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Abstract

A high-performance parallel algorithm is proposed for modeling the propagation of acoustic and elastic
waves in inhomogeneous media. An initial boundary-value problem is replaced by a series of boundary-value
problems for a constant elliptic operator and different right-hand sides via the integral Laguerre transform.
It is proposed to solve difference equations by the conjugate gradient method for acoustic equations and by
the GMRES(k) method for modeling elastic waves. A preconditioning operator was the Laplace operator
that is inverted using the variable separation method. The novelty of the proposed algorithm is using
the Dichotomy Algorithm (Terekhov, 2010), which was designed for solving a series of tridiagonal systems
of linear equations, in the context of the preconditioning operator inversion. Via considering analytical
solutions, it is shown that modeling wave processes for long instants of time requires high-resolution meshes.
The proposed parallel fine-mesh algorithm enabled to solve real application seismic problems in acceptable
time and with high accuracy. By solving model problems, it is demonstrated that the considered parallel
algorithm possesses high performance and efficiency over a wide range of the number of processors (from 2
to 8192).

Keywords: Acoustic waves, Elastic waves, Tridiagonal matrix algorithm (TDMA), Parallel Thomas
Algorithm, Parallel Dichotomy Algorithm, Laguerre transform
PACS: 02.60.Dc, 02.60.Cb, 02.70.Bf, 02.70.Hm

1. Introduction

Steadily growing number of processors opens up new opportunities for solving complex applied problems,
for example, elastodynamic problems [1, 2, 3]. In this case, quite efficient algorithms are numerical-analytical
algorithms [4, 5], where the solution is represented, via the integral time transformation, as the Fourier series
in terms of some orthonormal system of functions. The expansion coefficients are determined numerically
as a solution of boundary-value problems for the elliptic type of equation [6, 7, 8].

Many publications [9, 10, 11, 12, 13, 14], are concerned with development and investigation of parallel
numerical elliptic differential operator inversion algorithms. Nevertheless, this problem remains quite urgent.
The explanation is that the steady growth of the number of processors integrated within one computer
system imposes new demands to scalability of parallel algorithms. For instance, methods effective for a
small number of processors (p < 32), e.g., the cyclic reduction algorithm [15, 16], become ineffective because
the communication costs prevail over the computational ones. This necessitates further development of
parallel numerical algorithms that allow using modern computational resources with the greatest efficient
factor.
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Publications [17, 18, 19, 20, 21, 22] propose different approaches to solving elliptic equations of second
order with inseparable variables, where the iterative process is reduced to multiple Laplacian inversion.
However, realization of efficient procedure [17, 23, 24, 25]for the Laplacian inversion requires solving tridiag-
onal systems of linear equations, which, on a multiprocessor system, is a nontrivial problem. This difficulty
can be overcome by using the Dichotomy Algorithm [26], which was developed for inversion of one and same
tridiagonal matrix for many right-hand sides. The Dichotomy Algorithm was chosen because for this class
of problems it ensures almost linear dependence of the speedup coefficient in a wide range of the number of
processors. In terms of accuracy, the number of arithmetic operations, and the number of communications,
the Dichotomy Algorithm is practically equivalent to the cyclic reduction method [15, 27]. However, with
comparable levels of transferred data, the real time of interprocessor communications for the Dichotomy
Algorithms is much less. The explanation is that the main communication operation of the Dichotomy Al-
gorithm, that is, all-reduce-to-one(+), possesses the associative property, which allows reducing the time of
interprocessor communications due to their optimization [28, 29]. In the present paper, taking into account
the high efficiency of the Dichotomy Algorithm, we will consider the possibility of using it within the scope
of numerical-analytical approach for modeling the propagation of acoustic and elastic waves.

