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A numerical formulation to solve the MHD problem with thermal coupling is presented in
full detail. The distinctive feature of the method is the design of the stabilization terms,
which serve several purposes. First, convective dominated flows in the Navier–Stokes
and the heat equation can be dealt with. Second, there is no restriction in the choice of
the interpolation spaces of all the variables and, finally, flows highly coupled with the mag-
netic field can be accounted for. Different aspects related to the design of the final fully dis-
crete and linearized algorithm are also discussed.
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1. Introduction

The objective of this work is to present a finite element method for the approximation of the thermally-coupled magneto-
hydrodynamic (MHD) problem. We discuss several issues related to the time discretization, the linearization and the itera-
tive coupling of the unknowns. However, our main concern is the design of a stabilization technique that allows one to use
any continuous interpolation for all the unknowns, in particular, equal interpolation is allowed.

Considering first the thermally uncoupled case, in principle the unknowns involved are the magnetic field, the fluid veloc-
ity and the hydrodynamic pressure. However, to enforce the divergence free condition for the numerical approximation of
the magnetic field we introduce a magnetic pseudo-pressure (whose exact value should be zero). This zero divergence con-
dition is automatically satisfied at the continuous level for the transient problem if the initial magnetic field is solenoidal, but
it is convenient to explicitly enforce it in the numerical approximation, especially for stationary problems. With the intro-
duction of the magnetic pseudo-pressure we are left with a system of four equations with four unknowns. The ‘augmented’
approach used in this work is discussed for example in [19] in the context of MHD and more recently in [5] for the Maxwell
equations. The same approach is used in [14,29,24,23,28] (see also references therein). Other possibilities of enforcing the
divergence free condition for the magnetic field are penalty strategies (see for example [1]) or the use of (weakly) divergence
free interpolations based on Nédelec-type elements (described for example in [25,26]). These elements can also be used in
combination with the augmented approach using a continuous approximation for the magnetic pseudo-pressure [28] so as
to satisfy the adequate inf–sup condition between this scalar and the magnetic field. This condition also holds if an equal
order discontinuous interpolation is used for both variables [17]. Nevertheless, there is also the possibility of relying on
the mathematical structure of the equations and to expect that the original problem will already yield a magnetic field close
. All rights reserved.
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enough to solenoidal. This is the idea followed in [22], which probably contains the first analysis of a finite element approx-
imation to the MHD problem, and it is also used in [15], among other papers.

Having introduced the magnetic pseudo-pressure as a new unknown in the problem, its finite element approximation has
several difficulties. First, there is the well known compatibility condition between the approximation spaces for the velocity
and the pressure, but also for the approximation spaces for the magnetic field and the magnetic pseudo-pressure. Both con-
ditions can be expressed in a standard inf–sup form [2]. There is also the problem of dealing with situations in which first
order derivatives, both in the Navier–Stokes equations and in the equation for the magnetic field, dominate (from the numer-
ical point of view) the second order terms that give an elliptic nature to the system of equations to be solved. These are the
classical convection-dominated flow problems. Both the compatibility condition between interpolating spaces and the oscil-
lations found in flows dominated by convection can be overcome by using stabilized finite element methods. First ap-
proaches in this direction can be found in [15] (without the introduction of the magnetic pseudo-pressure) and in [24,?]
(where the magnetic pseudo-pressure is also introduced). However, another particular feature of the MHD problem are
the couplings involved. In the magnetic problem, the coupling with the hydrodynamic problem comes from the convective
term in the equation for the magnetic field, whereas in the Navier–Stokes equations the coupling with the magnetic problem
comes from Lorentz’s force. Our objective is to design a stabilized finite element method that takes these couplings into
account.

The stabilized finite element method presented here is based on the two-scale decomposition of the unknowns into their
finite element component and a subscale that cannot be captured by the finite element space. The format that we follow of
this idea was introduced in [18]. In particular, the version for systems we employ here was already presented in [6]. A first
version of our formulation, considering only the stationary and thermally uncoupled problem, can be found in [9].

The formulation is first designed for linear problems, and therefore our first concern is to devise a linearization technique
for the fully coupled problem. For simplicity, we consider a fixed point method. Among the different possibilities, we identify
the only one that leads to a linearized problem that is coercive, and thus guarantees existence and uniqueness of solution.
This fixed point method is often used, but rarely justified. It is for this linearized problem that we propose a stabilized finite
element method based on the subgrid scale concept. The important point is how to approximate the subgrid scales. We use
the simplest approach of taking them proportional to a projection of the residual of the finite element approximation mul-
tiplied by the so called matrix of stabilization parameters. We consider two possibilities for the projection. The first is to take
it as the identity (at least when applied to the residual of the finite element solution), and the second is to consider this pro-
jection as the orthogonal to the finite element space. The first option leads to a classical residual based stabilized finite ele-
ment method, whereas the second was termed orthogonal subscale stabilization formulation (OSS) in [7], where it is fully
developed for incompressible flows. A thorough numerical analysis for the stationary and linearized problem can be found
in [8].

The design of the matrix of stabilization parameters is solely based on the stability and convergence analysis of the prob-
lem. This analysis will be presented in a situation as simple as possible, trying to avoid mathematical technicalities. It is not
the purpose of this paper a deep numerical analysis of the formulation to be presented, but to present it with a sound moti-
vation. The resulting formulation differs from the one proposed in [24] both in the structure of the stabilizing terms (no at-
tempt is made there to account neither for convection-dominated situations nor for the coupling effects) and in the design of
the stabilization parameters. It also differs form the method proposed in [15] in the inclusion of the magnetic pseudo-pres-
sure and in the design of the stabilization parameters.

The paper is organized as follows. The problem to be solved is presented in the Section 2, including its strong and its
variational forms. Issues not directly related to the finite element approximation are treated in Section 3, where a simple
time integration scheme is described and linearization possibilities are discussed, starting with the identification of the only
feasible fixed-point iteration for the thermally uncoupled MHD problem and then including the thermal coupling. The
stabilization method is proposed and fully analyzed for the linearized stationary MHD problem in Section 4. The scheme
we finally propose is written in Section 5. Numerical examples are presented in Section 6 and conclusions are finally drawn
in Section 7.

2. Problem statement

2.1. Initial and boundary value problem

Let X � Rd (d = 2 or 3) be a domain where we want to solve the thermally coupled MHD problem during the time interval
[0,T], the thermal coupling being modeled through Boussinesq’s assumption. The unknowns of the problem are the fluid
velocity u : X� ð0; TÞ ! Rd, the pressure p : X� ð0; TÞ ! R, the magnetic induction (which we will simply call magnetic
field) B : X� ð0; TÞ ! Rd, the magnetic pseudo-pressure r : X� ð0; TÞ ! R and the temperature # : X� ð0; TÞ ! R, which
are solution of the system of partial differential equations:
@tuþ u � ru� mDuþ 1
q
rp� 1

lmq
ðr � BÞ � Bþ gb# ¼ f f þ g½1þ b#r�; ð1Þ

r � u ¼ 0; ð2Þ
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@tBþ
1

lmr
r� ðr� BÞ � r� ðu� BÞ þ rr ¼ f m; ð3Þ

r � B ¼ 0; ð4Þ

@t#þ u � r#� kt

qcp
D#� 1

qcpl2
mr
jr � Bj2 � 2lf

qcp
jrSuj2 ¼ Q : ð5Þ
In these equations, q is the fluid density, lf the fluid viscosity, m = lf/q is the kinematic viscosity, g the gravity acceleration
vector, b the thermal expansion coefficient, ff the body force of the flow motion, #r a known reference temperature, lm the
magnetic permeability, r the conductivity, fm a forcing term for the magnetic field (zero in the applications), kt the thermal
conduction coefficient, cp the specific heat at constant pressure, rS is the symmetrical gradient operator and Q the heating
source. From now on, we consider that ff contains g[1 + b#r]. All physical properties will be considered constant.

