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Abstract

In this work, we have theoretically analyzed and numerically evaluated

the accuracy of high-order lattice Boltzmann (LB) models for capturing non-

equilibrium effects in rarefied gas flows. In the incompressible limit, the LB

equation is proved shown to be able to reduce to the linearized Bhatnagar-

Gross-Krook (BGK) equation. Therefore, when the same Gauss-Hermite quadra-

ture is used, LB method closely assembles the discrete velocity method (DVM).

In addition, the order of Hermite expansion for the equilibrium distribution

function is found not to be directly correlated with the approximation order in

terms of the Knudsen number to the BGK equation for incompressible flows.

Furthermore, we have numerically evaluated the LB models for a standing-

shear-wave problem, which is designed specifically for assessing model accuracy

by excluding the influence of gas molecule/surface interactions at wall bound-

aries. The numerical simulation results confirm that the high-order terms in the

discrete equilibrium distribution function play a negligible role in capturing non-

equilibrium effect for low-speed flows. Meanwhile, appropriate Gauss-Hermite

quadrature has the most significant effect on whether LB models can describe

the essential flow physics of rarefied gas accurately. For the same order of

the Gauss-Hermite quadrature, the exact abscissae will also modestly influence

numerical accuracy. Using the same Gauss-Hermite quadrature, the numerical

results of both LB and DVM methods are in excellent agreement for flows across

a broad range of the Knudsen numbers, which confirms that the LB simulation

is similar to the DVM process. Therefore, LB method can offer flexible models
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suitable for simulating continuum flows at the Navier Stokes level and rarefied

gas flows at the linearized Boltzmann model equation level.

Keywords: Lattice Boltzmann method, computational fluid dynamics,

non-equilibrium flow, gas microflow, standing-shear-wave problem

1. Introduction

Rarefied gas flows have recently attracted significant research interest due to

the rapid development of micro/nano-fluidic technologies. Gaseous transport in

micro/nano devices is often found to be non-equilibrium, and non-equilibrium

phenomena have not yet been well understood[1]. The conventional theory

to describe gas flows is the Navier Stokes equations, which assume that the

fluid is in a quasi-equilibrium state. However, for non-equilibrium flows, the

Navier Stokes equations break down because that the molecular nature of the

gas strongly affects the bulk flow behavior, i.e., the gas can no longer be regarded

as a fluid continuum. Whether gas flows are in local equilibrium or not can be

classified by the non-dimensional Knudsen number, Kn, defined as the ratio of

mean free path and the device characteristic length scale. The Navier Stokes

equations with no-velocity-slip wall boundary condition are only appropriate

when Kn < 0.001. However, gas flows in micro/nano-fluidic devices are often

in the slip flow regime (0.001 < Kn < 0.1) or the transition flow regime (0.1 <

Kn < 10). In these regimes, the gas flow cannot be properly described as a

continuous flow, nor as a free molecular flow. In practice, most devices operate

with a range of Knudsen numbers in different parts of the device; this makes it

even more difficult to develop a generalized flow model.

Direct simulation Monte Carlo (DSMC) methods and direct numerical sim-

ulation of the Boltzmann equation can provide accurate solutions for rarefied

gas flows. However, these are computationally intractable for 3D flow systems,

and impractical with the current computer technology, especially for the low

speed gas flows usually encountered in micro/nano-systems[2]. Statistically,

one needs to take significantly more samples of the flow field at any point for
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the DSMC method to resolve flows with low Mach numbers. The direct sim-

ulations based on the Boltzmann equation requires significant computational

resources for integrating the velocity space ranging from −∞ to +∞. In ad-

dition, it is usually difficult to solve the full Boltzmann equation directly via

either numerical or analytical methods.

Meanwhile, the continuum methods beyond the Navier Stokes level have

failed to produce satisfactory results for gas flows in the transition flow regime

[3]. It is well-known that continuum expressions for the viscous stress and heat

flux in gases may be derived from the fundamental Boltzmann equation via ei-

ther a Kn-series solution (known as the Chapman-Enskog approach) or by an ex-

pansion of the distribution function as a series of Hermite tensor polynomials[4].

To the first order (i.e., for near-equilibrium flows) both approaches can yield the

Navier Stokes equations. However, the solution methods can be continued to

second and higher orders, incorporating more and more of the salient character-

istics of a non-equilibrium flow. The classical second-order stress and heat flux

expressions are the Burnett equations (from the Chapman-Enskog approach),

and the Grad 13-moment equations (from the Hermite polynomial method) [4].

These can be seen as corrections to the Navier Stokes constitutive relations to

make them more appropriate to continuum-transition flows. However, different

physical interpretations of the solution methods at second and higher orders

have recently led to a variety of sets of equations, including the Bhatnagar-

Gross-Krook (BGK)-Burnett[5], Eu [6], augmented Burnett [7], and regularized

moment (R13)equations [8]. While each purports to be the proper high-order

correction to the stress and heat flux (there is no disagreement about the form

of the Navier Stokes equations at the first-order), none of these models are is

satisfactory [3]. In addition, these models suffer unknown additional bound-

ary conditions at solid walls to appropriately reflect gas molecule/wall surface

interactions.