The peculiarity of the Dichotomy Algorithm is that it was designed for solving problems with the same
tridiagonal matrix and different right-hand sides. Choosing the integral transformation, we considered the
fact that prior to solving tridiagonal systems, it is necessary to perform preparatory calculations with a
volume O(N), where N is the dimension of the system of equations. Really, after applying the time Fourier
transform to the acoustic equation we obtain the boundary-value problem for the Helmholtz equation

∆un + k2nun = fn, n = 1, 2, ... . (1)

In this case, the dependence of the differential operator on the number of calculated harmonic prevents
effective usage of the Dichotomy Algorithm because only one right-hand side will correspond to the same
matrix. The exception is the case of Toeplitz tridiagonal matrices [30] for which the volume of preparatory
computations is O(N/p+ log2 p) rather than O(N), where p is the number of processors. Thus, for solution
of problem (1) in the Cartesian coordinate system, the Dichotomy Algorithm can be applied, e.g., in the
context of the variable separation method that requires inversion of Toeplitz (quasi-Toeplitz) matrices.

In the present work, we consider media of 2.5D geometry. In this case, in the cylindrical coordinate
system, for the Laplace operator inversion, it is necessary to solve tridiagonal SLAEs of the general form.
For this case, we considered the Laguerre transform[4], after applying it to the acoustic equation, it is
required to invert one and the same differential operator for all right-hand sides

∆un − λ2un = fn +

n−1∑

i=1

αn,iui, n = 1, 2, ... αn,i, λ ∈ R. (2)

The fact that the preparatory computations in the context of the Dichotomy Algorithm are performed
once for all right-hand sides allows one to neglect preparatory expenses. Thus, it becomes possible to use
the Dichotomy Algorithm for solving problem (2) by methods demanding inversion of general tridiagonal
matrices.

In the present paper, using the Laguerre transform and the Dichotomy Algorithm we considered the
high-performance parallel algorithm for modeling acoustic and elastic waves in 2.5D media. At present,
applied geophysics problems have to be solved for steadily increasing times and recording systems. On the
other hand, improvement of practical observing systems necessitates increasing the calculation accuracy.
In the paper, by considering analytical solutions we have shown that modeling wave processes for longer
instants of time requires higher resolution meshes. We illustrated the possibility of effective using thousands
of processors within one calculation. This enabled practical real-time and high-accuracy computing on
current computers.
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2. Problem Statement and Solution Algorithm

2.1. Acoustic Equation

In the cylindrical coordinate system (r, z), in the half-space z ≥ 0 we will consider the problem of
modeling the propagation of acoustic waves from a point source

ρ(x)
∂2u

∂t2
(x, t) = ∇ [κ(x)∇u(x, t)] +

1

2π

δ(x− x0)

r
f(t), t > 0, x = (r, z). (3)

Suppose that problem (3) is solved with homogeneous initial conditions

u|t=0 =
∂u

∂t

∣∣∣∣
t=0

= 0. (4)

Assume that at z = 0 the surface is free, and the auxiliary boundaries are entered along the coordinates r
and z

∂u

∂z

∣∣∣∣
z=0,l2

= u|r=l1
= 0. (5)

The boundaries r = l1 and z = l2 are chosen such that waves reflected from them do not arise for the
calculated instant of time. In addition we demand that

∂u

∂r

∣∣∣∣
r=0

= 0. (6)

Let us represent for the solution of problem (3)-(6) as the Fourier-Laguerre series[4]

Rm(x) =

∫ ∞

0

u(x, t)(ht)−
α

2 lαm(ht)dt (7)

with the inversion formulas

u(x, t) = (ht)
α

2

∞∑

m=0

Rm(x)lαm(ht), (8)

where lαm(ht) are the orthonormal Laguerre functions [31], which are represented via classical Laguerre
polynomials as follows

lαm(ht) =

√
hm!

(m+ α)!
(ht)

α

2 e−
ht

2 Lα
m(ht).

Here, m is Laguerre polynomial degree and h is the transformation parameter. The necessary and
sufficient parameter for satisfying the initial data is α ≥ 2 (α is the order of Laguerre functions).

As a result, the initial boundary-value problem (3)–(6) is reduced to the boundary-value problems in the
spectral domain






∇ [κ(x)∇Rm(x)]− ρ(x)
h2

4
Rm(x) = − 1

2π

δ(x− x0)

r
fm + ρ(x)h2

√
m!