In order to write the boundary conditions for problem (1)–(5), let us consider the disjoint splittings oX = CE,u [CN,u =
CE,B [CN,B = CE,# [ CN,#. Subscript E refers to essential boundary conditions in the variational form to be presented, whereas
N refers to natural boundary conditions. The second subscript indicates the variable to which the condition is applied. If we
denote with an overbar prescribed values, the boundary conditions to be considered for all time t 2 (0,T] are:
On CE;u : u ¼ 0; ð6Þ
On CN;u : �pnþ mn � ru ¼ �t; ð7Þ
On CE;B : n� B ¼ 0; r ¼ 0; ð8Þ
On CN;B : n � B ¼ B; n� ðr� BÞ ¼ J; ð9Þ
On CE;# : # ¼ 0; ð10Þ

On CN;# :
kt

qcp
n � r# ¼ �q: ð11Þ
In these equations, n denotes the unit external normal to the boundary. Note that essential boundary conditions have been
considered all homogeneous. This simplifies the writing of the problem (the functional spaces where the solutions belong
will be linear instead of affine). Note also that the boundary condition (7) does not correspond to the prescription of the
physical traction, but it is the natural condition associated to the way the viscous term in (1) has been written.

To complete the definition of the problem we need to add initial conditions of the form u = u0, B = B0 and # = #0, all hold-
ing in the spatial domain X at t = 0.

Remark 1. The forcing term fm, introduced for generality, has to be divergence free. Likewise, the initial field B0 must be also
solenoidal. If one takes the divergence of (3) and uses the boundary conditions (8), it turns out that r = 0. However, from the
numerical point of view the introduction of r will be very useful to enforce the zero divergence condition (4) while keeping
the correct functional setting of the problem, as we will see in the next subsection.

Even though we will work with the dimensional form of the problem (1)–(5) to highlight the way it needs to be scaled, the
equations can also be written in terms of the following dimensionless numbers:
Re :¼ ‘U
m
; Reynolds number;

Pe :¼ ‘U
j
; P�eclet number;

Pr :¼ m
j
; Prandtl number;

Gr :¼ bjgj‘3d#
m2 ; Grashof number;

Rem :¼ lmr‘U; Magnetic Reynolds number;

Ha :¼ B‘
ffiffiffiffiffiffi
r
qm

r
; Hartmann number;

S :¼ B2

lmqU2 ; Coupling number;
where ‘ is a characteristic length of the problem, U a characteristic velocity, B a characteristic magnetic field and d# a char-
acteristic temperature difference, usually computed from temperature boundary values when these are not zero. These num-
bers are obviously not independent. For example, Pe = RePr, Ha = (ReRemS)1/2. The data for the numerical examples presented
in Section 6 will be given in terms of these numbers.
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2.2. Weak form

To write the weak form of (1)–(5) with the boundary conditions (6)–(11) let v, q, C, s and w be the test functions for u, p, B,
r and #, respectively. We consider them time-independent (time will be discretized using a finite difference scheme), v and w
are assumed the be zero on CE,u and CE,#, respectively, and on CE,B it holds that n � C = 0 and s = 0.

Let us write hf ; gix ¼
R
x fg, where f and g are two generic functions defined on a region x such that the integral of their

product is well defined. No subscript will be used when x = X. When f, g 2 L2(X), we will write hf,gi = (f,g). The norm in L2(X)
will be denoted by kfk = (f, f)1/2. These symbols will be used for scalars, vectors or second order tensors.

Once Eqs. (1)–(5) are multiplied by the corresponding test functions, integrated over X and second order terms integrated
by parts, the resulting variational form of the problem that we consider is
ð@tu;vÞ þ Auuðu;u;vÞ þ AuBðB;B;vÞ þ Au#ð#;vÞ � buðp;vÞ ¼ LuðvÞ; ð12Þ

buðq;uÞ ¼ 0; ð13Þ

ð@tB;CÞ þ ABuðu;B;CÞ þ ABBðB;CÞ þ bBðr; CÞ ¼ LB1ðCÞ; ð14Þ

bBðs;BÞ ¼ LB2ðsÞ; ð15Þ

ð@t#;wÞ þ A#u;1ðu; #;wÞ þ A#u;2ðu;u;wÞ þ A#BðB;B;wÞ þ A##ð#;wÞ ¼ L#ðwÞ; ð16Þ
which must hold for all test functions v, q, C, s and w in the functional spaces indicated next.
The different multilinear forms appearing in (12)–(16) are given by
Auuðu1;u2;vÞ ¼ hv ;u1 � ru2i þ mðrv ;ru2Þ;

AuBðB1;B2;vÞ ¼ �
1

lmq
hv ; ðr � B1Þ � B2i;

Au#ð#;vÞ ¼ bðv ; g#Þ;
ABuðu;B;CÞ ¼ �hC;r� ðu� BÞi;

ABBðB;CÞ ¼
1

lmr
hr � C;r� Bi;

A#u;1ðu; #;wÞ ¼ hw;u � r#i;

A#u;2ðu1;u2;wÞ ¼ �
2lf

qcp
hw;rSu1 : rSu2i;

A#BðB1;B2;wÞ ¼ �
1

qcpl2
mr
hw; ðr � B1Þ � ðr � B2Þi;

A##ð#;wÞ ¼
kt

qcp
ðrw;r#Þ;

buðq;vÞ ¼
1
q
ðq;r � vÞ;

bBðs;CÞ ¼ ðrs;CÞ;
LuðvÞ ¼ hv ; f f i þ hv ;�tiCN;u

;

LB1ðCÞ ¼ ðC; f mÞ þ hv;�JiCN;B
;

LB2ðsÞ ¼ hs; BiCN;B
;

L#ðwÞ ¼ hw;Qi þ hw; �qiCN;T
:

If we consider the functional spaces
Vu ¼ fv 2 H1ðXÞdjv ¼ 0 on CE;ug;

Vp ¼ fq 2 L2ðXÞj
Z

X
q ¼ 0 if CN;u ¼ ;g;

VB ¼ fC 2 Hðcurl;XÞjn� C ¼ 0 on CE;Bg;
Vr ¼ fs 2 H1ðXÞjs ¼ 0 on CE;Bg;
V# ¼ fw 2 H1ðXÞjw ¼ 0 on CE;#g;
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all the multilinear forms introduced, except A#u,2(u1,u2,w) and A#B(B1,B2,w), are well defined and continuous for
u1;u2;u 2 L2ð0; T; VuÞ; v 2 Vu;

p 2 D0ð0; T; VpÞ; q 2 Vp;

B1;B2;B 2 L2ð0; T; VBÞ; C 2 VB;

r 2 D0ð0; T; VrÞ; s 2 Vr;

# 2 L2ð0; T; V#Þ; w 2 V#:
In these expressions, L2(0,T;X) denotes the set of mappings defined on X � (0,T) such that their X-spatial norm is an L2(0,T)
function. Similarly, D0ð0; T; XÞ denotes the set of mappings for which their X-spatial norm is a distribution in time.

If A#u,2(u1,u2,w) and A#B(B1,B2,w) need to be taken into account, one should require rSv 2W1,4(X)d�d in the definition of
Vu and r� C 2 L4(X)d in the definition of VB. It is also assumed that f f 2 V 0u, f m 2 V 0B and Q 2 V 0# (a.e. in time), where X0 de-
notes the topological dual of a function space X.

To close this section, let us note that (12)–(16) can be written as a single variational equation of the form
Mð@tU;VÞ þ AðU;VÞ ¼ LðVÞ; ð17Þ
where
U ¼ ½u;p;B; r; #�t; V ¼ ½v; q; C; s;w�t;
AðU;VÞ :¼ Auuðu;u;vÞ þ AuBðB;B;vÞ þ Au#ð#;vÞ � buðp;vÞ þ buðq;uÞ

þ aB ABuðu;B; CÞ þ ABBðB; CÞ þ bBðr;CÞ � bBðs;BÞ½ �
þ a# A#u;1ðu; #;wÞ þ A#u;2ðu;u;wÞ þ A#BðB;B;wÞ þ A##ð#;wÞ½ �;

LðVÞ :¼ LuðvÞ þ aB½LB1ðCÞ þ LB2ðsÞ� þ a#L#ðwÞ;
MðU;VÞ :¼ ðu;vÞ þ aBhB;Ci þ a#h#;wi:
The scaling coefficients aB and a# need to be introduced to make the semilinear form A(U,V) and the linear form L(V) dimen-
sionally consistent.

3. Time integration and linearization

3.1. Time discretization

Let xðtÞ 2 Rn, n P 1 be a time dependent vector function. For h 2 [0,1], let xn+h :¼ hxn+1 + (1 � h)xn, where xn is an approx-
imation to x(tn) and tn :¼ ndt, dt being the time step size of a uniform partition of [0,T].

The generalized mid-point rule applied to the variational problem given by (17) is
MðdtU
n;VÞ þ AðUnþh;VÞ ¼ LðVÞ; ð18Þ
where dtUn = dt�1(Un+1 � Un) = (hdt)�1(Un+h � Un). This is the time discretization of the problem that we will consider,
although other time integration schemes could be also applied to obtain the final fully discrete and linearized problem.