The lattice Boltzmann (LB) approach may offer an alternative method for

rarefied gas flow simulations. Historically, the LB model was evolved from the

lattice-gas automata (LGA) for mimicking the Navier Stokes hydrodynamics,
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see Refs.[9, 10, 11, 12, 13, 14] and references therein. Over the past two decades,

the LB method has been developed to provide accurate and efficient solutions

for continuum flow simulations as the validity of the model can be ensured by

the Chapman-Enskog expansion. Due to its kinetic nature, the LB model has

distinct advantages over the continuum computational methods, including easy

implementation of multi-physical mechanisms and the boundary conditions for

fluid/wall interactions. In particular, the LB method is intended to seek a min-

imal set of velocities in phase space[10], which is an important feature different

from traditional kinetic methods to effectively reduce the computational costs.

The researchers have devoted significant efforts to extend the capability of LB

models for rarefied gas flows, e.g., [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31]. In particular, the recently proposed high-order LB mod-

els have shown that the LB capability can go beyond the Navier-Stokes level

[19, 21, 22, 24, 26, 27].

There are several methods to derive various order of LB models[21, 32, 33,

34, 35, 36, 37, 38, 39]. One of the most popular these approachs is based

on the Hermite expansion[21, 32, 33, 34, 35, 38, 39], which creates another the-

oretical foundation different from the Chapman-Enskog expansion. Therefore,

higher-order LB approximations to the BGK equation beyond the Navier Stokes

level can be constructed by using high-order Hermite expansions with appropri-

ate quadratures. This indicates that high-order LB models have the potential

to capture non-equilibrium effects in rarefied flows. In addition to the systemic

framework of constructing LB models, Shan et al. [21] also established the link

between the orders of Hermite polynomials and Chapman-Enskog expansion

and concluded that the order of Hermite expansion is responsible for obtaining

correct velocity moments. The precise relation among the orders of Hermite

expansion, Chapman-Enskog expansion and velocity moments was described

by Eq.(4.7) in Ref.[21]. For instance, the third-order expansion is required for

accurate pressure tensor and momentum at the Navier Stokes level. These con-

clusions are key to constructing appropriate LB models for non-equilibrium gas

flows. However, the numerical simulations do not support these conclusions. In
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contrast, the simulation data showed that the higher order terms in the equilib-

rium distribution function have negligible influence for low speed rarefied flows

[26]. This indicates that the Hermite expansion order is not directly related to

the order of Chapman-Enksog expansion, in contrary to the theoretical conclu-

sions drawn in Ref.[21].

In this work, we aim to answer this question whether the Hermite expansion

order is important for the LB method, as it is for the Grad’s moment method, to

capture non-equilibrium effects in rarefied flows, especially at micro/nano-scales.

Furthermore, we will analyze theoretically and numerically the mechanisms that

are important in constructing high-order LB models for rarefied gas dynamics.

We will discuss the differences between the approaches of Shan et al.[21] and

Grad’s moment method. To help us to understand the modeling capability of the

LB method for rarefied gas dynamics, we will also analyze the similarities and

differences between the LB method and the discrete velocity method (DVM)

of solving the BGK equation. In particular, we will show that the Hermite

expansion order for the equilibrium distribution function is not important for

the flows that the linearized BGK equation can accurately describe. Since the

important nonlinear constitutive relations in the Knudsen layer are still not

captured satisfactorily[19], our numerical analysis will be based on a standing-

shear-wave problem specifically designed in Ref.[3] to exclude the effect of gas

molecule/wall interactions, so we can concentrate on the model capabilities.

2. Lattice Boltzmann simulation of rarefied gas flows

2.1. Lattice Boltzmann equation

Although the LB models were originally developed from LGA, the link to the

kinetic theory has later been established in Refs.[21, 32, 33, 34]. Consequently,

the LB approach may be considered as a special finite difference scheme of solv-

ing the BGK equation. This theoretical link indicates that the LB methodology

may provide a reasonable approximation to the BGK equation. The central

question is how accurate the LB models can capture non-equilibrium effects in
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rarefied gas dynamics. To answer this question, we will revisit the derivation

process of LB models from the BGK equation as described in Ref.[21] and we

will emphasize on the model capability in describing rarefied gas flows.