(m+ α)!

m−1∑

k=0

(m− k)

√
(k + α)!

k!
Rk(x),

∂Rm

∂r

∣∣∣∣
r=0

=
∂Rm

∂z

∣∣∣∣
z=0,l2

= Rm|r=l1
= 0,

(9)
where fm =

∫∞

0
f(t)(ht)−

α

2 lαm(ht)dt.
This method can be considered as an analog of the spectral-difference method, based on the Fourier

transform [8], but in this case, but the role of ”frequency” belongs to the parameter m that determines the
degree of the polynomials. Contrary to the Fourier method, the harmonic separation parameter is present
only in the right-hand side.
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2.2. Elastic Medium

To describe the propagation of elastic waves in a inhomogeneous half-space, we will consider the equations
of motion in the cylindrical coordinate system [3]

ρ
∂W2

∂t2
= (λ+ µ)∇ (∇ ·W) + µ∇2W +∇λ (∇ ·W) +∇µ× (∇×W) + 2 (∇µ · ∇)W + ρF. (10)

Here, W is the displacement vector, λ > 0 and µ > 0 are Lame coefficients, F is the force vector describing
the action of space-localized axially symmetric source.

Let us consider the case of the cylindrical coordinate system (2.5D), whereW = (ur, uz)
T, F = (Fr , Fz)

T
,

λ = λ(r, z), µ = µ(r, z) and ρ = ρ(r, z). Assume that at z = 0 , the surface is free, with auxiliary
boundaries along the coordinates r and z, as in the case of the acoustic equation. Problem (10) is solved
with homogeneous initial conditions.

Represent the solution of problem (10) as the Fourier-Laguerre series

ur(x, t) = (ht)
α

2

∞∑

m=0

Qm(x)lαm(ht), uz(x, t) = (ht)
α

2

∞∑

m=0

Um(x)lαm(ht). (11)

As a result, defining the expansion coefficients Qm and Um necessitates solving a number of problems of
the form






∂

∂r

[
(2µ+ λ)

∂Qm

∂r
+ λ

(
∂Um

∂z
+

Qm

r

)]
+

∂

∂z

[
µ

(
∂Qm

∂z
+

∂Um

∂r

)]
+

2µ

r

(
∂Qm

∂r
− Qm

r

)
− ρ

h2

4
Qm =

= −ρFrfm + ρh2

√
m!

(m+ α)!

m−1∑

k=0

(m− k)

√
(k + α)!

k!
Qk,

1

r

∂

∂r

[
rµ

(
∂Qm

∂z
+

∂Um

∂r

)]
+

∂

∂z

[
(λ+ 2µ)

∂Um

∂z
+ λ

(
∂Um

∂r
+

Qm

r

)]
− ρ

h2

4
Um =

= −ρFzfm + ρh2

√
m!

(m+ α)!

m−1∑

k=0

(m− k)

√
(k + α)!

k!
Uk,

(12)
where the boundary conditions on the free surface take the form[1, 2, 3]

τ̃rz =

{
∂Um

∂z
+

∂Qm

∂r

}∣∣∣∣
z=0

= 0, (13)

σ̃zz =

{
λ

(
∂Um

∂r
+

Um

r

)
+ (λ+ 2µ)

∂Qm

∂z

}∣∣∣∣
z=0

= 0. (14)

2.3. Approximation of equations

On a rectangular mesh ω̄ = ω̄r × ω̄z = ω
⋃
γ ,where

ω̄r = {ri = (i− 0.5)hr, i = 1, ..., Nr, hr = l1/(Nr − 0.5)} ,

ω̄z = {zk = (k − 0.5)hz, k = 1, ..., Nz, hz = l2/(Nz − 0.5)} ,

ω = ω̄
⋂
G, γ = ω̄

⋂
Γ,

conform problem (9) with the difference problem
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Aym = f, m = 1, 2, ..., A : H −→ H, (15)

where the difference operator A = A∗ > 0 is given by a scheme of the second order of accuracy [6, 32]