3.2. Linearization and block-iterative coupling

In this section we present a linearization for the time discrete problem (18). If fact, we are also interested in uncoupling
the calculation of the temperature from the rest of unknowns.

3.2.1. Linearization of the stationary MHD problem
The first issue we consider is the linearization of the nonlinear terms in (18). To this end, it is enough to consider the ther-

mally uncoupled and stationary problem. If we introduce now the vector of unknowns U = [u,p,B,r]t and the corresponding
test functions V = [v,q,C,s]t, the variational problem can be written as
AðU;VÞ ¼ LðVÞ:
Taking the scaling coefficient as aB = 1/(lmq) now we have
AðU;VÞ ¼ hv ;u � rui þ mðrv ;ruÞ � 1
lmq

hv ; ðr � BÞ � Bi � 1
q
ðp;r � vÞ þ 1

q
ðq;r � uÞ

þ 1
lmq

�hC;r� ðu� BÞi þ 1
lmr

ðr � C;r� BÞ þ ðrr;CÞ � ðrs;BÞ
� �

: ð19Þ
The simplest way to linearize the problem is by a fixed point treatment of the quadratic terms. Let us assume we have an
estimate for the velocity and the magnetic field at iteration k, uk and Bk, respectively, and we have to compute these fields
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at iteration k + 1. If ei(k) = k or ei(k) = k + 1 and e0iðkÞ ¼ 2kþ 1� eiðkÞ, the approximation of A(U,V) at iteration k + 1 using the
fixed point method may be written as
Akþ1ðU;VÞ ¼ v ; ðue1ðkÞ � rÞue01ðkÞ
� �

þ mðrv;rukþ1Þ � 1
lmq

v ; ðr � Be2ðkÞÞ � Be02ðkÞ
D E

� 1
q
hpkþ1;r � vi þ 1

q
hq;r � ukþ1i

þ 1
lmq

� C;r� ðue3ðkÞ � Be03ðkÞÞ
D E

þ 1
lmr

ðr � C;r� Bkþ1Þ
�

þðrrkþ1;CÞ � ðrs;Bkþ1Þ
i
:

In order to have a stable problem at each iteration, we should guarantee that Ak+1(Uk+1,Uk+1) P 0, which leads to conditions
Z
X

ukþ1 � ðue1ðkÞ � rÞue01ðkÞ P 0;Z
X
�ukþ1 � ðr � Be2ðkÞÞ � Be02ðkÞ � Bkþ1 � r � ðue3ðkÞ � Be03ðkÞÞ
h i

P 0:
When r � uk = 0, r � Bk = 0, these conditions hold only if e1(k) = k (as it is well known), e2(k) = k + 1 and e3(k) = k + 1. There-
fore, calling a � uk, u � uk+1,b � Bk, B � Bk+1, the only fixed point linearization of the problem that is stable is
ða � rÞu� mDuþ 1
q
rp� 1

lmq
ðr � BÞ � b ¼ f f ;

r � u ¼ 0;

1
lmr

r� ðr� BÞ � r� ðu� bÞ þ rr ¼ f m;

r � B ¼ 0:
This is the problem for which the stabilized finite element method will be presented in Section 4. Note that the problem
needs to be solved in a coupled way, without the possibility to segregate the fluid mechanics problem from the magnetic
one. The same would happen if instead of a simple fixed-point linearization scheme, the classical Newton–Raphson linear-
ization is used.

3.2.2. Full coupling and block-iterative coupling
Let us consider again the stationary problem, but now accounting also for the thermal coupling. Once we have deter-

mined how to deal with the nonlinearity arising because of the velocity-magnetic field coupling, the thermal coupling is easy
to treat, since the temperature term in the momentum equation is linear. We may consider either a full coupling or a block
iterative coupling. Both options can be written in a single format as follows. If e(k) = k or e(k) = k + 1 and e0(k) = 2k + 1 � e(k),
we introduce the fully linearized and coupled problem
Auuðuk;ukþ1;vÞ þ AuBðBkþ1;Bk;vÞ þ Au#ð#eðkÞ;vÞ � buðpkþ1;vÞ ¼ LuðvÞ; ð20Þ
buðq;ukþ1Þ ¼ 0;

ABuðukþ1;Bk;CÞ þ ABBðBkþ1; CÞ þ bBðrkþ1;CÞ ¼ LB1ðCÞ;
bBðs;Bkþ1Þ ¼ LB2ðsÞ;
A#u;1ðue0 ðkÞ; #kþ1;wÞ þ A##ð#kþ1;wÞ ¼ Lk

#ðwÞ; ð21Þ
where
Lk
#ðwÞ ¼ L#ðwÞ � A#u;2ðue0ðkÞ;ue0 ðkÞ;wÞ � A#BðBe0 ðkÞ;Be0 ðkÞ;wÞ: ð22Þ
It is clear that when e(k) = k + 1 (and thus e0(k) = k), the problem needs to be solved for uk+1, pn+1, Bk+1, sk+1 and #k+1 in a cou-
pled way. The production of heat given by A#u;2ðue0 ðkÞ;ue0 ðkÞ;wÞ and A#BðBe0 ðkÞ;Be0 ðkÞ;wÞ needs to be evaluated at the previous
iteration (unless a Newton–Raphson-type strategy is used). On the other hand, when e(k) = k the problem can be solved first
for uk+1, pn+1, Bk+1 and rk+1. Once these variables are computed, temperature may be updated by solving (21). In this case, it is
possible to use the variables uk+1 and Bk+1 just computed, thus leading to a Gauss–Seidel-type coupling. Of course, a Jacobi
coupling, in which Lk

# in (22) is evaluated with uk and Bk, would also be possible. However, the computational effort is the
same, and convergence is known to be faster for Gauss–Seidel-type schemes (see [4] for further discussion).

3.3. Time discrete and linearized scheme

The next step is to consider the time discrete problem using the mid-point rule together with the linearization scheme
described previously. The combination is straightforward (see Section 5 below).
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For implementation purposes, it is very convenient to write the problem to be solved as a time-discrete system of linear
convection–diffusion-reaction equations. Let us consider the case e(k) = k + 1 in (20), the case e(k) = k being similar, and let us
call a � un+h,k, u � un+h,k+1, b � Bn+h,k, B � Bn+h,k+1, # � #n+h,k+1 and dt fn = (hdt)�1(f � fn) for any of the unknowns f. Here and be-
low the first superscript denotes the time step level and the second the iteration counter. The differential equations associ-
ated to the time discrete and linearized scheme can be written as
dtuþ ða � rÞu� mDuþ 1
q
rp� 1

lmq
ðr � BÞ � bþ gb# ¼ f f ;

r � u ¼ 0;

dtBþ
1

lmr
r� ðr� BÞ � r� ðu� bÞ þ rr ¼ f m;

r � B ¼ 0;

dt#þ a � r#� kt

qcp
D# ¼ Q tot;
where
Q tot ¼ Q � 1
qcpl2

mr
jr � bj2 � 2lf

qcp
jrSaj2:
The problem considered can be written as the vector differential equation
MdtU þ LðUÞ ¼ F in X; ð23Þ
where M = diag(I,0,aBI,0,a#), I being the d � d identity, dtU = (dt)�1(U � Un), with Un known, F = [ff,0,aBfm,0,a#Qtot]t is a
known vector of nunk = 2d + 3 components and the (scaled) operator L is given by
LðUÞ ¼

a � ru� mDuþ 1
qrpþ 1

lmq b� ðr� BÞ þ gb#

r � u
aB �r� ðu� bÞ þ 1

lmrr� ðr� BÞ þ rr
h i

aBr � B
a# a � r#� kt

qcp
D#

h i

266666664

377777775: ð24Þ
This is an operator of the form
LðUÞ :¼ Ai@iU � @iðK ij@jUÞ;
where Ai and Kij are nunk � nunk matrices (i, j = 1, . . . ,d) whose identification is obvious and will be omitted. Here and in what
follows, repeated indexes imply summation up to the number of spatial dimensions and @i is the partial derivative with re-
spect to the Cartesian coordinate xi.

Let matrices Ai be split as Ai ¼ Ac
i þ Af

i , where Ac
i is the part of the convection matrices which is not integrated by parts and

Af
i the part that is integrated by parts. In our case, matrices Af

i come from the first order derivatives of the hydrodynamic
pressure p. It would be also possible to integrate by parts the first order derivatives corresponding to the terms u � ru
and r� (u � B).

