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Abstract

Starting from the radiation transport equation for homogeneous, re-
fractive lossy media, we derive the corresponding time-dependent multi-
frequency diffusion equations. Zeroth and first moments of the transport
equation couple the energy density, flux and pressure tensor. The system
is closed by neglecting the temporal derivative of the flux and replacing
the pressure tensor by its diagonal analogue. The system is coupled to
a diffusion equation for the matter temperature. We are interested in
modeling annealing of silica (SiO2). We derive boundary conditions at a
planar air-silica interface taking account of reflectivities. The spectral di-
mension is discretized into a finite number of intervals leading to a system
of multigroup diffusion equations. Three simulations are presented. One
models cooling of a silica slab, initially at 2500 ◦K, for 10 s. The other
two are 1D and 2D simulations of irradiating silica with a CO2 laser,
λ = 10.59 µm. In 2D, we anneal a disk (radius = 0.4, thickness = 0.4 cm)
with a laser, Gaussian profile (r0 = 0.5 mm for 1/e decay.)

1 Introduction

This paper derives a tractable system of equations to model radiation effects
when annealing a refractive, absorbing medium. For glass, the importance of
radiation as an effective heat transfer mechanism has long been recognized. Gar-
don [7] and Condon [5] present valuable surveys of the process. Early work mod-
eled the enhanced energy transfer due to radiation by adding to the conventional
energy flux km∇T a gray radiative heat flux proportional to n2σT 4, where n

∗This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.
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is the medium’s (average) refractive index and σ is the Stefan-Boltzmann con-
stant. This is the “single temperature” model in which the radiation field is
assumed to be tightly coupled to the medium. Hence, the radiation spectrum
is given by the matter emission source n2Bν(T ), where Bν(T ) is the Planck
function. However, for glass in general, and silica (SiO2) in particular, the
absorptivity has a complex spectral structure. At room temperature, in the IR–
visible part of the spectrum (λ ≈ 1 µm) the medium is transparent; the opacity
κ ≈ 0.01 cm−1. However, for select longer wavelengths, it is quite opaque; at
λ ≈ 10.6 µm, κ > 104, an increase of six orders of magnitude. Hence, we should
not expect tight coupling and, as we show below, require a separate equation
for heat (energy) transfer due to radiation. At a minimum, one could average
the radiation intensity over both direction of propagation and frequency thereby
deriving an equation for a radiation temperature Tr. We define Tr in Section 6.
However, modeling radiation with only a scalar equation can yield erroneous
results. A single Tr equation is the limiting case of a multigroup formulation.
The latter arises when the frequency variable is discretized into a finite number
of groups. Our results show that the quality of the result degrades as we coarsen
the frequency discretization.

The subject of coupling radiation transport to a heat conduction equation
(HC) has been discussed by many authors. We were initially guided by Larsen
et al [11] and [12], work in which the authors start by adding the steady-state
radiative transfer equation to HC. The gist of the Larsen et al papers applies
the “simplified Pn” (SPn) approximation, developed for the multigroup neutron
transport equation, to glass annealing. (Larsen et al [13] present a theoretical
foundation of SPn.) In the 2002 paper, Larsen et al [11] develop a frequency
averaged model for the radiation field. They define a dimensionless parameter
ǫ

.
= (κref xref)

−1, where κref and xref are reference absorption and length scales.
The parameter ǫ is used for an asymptotic expansion in which, by keeping
successively more terms (powers of ǫ), one obtains the SP1, SP2, etc. (frequency
averaged) equations. The SP1 system is equivalent to gray radiation diffusion
with a Rosseland averaged opacity; radiation is defined by one scalar field. In
theory, the SP2 system, which models radiation with two scalar fields, provides
a correction to diffusion.

In the 2003 paper, Larsen et al [12] include frequency dependence and de-
rive a system similar to standard multigroup diffusion. Their SP2 formulation
defines the radiation field in terms of a single, frequency-dependent variable
φ. However, we note an error; φ is not the scalar flux, as defined in [12], but
instead a linear combination of the flux and emission source that in the 2002
paper is denoted by ξ [11]. The 2003 paper has another, less important error
(or misprint) in the boundary condition for the temperature. We clarify both
issues below.

We admit to reservations about the applicability of the SPn approximation
to model heat transport in glass. First, the Larsen et al derivations [11] and
[12] hinge on having an optically thick domain, i.e., small ǫ. But, glass is



1 INTRODUCTION 3

not optically thick, at least not at room temperature over the optical band.
As the medium cools, this interval contributes significantly to heat loss. So
at least for this band, ǫ is large, not small, since the mean free path κ−1

ref is
significantly longer than the medium’s dimension xref . However, in fairness, we
note that at least for a sufficiently fine frequency discretization, the Larsen et

al multifrequency SP2 equations can be derived by expanding the steady state
radiation intensity equation in terms of Legendre polynomials and discarding P3

and higher terms, Shestakov [20]. Another reservation is the ambiguous nature
of Larsen et al’s fundamental unknown Wi. It is an integral over frequency
intervals of ξ divided by the opacity, where ξ is the linear combination described
above. A third reservation, albeit of an aesthetic nature, is that the Larsen
et al system requires a fair amount of scrutiny before one finds the exchange
term between the medium’s internal energy and radiation. Lastly, the SP2

system stems from neglecting the temporal derivative of radiation. We discuss
the implications in Section 7. However, we note that keeping the term, as we
do, leads to conventional multigroup diffusion. By ignoring moments of the
reflectivity and setting the refractive index to unity, we recover the equations
found in standard radiation-hydrodynamic codes.

We now summarize our paper. In the next Section we derive the multigroup
equations. Boundary conditions are discussed in Section 3. We first consider the
radiation field. Following Larsen et al [11], arrive at a “mixed-type” condition
that includes moments of the reflectivity. Setting the moments to zero reduces
to the familiar Milne boundary condition, viz., a linear relation for the field, its
gradient and an external source. The boundary condition for the temperature
is derived in Section 3.2. As in [11], we allow for convective heat loss and an
“opaque frequency interval” ( 0, ν0), where the opacity is so high that matter
radiates as a black body. The condition contains a moment of the reflectivity.
The numerical method, a variant of the “partial temperature scheme” of Lund
and Wilson [14], is developed in Section 4. Section 5 describes the material
properties (absorption, refractive indexes, opacities, reflectivity moments) used
in our simulations. Numerical results appear in Section 6. In Section 6.1, we
present 1D simulations that model the cooling of a 1 cm thick slab of SiO2,
initially at T = 2500. We present convergence with group number and mesh
size. Also, we compare results of our equations with those from conventional
multigroup diffusion (no reflectivity, no refraction). Section 6.2 describes sim-
ulations of SiO2, initially at room temperature, irradiated by a CO2 laser. For
the 1D simulation, we model an infinite slab irradiated for 1 s at power 4.34
W/mm2. In 2D, we model a disk heated axially, for 10 s, by a 10 W laser with
a 1/e diameter of 1 mm. Concluding remarks appear in Section 7.
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2 Derivation of equations

We derive a tractable system of equations to model radiation effects when an-
nealing a refractive, absorbing medium. In our applications, the temperature is
raised by a laser that may be modeled as an external, temporally and spatially
varying energy source. Energy deposition can be very local, for a CO2 laser
operating at wavelength λ = 10.6 µm, the absorption depth, which varies with
temperature T , can be as small as 5 µm, [15]. Depending on the laser power,
the deposition raises the local temperature from T = 298 to 2500 ◦K. Heat is
carried away by several processes: conduction via Fourier’s law, radiation emis-
sion and convection into the surrounding air. Radiation has its own mechanisms
for energy dissipation: transport and losses at the interface.