The original BGK equation can be written as:

∂f

∂t
+ ξ · ∇f + g · ∇ξf = − p

µ
(f − feq) , (1)

where f denotes the distribution function, ξ the phase velocity, p the pressure, g

the body force and µ the gas viscosity. Using the well-known Chapman-Enskog

expansion, the collision frequency can be represented by the ratio of pressure

and gas viscosity, which is convenient to obtain the Knudsen number definition

consistent with that of hydrodynamic models. Without losing generality, we

define the following non-dimensional variables:

r̂ = θr, û =
u√
RT0

, t̂ = θ
√
RT0t,

ĝ =
g

θRT0
, ϕ̂ =

ϕ

θ
√
RT0

, ξ̂ =
ξ√
RT0

, T̂ =
T

T0
, (2)

where u is the macroscopic velocity, R the gas constant, T the gas temperature,

T0 the reference temperature, r the spatial position and θ the inverse of the

characteristic length of the flow system. The symbol hat, which denotes a di-

mensionless value, will hereinafter be omitted. We define the Knudsen number

using macroscopic properties as below:

Kn =
θµ

√
RT0
p

. (3)

By using these non-dimensional variables, the non-dimensional form of the BGK

equation becomes

∂f

∂t
+ ξ · ∇f + g · ∇ξf = − 1

Kn
(f − feq) , (4)

where the Maxwell distribution in D-dimensional Cartesian coordinates can be

written as

feq =
ρ

(2πT )D/2
exp

[
−(ξ − u)2

2T

]
. (5)
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From the non-dimensional format of Eq.(4), we can clearly see the relationship

between the relaxation time and the mean free path (i.e., Knudsen number),

which plays a key role in LB simulation of rarefied gas flows, e.g., Ref.[15].

To discretize the velocity space, we project the distribution function onto a

functional space spanned by the orthogonal Hermite basis:

f(r, ξ, t) ≈ fN (r, ξ, t) = ω(ξ)

N∑
n=0

1

n!
a(n)(r, t)χ(n)(ξ), (6)

where χ(n) is the nth order Hermite polynomial. The weight function ω(ξ) is

given by

ω(ξ) =
1

(2π)D/2
e−ξ2/2, (7)

and the coefficients a(n) are

a(n) =

∫
fχ(n)dξ ≈

∫
f (N)χ(n)dξ =

d∑
α=1

wα

ω(ξα)
f (N)(r, ξα, t)χ

(n)(ξα). (8)

The coefficient a
(n)
eq for the equilibrium distribution is

a(n)
eq =

∫
feqχ(n)dξ. (9)

where wα and ξα, a = 1, · · · , d, are the weights and abscissae of a Gauss-Hermite

quadrature of degree ≥ 2N respectively. Herein, the distribution function is

approximated by the first N Hermite polynomial. Using the derivation relation,

the body force term F (r, ξ, t) = g · ∇ξf can be approximated as

F (r, ξ, t) = w
N∑

n=1

1

(n− 1)!
ga(n−1)χ(n)(ξα). (10)

As an example, the second order approximation of the equilibrium distribu-

tion and the body force are:

feq ≈ ω(ξ)ρ

{
1 + ξ · u+

1

2

[
(ξ · u)2 − u2 + (T − 1)(ξ2 −D)

]}
, (11)

F (r, ξ, t) ≈ ω(ξ)ρ {g · ξ + (g · ξ)(u · ξ)− g · u} , (12)
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where T should be set to unity for isothermal problems and ρ is constant for

incompressible problems.

An appropriate Gauss-Hermite quadrature, see the Appendix in Ref.[21] for

a list of quadratures, can be chosen to evaluate the integral to obtain a(n).

Consequently, Eq.(4) can be discretized as

∂fα
∂t

+ ξα · ∇fα = − 1

Kn
(fα − feqα ) + gα, (13)

where fα = wαf(r,ξα,t)
ω(ξα) , feqα = wαfeq(r,ξα,t)

ω(ξα) and gα = wαF (r,ξα,t)
ω(ξα) . We have

obtained the lattice Boltzmann equation, i.e., Eq.(13), by discretizing Eq.(4) in

the velocity space.

2.2. Numerical scheme , Knudsen number and relaxation time

An appropriate numerical scheme is now required to solve Eq.(13). If a finite

difference scheme is chosen, one can obtain the so-called finite difference lattice

Boltzmann model. In particular, when the first-order upwind finite-difference

scheme is chosen, one can obtain the standard form of LB model. Herein, the

following second-order numerical scheme for Eq.(13)[44, 31] is used.

fα(r + ξαδt, t+ δt)− f(r, t)=
δt

2Kn
[feqα (r + ξαδt, t+ δt)− fα(r + ξαδt, t+ δt)]

− δt

2Kn
[fα(r, t)− feqα (r, t)]

+
δt

2
[gα(r + ξαδt, t+ δt) + gα(r, t)] . (14)

By introducing

f̃α = fα +
δt

2Kn
(fα − feqα )− δt

2
gα, (15)

the above implicit scheme can be written as

f̃α(r+ξαδt, t+δt)− f̃α(r, t) = − δt
Kn+ 0.5δt

[
f̃α(r, t)− feqα (r, t)

]
+

Kngαδt
Kn+ 0.5δt

,

(16)

with

ρ =
∑
α

f̃α, (17)
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ρu =
∑
α

ξαf̃α +
ρgδt
2

. (18)