The weak form of the problem supplied with the appropriate homogeneous boundary conditions can be written again as
the time discrete and linearized counterpart of (17):
MðdtU;VÞ þ AlinðU;VÞ ¼ LðVÞ;
where
AlinðU;VÞ :¼ ðV ;Ac
i @iUÞ � ððAf

i Þ
t
@iV ;UÞ þ ð@ iV ;K ij@jUÞ;
and L(V) :¼ (V,F) plus boundary contributions that depend on the problem. For the particular case of MHD, taking aB = 1/
(lmq):
AlinðU;VÞ ¼ hv;a � rui þ mðrv;ruÞ � 1
lmq

hv ; ðr � BÞ � bi � 1
q
ðp;r � vÞ þ 1

q
ðq;r � uÞ

þ 1
lmq

�hC;r� ðu� bÞi þ 1
lmr ðr � C;r� BÞ þ hrr;Ci � hrs;Bi

� �
: ð25Þ
From now on, we will redefine p p/q, that is to say, we will work with the kinematic pressure.
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4. Stabilized formulation for the stationary, linearized and thermally uncoupled problem

4.1. Stability of the Galerkin approximation

Consider the linearized uncoupled stationary problem. Its variational form is: find U 2W such that
AlinðU;VÞ ¼ LðVÞ 8V 2W; ð26Þ
where W = Vu � Vp � VB � Vr. If we assume that r � a = 0, r � b = 0, Alin satisfies the stability estimate
AlinðU;UÞ ¼ mkruk2 þ 1
lmqlmr

kr � Bk2
: ð27Þ
This stability estimate and the inf–sup conditions between Vu and Vp and between VB and Vr, given by
inf
q2Vpnf0g

sup
v2Vunf0g

ðq;r � vÞ
kqkkrvkP bf > 0; ð28Þ

inf
s2Vrnf0g

sup
C2VBnf0g

ðrs;CÞ
krskð‘kr � Ck þ kCkÞP bm > 0; ð29Þ
where bf and bm are constants, are enough to guarantee that the linearized problem is well posed. The parameter ‘has dimen-
sions of length and has been introduced with the only purpose of having a correct scaling for the norm in VB � H(curl,X).
Therefore, for each iteration k, given uk and Bk there is a unique Uk+1 = (uk+1,pk+1,Bk+1,rk+1), solution of the linearized problem
(26).

It can be shown that, under the same condition for which the nonlinear problem has a unique solution (see [28]), the se-
quence {Uk}kP0 converges (strongly) to the (unique) solution of the nonlinear problem. The proof of this result is technical,
but follows the same strategy as for the stationary Navier–Stokes equations without magnetic coupling.

Remark 2. Since the exact solution of the problem is r = 0, one could replace (4) by �‘2rlmDr +r � B = 0, where ‘is again a
length scale. If this is done, the term ‘2 r

q krrk2 should be added to the right-hand-side of (27), so that additional stability is
obtained on the magnetic pseudo-pressure. We will not use this possibility here, although it may be needed if a method able
to converge to singular solutions is required (see Remark 3).
4.2. The subgrid scale framework for a general CDR system of equations

The basic idea of the stabilization method proposed here is based on the subgrid scale concept introduced in [18] and that
can be also found in different contexts (not only numerical). What follows is a summary of the approach described in [6].

The starting idea is to split the continuous space as W ¼Wh �fW , where Wh is the finite element space (and therefore
finite dimensional) in which the approximate solution will be sought. We call fW the space of subscales or subgrid scales. It
is readily checked that the continuous problem can be written as the system of equations:
AlinðUh;VhÞ þ AlinðeU ;VhÞ ¼ LðVhÞ 8Vh 2Wh; ð30Þ

AlinðUh; eV Þ þ A linðeU ; eV Þ ¼ LðeV Þ 8eV 2 fW ; ð31Þ
where U ¼ Uh þ eU and Uh 2Wh, eU 2 fW .
It is useful for the following to introduce the notation
h�; �ih :¼
Xnel

e¼1

h�; �iXe ; h�; �i@h :¼
Xnel

e¼1

h�; �i@Xe ;
where nel is the number of elements of the finite element partition used to build Wh and Xe denotes the domain of element
number e.

Integrating by parts all the terms in Alinð eU ;VhÞ in (30) and the left-hand-side terms of (31) within each element domain,
we get
AlinðUh;VhÞ þ heU ;niðK ij@jVh � ðA f
i Þ

tVhÞi@h þ heU ;L	ðVhÞih ¼ LðVhÞ; ð32Þ

eV ;ni K ij@jðUh þ eUÞ � Af
i ðUh þ eUÞh iD E

@h
þ eV ;LðeU ÞD E

h
¼ heV ; F � LðUhÞih; ð33Þ
where ni is now the i-th component of the exterior normal to oXe and L	 is the adjoint operator of L with homogeneous
Dirichlet conditions, given by
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L	ðUÞ :¼ �@iðAt
i UÞ � @iðK t

ij@ jUÞ:
Eq. (33) is equivalent to:
LðeUÞ ¼ F � LðUhÞ þ Vh;ort in Xe; ð34Þ

eU ¼ eU ske on @Xe; ð35Þ
where Vh,ort is obtained from the condition that eU must belong to fW (and not to the whole space W) and eU ske is a function
defined on the element boundaries and such that
qn :¼ ni K ij@jðUh þ eUÞ � Af
i ðUh þ eUÞh i
is continuous across interelement boundaries, and therefore the first term in the left-hand-side of (33) vanishes.
Different subgrid scale (SGS) stabilization methods can be devised depending on the way problem (34), (35) is approx-

imated. The purpose of this paper is not to propose a new methodology, but rather to see how to apply a well established
formulation to the incompressible MHD problem. This well known method can be obtained by approximating the subscales
by the algebraic expression
eU 
 seP F � LðUhÞ½ �; ð36Þ
where s is a nunk � nunk matrix of stabilization parameters, the expression of which is discussed in the following subsection,
and eP is the projection onto the space of subscales. There are two main possibilities for choosing eP and, therefore, for deter-
mining the space of subscales. The most common one is to take eP ¼ I, the identity, when applied to the finite element resid-
ual appearing in the right-hand-side of (36). Another possibility is to take eP as the L2-projection onto the space orthogonal to
the finite element space [7,8]. For the sake of conciseness, we will restrict ourselves to the first option (eP ¼ I) (see [11] for the
analysis of the second approach to time dependent problems). The design of the stabilization parameters, which is our main
concern, is the same using both approaches.

To close the approximation, we neglect the interelement boundary terms in (32), which can be understood as takingeU ske ¼ 0 on the interelement boundaries. The final problem is: find Uh 2Wh such that
AlinðUh;VhÞ þ heU ;L	ðVhÞih ¼ LðVhÞ 8Vh 2Wh;
which, upon substitution of the subscales by (36) with eP ¼ I, yields the following discrete problem: find Uh 2Wh such that
Alin
stabðUh;VhÞ ¼ LstabðVhÞ 8Vh 2Wh; ð37Þ
where the bilinear form Alin
stab and the linear form Lstab are now given by
Alin
stabðUh;VhÞ ¼ AlinðUh;VhÞ � hL	ðVhÞ; sLðUhÞih; ð38Þ

LstabðVhÞ ¼ LðVhÞ � hL	ðVhÞ; sFih: ð39Þ
4.3. Stabilized finite element approximation for the linearized MHD problem

In this subsection we present a stabilized finite element method to approximate problem (26). First of all, we recast it as a
system of linear convection–diffusion equations. It is in this general setting that the finite element approximation will be
described.

Stabilization for this problem has several goals. The first is to avoid the need to satisfy the discrete counterpart of the inf–
sup conditions (28) and (29), which would lead to different interpolation for the variables of the problem. To fix ideas, we
will assume equal and continuous interpolation for all the unknowns. The second goal is to obtain error estimates valid in the
limit m ? 0 and rlm ?1, that is, for convection-dominated flows (both in the Navier–Stokes equation and the equation for
the magnetic field). Finally, the third objective is to account properly for the coupling of the hydrodynamic and the magnetic
problems (case qlm ? 0). That these goals are all satisfied will be seen in the error estimate to be presented.