In a material reference frame and ignoring material motion, two equations
model the process. The first governs material internal energy flow, i.e., heat
conduction,

C ∂tT = ∇ · km∇T + S − Kr,m . (1)

In Eq.(1), C (erg/cm3 ◦K) is the heat capacity, km (erg/cm sec ◦K) the conduc-
tivity, S (erg/cm3 sec) an external source (e.g., a laser) and Kr,m is the rate
of energy exchange between radiation and the medium; it’s sign depends on
whether locally the radiation is “hotter” than T .1

The second equation describes radiation energy transport and energy ex-
change with the medium. For homogeneous2, refractive lossy media, we begin
with the equation derived by Pomraning [17],

n2
[

(1/vg) ∂t(I/n2) + Ω · ∇(I/n2)
]

= κ [ n2 Bν(T ) − I ] . (2)

The LS of Eq.(2) differs from Pomraning’s Eq.(5.64) et seq. We neglect his last
three terms because we ignore spatial and temporal changes of n, the refractive
index.3 In Eq. (2), the fundamental variable, the intensity I (erg/cm3 sec Hz sr),
depends on time, position x, propagation direction Ω, and frequency ν. Equa-
tion (2) introduces the dimensionless refractive index n, the group speed vg

(cm/sec), the opacity κ (cm−1) and the Planck function,

Bν(T ) =
2hP ν3/c2

exp(hP ν/kBT )− 1
,

where hP and kB are the Planck and Boltzmann constants, resp. Note that in
refractive media, radiation emission is given by n2 Bν and radiation propagates
at the frequency-dependent group speed vg, which is related to the phase speed

1A radiation temperature Tr is defined in Section 6.
2In a homogeneous medium, the index of refraction and opacity are independent of space

and time.
3One of tne neglected terms has dΩ/ds, which depends on ∇n (s is the path length).

Another term has dν/ds, but it varies with ∂tn. The third term explicitly contains ∂tn.
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vp, Born & Wolf [1],

vg = vp − λ
dvp

dλ
= vp

/(

1 +
ν

n

dn

dν

)

, vp = c/n , (3)

where λ is the wavelength and c (cm/sec) is the vacuum light speed.

To proceed, we take moments of Eq.(2). For the zeroth moment, we integrate
over Ω; for the first moment, we multiply by Ω before integrating. After defining

the spectral energy density E, the flux F, and the pressure tensor P,

E = (1/vg)

∫

4π

dω I

F =

∫

4π

dω Ω I

P = (1/vg)

∫

4π

dω ΩΩ I ,

we obtain,

∂tE + ∇ ·F = κ [ 4π n2 Bν(T ) − vg E ] (4)

(1/vg) ∂t(F/n2) + ∇ · (vgP/n2) = −κF/n2 (5)

This gives two equations for three unknowns, E, F and P. To close the system,
we neglect the temporal derivative in Eq.(5). The reasoning is that

(1/vg) ∂t(F/n2) ∼ F/(vg τ n2) ,

where τ is a characteristic time. Comparing this to the RS of Eq.(5), we can
drop the temporal derivative as long as 1 ≪ vgτκ. The speed vg = O(c), while
κ is the inverse mean free path. Hence, neglecting the temporal derivative in
Eq.(5) means the distance a photon could travel in the absence of absorption is
considerably longer that it would.

After the time derivative of Eq.(5) is dropped, we obtain a steady-state
condition for the flux in terms of the pressure tensor. We then follow the usual

argument (Castor [3], p.73–74) that replaces P with a third of the energy density:

F = −
n2

κ
∇ ·
( vg

n2
P
)

= −
n2

κ
∇
( vg

3n2
E
)

.

The group velocity depends on n; for a homogeneous medium we may cancel n2,
pull vg out from the gradient operator and thereby arrive at a familar expression,
except with c replaced by the group speed,

F = −
vg

3κ
∇E . (6)

Substituting the result into Eq.(4) yields the multifrequency diffusion equation,

∂tE −∇ ·
vg

3κ
∇E = κ vg [ 4π n2 Bν(T )/vg − E ] . (7)
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Hence, at equilibrium E relaxes to 4π n2 Bν(T )/vg, as noted by Castor [3].

The RS of Eq.(7) denotes the power the radiation field exchanges with the
medium. Its integral over all relevant frequencies equals the Kr,m term of Eq.(1).
Hence, the matter energy equation is,

C ∂tT = ∇ · km∇T + S −

∫

∞

ν0

dν κ vg [ 4π n2 Bν(T )/vg − E ] . (8)

In Eq.(8) we introduce a frequency ν0 that designates the opaque interval (0, ν0),
Larsen et al, [11] and [12], where the opacity is so large, that E equals the
emission source, i.e.,

for ν ∈ ( 0, ν0) , E = 4π n2 Bν(T )/vg .

It is instructive to examine how E and F relate to a two term expansion of
I in terms of spherical harmonics,

I(Ω) =
1

4π
I0 +

3

4π
Ω · I1 , (9)

where

I0 =

∫

4π

dω I and I1 =

∫

4π

dω Ω I .

It follows that I0 = vgE and I1 = F. Substituting for F from Eq.(6), yields

I =
vg

4π

[

E − 3

(

1

3κ

)

Ω · ∇E

]

. (10)

3 Boundary conditions

Equations (7) and (8) make up the system of interest. Both require appropriate
boundary conditions. In next two Sections we first derive conditions for Eq.(7);
then take up conditions for Eq.(8). The application of interest is a silica slab
surrounded by air held at temperature Ta.