2.3. High-order lattice Boltzmann models

Although the construction of LB models based on the Hermite polynomials

is straightforward, the Hermite polynomials higher than the third order give

irrational roots. The integer stream velocity is an essential feature of LB models,

i.e., the simple and efficient “stream-collision” mechanism. So high-order LB

models, which have non-integer discrete velocities, will need additional effort,

such as point-wise interpolation[45]. Therefore, they essentially become off-

lattice discrete velocity method for solving the kinetic Boltzmann equation,

which will increase the computational cost dramatically and introduce extra

numerical error. Shan et al.[21] suggested a method for searching abscissae

on the grid points of Cartesian coordinates to construct high-order LB models

with integer discrete velocities. The examples are D2Q17 and D2Q21 models

given in Refs.[21] and [26] (note, we follow the conventional terminology for

the LB models as first introduced in Ref.[9] dubbed as DnQm model, i.e., n

dimensional model with m discrete velocities). Furthermore, Chikatamarla et

al.[39] proposed an alternative method to seek rational-number approximation

to the ratios of the Hermite roots based on the important relation between the

entropy and the roots of Hermite polynomials. They also proposed the higher-

order LB models with integer discrete velocity, such as D2Q16 and D2Q25

models. The above high-order LB models with integer stream velocities will be

numerically examined in this work and the details are listed in Table.(1).

Based on the above model construction procedure, the accuracy of LB mod-

els depends on three level of approximations. Firstly, it depends on the accuracy

of the numerical scheme for solving Eq.(13). As we have demonstrated, the com-

monly used first-order upwind scheme will lead to incorrect physics for rarefied

flows. The second-order numerical scheme given by Eq. (16) is essential to

capture non-equilibrium effects accurately. Secondly, the order of the Hermite

expansion was considered to be important to obtain the correct moments[21].
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Quadrature k ξα wα

D2Q9 1 (0,0) 4/9

4 (
√

3, 0)FS 1/9

4 (±
√

3,±
√

3) 1/36

D2Q16 4 (±m,±m) W2
±m m = 1, n = 4

4 (±n,±n) W2
±n W±m =

m2−5n2+

√
m4−10n2m2+n4

12(m2−n2)

4 (±m,±n) W±mW±n W±n =
5m2−n2−

√
m4−10n2m2+n4

12(m2−n2)

4 (±n,±m) W±mW±n T0 = (m2 + n2 +

√
m4 − 10n2m2 + n4)/6

D2Q17 1 (0,0) 575+193
√

193
8100

4 (r, 0)FS
3355−91

√
193

18000
r2 = (125 + 5

√
193)/72

4 (±r,±r) 655+17
√

193
27000

4 (±2r,±2r) 685−49
√

193
54000

4 (3r, 0)FS
1445−101

√
193

162000

D2Q21 1 (0, 0) 91/324

4 (r, 0)FS 1/12 r2 = 3/2

4 (±r,±r) 2/27

4 (±2r, 0)FS 7/360

4 (±2r,±2r) 1/432

4 (3r, 0)FS 1/1620

D2Q25 1 (0, 0) W2
0 m = 3, n = 7

4 (m, 0)FS W±mW0 W0 =
−3m4−3n4+54m2n2−(m2+n2)D5

75m2n2

4 (n, 0)FS W±nW0 W±m =
9m4−6n4−27n2m2+(3m2−2n2)D5

300m2(m2−n2)

4 (±m,±m) W2
±m W±n =

9n4−6m4−27n2m2+(3n2−2m2)D5
300n2(n2−m2)

4 (±n,±n) W2
±n T0 = (3m2 + 3n2 + D5)/30

4 (±m,±n) W±mW±n D5 =

√
9m4 − 42n2m2 + 9n4

4 (±n,±m) W±mW±n

Table 1: The quadratures of five LB models where k is the number of discrete velocities with

the same velocity magnitude, the subscript FS denotes a fully symmetric set of points, and wα

are the weights. The quadrature accuracy is fifth-order for the D2Q9 model, seventh-order for

the D2Q16, D2Q17 and D2Q21 models, and ninth-order for the D2Q25 model. The details of

D2Q17 and D2Q21 models can be found in Refs.[21, 26] while the D2Q16 and D2Q25 models

are discussed in Ref.[39].

Thirdly, the Gauss-Hermite quadrature accuracy should be sufficiently high so

that the integration of Eq.(8) can be evaluated accurately. Therefore, the term

higher-order LB models here refer to the LB models with high-order of Hermite

expansion and Gauss-Hermite quadrature in comparison with the standard LB

model.
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3. Lattice Boltzmann, moment and discrete velocity method

3.1. Lattice Boltzmann method and Grad’s moment method

Similar to the Grad’s method for deriving higher order continuum systems

(e.g, Grad 13-moment equations), using the Hermite expansion to approximate

the BGK equation can lead to the LB equation, i.e., Eq.(13). However, the

major difference is that LB models are always staying at the kinetic level, i.e.,

solving the kinetic equation - Eq.(13), while the Grad’s method will produce

a set of continuum equations. The central idea of Grad’s method is to use

the truncated Hermite polynomials to approximate the full Boltzmann or BGK

equation. Due to the unique feature of Hermite polynomial, the moments of

up to the chosen truncation order can be described accurately by the derived

macroscopic moments systems. In contrary, the only explicit effect of the trun-

cation on the LB models is on the approximation of the equilibrium distribution

function and the body force, while the Grad’s moment equations do not approx-

imate the equilibrium distribution function.