Up to now we have described the algebraic version of the SGS stabilization in a general setting. The objective now is to
apply it to the MHD problem we are considering. In particular, the adjoint operator of the linearized uncoupled MHD prob-
lem L	ðVhÞ, taking once again aB = 1/(lmq), is now given by
L	ðVÞ ¼

�a � rv � mDv �rq� 1
qlm

b� ðr� CÞ
�r � v

1
qlm
r� ðv � bÞ þ 1

qlmrlm
r� ðr� CÞ � 1

qlm
rs

� 1
qlm
r � C

266664
377775: ð40Þ
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To define the method for the particular MHD problem, an expression for the matrix of stabilization parameters s needs to be
proposed. To our knowledge, there is no general way to define it for systems of equations [6]. It must be designed for each
particular problem taking into account its stability deficiencies.

In the case we are considering, we will see in the following subsection that stability can be improved maintaining optimal
accuracy by taking a simple diagonal expression for s, with one scalar component for each of the equations. In the 3D case,
we take
s ¼ diagðs1; s1; s1; s2; s3; s3; s3; s4Þ: ð41Þ
Using this expression and (40), it follows that the stabilized bilinear form that we have to consider in problem (37) is
Alin
stabðUh;VhÞ ¼ AlinðUh;VhÞ � hL	ðVhÞ; sLðUhÞi ¼ ha � ruh;vhi þ mðruh;rvhÞ � ðph;r � vhÞ þ ðqh;r � uhÞ

þ 1
qlm

hBh;r� ðvh � bÞi � 1
qlm

hCh;r� ðuh � bÞi þ 1
qlmrlm

ðr � Bh;r� ChÞ þ
1

ql m
ðrrh;ChÞ

� 1
qlm

ðrsh;BhÞ þ hXuðvh; qh;ChÞ þ mDvh; s1ðXuðuh; ph;BhÞ � mDuhÞih þ hr � vh; s2ðr � uhÞih

þ XBðsh;vhÞ �
1

ql mrlm
r� ðr� ChÞ; s3 XBðrh;uhÞ þ

1
qlmrlm

r� ðr� BhÞ
� �	 


h

þ 1
q2l2

m
hr � Ch; s4ðr � BhÞih; ð42Þ
where we have introduced the abbreviations
Xuðvh; qh;ChÞ :¼ a � rvh þrqh þ
1

qlm
b� ðr� ChÞ;

XBðsh;vhÞ :¼ � 1
qlm

r� ðvh � bÞ þ 1
qlm

rsh:
Finally, the right-hand-side of the stabilized problem (39) is now given by
LstabðVhÞ ¼ LðVhÞ � hL	ðVhÞ; sFi

¼ hf f ;vi þ
1

qlm
ðf m;CÞ þ hXuðvh; qh;ChÞ þ mDvh; s1f fih

þ XBðsh;vhÞ �
1

ql mrlm
r� ðr� ChÞ; s3f m

	 

h

: ð43Þ
The definition of the stabilized finite element method is now complete up to the expression of the stabilization parameters.
The expressions we propose are the following:
a :¼ c1
a
h
þ c2

m
h2 ; b :¼ c3

1
qlm

b
h
; c :¼ c4

1
qlm

1
rlm

1

h2

s1 ¼ a�1 1þ 1ffiffiffiffiffiffiacp b

� ��1

; s2 ¼ c5
h2

s1
ð44Þ

s3 ¼ c�1 1þ 1ffiffiffiffiffiffiacp b

� ��1

; s4 ¼ c6q2l2
m

h2

s3
ð45Þ
It is understood that these expressions are evaluated element by element. Here, a is the maximum norm of the velocity field
a computed in the element under consideration. Likewise, b denotes the maximum norm of b in this element, and h the ele-
ment diameter. The constants ci, i = 1, 2, 3, 4, 5, 6, are independent of the physical parameters of the problem and of the mesh
discretization. In the numerical calculations we take them as c1 = 2, c2 = 4, c3 = 1, c4 = 4, c5 = 1, c6 = 1.

In the following subsection we justify in detail this choice from the numerical analysis of the problem. We will proceed in a
constructive manner, posing conditions on the stabilization parameters obtained from the requirement that the method is
stable (coercive) and optimally accurate.

Remark 3. At this point it is important to remark a property of the stabilized formulation we propose concerning
convergence to non-regular solutions. In the following analysis we consider the simplest situation, trying to avoid
technicalities and focusing our attention on the convenience of the formulation designed. We will state stability of the
method and convergence to smooth solutions, assuming all the regularity we need. However, it is known that the problem
may exhibit solutions for the magnetic field which are strictly in H0(curl,X), not even in (H1(X))d. This happens when X
has re-entrant corners [12]. Methods based on penalization, which introduce some sort of control on the divergence of
the magnetic field, fail to converge to these non-regular solutions. The remedy is either to weight the terms that give
this divergence control, so as to skip it near singularities [13,16], or to use mixed interpolations (including the magnetic
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pseudo-pressure). The former option does not seem easily applicable to general three-dimensional problems, whereas the
latter requires the discrete version of the inf–sup condition (29). It is not easy to satisfy it (see [28,17] for possible ways to
comply with it). In particular, we are not aware of continuous interpolations satisfying it. Thus, stabilized methods, as the one
proposed here, seem to be the only alternative to use the simple continuous Lagrangian approximation of the magnetic field.
However, in the formulation we propose the last term in (42) gives also control on the divergence of B. In order to converge
to non-regular solutions, expressions of s4 smaller than the one given by (45) might be required.
4.4. Numerical analysis and design of the stabilization parameters

In this subsection we proceed to analyze the formulation introduced above and, in particular, to justify the choice (44),
(45). For the sake of simplicity in the notation, we will assume that a and b are constant. Likewise, we will assume that the
finite element meshes are quasi-uniform. In this case, h in (44), (45) can be taken the same for all the elements (the max-
imum element diameter), and therefore si, i = 1, 2, 3, 4, are also constant. Moreover, for quasi-uniform meshes the following
inverse estimates hold:
krvhk 6
Cinv

h
kvhk; krrvhk 6

Cinv

h
krvhk; ð46Þ
for any function vh in the finite element space and for a certain constant Cinv.
The stability and convergence analysis will be made using the following mesh-dependent norm:
jjjUhjjj2 :¼ mkruhk2 þ 1
qlmrlm

kr � Bhk2 þ s1ka � ruh þrph þ
1

qlm
b� ðr� BhÞk2 þ s2kr � uhk2

þ s3
1

q2l2
m
k �r� ðuh � bÞ þ rrhk2 þ s4

1
q2l2

m
kr � Bhk2

� mkruhk2 þ 1
ql mrlm

kr � Bhk2 þ s1kXuðuh;ph;BhÞk2 þ s2kr � uhk2 þ s3kXBðrh;uhÞk2 þ s4
1

q2l2
m
kr � Bhk2

:

ð47Þ
In all what follows, C will denote a positive constant, not necessarily the same at different appearances.

4.4.1. Coercivity
Let us start by proving stability in the form of coercivity of the bilinear form (42). It is immediately checked that
Alin
stabðUh;UhÞ ¼ AlinðUh;UhÞ � hL	ðUhÞ; sLðUhÞih

¼ mkruk2 þ 1
ql mrlm

kr � Bk2 þ s1kXuðuh; ph;BhÞk2 � s1m2kDuhk2 þ s2kr � uhk2 þ s3kXBðrh;uhÞk2

� s3
1

q2l2
mr2l2

m
kr �r� Bk2 þ s4

1
q2l2

m
kr � Bhk2

:

Using the second inverse estimate in (46), it is clear that a sufficient condition for Alin
stab to be coercive is that
m� s1m2 C2
inv

h2 P am() s1 6 ð1� aÞ1
m

h2

C2
inv

; ð48Þ

1
qlmrlm

� s3
1

q2l2
mr2l2

m

C2
inv

h2 P a
1

qlmrlm
() s3 6 ð1� aÞqlmrlm

h2

C2
inv

; ð49Þ
with 0 < a < 1. Conditions (48) and (49) yield
Alin
stabðUh;UhÞP CjjjUhjjj2; ð50Þ
for a constant C independent of the discretization and of the physical parameters (it depends only on the constants of the
stabilization parameters).

4.4.2. Optimal accuracy
We have obtained conditions (48) and (49) on the stabilization parameters by requiring stability. The rest of conditions

will be obtained by imposing that the stabilized method proposed is optimally accurate, which will lead to optimal
convergence.

