boundary conditions in they andz directions,
and in thex direction we use inlet and outlet NSCBC boundary conditionson the
left and right hand sides, respectively, as was done in [18].The pressure isp = 1
bar, the initial gas temperature isT = 750 K, and the inlet velocity is 30 m s−1.
The unburned gas mixture has an equivalence ratio ofφ = 0.8. The size of the
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Run Mechanism Number of species Transportτ [µs/Nt/Ng]
A Li 13 Mix-aver. 71.3
B Li 13 Oran 51.7
C No 13 Mix-aver. 42.1
D No 13 Oran 24.3
E No 0 Const. 1.2

Table 2: Timingsτ in microseconds per timestep,Nt, per grid pointNg.

calculated domain is taken to be 0.5× 0.25× 0.25 cm3, and the grid size is (128×
64× 64).

We study both laminar and turbulent regimes. In the laminar regime we check
that the obtained flame speed is the same as that in the one-dimensional problem.
In the turbulent case we set the turbulent inlet flux as follows. First, we consider
an isothermal box with periodic boundary conditions. Initially the density and
velocity fields in the box are taken to be constant. We use a forcing function in
Eq. (2) similar to that used in Brandenburg [3],

f (x, t) = Re{N fk(t) exp[ik(t) · x] + iϕ(t)}, (32)

wherek(t) is a time-dependent wavevector withkf = 〈|k|〉 being its average value
that is the chosen to be 1.5 times the minimal wavenumber thatfits into the do-
main, andϕ(t) is a random phase. The prefactorN = f0cs(kf cs0/δt)1/2 is chosen on
dimensional grounds,cs0 is a reference sound speed, andf0 is a nondimensional
factor that it chosen to regulate the strength of the turbulence.

The simulation is run until the turbulence is statisticallystationary. This box
of statistically stationary isotropic turbulence is then used as the inlet condition for
the simulation of the turbulent flame front. The values of a two-dimensional slice
from the box (perpendicular to the main stream) are used as the instantaneous inlet
velocity, and the slice is changed as a function of time to represent a real inlet.

For the test case shown here the turbulent intensity is 7 times larger than the
laminar flame velocitySL = 10.2 m s−1. We find that for the mean inlet velocity
3SL the flame is nearly stationary inside the domain. This indicates that the turbu-
lent flame velocity in this case is around 3SL. However, it is hard to determine the
turbulent flame speed precisely, because it is difficult to make the flame perfectly
stationary inside the domain. This is partly because of the fact that between inlet
and outlet the turbulence is decaying. Far from the inlet theturbulence is weaker
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Figure 5: From left to right instantaneous mass fractions ofH2 and OH are shown. Unburnt
turbulent gas in injected on the left.

than close to the inlet, whereas the turbulent flame speed increases with the tur-
bulent intensity. As a result, the flame which is already far from the inlet tends to
move even further downstream and the flame brush becomes broader.

In Fig. 5 one can see that the H2 fuel (on the left hand side of the domain) is all
consumed over the flame brush. The thickness of the flame brushis of the order
of half the box length (2.5 mm) and is slightly smaller than the integral scale of
the turbulence. The mass fraction of OH is shown in the right hand figure. It is
clearly seen that OH does not burn out after the flame, but due to the very high
temperatures downstream of the flame front the mass fractionof OH stays rather
constant. For HO2 the situation is however rather different and it exists only in the
neighborhood of the reaction zone of the flame (see the left hand figure of Fig. 6).
This indicates that HO2 might be used as an indicator of the reaction zone. In the
right-hand figure the temperature is shown to increase from 750 K to 1984 K, but
the maximum value will increase even more downstream of the box due to radical
reconnection.

In addition, we find that the turbulence is damped behind the flame front,
and the burnt gas stream looks much more laminar there (not shown here). This
happens because the values of temperature and hence also viscosity of the burnt
gas are much larger than those of the unburned mixture.
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Figure 6: As Fig. 5, but for the instantaneous mass fraction of HO2 on the left and temperature on
the right.

5.1.1. Timings
As DNS is very CPU intensive, it is crucial that the timings are as good as

possible. The current setup has been tested on a single processor with different
chemistry and transport data, and the results are presentedin Table 2. Run A, with
the full Li mechanism and mixture averaged transport coefficients, use the most
resources, as expected. By simplifying the transport data [21] (Run C) Eq. (17) is
substituted by

Dk = D0
Tn

ρ
(33)

and Eq. (23) is substituted by
λ = ρcpκ0T

n (34)

wheren = 0.7 andD0 = κ0 = 2.9×10−5 g/(s cm Kn) leading to a 28% reduction in
CPU consumption. Lets now turn off reactions, but still keeping all the 13 species
(Run D), and an additional 53% reduction is achieved.