Although the order of Hermite expansion determines the accuracy level of

the moment model, which is not the same for the LB models. Essentially, the

LB equation, i.e., Eq.(13) is similar to any model equation which is to simplify

the full Boltzmann equation. The kinetic process, i.e., gas molecules relaxing

to the equilibrium state through collisions, is still the same. Therefore, the LB

method is very close to the discrete velocity method solving the BGK equation

(especially the linearized-BGK equation), which we will discuss in the section

below.

3.2. Lattice Boltzmann method and discrete velocity method

The above procedure of establishing LB models is similar to the problem

solving process of the discrete velocity method, which directly solves the BGK

equation. Indeed, the relation to DVM was already recognized in late 1990s[32,

33, 34, 21]. Since DVM has been proved to be able to provide accurate results

for rarefied gas dynamics, see Refs.[46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56] and
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references therein, it is helpful to further compare two numerical methods in

depth.

The discrete velocity method is to discretize the velocity space based on

quadratures, e.g., Gauss-Hermite quadrature and Newton-Cotes quadrature, see

Refs.[54, 53, 52, 49]. The first step is to non-dimensionalize the BGK equation

and obtain the reduced functions, which are important to reduce computational

costs. The second step is to apply an appropriate discretization method for

the velocity space, which is important but difficult because the velocity space

ranges from −∞ to +∞ and the properties of conservation and dissipation of the

entropy should be kept. A typical choice is the Gauss-Hermite quadrature, which

is to be adopted in our simulations. In order to reduce the velocity components

which need to be integrated from −∞ to +∞, curvilinear coordinates, e.g., the

polar coordinates for 2D systems may be used for the velocity space. Afterwards,

the continuous Maxwell equilibrium should also be discretized. The last step is

to adopt an appropriate numerical scheme for the space and time discretization.

Therefore, we can see that LB methodology closely resembles the DVM problem

solving process. It is essentially DVM with finite discrete velocities and fully

discretized space and time tied to the discrete velocity set[57]. For simulating

rarefied gas flows, this similarity is important as we have shown how the LB

framework is developed from the BGK equation.

For both DVM and LB methods, the most critical task is to discretize the

velocity space. When the Gauss-Hermite quadrature is used in DVM, the dis-

cretization of the velocity space in these two methods are the same, which may

indicate that the LB models with sufficiently accurate Gauss-Hermite quadra-

ture can capture the higher-order non-equilibrium effects in the rarefied gas

flows. This indeed is confirmed by the simulation results presented in Fig.1,

which we will discuss in detail in Section 4.

However, as stated by Chen et al.[10], an unique feature of the LB method-

ology different from traditional kinetic methods is devoting efforts to seek a

minimal discrete velocity set according to the required accuracy. Moreover, the

“stream-collision” mechanism, which is mainly inherited from the lattice gas
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automata, makes the LB method easy to understand and efficient to comput-

ing. Therefore, the LB methodology is conceptually straightforward and more

suitable for developing a generic engineering-purpose package, e.g., Powerflow1.

It is worthwhile to extend the capability of the LB methodology to simulate

non-equilibrium flows in many industrial relevant applications. By contrary,

current DVM approach relies heavily on mathematical techniques which are

chosen for specific problems and emphasizes on model accuracy at cost of com-

putational efficiency. In particular, DVM needs more research efforts in near

hydrodynamics flow regime. Therefore, by combining the unique features of

LBM and DVM, appropriate models can be designed to achieve the required

accuracy with minimal computational effort.

3.3. Lattice Boltzmann equation and linearized BGK equation

By introducing ψ to denote the unknown perturbed distribution function

and assuming the flow is not far from equilibrium, f can be approximated by

f = f0(1 + ψ), (19)

where

f0 =
1

(2π)D/2
e−ξ2/2, (20)

which is the global (absolute) equilibrium distribution function. Using the Tay-

lor series to expand the local equilibrium distribution function and keeping the

terms up to the first order, one can obtain the following equation

∂f

∂t
+ξ ·∇f +g ·∇ξf = − 1

Kn

{
f − f0

[
1 + ξ · u+

1

2
(T − 1)(ξ2 −D)

]}
, (21)

where we assume the flow is incompressible. Using Eq.(19), we can obtain the

linearized BGK equation:

∂ψ

∂t
+ξ ·∇ψ+g ·[∇ξψ − (1 + ψ)ξ)] = − 1

Kn

{
ψ −

[
ξ · u+

1

2
(T − 1)(ξ2 −D)

]}
.