For a function v, let ph(v) be its optimal finite element approximation. We assume that the following interpolation esti-
mates hold:
kv � phðvÞkHiðXÞ 6 eiðvÞ :¼ Chkþ1�ijvjHkþ1ðXÞ; i ¼ 0;1; ð51Þ
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where kvjHqðXÞ is the Hq(X)-norm of v, that is, the sum of the L2(X)-norm of the derivatives of v up to degree q (and thus the
H0(X)-norm coincides with the L2(X)-norm), jv jHqðXÞ the corresponding semi-norm, and k is the degree of the finite element
approximation.

We will state in the following that the error function of the formulation is
EðhÞ :¼ s�1=2
1 e0ðuÞ þ s�1=2

2 e0ðpÞ þ s�1=2
3 e0ðBþ s�1=2

4 e0ðrÞ: ð52Þ
The conditions on the stabilization parameters we will obtain will in fact show that this is indeed the error function and that
this error function is optimal.

Let U be the solution of the continuous problem and ph(U) its optimal finite element approximation. The accuracy esti-
mate that is needed to prove convergence is
Alin
stabðU � phðUÞ;VhÞ 6 CEðhÞjjjVhjjj; ð53Þ
for any finite element function Vh. The proof of this result can be done using standard arguments in the analysis of finite
element formulations and is omitted.

So far, we have not posed any additional conditions on the stabilization parameters other than (48) and (49), found from
the requirement of coercivity. The rest of conditions will come from the requirement of optimal accuracy.

It can be shown that
�hL	ðVhÞ; sLðU � phðUÞÞi 6 CjjjVhjjj s1=2
1

a
h
þ m

h2

� �
þ s1=2

3

qlm

b
h
þ s1=2

2
1
h

" #
e0ðuÞ þ CjjjVhjjj s1=2

1
1
h

� �
e0ðpÞ

þ CjjjVhjjj
s1=2

1

qlm

b
h
þ s1=2

3

qlm

1
rl m

1

h2 þ
s1=2

4

qlm

1
h

" #
e0ðBÞ þ CjjjVhjjj

s1=2
3

qlm

1
h

" #
e0ðrÞ:
From the definitions (44), (45) of the stabilization parameters it follows that these terms can be bounded also as indicated
in (53).

Remark 4. The last step provides in fact the crucial design condition for the stabilization parameters. Expressions (44), (45)
follow by imposing that
s1=2
1

a
h
þ m

h2

� �
þ s1=2

3

qlm

b
h
þ s1=2

2
1
h
� s�1=2

1 ;

s1=2
1

1
h
� s�1=2

2 ;

s1=2
1

qlm

b
h
þ s1=2

3

qlm

1
rl m

1

h2 þ
s1=2

4

qlm

1
h
� s�1=2

3 ;

s1=2
3

qlm

1
h
� s�1=2

4 ;
where � stands for equality up to constants in each term. The solution of these set of conditions is precisely (44), (45).
4.4.3. Convergence
As a consequence of the properties of stability and accuracy in the sense of (53), it is trivial to show that the method is

optimally convergent. A trivial check using the expression of the norm jjj � jjj given by (47), the interpolation estimates (51)
and the stabilization parameters (44), (45) shows that jjjU � phUjjj 6 C E(h), from where one can prove using standard argu-
ments that
jjjU � Uhjjj 6 CEðhÞ: ð54Þ
The fact that this error estimate is exactly the same as the estimate for the interpolation error jjjU � phUjjj 6 C E(h) justifies
why it has to be considered ‘optimal’. Moreover, a simple inspection of what happens in the limit of dominant second order
terms shows that in this case the error estimate reduces to the estimate that could be found using the Galerkin method using
finite element spaces satisfying the discrete form of (28), (29), but now, however, using equal interpolation for all the variables.
Likewise, in the limit m ? 0 and rlm ?1, the error estimate (54) does not blow up and the result can also be considered
optimal.
5. Final numerical scheme

The final numerical scheme that we propose is obtained by applying the finite element stabilization technique described
in Section 4 to the time discrete and linearized problem. The space discretization of these equations, adding stabilization
terms as those that appear in (42) and (43) for the stationary thermally uncoupled problem, will lead to the following
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algorithm: For n = 0,1,2, . . . , given un, pn, Bn, rn and #n, find unþ1
h , pnþ1

h , Bnþ1
h ; rnþ1

h and #nþ1
h , as the converged solutions of the fol-

lowing iterative algorithm:
dtu
n;kþ1
h ;vh

� �
þ Auu unþh;k

h ;unþh;kþ1
h ;vh

� �
þ AuB Bnþh;kþ1

h ;Bnþh;k
h ;vh

� �
þ Au# #

nþh;eðkÞ
h ;vh

� �
� bu pnþ1;kþ1

h ;vh

� �
þ unþh;k

h � rvh þ mDvh; snþh;k
1 Rnþh;kþ1

h;u

D E
h
þ r � vh; snþh;k

2 Rnþh;kþ1
h;p

D E
h

þ �aBr� ðvh � Bnþh;kÞ;aBsnþh;k
3 Rnþh;kþ1

h;B

D E
h
¼ Lnþh

u ðvhÞ; ð55Þ

bu qh;u
nþ1;kþ1
h

� �
þ rqh; s

nþh;k
1 Rnþh;kþ1

h;u

D E
h
¼ 0; ð56Þ

aB dtB
n;kþ1h ;Ch

� �
þ aBABu unþh;kþ1

h ;Bnþh;k
h ;Ch

� �
þ aBABB Bnþh;kþ1

h ;Ch

� �
þ aBbB rnþ1;kþ1

h ;Ch

� �
þ � 1

lmq
ðr � ChÞ � Bnþh;k

h ; snþh;k
1 Rnþh;kþ1

h;u

	 

h

þ aB
1

l mrr� ðr� ChÞ;aBsnþh;k
3 Rnþh;kþ1

h;B

	 

h

þ aB r � Ch;aBsnþh;k
4 Rnþh;kþ1

h;r

D E
h
¼ aBLnþh

B1 ðChÞ; ð57Þ

aBbB sh;B
nþ1;kþ1
h

� �
þ aB rsh;aBsnþh;k

3 Rnþh;kþ1
h;B

D E
h
¼ aBLnþh

B2 ðshÞ; ð58Þ

dt#
n;kþ1
h ;wh

� �
þ A#u;1 unþh;e0ðkÞh ; #nþh;kþ1

h ;wh

� �
þ A## #nþh;kþ1

h ;wh

� �
þ unþh;k

h � rwh þ
kt

qcp
Dwh; s

nþh;k
5 Rnþh;kþ1

h;#

	 

h

¼ Lnþh;k
T ðwhÞ; ð59Þ
where aB = 1/qlm and we have introduced the residuals
Rh;u :¼ dtuh þ a � ruh � mDuh þrph �
1

l mq
ðr � BhÞ � bþ gb#h � f f ;

Rh;p :¼ r � uh;

Rh;B :¼ dtBh þ
1

l mr
r� ðr� BhÞ � r� ðuh � bÞ þ rrh � f m;

Rh;r :¼ r � Bh;

Rh;# :¼ dt#h þ a � r#h �
kt

qcp
D#h � Q tot:
The superscript n + h, k + 1 in (55)–(59) denotes that these residuals are evaluated with uh, ph, Bh, rh and #h at this time step
and iteration counter, whereas now a � unþh;k

h , b � Bnþh;k
h .

The stabilization parameters si, i = 1, 2, 3, 4, are given in (44), (45) (and computed within each element), whereas
s5 ¼ c1
a
h
þ c2

kt

qcph2

 !�1

:

Note that the thermal coupling effect has been neglected in the design of the stabilization terms. This approximation is jus-
tified in [10].

6. Numerical examples

In this section we present five numerical examples designed to show that the formulation presented in this paper satisfies
the main requirements posed for its design, namely, it yields smooth solutions for the thermally coupled MHD problem in a
wide rank of the physical parameters.

As a general comment from the physical point of view, let us mention that it is well known that the presence of magnetic
fields in flows where oscillations can occur precludes their onset. The examples to be presented show clearly this behavior.