3.1 Radiation boundary condition

As discussed by Larsen et al, [11] and [12], at the boundary, I (
.
= Ib) satisfies a

condition for incoming directions Ω,

I = Ib(Ω) = Ib,p(Ω) + Ib,r(Ω) . (11)

The Ib,p term on the RS is the “penetrating” radiation,

Ib,p(Ω) = [ 1 − R(µ) ]Bν(Ta) ,
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Note that Bν is evaluated at the air temperature Ta. The function R(µ) defines
the reflectivity, Isard [9]. Its argument µ is the cosine of the angle that the
incoming ray Ω makes with n̂, the inward pointing normal: µ

.
= n̂ · Ω > 0.

The reflectivity also varies with frequency via its dependence on n and the non-
dimensional absorptivity index k, that defines the opacity: κ = 4πk/λ, where λ
is the wavelength. For normal-normal incidence,

R|µ=0 =
(n − 1)2 + k2

(n + 1)2 + k2
. (12)

The second term Ib,r on the RS of Eq.(11) stems from radiation propagating
along outgoing directions Ω

′ that is reflected back into the domain,

Ib,r(Ω) = R(µ) I(Ω′) , Ω
′ = Ω − 2 (n̂ ·Ω) n̂.

In a diffusion approximation, Eq.(11) can only be satisfied in an integral
sense. We integrate over the hemisphere inside the glass, i.e., for n̂ · Ω > 0.
After integrating over the azimuthal angle, Eq.(11) becomes

2π

∫ 1

0

dµ µ (I − Ib) = 0 . (13)

The extra µ in the integrand is required since we are computing the flux normal
to the interface, Zel’dovich and Raizer [24].

For the integral of I, we substitute the Eq.(9) expansion,

2π

∫ 1

0

dµ µ I = (I0 + 2I1 · n̂)/4 ,

where we used the properties,

2π

∫ 1

0

dµ µ = π and

∫

2π

dω µΩ = 2π/3 .

Substituting for the I0 and I1 coefficients yields,

2π

∫ 1

0

dµ µ I =
vg

4

(

E −
2

3κ
(n̂ · ∇E)

)

. (14)

For the integral over the penetrating part, we recall the argument of Isard
[9]. Assume azimuthal symmetry and let θ define the angle that a ray, incoming
from the air side, makes with the normal. Because of refraction, the transmitted
ray Ω makes a smaller angle φ with the inward normal n̂; see Figure 1.

The flux/area entering between angles θ and θ + dθ,

[1 − R(θ)] 2π Iair cos(θ) sin(θ) dθ ,
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Figure 1: Schematic of penetrating ray.

is transmitted into a flux/area into angles between φ and φ + dφ,

[1 − R(φ)] 2π Iair cos(φ) sin(φ) dφ .

For refractive, lossy media, the angles θ and φ are related via a relationship
significantly more complicated than a simple application of Snell’s law. However,
the air intensity Iair = Bν(Ta) is isotropic; hence, any off-normal incoming ray
is balanced by a specularly symmetric counterpart, Isard [9]. Thus, it suffices
to consider only normal incidence and in this case, Snell’s law does link the two
angles: sin(θ) = n sin(φ). Hence,

cos(θ) sin(θ) dθ = n2 cos(φ) sin(φ) dφ .

This enables computing the integral over the penetrating part,

2π

∫ 1

0

dµ µ Ib,p = 2π n2 Bν(Ta)

∫ 1

0

dµ µ [ 1 − R(µ) ]

= π (1 − 2r1)n2 Bν(Ta) , (15)

where µ = cos(φ) and

rj
.
=

∫ 1

0

dµ µj R(µ) , j = 1, 2, . . .

For the integral over the reflected intensity Ib,r, the outgoing radiation is
also given by Eq.(9) except with Ω replaced with Ω

′. Equation (10) implies,

∫

2π

dω µ Ib,r(Ω) =

∫

2π

dω µ R(µ) I(Ω′) =
1

2
[ r1 I0 − 3r2 (n̂ · I1)]

=
vg

2

(

r1 E +
r2

κ
(n̂ · ∇E)

)

. (16)
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Substituting Eqs.(14), (15) and (16) into Eq.(13) yields,

vg

4

[

(1 − 2r1)E − (1 + 3r2)

(

2

3κ

)

(n̂ · ∇E)

]

= (1 − 2r1)π n2 Bν(Ta) .

The expression is put into familiar form by using the outward normal −n̂:

E +

(

1 + 3r2

1 − 2r1

)(

2

3κ

)

(−n̂ · ∇E) = 4π n2 Bν(Ta)/vg . (17)

Since −∇E is proportional to the radiation flux, the second term on the LS is
proportional to the flux entering the domain. If E is greater (less) than the RS,
energy leaves (enters) the domain. At equilibrium, E equals the RS and the
flux shuts off, as expected.

3.2 Temperature boundary condition

We now consider the boundary condition for Eq.(8); the RS has three terms.
The first is the divergence of the material energy flux. If we do not explicitly
impose a boundary temperature, the exiting heat flux can be prescribed by a
convection model, e.g.,

−n̂ · (km∇T ) = hm(Ta − T ) ,

where hm is the (possibly nonlinear) convective coefficient and, as before, n̂ is
the inward normal.

The integral term on the RS of Eq.(8) is the radiation–matter energy ex-
change rate. The interval (0, ν0) denotes the opaque part of the spectrum where
E = 4π n2 Bν(T )/vg. The integral extends only to ν0 since there is no energy
exchange at lower frequencies. However, energy can either radiate out of, or
into, the medium over the opaque interval.

The net radiation flux per frequency in the opaque interval is the difference
between two one-way fluxes; one from air to glass; the other, glass to air. For the
former, as in Sec. 3.1, the flux/area between angles θ and θ + dθ is transmitted
into angles φ and φ+dφ. After integrating over the hemisphere, the flux entering
the medium,

Fa→g = π (1 − 2r1)n2 Bν(Ta) . (18)

In the opposite direction g → a, the exiting flux/area exiting between angles φ
and φ + dφ is,

[1 − R(µ)] 2π Ig cos(φ) sin(φ) dφ ,

where the glass intensity Ig = n2 Bν(T ). Integrating over the hemisphere yields
the flux leaving the medium,

Fg→a = 2π

∫ 1

0

dµ µ Ig = π (1 − 2r1)n2 Bν(T ) , (19)
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The difference Fg→a − Fa→g is the net outward flux. After integrating over ν,
substituting from Eqs.(19) and (18), we arrive at the boundary condition for
the temperature,

−n̂ · (km∇T ) = hm(Ta − T ) + π (1 − 2r1)n2
0

∫ ν0

0

dν [Bν(Ta) − Bν(T )] , (20)

where n0 denotes the refractive index for the opaque interval. (For SiO2, for
low frequencies, n0 ≈ 2, Kitamura [10].)