For comparison, Run E is shown in order to see how much is gained by solving
only the Navier-Stokes equation together with the continuity equation, assuming
an isothermal medium with transport coefficients and thermodynamics such that
all species can be neglected. It is seen that this is 20 times faster than Run D. This
large difference is due to the fact that for Run E only 4 equations are solved, in
contrast to the 18 equations for run D. Furthermore, and evenmore importantly,
the time consuming process of determining the thermodynamics, such as enthalpy
and heat capacity, together with the calculation of the viscosity, is omitted.
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Figure 7: 3D images of the hot spot at momentt = 0 s (left panel) and t = 1.2 × 10−4 s (right
panel).

5.2. Spherical flame front

A study of the spherical and cylindrical flames is important because these
cases are useful for determining important parameters in premixed combustion
such as burning velocity, flame stretch rate, and flame curvature. There is a lot of
numerical and experimental research in this area [13]. The most important diffi-
culty in the numerical approach is the large computational demand. The typical
mesh size has to beδx = 40−60µm [14], i.e. for a cube of 3 cm3 one needs about
5003 grid points and ideally 512 processors.

For illustration purposes we consider a smaller cube (1 cm3), centered at the
reference point with the hot spherical spot in its center (see Fig. 8). The initial
hydrogen-air mixture withYH2 = 2.4 %,YO2 = 23 % andYN2 = 74.6 % is under a
pressure ofp = 1 bar. We use NSCBC boundary conditions, take a grid size of (80
× 80× 80), and 25 processors on the Cray XT4/XT5. The results are presented
in Figs. 7 and 8. The 3D images of the hot spot at the different moments (att = 0
s andt = 1.2 × 10−4 s) are presented in Fig. 7. In Fig. 8 one sees that the gas
is burned in the center and then the flame front is expanding symmetrically in all
three directions.

This problem is also used as a good test for the fully three dimensional NSCBC
boundary conditions. We tested the implemented NSCBC boundary condition
both for laminar and turbulent regimes. In the laminar case we find that due to
the full NSCBC boundary conditions [18] the code runs well upto the moment
when the flame front comes to the domain boundaries. In the turbulent regime the
problems appear near the corners and edges of the domain because of the eddies

17



Figure 8: Temperature as a function ofx coordinate in the mid-plane of the box att = 0 s (dashed
curve), t = 10−4 s (dotted-dashed curve) andt = 1.9× 10−4 s (solid curve).

at the boundaries. We avoid such a problem by using buffer (or sponge) zones (for
details see [2]). We add the term to the right-hand side of themomentum equation

DV j
i

Dt
= ... −

V j
i − Vref,i

τ
ζ(xi), j = 1, ...,Ni, (35)

where j denotes the meshpoint andNi is total number of grid points in thei di-
rection, and dots indicate the presence of terms that where already specified in
equation (2),ζ(xi) is equal to zero everywhere except in the buffer zones where
it is equal to unity. The length of the buffer zone is 10 % of the domain, and we
chooseτ = 5δt andVref,i = 0.

6. Conclusions

In this paper we have presented a high-order public domain code for direct
numerical simulation of compressible flows with detailed chemical reactions. The
Pencil Code provides sixth-order spatial accuracy in the simple one-step reaction
case, and fifth order accuracy in the case where upwinding fordensity advection is
necessary. For validation purposes we compare our results with the Chemkin tool
for 0D and 1D test problems, and show that they are in good agreement. Finally,
we calculate the flame speed in 3D both in laminar and turbulent cases.
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The code is well suited for considering also more complicated reaction schemes
such as methane combustion. Furthermore, it is straightforward to consider the
interaction with additional chemicals such as nitrogen andto follow the produc-
tion of NOx gases. In particular, it is important to considercombustion in the
presence of steam. This is well known to lead to a reduction ofNOx gases.
Combustion in the presence of more complicated boundary conditions involv-
ing, for example, smaller inlet geometries has also been considered. Some of
these cases, including those with a turbulent inlet, are available among the many
sample cases that come with the code. For the benefit of the community, it is
advantageous if prospective contributers to the code ask one of the code owners
listed onhttp://pencil-code.googlecode.com/ to obtain permission as a
committer.
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