6.1. Convergence test

In order to analyze the convergence properties of the stabilized finite element approximation presented, a two dimen-
sional problem in the square domain X = ]0,1[�]0,1[ is considered. This problem was already proposed in [9]. We include
it also here to show the behavior of quadratic elements.
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The components of the body forces ff = (ff,x, ff,y) and fm = (fm,x, fm,y) are prescribed to:
ff;x ¼ f1ðxÞ d01ðyÞ

 �2

f 01ðxÞ � f 01ðxÞd1ðyÞf1ðxÞd001ðyÞ �
1

Re
f 001 ðxÞd

0
1ðyÞ þ f1ðxÞd0001 ðyÞ

� �
þ S f 02ðxÞd2ðyÞ f 002 ðxÞd2ðyÞ þ f2ðxÞd002ðyÞ


 �� �
;

ff;y ¼ �f1ðxÞd01ðyÞf 001 ðxÞd1ðyÞ þ f 01ðxÞ

 �2d1ðyÞd01ðyÞ þ

1
Re

d1ðyÞf 0001 ðxÞ þ f 01ðxÞd
00
1ðyÞ

� �
þ S f2ðxÞd02ðyÞ f 002 ðxÞd2ðyÞ þ f2ðxÞd002ðyÞ


 �� �
;

fm;x ¼ f1ðxÞf 02ðxÞ d001ðyÞd2ðyÞ þ d01ðyÞd
0
2ðyÞ

� �
� f 01ðxÞf2ðxÞ d01ðyÞd

0
2ðyÞ þ d1ðyÞd002ðyÞ

� �
� 1

Rem
f 002 ðxÞd

0
2ðyÞ þ f2ðxÞd0002 ðyÞ

� �
;

fm;y ¼ �d01ðyÞd2ðyÞ f 01ðxÞf 02ðxÞ þ f1ðxÞf 002 ðxÞ
� �

þ d1ðyÞd02ðyÞ f 001 ðxÞf2ðxÞ þ f 01ðxÞf 02ðxÞ
� �

þ 1
Rem

f 0002 ðxÞd2ðyÞ þ f 02ðxÞd
00
2ðyÞ

� �
;

where the prime denotes differentiation. Endowed with this body forces the 2D problem has an exact solution for the veloc-
ity given by u = (ux,uy), where
uxðx; yÞ ¼ f1ðxÞd01ðyÞ; uyðx; yÞ ¼ �f 01ðxÞd1ðyÞ:
The analytical solution for the magnetic field is B = (Bx,By), now with
Bxðx; yÞ ¼ f2ðxÞd02ðyÞ; Byðx; yÞ ¼ �f 02ðxÞd2ðyÞ:
In this particular example, the functions f1(x), f2(x), d1(y) and d2(y) are chosen as
f1ðxÞ ¼ x2ð1� xÞ2; f 2ðxÞ ¼ x2ð1� xÞ2;
d1ðyÞ ¼ y2ð1� yÞ2; d2ðyÞ ¼ y2ð1� yÞ2:
The square domain X has been discretized with five different uniform meshes of 2 � 25 � 25, 2 � 50 � 50, 2 � 75 � 75,
2 � 100 � 100 and 2 � 125 � 125 triangular elements, using both linear (P1) and quadratic (P2) elements. The characteristic
length of the meshes are h = 1/25, 1/50, 1/75, 1/100 and 1/125.

The convergence plots measured in the discrete L2(X)-norm for the velocity are shown in Fig. 1 for Re = 100 and Ha = 10.
It is observed that the numerical convergence approximately slope 2 for linear elements and 3 for quadratics, showing that
the formulation proposed has optimal convergence behavior.
6.2. Hartmann problem

Hartmann flow is a typical benchmark in MHD. It consists in the steady flow of a liquid metal through a channel, in this
particular case two-dimensional and without thermal coupling. The liquid flows in the x-direction by the influence of a
prescribed pressure gradient G. A uniform magnetic field (0,1) is applied on the boundaries. The Reynolds number is taken
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Fig. 1. Velocity error in the discrete L2-norm.
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as Re = 102, the magnetic Reynolds number as Rem = 10�7 and different values of G are chosen in such a way that the
Hartmann numbers considered are Ha = 0, 10, 50 and 100. The problem definition employed here is the same as in [1].

The flow of the liquid induces a perturbation in the magnetic field in the x-direction. The width of the channel is 2, and we
assume that the upper and lower walls are located at y = 1 and y = �1, respectively. In this case, there is an exact solution to
the problem, given by
 0

 1

u(
y)
u ¼ ðuxðyÞ;0Þ; uxðyÞ ¼ �
G

Ha tanhðHaÞ 1� coshðHa yÞ
coshðHaÞ

� �
:

This exact velocity profile is prescribed at the inlet and at the outlet of the computational domain. The velocity profile com-
puted at the mid section is shown in Fig. 2, both using bilinear Q1 and biquadratic Q2 elements on uniform meshes of 40
elements along the y-direction. Numerical results for the different Hartmann numbers can be compared with the analytical
solution, plotted in solid lines. It is observed that the solution is accurate except close to boundary layers. Since the formu-
lation we have proposed is not intended to be monotone, local oscillations appear close to the walls. It is observed that these
are significantly smaller using quadratic elements than linears. The magnetic field (not shown) displays a similar behavior.
The local oscillations encountered disappear as the mesh is refined (see [9]).

6.3. Flow over a circular cylinder

This numerical simulation was taken from [1]. The problem consists in the flow of a conducting fluid around a 2D circular
cylinder while a magnetic field is imposed. From the physical point of view, the main objective in this numerical simulation
is to observe the vanishing of the vortexes shed by the cylinder. Our interest is to show that the stabilized formulation we
propose yields the correct time response, with the correct coupling between the hydrodynamic and the magnetic problem.

The domain and the finite element mesh used to discretize it are shown in Fig. 3. This mesh is made of 4000 linear
triangular elements and 2100 nodes. The boundary conditions for this simulation consist of an imposed constant velocity
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Fig. 2. Hartmann flow. Velocity profiles. Left: linear elements, right: quadratic elements.

Fig. 3. Flow over a circular cylinder. Domain and finite element mesh.



1296 R. Codina, N. Hernández / Journal of Computational Physics 230 (2011) 1281–1303
at the inlet (left boundary), zero normal velocity on the upper and lower boundaries of the domain, zero velocity on the cyl-
inder and free velocity at the outlet. The boundary conditions for the magnetic field consist of an imposed normal component
on the upper and lower boundaries of the domain with zero current (condition (9)), an imposed tangential component at the
inlet and the outlet (condition (8)), and a tangent component also on the cylinder.

Numerical simulations have been carried out for Re = 100 and the following Hartmann numbers: Ha = 0.0, 1.0, 2.5, and
10.0. These Hartmann numbers are obtained increasing the imposed magnetic field. The magnetic Reynolds Number is
Rem = 10�5 and the coupling parameter is taken as S = Ha2/Rem Re.

The intended effect of the increment in the Hartmann number is to suppress the vortex shedding behind the cylinder. This
effect can be observed in Fig. 4, where the contours of the norm of the velocity field at a certain time step are shown for
Ha = 0.0, Ha = 1.0, Ha = 2.5 and Ha = 10. In this last case, not only the shedding has disappeared, but also the vortices have
been drastically reduced.
Fig. 4. Flow over a circular cylinder. Velocity contours. From the top to the bottom: Ha = 0.0, 1.0, 2.5 and 10.
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The suppression of the vortex shedding can also be observed from Fig. 5, where the time evolution of the drag coefficient
is plotted for Ha = 0.0 and Ha = 1.0. The spontaneous shedding occurs approximately at the same time, but the amplitude is
clearly higher for Ha = 0.0 than for Ha = 1.0. At Ha = 2.5 it can be seen that the oscillations in the drag coefficient have
vanished (not shown).
6.4. Clogging in continuous casting of steel

The main objective of this numerical simulation is to observe the behavior of the flow in a continuous casting nozzle
while a magnetic field is applied. In operations of continuous casting a very serious problem is the clogging of the nozzles.
This is particularly problematic when low carbon steels are casted because some deoxidation products (e.g. alumina) get
attached to the walls of the nozzle, forming buildups. These buildups can eventually prevent the flow of steel through the
nozzle. This can lead to a decrease in the quality of the steel or even to stop the continuous casting operation and diminish
the productivity (see [27]).

The origin of the buildups in the nozzle is associated to the appearance of a recirculation zone at the entry of the nozzle.
This recirculation zone is originated by a deattachment of the flow. Although the nozzle can be designed to prevent recircu-
lation, even a small misalignment can originate a deattachment. In order to prevent the recirculation of the flow, the use of a
magnetic field has been proposed (see [20,21]). The magnetic field used to suppress the recirculation is produced by a coil
oriented coaxially with the flow. The general effect of the magnetic field is to produce a radial force over the fluid and there-
fore it tends to attach to the walls of the nozzle.