(22)

1see http://www.exa.com/
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For lattice Boltzmann models, one can rewrite Eq.(6) as

f(r, ξ, t) ≈ fN (r, ξ, t) = ω(ξ) [1 + φ(r, ξ, t)] , (23)

where

φ(r, ξ, t) =

N∑
n=1

1

n!
a(n)(r, t)χ(n)(ξ). (24)

Substituting Eq.(23) into the BGK equation and keeping the first- and second-

order expansions of the equilibrium distribution, one can obtain

∂φ

∂t
+ ξ · ∇φ+ g · [∇ξφ− (1 + φ) ξ] = − 1

Kn
(φ− ξ · u) , (25)

and

∂φ

∂t
+ ξ · ∇φ+ g · [∇ξφ− (1 + φ) ξ] = − 1

Kn
{φ− ξ · u (26)

− 1

2

[
(ξ · u)2 − u2 + (T − 1)(ξ2 −D)

]
}.

Because ω(ξ) is equal to f0, we can observe the following interesting facts

by comparing Eqs.(25) and (26) with Eq.(22). First of all, by keeping the first

order Hermite expansion, the essential LB model equation is the same with

that of the isothermal (T = 1) linearized BGK equation except the body force

term. This implies that φ is indeed equivalent to ψ though φ is prescribed

to include only the finite order terms of the Hermite polynomials (cf. Eq.(6)

and Eq.(23)). Therefore, the LB equation with the first order terms should be

as good as the linearized BGK equation for isothermal flows. This indicates

that high-order Hermite expansion for equilibrium distribution function is not

necessary for low-speed rarefied gas flows. Secondly, with the second order

Hermite expansion, there is an extra velocity term 1
2

[
(ξ · u)2 − u2

]
for the LB

equation in comparison to the linearized BGK equation. However, for flows

with low Mach number, this term is a higher-order small quantity which can

be ignored. This is the reason why the Hermite expansion order is reported to

make negligible difference on the simulation results[26]. In fact, the first order

expansion is sufficient to obtain the accurate results for isothermal rarefied flows

with low speed. Furthermore, the LB equation with the second order expansion
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can in principle describe thermal problems since the temperature information

is included in Eq.(26), which at least has the same capability as the linearized

BGK equation, though the BGK kinetic model gives wrong Pr number. Thirdly,

the treatment of the body force makes the difference between the LB model and

the linearized BGK equation. It is because that the linearized BGK model

keeps the full information while the LB model uses the Hermite expansion to

approximate ∇ξf , i.e., ∇ξφ − (1 + φ) ξ. However, for the problem is not far

from equilibrium state, this difference is not important, which will be confirmed

by the numerical simulations in Section 4.

From the above analysis, we can see that the Hermite expansion order does

not directly determine the accuracy of LB models for rarefied gas flows as de-

scribed by Eq.(4.7) in Ref.[21]. The Hermite expansion provides a means to

approximate the equilibrium distribution and the body force in the kinetic equa-

tion. Therefore, the LB equation, similar to the linearized BGK equation, is an

approximation of the BGK equation. In contrast to the Grad’s moment method,

LB models include the information of any order moment though it may not be

accurate. For instance, with the first order expansion, the LB model equation

is as the same as the isothermal linearized BGK equation in the incompressible

limit, which will give accurate results for any order velocity moment. When the

Mach number of flow increases, high-order terms in the Hermite expansion be-

come important[58, 59]. Therefore, the order of Hermite expansion is important

to simulate compressible flows rather than rarefied flows.

To capture non-equilibrium effects in rarefied flows, the Gauss-Hermite quadra-

ture is the key as it determines the discretization accuracy to the model equa-

tion. With sufficiently high order of the Gauss-Hermite quadrature, LB models

can give excellent numerical results, e.g., the results presented in Fig.(1) where

400 discrete velocities are used are identical to the DVM solution. Consider-

ing the similarity of the LB equation and linearized BGK equation, insufficient

quadrature order should be responsible for the failure on capturing the consti-

tutive relations in the Knudsen layer because the kinetic boundary condition

have been well accepted in solving the linearized BGK equation.
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In summary, the LB method approximates the BGK equation with finite dis-

crete velocities and fully discretized space and time tied to the discrete velocity

set. The capability of LB equation is similar to the linearized BGK equation for

simulating rarefied gas flows in the incompressible limit. The Hermite expansion

order determines the model equation and is important for compressible flows.

It has no direct effect on the accuracy of capturing high-order non-equilibrium

effects. Meanwhile, the Gauss-Hermite quadrature as a discretization technique

for the velocity space directly determines whether the LB models can describe

rarefied flows accurately.