Equation (20) is nonlinear. For computational purposes, we linearize as
follows. The system of interest is time-dependent; let a zero superscript denote
values at the prior time cycle. The Planck function is linearized,

Bν(T ) = B0
ν + B0,

ν
′ (T − T 0) ,

where B0
ν

.
= Bν(T 0) and B0,

ν
′

.
= (∂Bν/∂T )|T=T 0 . Inserting the linearization

and rearranging terms yields a boundary condition of mixed type analogous to
Eq.(17) for the radiation energy, viz.,

(

hm + π (1 − 2r1)n2
0

∫ ν0

0

dν B0,
ν

′

)

T − n̂ · (km∇T ) =

hm Ta + π (1 − 2r1)n2
0

∫ ν0

0

dν
[

Bν(Ta) − (B0
ν − B0,

ν
′ T 0 )

]

. (21)

For stability, the parenthetical expression (B0
ν − B0,

ν
′ T 0 ) on the RS is maxed

with zero. If the convective coefficient hm varies with T , there is additional
nonlinearity. In this case, it’s simplest to let hm = hm(T 0), i.e., to lag it
temporally.

To summarize, the system of interest is,

∂tE = ∇ ·
vg

3κ
∇E + κ vg [ 4π n2 Bν(T )/vg − E ] (22)

C ∂tT = ∇ · km∇T + S −

∫

∞

ν0

dν κ vg [ 4π n2 Bν(T )/vg − E ] . (23)

The equations depend on position and time. Equation (22) also depends on
frequency. The boundary conditions are of mixed type:

E +

(

1 + 3r2

1 − 2r1

)(

2

3κ

)

(−n̂ · ∇E) = 4π n2 Bν(Ta)/vg (24)

−n̂ · (km∇T ) = hm(Ta − T ) + π (1 − 2r1)n2
0

∫ ν0

0

dν [Bν(Ta) − Bν(T )] . (25)

4 Numerical scheme

Equations(22)–(25) are similar to the multifrequency equations solved by con-
ventional radiation-hydrodynamic codes. Thus, we consider well-known meth-
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ods of solution, the simplest of which is the “Partial Temperature” scheme of
Lund and Wilson [14], [19].

We discretize the frequency domain into G groups. Let {νi}
G
i=0, where ν0 <

ν1 < ν2 < . . . , denote the group boundaries. The “opaque” interval is ν < ν0.
The last boundary νG denotes a frequency beyond which we don’t expect to
have much energy. In the applications, νG = 10 eV is large enough since we do
not expect temperatures exceeding 3000 (=0.26 eV).

We discretize Eqs.(22)–(23) using fully implicit temporal differencing. After
multiplying by the timestep ∆t and integrating Eq.(22) over the ith group, we
obtain

Ei − E0
i = ∇ ·

∆t vi

3κi
∇Ei + ∆t κi [Bi(T ) − vi Ei] , (26)

where we define the group radiation energy,

Ei =

∫

i

E
.
=

∫ νi+1

νi

dν E ,

and E0
i is its analogue at the start of the time cycle. The κi and vi coefficients

are averages of κ and vg over the ith group. We discuss the averaging procedure
in Section 5. The term

Bi(T )
.
= 4π n2

i

∫

i

Bν(T ) , (27)

where ni is an group-average of n. The units of Ei differ from units(E); the
former is the radiation energy density (erg/cm3) of the ith group. Similarly,
units of Bi(T ) differ from units of Bν(T ); Bi(T )/vi and Ei have the same units.

We now consider the temperature equation. Since the coupling term in
Eq.(26) has units of energy density exchanged per group, the integral in Eq.(23)
is replaced by a sum. After discretizing the time derivative and multiplying by
∆t, we obtain,

C (T − T 0) = ∆t

(

∇ · km∇T + S −

G
∑

i=1

κi [Bi(T ) − vi Ei]

)

. (28)

Discretization of the boundary conditions is straightforward. Equation (24)
becomes,

Ei +

(

1 + 3r2,i

1 − 2r1,i

)(

2

3κi

)

(−n̂ · ∇Ei) = Bi(Ta)/vi , (29)

where rj,i (j = 1, 2), is an average, similar to that for ni, of the jth moment
of the reflectivity over the group. The temperature boundary condition stems
from Eq.(21)

[

hm +

(

1 − 2r1,0

4

)

dB0(T
0)

dT

]

T − n̂ · (km∇T ) =

hm Ta +

(

1 − 2r1,0

4

) [

B0(Ta) −

(

B0(T
0) −

dB0(T
0)

dT
T 0

)]

, (30)
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where, as in Eq.(27), B0(T )
.
= 4π n2

0

∫ ν0

0
Bν(T ) dν.

To summarize, the multigroup system consists of Eqs.(26), (28), (29) and
(30) where the group index i = 1, . . . , G.

4.1 Partial Temperature scheme

We now describe an application of the “Partial Temperature” for our multi-
group system. We use operator splitting and first advance T using only heat
conduction and the source S to produce an intermediate temperature T (0). For
fully implicit differencing, we would solve,

C (T (0) − T 0) = ∆t
(

∇ · km∇T (0) + S
)

. (31)

Note that T 0 is the temperature at the start of the time cycle, while T (0) is an
intermediate temperature. If matter-radiation coupling was neglected, T (0) is
the temperature at the end of the time cycle.

Next, we rearrange group numbers into random order. We cycle through
each group and solve a coupled system of two equations producing an updated
radiation group energy Ei and an intermediate (partial) temperature T (i). The
two equations are Eq.(26) and

C (T (i) − T (i−1)) = −∆t κi [Bi(T
(i)) − vi Ei] . (32)

The process starts with the first randomly assigned group corresponding to
i = 1, and for this group, T (i−1) = T (0), the result of advancing Eq. (31).

In Eqs.(26) and (32), the Planck function is linearized about T (i−1),

Bi(T
(i)) → Bi,ℓ(T

(i))
.
= Bi(T

(i−1)) +
dBi(T

(i−1))

dT
(T (i) − T (i−1)) . (33)

The linearization enables solving Eq.(32) for (T (i) − T (i−1)) in terms of known
quantities. After substituting into Eq.(26), we obtain

Ei − E0
i = ∇ ·

∆t vi

3κi
∇Ei + ∆t κ′

i [Bi(T
(i−1)) − vi Ei] , (34)

where

κ′

i = C κi

/(

C + ∆t κi
dBi(T

(i−1))

dT

)

.

Equation (34) is a fully implicit discretization of a scalar reaction-diffusion equa-
tion with a known source. We rearrange it into a linear system for the unknown
Ei:

(

(1 + ∆t κ′

i vi) I−∇ ·
∆t vi

3κi
∇

)

Ei = E0
i + ∆t κ′

i Bi(T
(i−1)) , (35)
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where I is the identity matrix. After solving for Ei, the updated temperature,

T (i) = T (i−1) − ∆t κ′

i [Bi(T
(i−1)) − vi Ei]/C . (36)

After cycling through all the groups, T (G) is the desired final temperature T .
The scheme is conservative. The energy exchanged between matter and radia-
tion is the sum of Eq.(32) for all i. The LS telescopes and we obtain,

C (T − T (0)) = −∆t

G
∑

i=1

κi [Bi,ℓ(T
(i)) − Ei] ,

where Bi,ℓ(T
(i)) is given by the Eq.(33) linearization.