In order to perform the numerical simulation of the process, a 2D model corresponding to a nozzle section has been con-
structed. The computational domain considered, as well as the magnetic field prescribed, are shown in Fig. 6 (left). Zero
velocity has been prescribed on the walls of the domain. A mesh of 18282 linear triangular elements with 9335 nodes
has been used. The following Hartmann numbers have been considered: Ha = 1.0, 10.0, 50.0 and 120.0. The Reynolds number
that has been taken is Re 
 20000 and the magnetic Reynolds Rem = 0.03632.

The nature of this example is purely qualitative because there is no numerical benchmark to compare with. The dimen-
sions and general setting of this example have been taken from [21], where the approach to tackle this problem is purely
analytical. Due to the dynamical nature of this example the Hartmann number used in order to get a uniform velocity field
for the fluid is really high. As it can be seen from Fig. 7, the use of magnetic fields in the nozzle precludes the onset of the
recirculation zone. The velocity of the fluid tends to get uniform and therefore the occurrence of buildups is avoided.
Fig. 5. Flow over a circular cylinder. Time evolution of the drag coefficient for Ha = 0.0 (left) and Ha = 1.0 (right).

Fig. 6. Clogging in continuous casting. Computational domain (left) and finite element mesh (right).



Fig. 7. Clogging in continuous casting. Velocity vectors for different Hartmann numbers. From the left to the right and from the top to the bottom: Ha = 1,
Ha = 10, Ha = 50 and Ha = 120.
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6.5. Crystal growth

The main objective of this numerical simulation is to observe the behavior of the molten silicon inside a crucible, in the so
called Czochralski process. The numerical simulation to be presented is based on the one proposed by Bückle and Schäfer [3].
The numerical modeling of this crystal growth process is quite complex because it involves a heat transfer problem together
with the MHD problem. In the Czochralski process, the heat convection gives rise to fluid motion which can be harmful for
the crystalline structure of the silicon. Basically, convection movements can introduce structural defects in the crystal. By
applying an intense magnetic field, these convection movements are damped inside the crucible and the defects are dimin-
ished or completely eliminated. Cylindrical coordinates were used, assuming the solution to be axisymmetric, although with
a non-zero azimuthal velocity. This, together with the axisymmetry of the domain, allowed us to simulate only half of a cross
section. A simplified geometry for this problem is presented in Fig. 8.

The general setting for this numerical benchmark is also depicted in Fig. 8. As it can be seen there, the problem consists in
a vertical cylindrical crucible filled with molted silicon up to a height H, which is rotating with angular velocity XC. The
coaxial crystal on the top of the crucible is also rotating, but in the sense opposite to the crucible and with angular velocity
XX. It is assumed that the crystal and the crucible are isothermal, with temperatures TX and TC, respectively.

Boundary conditions for this numerical simulation are also indicated in Fig. 8. The boundary conditions for the fluid veloc-
ity consist of non-slip conditions on the crucible walls and on the crystal, and a zero traction condition at the surface of the
liquid at the top of the crucible. The non-slip boundary condition for the velocity implies that the velocity of the fluid on the
crucible walls is the same as the velocity of the walls, and therefore given by the product XC RC, where RC is the radius of the
crucible. The velocity of the fluid in contact with the crystal is given by XXRX, where RX is the radius of the crystal. Concerning
the temperature, the boundary conditions are imposed temperature on the crucible walls and on the free surface at the top of
the crucible and zero heat flux at the bottom of the crucible. For the magnetic field it is assumed that all interfaces are non-
conducting.

In order to completely characterize this numerical simulation, some parameters must be defined. These parameters
are the Reynold number for the crucible and the crystal, the Prandtl and Grashof numbers and the aspect ratios,
defined as



Fig. 8. Crystal growth example. Computational domain (top), cross section (bottom left) and boundary conditions (bottom right).
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ReC :¼ R2
CXC

m
; ReX :¼ R2

XXX

m
;

Pr :¼ m
j
; Gr :¼ gbðTC � TXÞR3

C

m2 ;

â :¼ H
RC
; b̂ :¼ RX

RC
:

For this particular numerical simulation the aspect ratios and the Prandtl number have been fixed to â ¼ 1:0; b̂ ¼ 0:4 and
Pr = 0.05. The rest parameters have been defined according to eight cases that were proposed by Bückle and Schäfer in their
original paper [3]. Table 1 defines these cases. Although all of them were ran in our numerical testing, in this paper only the
results of cases A1 and C1 are presented.

The finite element mesh used to discretize the computational domain consists of 5408 linear triangular elements and
2809 nodes, being refined near the boundaries.
Table 1
Values of the physical parameters for the crystal growth example.

Problem Gr ReX ReC

A1 0 102 0
A2 0 103 0
B1 0 102 �2.5 � 101

B2 0 103 �2.5 � 102

C1 103 0 0
C2 104 0 0
D1 103 101 0
D2 104 102 0
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Fig. 9 (left) shows the velocity vectors for case A1. An increase in the Hartmann number from Ha = 0.0 to Ha = 10.0 has as a
consequence a more uniform velocity field. This uniformity in the velocity field around the crystal prevents the formation of
defects in the crystal being created. This also prevents the breaking of the free surface and therefore avoids the inclusion of
foreign bodies in the molten silicon.

Fig. 10 shows the distribution of temperature in the molten silicon in the crucible for case C1. As it can be seen from the
pictures, the temperature is mainly convected and the profiles of temperatures are strongly influenced by the velocity of the
molten silicon.

Fig. 9 (right) shows the velocity vectors for case C1. As it can be seen in the pictures, the influence of the magnetic field
over the velocity is strong enough to diminish the velocity in the crucible. This effect prevents any particle from the walls to
get into the area where the crystal is beginning its solidification. We observe therefore that the influence of magnetic fields in
the Czochralski process may become an important tool to enhance the quality of crystals made by this process.
Fig. 9. Crystal growth example. Velocity vectors. Left: case A1, right: case C1. From the top to the bottom: Ha = 0, Ha = 5 and Ha = 10.



Fig. 10. Crystal growth example. Temperature contours for case C1. Top left: Ha = 0, top right: Ha = 5, bottom: Ha = 10.
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From the numerical point of view, this examples shows the effectiveness of the coupling algorithm proposed to deal with
the MHD problem with thermal effects. Referring to this point, Fig. 11 shows the convergence towards the steady state for
case D2 with Ha = 10, measured as the time evolution of the norm of dtU introduced in (18) (with the array of unknowns
made dimensionless and the norm normalized with its initial value). This quantity decreases uniformly, until it is below
the convergence tolerance chosen of 0.01%. All variables (velocity, pressure, magnetic field, magnetic pseudo-pressure
and temperature) are well converged.
0.001

0.01

0.1

1

10

100

0 200 400 600 800 1000

Steady state evolution

Fig. 11. Crystal growth example. Convergence towards the steady state (case D2, Ha = 10), measured as the norm of dtU in time normalized by dtU in the
first time step and in percentage.
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7. Conclusions

In this paper we have presented a numerical formulation to solve thermally coupled MHD flows. It is a stabilized finite
element method, whose design is based on splitting the unknown into a finite element component and a subscale and on
giving an approximation for the latter. The main features of the formulation are that it allows to use equal interpolation
for all the unknowns and it is stable and optimally convergent in a norm that remains meaningful in the whole range of
the physical parameters.

Regarding the interpolation issue, it is particularly relevant in problems involving the magnetic field. The method pro-
posed allows us to approximate it using standard continuous interpolations. It has to be remarked that if the solution of
the continuous problem exhibits singularities (in non-convex domains), the expression of the stabilization parameters needs
to be modified. This is, however, a point that we have not analyzed. Referring to the norm of the stability and error analysis, it
gives some sort of control on the unknowns for all values of physical parameters for the linearized problem. Obviously, the
fully nonlinear problem may display very complex physics, which need to be approximated not only by a robust formulation,
but also by an appropriate discretization. Our objective in this paper has been to address the first point.

The formulation proposed depends on some stabilization parameters. A key point of the work presented here is that these
parameters have been designed based on the stability and convergence analysis of the method for the thermally uncoupled
problem.

Several computational aspects of the final formulation, such as the time integration, the linearization and the block iter-
ative coupling, have been discussed. Altogether this has led to a method for solving thermally coupled MHD problems that
we believe is robust and easy to implement. Some simple numerical examples presented support these statements.
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