4. Simulations and discussion

In addition to the above theoretical analysis, we will numerically evaluate the

LB models. To exclude the boundary condition effect, we choose the standing-

shear-wave problem as the benchmark case, which was specially designed for

assessing the accuracy of various models for isothermal flows[3]. It is a shear

flow driven by a temporally and spatially oscillating body force, which can be

written as the following form:

Fx = Aeiϕt cos θy, (27)

where Fx is the body force in the direction x (which is perpendicular to the y di-

rection), A is the amplitude, θ is the wave number, and ϕ is the frequency. This

isothermal problem is sufficiently simple because the flow direction is perpen-

dicular to the space variation but it is intended to capture the shear-dominated

characteristic of microscale flows. Furthermore, the distinct advantage is that

the boundary is not important here so that one can focus on the model itself

without the interference from gas molecule/wall interactions. With Eq.(2), the

body force becomes:

Fx = Âeiϕt cos y, (28)

where θ is considered as a measure of the characteristic length, and Â = A
θRT .

Another distinctive advantage for using this benchmark problem is that ana-
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lytical solutions can be obtained for many hydrodynamic models, such as the

Navier Stokes equation and the regularized 13-moment model (R13).

Fig.1 shows that, as an extreme test case, the LB model with 400 discrete ve-

locities can obtain results for velocity amplitude nearly identical to the linezrized

BGK equation for a broad range of Knudsen numbers from 0.1 to 1.5, which

confirms the capability of the LB equations. Since only the first Hermite ex-

pansion is used, it indicates that the Hermite expansion order does not directly

affect accuracy of the LB models in capturing non-equilibrium effects measured

by the Knudsen number for incompressible flows.

Although the standard LB model (D2Q9) is not sufficiently accurate in com-

parison with the DVM solution, high-order LB model (D2Q16) with minimal

increase of the discrete velocity set can produce good results. Fig.1 shows that

the LB model with increasing order of the Gauss-Hermite quadrature can closely

approximate the linearized BGK equation. Therefore, in comparison with the

DVM simulation, LB method can provide a practical engineering design sim-

ulation tool which can produce reasonably accurate results with significantly

reduced computational cost.

As discussed in Section 2.3, at least three factors will influence the problem-

solving process, i.e., the numerical scheme for solving Eq.(13), the order of

Hermite expansion and Gauss-Hermite quadrature. For the numerical scheme,

the second-order scheme is essential as discussed in Section 2.2. Regarding the

role of Hermite expansion and Gauss-Hermite quadrature, we have theoretically

shown that the Gauss-Hermite quadrature rather than the order of Hermite

expansion is key to capturing non-equilibrium effects accurately. The numerical

simulations have also performed to testify our theoretical analysis.

In Figs.2 and 3, the simulation results of the three LB models are compared

with the solutions of directly solving the linearized BGK equation and the Navier

Stokes equation. The expansion of the equilibrium distribution function and

the forcing term is second-order for the D2Q9 model, third-order for the D2Q16

and forth-order for D2Q25. The results in Fig.2 show that the prediction for

velocity amplitude of the D2Q25 model are in excellent agreement with the
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DVM solution of the linearized BGK equation across a broad range of Knudsen

number (Kn ∈ [0, 1.5]) for the quasi-steady and time-varying problems with θ

up to 0.25. Meanwhile, the results of the D2Q9 model deviate from the DVM

solution of the linearized BGK equation significantly. Surprisingly, the D2Q9

model does not agree with the results predicted by the Navier Stokes equation.

Fig.3 shows the velocity wave phase lag and shear pressure amplitude, which

suggests that high-order LB models perform better in the transition flow regime.

Although Figs.2 and 3 demonstrate that increasing order of LB model in

terms of the Hermite expansion and Gauss-Hermite quadrature will lead to more

accurate results, we still do not know the exact role the orders of the Hermite

expansion and the Gauss-Hermite quadrature play. Therefore, we single out the

effect of the Hermite expansion in Fig.4, where the results of the LB models with

the same quadrature but different Hermite expansion order are compared. The

results clearly show that the Hermite expansion order for both the force and

the equilibrium distribution function make negligible difference to the simulation

results. Even the first order expansion is sufficient to obtain accurate velocity for

the D2Q25 model. The simulation results support our theoretical analysis that

the Hermite expansion has no direct influence on model accuracy for capturing

non-equilibrium effects. Specifically, the LB model equation determined by

the first order Hermite expansion is sufficient for a typical gas flow in micro-

devices where the Mach number is usually small. In contrast, the Gauss-Hermite

quadrature determines the model accuracy as the higher-order quadratures give

better results.

Not only the order of quadrature but also the abscissae may influence the

model accuracy. Therefore, the simulation results of the three LB models with

the same order quadrature but different abscissae are compared in Fig.5. Al-

though increasing quadrature order will lead to improved accuracy, more dis-

crete velocities may not improve the model performance if the quadratures are

the same order. For example, the quadratures of the D2Q16, D2Q17 and D2Q21

models are the same order. Surprisingly, the D2Q16 model produces the results

better than the other two models with more discrete velocities. The reason may
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be attributed to that the abscissae of the D2Q16 model has better symmetry. In

addition, all these models are better than the D2Q9 model which has low order

quadrature. Therefore, appropriate abscissae may improve the model accuracy

and reduce the computational costs with smaller number of discrete velocities.