To summarize, we first obtain T (0) by solving Eq.(31). Next, we cycle
through the groups in random order. For each i, Ei is the solution of the
linear system, Eq.(35). The ith partial temperature is obtained from Eq.(36).
The final temperature T = T (G).

5 Material properties

In this section we describe material properties relevant to our application and
how the group averaged coefficients, e.g., κi are defined. We obtain fundamental
data by scanning the Kitamura et al results ([10], [22]) for the nondimensional
indexes of refraction n and absorption k. Figures 2 and 3 display n and k,
respectively, over our frequency range of interest: 10−3 < ν < 10. (Henceforth,
we measure ν in eV; 1 eV ≈ 2.4 · 1014 Hz.) The figures also display three
group-averaged sets.

We arrive at the (10−3, 10) eV range using an energy argument. We expect
temperatures in the range (300, 3000) ◦K, i.e., (0.0259, 0.259) eV. The integral
of the normalized Planckian b(y) = y3/(ey−1), where y

.
= hP ν/kKT , for all y, is

π4/15 = 6.49. If we choose a sufficiently small ν0 and a large enough νG so that
integrals over ranges (0, y0) and (yG, ∞) are negligibly small in comparison with
6.49, radiation energy emission over those ranges is also negligible. The choices
y0 = 0.1 and yG = 20 give integral ratios of 5 · 10−5 and 3 · 10−6, respectively.
Thus, by choosing ν0 < 0.1 × 0.0259 eV and νG > 20 × 0.259 eV, we obtain a
sufficiently broad spectrum for the temperatures we plan to encounter.

Group averages are obtained as follows. Data scanned from [22] are inter-
polated onto the same array of frequencies creating a set of (ν, n, k) triplets,
of which approximately 1000 lie within the interval 10−3 < ν < 10. The ex-
pression κ = 4πk/λ, where λ is the wavelength, generates an opacity from each
(ν, k) pair. Next, we construct six sets of logarithmically spaced group bound-
aries {νi}

G
i=0, successively refining each set by a factor of two. The coarsest set

has four intervals (one per eV decade); the finest, 128. For each set, the lowest
group boundary ν0 = 10−3 eV and the highest νG = 10 eV. We then form group
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Figure 4: Opacity κ vs. ν.

averages of κ and n over each interval. We average κ (instead of k) since the
opacity is the relevant coefficient. We use inverse averaging,

(1/κi)
.
=

(

∫ νi

νi−1

dν/κ

)/

(νi − νi−1) ,

and similarly for ni. Figure 4 displays κ and three group-averaged analogues.
The figure shows that 128 groups overlay nicely with the data, while hinting
that 32 groups may be insufficient to obtain accurate results.

We inverse average the opacity for the following reasons. (a) Inverse averag-
ing κ is equivalent to Rosseland averaging, if ∂Bν/∂T was constant. (b) Rosse-
land averaging is preferred for multigroup radiation transport [18]. (c) We use
simple averaging since we only have data at room temperature. If the discretiza-
tion is fine enough, how to average is immaterial while for a coarse discretization,
it seems unreasonable to favor opacities near the peak of ∂Bν/∂T evaluated at
only T = 300 ◦K. Nevertheless, κ can vary significantly with T . For example,
McLachlan and Meyer [15] report a nearly linear increase of k with T for a few
wavelengths. In silica, for λ = 10.59 µm (0.117 eV), the mean free path κ−1

decreases nearly tenfold from 40.7 µm at 25 ◦C to 4.2 µm at 1800 ◦C. Hence,
since in this paper we assume a homogeneous medium, our results can only give
a qualitative effect of radiation transport. For quantitative details, we require
data, or a model, with a temperature dependence for k and n for all relevant
ν, and, of course, use the more complicated radiation equation that includes
non-homogeneous effects [17].
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Besides the group-averaged κi, we also need vi, a group-average of the speed
vg defined in Eq.(3). Since our basic (scanned) data is noisy, we ignore the dn/dν
derivative and for the simulations, set vg = vp = c/n. The group averaged ni

then defines vi = c/ni. For intervals where ni < 1, we set vi = c.

We now discuss the reflectivity function R of Eq.(12) and the moments rj

that arise in the boundary conditions. Figure 5 displays R for normal incidence,
i.e., for µ = 0. Note the large variation near ν = 0.15 eV. Over a small frequency
interval, R attains a maximum of 0.7 and a minimum of 5 · 10−4, which implies
that in a narrow frequency range, for normal incidence, SiO2 either reflects over
70% of the incident light or less that 0.1%.

For off-normal incidence, R increases. As discussed by Isard [9], a ray inci-
dent at angle θ ∈ ( 0, π/2) is usually4 transmitted into a smaller angle φ. For
normal incidence, θ = 0 transmits into φ = 0; for grazing incidence, θ = π/2
transmits into the critical angle φcrit. For φ > φcrit, R = 1 (total reflection).
Since φcrit depends on n and k, Isard [9], it varies with ν. For ν ≈ 0.13,
φcrit ≈ 18◦, while for ν ≈ 0.17, φcrit ≈ 89◦.

Figure 5 also displays the r1 and r2 moments. As expected, r1 > r2 and r1 <
0.5; the latter relation is necessary since the boundary conditions of Eqs.(17)
and (20) contain the term (1 − 2r1), which must be positive.

4Except in regions of anomalous absorption where n = k or n < 1; see Isard’s relation for
the two angles θ and φ.
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Lastly, we consider the opaque frequency interval ( 0, ν0), introduced by
Larsen [11] and [12]. The interval leads to the integral in the boundary condition
Eq.(25) which stems from assuming that the opacity in the opaque interval is
so large that radiation energy is in equilibrium with the matter emission source,
i.e., E = 4π n2 Bν(T )/vg. Unfortunately, the data belies the assumption; in
Figure 4, κ increases with ν in the range (10−3, 0.03) eV. Since we do not have
data for smaller frequencies, we are unable to confirm the equilibrium argument.
Nevertheless, by including an opaque interval in the boundary condition, we
at least allow energy to radiate out. The error by making the equilibrium
assumption should be small since, as stated above, there is little energy in the
opaque interval.

6 Simulations

To simplify and enable future comparisons, we use materials with constant,
albeit realistic, properties, viz., the coefficients of Bouchut et al [2] for the heat
capacity C and thermal conductivity km:

C = 2.201 · 107 (erg/cc ◦K) and km = 2.201 · 105 (erg/cmsec ◦K) . (37)

For simulations with convective heat loss, we use a constant convectivity,

hm = 1.243 · 104 (erg/cm
2
sec ◦K) . (38)

The constant hm was set by requiring that the loss term hm(Ta −T ) in Eq.(20)
yield the same flux as the nonlinear model of Stölken [21] when T = 1000 ◦K.
The model stems from comparing to expressions for the Nusselt number, as
discussed by Churchill and Chu [4]. The value conforms to the 104–105 range
(in CGS) found on the web [6].

We present results of both global, e.g., total energy in the domain, and local
nature, such as T and the radiation temperature Tr, where the latter is defined
as follows. Given an energy density distribution per group {Ei}

G
i=1,

Tr
.
=

(

1

4σ

G
∑

i=1

vi Ei/n2
i

)(1/4)

,

where σ is the Stefan-Boltzmann constant. The temperature Tr can gauge of
how close the radiation field is in equilibrium with the matter. The Tr definition
stems from Eqs.(26) and (27); Tr is the temperature required for the total

emission
∑G

i=1 Bi(Tr)/vi to equal the total radiation energy density
∑G

i=1 Ei.

In the next Section we present 1D results that simulate the cooling of a
silica slab, initially at T = 2500 ◦K. In Section 6.2, we simulate a disk of silica
irradiated by a CO2 laser.



6 SIMULATIONS 18

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

1400

1600

1800

2000

2200

2400

2600

time (sec)

T
em

pe
ra

tu
re

s 
 ° K

Matter and radiation temperatures vs. time

max( T )

 T
bdry

max( T
r
 )

 T
r,bdry

128 groups;  ∆ Z = 0.01 cm
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6.1 Cooling of silica slab

Our computer code is fundamentally 3D, which, here, we run in axisymmetric
(R, Z) mode. The numerical domain is R < 10−3 cm and 0 < Z < 0.5 cm.
We impose symmetry at Z = 0.5 and at R = 10−3; hence, model cooling of
an infinitely long, 1 cm thick sheet of silica. Initially, radiation and matter are
in equilibrium, T = Tr = 2500 ◦K. At Z = 0, the sheet is cooled strictly by
radiative losses, i.e., in Eq.(25), the convection coefficient hm = 0. The exterior
temperature Ta, used in Eqs.(24) and (25), is fixed at 298.15 ◦K. We simulate
until t = 10 sec.

In the absence of radiative losses, the temperatures will not change. However,
with radiation the sheet eventually cools to T = 298.15. An interesting dynamic
ensues. Figure 6 displays max(T ) and max(Tr), as well as their values at the
boundary. The figure shows the radiation field quickly reacts to the boundary
condition; the boundary Tr starts dropping at t ≈ 10−13 sec. As Tr,bdry cools, so
does the entire radiation field. During the decrease, the radiation field is nearly
constant in space, as evidenced by the overlapping curves for 10−11 < t < 10−9.
Afterwards, in the range, 10−9 < t < 0.01, we have a near steady state, in which
radiation loses energy (heat), but the matter temperature, because of the higher
heat capacity, appears to be unchanged. However, for t > 0.01, the slab begins
to cool, first at the boundary, then throughout.

The dynamic response is summarized in Table 1, which displays the total
initial matter and radiation energies E0 and E0,r, respectively, their final values E



6 SIMULATIONS 19

E0 E E0,r Er Ef

1.376 · 104 1.170 · 104 2.264 · 10−7 2.823 · 10−8 2.052 · 103

Table 1: Slab cooling problem. Total initial, and final (t = 10 sec) matter and
radiation energies E0, E , E0,r, Er, and energy loss Ef ; (erg/radian) for domain:
0 < R < 10−3, 0 < Z < 0.5 cm; symmetry imposed at Z = 0.5. To obtain
values for disk with radius R = 10−3, multiply by 4π.

and Er, and the total fluence out the boundary Ef . The table shows that while
there is a 1011−12 disparity beween the energies in the matter and radiation
fields, the latter acts as an efficient conduit for heat loss. By t = 10, nearly 15%
of the initial matter energy coupled to the radiation field and radiated away.

The results displayed in Figure (6) are confirmed by the following analysis.
As stated by Gardon [7]: “In transparent materials, . . . emission and absorp-
tion of radiation are bulk, rather than surface phenomena.” Hence, for this
problem, the first thing to happen is for the photons initially in the slab to
exit. This happens quickly. The photon speed is approximately c/n̄, where n̄
is a frequency-averaged n. Figure 2 shows that n̄

.
= 1.7 is a reasonable choice.

Photons stream in all directions; some travel straight toward the surface while
others in oblique angles. In any case, since the slab width L = 1 cm, we expect
the initial photons to exit at time t0 = L/(c/n̄) ≈ 6 · 10−11 sec. The estimate
is in agreement with Fig.(6). By t = 10−9 sec, the initial photons are gone and
we have a quasi steady state. This state lasts until the matter emits a sufficient
amount of energy for T to decrease. The time t1 for this to occur follows by
recalling Eq.(8) and ignoring everything but emission, i.e.,

C ∂tT = −4π

∫

∞

ν0

dν κ n2 Bν(T )

Defining a frequency averaged opacity κ̄ leads to ∂tT = −αT 4, where α =
4σκ̄n̄2/C and σ is the Stefan-Boltzmann constant. The solution is,

T/T0 = (1 + 3αT 3
0 t)−1/3 ,

where T0 = 2500 is the initial temperature. Setting the LS to 0.99 and solving
for t gives the time t1, when the temperature drops by 1%. Using Eq.(37) to
define C yields t1 = 0.063/κ̄n̄2. To get a numerical value, we need κ̄ and n̄. For
the latter, we again use n̄ = 1.7. For the former, we recall Fig.4. Despite the
fact that κ ≈ 3 · 104 at ν ≈ 0.13 and κ = O(105) near ν = 10, κ < 1 over the
significantly large interval 0.3 < ν < 7. Hence, a reasonable estimate is κ̄ = 1.
Substituting, yields t1 = 0.022, which agrees nicely with the time in Fig.6 when
T begins to decrease. Lastly, we analyze the time difference between the initial
temperature decrease of max(T ) and Tbdry, i.e., the delay between the decrease
in the middle of the slab and at Z = 0. If the decrease is due to heat conduction,
i.e., the time for a diffusion wave, which starts at Z = 0 to reach the midplane,
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G E · 104 Er · 10−8 Ef · 103 max(T ) Tbdry max(Tr) Tr,bdry

4 1.277 1.562 0.9907 2324.05 2311.36 1241.25 1237.75
8 1.221 1.492 1.548 2274.42 2137.89 1450.87 1318.82
16 1.184 2.236 1.919 2195.84 2077.93 1498.45 1428.63
32 1.172 2.446 2.038 2170.95 2050.61 1516.62 1456.68
64 1.172 2.688 2.033 2173.06 2051.15 1523.54 1465.49
128 1.170 2.823 2.052 2170.27 2046.03 1525.15 1467.01

Table 2: Slab cooling problem; group convergence study, t = 10 sec. Final
matter and radiation energies E , Er, and energy loss Ef (erg/radian). Final
matter, radiation maximum and boundary temperatures (◦K).