Since it has been shown in Ref.[3] that the R13 equation gives the best

performance among the extended hydrodynamic models, we compare the LB

models with the R13 model here. Fig.6 shows that, in comparison with the data

obtained from directly solving the linearized BGK equation, the high-order LB

models including the D2Q16 and D2Q25 models can give better results than

the R13 equation over a broad range of Knudsen numbers. Therefore, the

high-order LB models with modest number of discrete velocity set, such as the

D2Q16 and D2Q25 models, can offer close approximation to the linearized BGK

equation. Most importantly, these high-order LB models achieve such degree of

accuracy at a fraction of computational costs associated with directly solving

the linearized BGK equation.

It will be interesting to compare the computational costs associated with

different quadratures. Here, the comparison is between the D2Q25 and D2Q400

models for a quasi-steady standing shear wave problem, and the simulations are

performed with a four-core PC (Intel Core 2 Quad Q6600@2.4GHz). The first

order expansion of the equilibrium distribution function is used for both models.

The convergence criterion is set as
∣∣∣ ūn+1−ūn

ūn

∣∣∣ < 10−08, where ūn+1 and ūn are

the velocity amplitude at the consecutive steps. We test the simulations with

the same grid numbers at different Knudsen numbers. When Kn = 0.5, the

D2Q400 model needs about 85 minutes (23647 iterations) to obtain the simula-

tion results, while the D2Q25 only needs about 21 seconds (3882 iterations). For

the flow with Kn = 0.7, the D2Q400 needs about 66 minutes (18376 iterations),

while the D2Q25 model needs about 14 seconds (2692 iterations). It is worth

noting that the difference of simulation results between these two models is less

than 3%.
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5. Concluding remarks

We have theoretically and numerically analyzed the high-order LB models

for rarefied gas flows. The lattice Boltzmann equation is shown to be able to re-

duce to the linearized BGK equation in the incompressible limit. When the same

Gauss-Hermite quadrature is used, both LB and DVM simulations produce re-

sults in excellent agreement across a broad range of the Knudsen numbers. This

suggests the importance of the Gauss-Hermite quadrature and the great poten-

tial of the LB method for modeling rarefied gas flows. While the Gauss-Hermite

quadrature is of the most importance to capturing non-equilibrium effects, the

first-order Hermite expansion on the equilibrium distribution function is suffi-

cient to obtain the correct moments for isothermal flows, e.g., increasing the

Hermite expansion order further will not improve the model accuracy in the in-

compressible limit. For the same order Gauss-Hermite quadratures, the chosen

abscissae will influence the model accuracy and more discrete velocities may not

lead to improved model accuracy.

Overall, we have demonstrated that LB method offers a computationally ef-

ficient approach to solve the BGK equation. We can choose a suitable LB model

to meet different requirement on model accuracy and computational efficiency,

which offers an ideal flexible engineering design simulation tool to be able to

simulate flows in the continuum and transition regimes.In particular, this

work may lay down the foundation for developing a multiscale LB

model for mix knudsen number flows, which can be a specific method

for the unified kinetic scheme as shown by Ref.[60]
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Figure 1: The results of D2Q400, D2Q16 and D2Q9 models for the quasi-steady standing

shear wave. The first-order Hermite expansion is adopted for the D2Q400 model. Since the

Hermite polynomials for the D2Q400 model give irrational roots, the Lax-Wendroff scheme is

used to solve Eq.(13) here. The results show that the LB model with sufficiently large discrete

velocity sets can be very accurate.
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Figure 2: Velocity wave-amplitude as a function of the Knudsen number, where the expansion

order for the equilibrium distribution function and the force term is N which is 2, 3, 4 for the

D2Q9, D2Q16 and D2Q25 models respectively, and the order of Gauss-Hermite quadrature is

2N + 1.
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Figure 3: (a) Velocity wave phase lag, and (b) shear pressure wave amplitude as a function

of the Knudsen number, where the expansion order for the equilibrium distribution function

and the force term is N which is 2, 3, 4 for the D2Q9, D2Q16 and D2Q25 models respectively,

the order of Gauss-Hermite quadrature is 2N + 1, and ϕ = 0.25.
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Figure 4: Velocity wave-amplitude varying with the Knudsen number. The models are named

according to the rule D2Qn - Yth where n denotes the number of discrete velocities, Y the

expansion order for the equilibrium expansion and the force term.
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Figure 5: Velocity wave-amplitude varying with the Knudsen number, where the three models

with the same order of quadratures but different abscissae are compared.
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Figure 6: Velocity wave-amplitude varying with the Knudsen number where the results of LB

models are compared against the solution of the R13 equation.
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