N E · 104 Er · 10−8 Ef · 103 max(T ) Tbdry max(Tr) Tr,bdry

50 1.172 2.446 2.038 2170.95 2050.61 1516.62 1456.68
100 1.174 2.459 2.013 2173.92 2058.49 1518.29 1452.42
200 1.176 2.468 1.995 2176.00 2063.76 1519.45 1449.43
400 1.177 2.475 1.983 2177.49 2067.31 1520.29 1447.47

Table 3: Slab cooling; mesh convergence study. Same units as in Table 2.

the relevant equation is ∂tT = k′∂ZZT , where k′ = km/C = 0.01 is the ratio
of the conductivity and specific heat. Recalling the fundamental solution of the
heat equation, L2/4k′t = O(1), where L is a characteristic length. Substituting
for k′ and letting L = 0.5 cm, yields a characteristic time for the wave to reach
the midplane, tc = 6.25 sec, which is reasonable agreement with Fig.6.

We now discuss convergence; first, with group number, then, with mesh
size. In all cases, we start with a small time step, ∆t = 10−15 and let it increase
appropriately to a maximum ∆tmax = 10−3, which ensures reasonable accuracy
for the final decrease of temperature (t > 0.01). For convergence with number
of groups G, we fix the mesh size at ∆Z = 0.01. Results appear in Table 2. The
table shows that if one is interested in ca. 1% accuracy in max(T ), 16 groups is
insufficient.

We next present convergence with mesh size. For all cases, we use 32 groups.
We start with the same mesh width used for the results in Table 2, i.e., N = 50
cells (∆Z = 0.01) and increase N as shown in Table 3. Results show that if
one is interested in only global quantities, e.g., E , or in bulk properties, e.g.,
max(T ), the coarsest mesh, ∆Z = 0.01, suffices. However, near the boundary,
even 400 cells, ∆Z = 1.25 ·10−3, is not enough to attain a temperature accurate
to three figures.

Lastly, in Table 4, we present results comparing the effects due to refrac-
tion, group velocities, reflectivity moments, and convection. Four results are
displayed; all cases use G = 32 groups and ∆Z = 0.01. Case “X” represents
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Case E · 104 Er · 10−8 Ef · 103 max(T ) Tbdry max(Tr) Tr,bdry

X 1.188 0.731 1.878 2215.51 2051.94 1427.33 1296.72
R 1.080 1.422 2.960 2031.19 1832.46 1361.95 1226.73
A 1.172 2.446 2.038 2170.95 2050.61 1516.62 1456.68
C 1.162 2.399 2.013 2160.02 2020.60 1510.45 1448.27

Table 4: Slab cooling; effects of refraction, group speeds and reflectivity, see
text. Same units as in Table 2.

conventional multigroup diffusion, i.e., we set ni = 1, vi = c, and r1 = r2 = 0.
Case “R” is a simulation in which we use the ni and vi coefficients described
above, but set the moments r1 and r2 to zero. Case “A” restates results of
Table 2, line 4; refraction, group velocity, and reflectivity are used. Case “C” is
similar to “A,” except we include convection losses with hm as shown in Eq.(38).
Comparing cases “A” and “R” illustrates the effect of reflectivity. Without it,
the ratio of energy leaked 2.96/2.04 is 45% larger, which yields a lower max(T )
(2031 vs. 2171 ◦K). Cases “A” and “X” pertain to different coefficients. One
striking difference is in the final energies Er (0.7 vs. 2.4) despite the similarity in
max(Tr). The reason is that in case “A,” the radiation is a modified Planckian;
it contains the square of the refractive index. Since n is approximately 1.5–
2.0, the square, 2.2–4, is enough to raise Er for case “X” to that of case “A.”
Comparing cases “A” and “C” show the effects of convection; with it the final
energies and temperatures are lower since convection provides another heat loss
mechanism.

6.2 Laser annealing

In contrast to the 1D slab-cooling simulation presented in Section 6.1, where the
initial temperature gradient is zero, here we consider simulations with strong
temperature gradients in both 1D and 2D axisymmetric geometries. We model
heating a silica slab, initially at room temperature, with a 10.6 µm wavelength
CO2 laser. We use the same laser absorption parameters as Bouchut et al

[2]. Laser energy is deposited into the silica as an explicit, position dependent,
source, the term S in Eq.(1), using a ray-tracing scheme that accounts for the
reduction in beam flux due to absorption. Thermally insulated boundary con-
ditions are applied; hence, energy can escape only via radiation. In both 1D
and 2D geometries, we compare results from two simulations; one uses only heat
conduction (HC) while the other couples HC with radiation diffusion. Parame-
ters are chosen so that both 1D and 2D simulations give approximately the same
peak temperature. Cases with radiation transport use 32 frequency groups.

The 1D simulations use a mesh similar to that described in Section 6.1. A
detailed mesh and time step size convergence study show that 100 nm mesh reso-
lution near the surface and time steps limiting temperature changes to 1◦K/step
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Figure 7: Maximum temperature vs time for 1D simulation with a 1s exposure
and 4.34 W/mm2 applied laser flux

suffice to capture variations in maximum temperature. Figure 7 displays time
histories of max(T ) of a simulation using only thermal conduction and one using
both conduction and radiation. Radiation transport reduces the peak tempera-
ture by approximately 70◦K. The 70◦K difference represents a lower bound for
the actual effect because of the following argument. We use room temperature
absorption data and it is known that generally, over the IR spectrum, the ab-
sorption coefficient κ increases with temperature. (For λ = 10.6 µm, κ changes
by an order of magnitude over the indicated temperature range [15].) As shown
in Eq.(2), the rate of energy transferred from matter to radiation is proportional
to κ. Thus, a larger κ results in a proportionally larger source of energy into
the radiation field thereby enhancing its effect.

For the 2D axially symmetric simulations, energy is deposited using a laser
with a Gaussian radial profile. The simulated domain is 8 mm in diameter
and 4 mm thick. Mesh resolution near the absorbing surface is 100 nm and
is gradually coarsened away from the laser spot yielding approximately 36000
computational nodes. The ray-tracing laser energy deposition scheme described
above models the Gaussian radial beam profile. The beam’s total power is
10 W and has a (1/e)-diameter of 1 mm. Figure 8 displays axial and surface
temperature profiles of two simulations; as for 1D, one using only conduction and
one coupling conduction with radiation. The modest reduction in temperature
(≈50◦K) due to radiation represents a lower bound for the actual effect for
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Figure 8: Axial and radial temperature profiles. 2D simulation at end of a 10 s
exposure using 10 W total laser power and a 1 mm (1/e) beam diameter.

the same reasons described above. For the case of strong (local laser energy)
absorption considered here, the effect of radiation is to uniformly cool the region
resulting in a near constant temperature difference, both radially and axially.
In the case considered, most of the energy is absorbed near the surface. In
comparison to a simulation using only conduction, radiation effectively reduces
the energy absorbed by the material essentially scaling the resulting temperature
field. For more weakly absorbing lasers, radiation transport would affect the
shape as well as the magnitude of the temperature distribution.

7 Conclusion

We have derived a system of equations that simulate radiative transport in
refractive lossy media. The equations are implemented in a widely used code
that up to now, even though it contained hydrodynamic, material strength,
MHD and heat conduction models, lacked a radiation package. Since the code is
used in relatively low temperatures regimes, radiative effects were thought to be
negligible since the energy content in radiation was overwhelmed by the energy
of the medium. (Radiation energy density scales as aT 4

r , where a = 7.6 · 10−15

erg/cm3 ◦K4.) However, as shown in the simulations, although there is little
energy in radiation, it is an efficient vehicle for transporting energy. Indeed, if
the hot slab described in Section 6.1 was instead surrounded by vacuum, the
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only mechanism for heat loss is radiation.

We conclude with several observations and reservations about our model.
First, in contrast with other low temperature applications with radiation, we
keep the temporal derivative ∂tE. The term is indeed small in comparison with
terms such as the change of internal energy C ∂tT , radiation absorption κ vg E
and diffusion of radiation flux ∇·(vg/3κ)∇E. But keeping ∂tE does no harm nor
does it complicate the numerics. Although we discretize using finite elements,
we use a lumped mass matrix for ∂tE. The term brings extra stabilization by
adding to the diagonal of the resulting linear system. Furthermore, for large ∆t
our fully implicit differencing recovers the hops from one steady state to another
inherent in models that neglect ∂tE.

For small ∆t, the term ∂tE enables tracking changes to the E field, as shown
in the decay of Tr at t = 10−10 in the problem discussed in Section 6.1. Since
we model transport with diffusion, to avoid energy propagating at unphysically
large speeds, we should modify the diffusion coefficient vg/3κ with a flux lim-
iter. Although we will do that, we have encountered mysterious behavior after
comparing results from simulations using different radiation transport models.
We compared our results with those from a conventional rad-hydro code (no
reflection, no refraction.) The slab appears to be optically thin since quickly,
with diffusion too quickly, radiation establishes a quasi steady state character-
ized by bulk emission and energy loss at the boundary. With Sn transport,
a cooling wave propagates inward with a speed approximately equal to c. At
t = 10−12, the wave’s leading edge has penetrated 0.7-0.8 mm, which given the
coarse discretization ∆Z = 0.1 mm, is reasonably close to the causal distance
0.3 mm. In front of the wave, Tr is in its initial state, 2500 ◦K. However, with
flux-limited diffusion, by t = 10−12, the wave has already reached the midplane
(Z = 5 mm) since max(Tr) has decreased by 2-3 ◦K. The mystery is that we
obtain the same result without the flux limiter. For this problem, surprisingly,
the limiter has no effect. Although we will investigate this further, we stress
that for the relatively large time steps used in annealing simulations, one rarely
models temporal changes of E; the flux limiter is needed only when ∂tE matters.
Nevertheless, it bears repeating that for transparent media, mean free paths are,
by definition, long; hence, the diffusion approximation is not expected to be a
good model of transport.

Our final reservation regards the coefficients n and κ. Our derivation as-
sumes a homogeneous medium, i.e., n and κ are independent of time and space.
In reality, though, they’re not. At room temperature glass is transparent. How-
ever, any visitor to a glass blowing factory can attest that when the sample
is removed from the furnace, it glows, i.e., it is no longer transparent. In the
optical range, the opacity has surely increased by orders of magnitude. Our
derivation ignores this. However, we are currently hampered by a paucity of
data. Although there is scattered data for the variation of the absorption index
k with T , e.g., McLachlan [15], at this time we are unaware of the k(T ) varia-
tion for all frequencies. A related concern is that a full description of k(T ) is
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insufficient. Because of the Kramers-Krönig relations, Jackson [8], Kitamura et

al [10], a change in k affects n. We conclude by recalling the equations derived
by Pomraning [17] for a medium with spatially and temporally varying n. In
such materials, transport is extremely complicated; as they traverse such me-
dia, photons follow curved, not straight, paths. And they change color! There
is clearly more work to do.

Lastly, we note that although it’s long been recognized that radiation plays
an important role in thermal transport in semi-transparent media, it can appar-
ently be ignored in certain applications. Recent work by Yang et al [23] show
that one obtains relatively good comparison with experiment by, surprisingly,
using only linear heat conduction with constant material properties.

Acknowledgement

This work was supported by the Lawrence Livermore National Laboratory
directed research program, contract LDRD:08-ERD-057.

References

[1] M. Born and E. Wolf, Principles of Optics, Pergammon Press, OxFord
(1975)

[2] P. Bouchut, D. Decruppe and L. Delrive, “Fused silica thermal conductivity
dispersion at high temperature,” J. Appl. Phys., 96, 6, 3221-3227 (2004)

[3] J. I. Castor, Radiation Hydrodynamics, Cambridge Press, Cambridge
(ISBN 0 521 83309 4) (2004)

[4] S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and
turbulent free convection from a vertical plate,” Int. J. Heat Mass Trans-

fer,” 18, 1323-1329 (1975)

[5] E. U. Condon, “Radiative transport in hot glass,” J. Quant. Spectrosc.

Radiat. Transfer,” 28, 369-385 (1968)

[6] http://www.engineeringtoolbox.com/convective-heat-transfer-d 430.html

[7] R. Gardon, “A review of radiant heat transfer in glass,” J. Amer. Ceramic

Soc., 44, 7, 305-312 (1961)

[8] J. D. Jackson, “Classical Electrodynamics Second Edition,” J. Wiley &
Sons, Inc., New York (1975)

[9] J. O. Isard, “Surface reflectivity of strongly absorbing media and calculation
of the infrared emissivity of glasses,” Infrared Phys., 20, 249-256 (1980)



REFERENCES 26

[10] R. Kitamura, L. Pilon and M. Jonasz, “Optical constants of silica glass
from extreme ultraviolet to far infrared at near room temperature,” Applied

Optics, 46, 33, 8118-8133 (2007)
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