(Λr + Λz) ym − w(x)ym = −φ(x), x ∈ ω̄, (16)

Λry =





1

hr

a1yr, i = 1

(a1yr̄)r , 1 ≤ i ≤ N1 − 1

, Λzy =





1

hz

a2yz, k = 1

(a2yz̄)z , 1 ≤ k ≤ N2 − 1

1

hz

a2yz̄, k = N2

, (17)

a1(i, k) = r̄iκ (r̄i, zk) , a2(i, k) = riκ (ri, z̄k) , w(i, k) = ρ(ri, zk)
h2

4
ri,

φ(i, j) = − 1

2π

δ(i− i0, j − j0)

ri
fm + ρ(x)h2

√
m!

(m+ α)!

m−1∑

k=0

(m− k)

√
(k + α)!

k!
yk(x), x0 = (i0hr, j0hz).

(18)
where r̄i = ri + 0.5hr, z̄k = zk + 0.5hz; yr̄, yz̄ and yr, yz are the ”backward” and ”forward” difference

relationships with respect to z and r [17, 6]. The boundary condition on the side r = l1 is approximated
exactly yN1,k = 0, k = 1, ..., N2. For solving problem (16) , we use the conjugate gradient method [33].

Conform the problem (10) on a mesh ω̄ with the difference problem

Cym = f, m = 1, 2, ..., C : H → H. (19)

A number of works [34, 35] describe the problem of constructing the discrete analog of problem (12). For
this reason, in the present paper we performed approximation by the finite-volume method with second order
of accuracy. For solving problem (19), by virtue of the non self-adjoint difference operator C, we will use the
GMRES(k) method, where k is the restart parameter [33]. Note, when using the Laguerre transformation,
the difference operator is always positive-definite. This guarantees convergence of the GMRES(k) method
for any k ≥ 1[33].

2.4. Preconditioning

By choosing a preconditioning procedure, one can affect substantially the convergence of iterative al-
gorithms of solving a system of linear equations and, as a result, the elapsed time. Besides standard
requirements [17, 33] upon a preconditioning operator, such as

• energy equivalence of operator B to operator A in the sense of inequalities 1

γ1 (Bu, u) ≤ (Au, u) ≤ γ2 (Bu, u) ; 0 < γ1 ≤ γ2, A = A∗ > 0, B = B∗ > 0, (20)

γ1 = min
x 6=0

(Ax, x)

(Bx, x)
, γ2 = max

x 6=0

(Ax, x)

(Bx, x)
;

• operation of inversion of operator B must be less time-consuming than for operator A,

1For the non self-adjoint case, see, e.g., [17, 33, 36].
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we require efficiency of a procedure preconditioning of operator inversion on a multiprocessor computer
system. Since not all preconditioning procedures can be efficiently implemented with the use of hundreds of
processors (e.g., ILU expansion [33]), the latter requirement drastically limits the class of possible precon-
ditioners.

In [26], based on the Dichotomy Algorithm, the author proposed a high-performance parallel implemen-
tation of the variable separation method [17, 24, 37] for the Laplace operator inversion. The use of the
Dichotomy Algorithm for solving tridiagonal systems of linear equations ensures linear dependence of the
speedup coefficient on the number of processors. Thus, for problem (15), following works [17, 18, 19, 20, 21,
22], as the preconditioner operator we will consider2

B ≡ Λr + Λz − d (21)

with the coefficients

a1(i, k) = r̄iκ̃, a2(i, k) = riκ̃, d(i, k) = ri
h2

4
ρ̃.

For problem (19), the preconditioner is given as

K ≡




B1 0

0 B2



 , (22)

where B1 ≡ Λr + Λz − d with the coefficients

a1(i, k) = r̄i ˜(λ+ 2µ), a2(i, k) = riµ̃, d(i, k) = ri
h2

4
ρ̃ +

˜(λ+ 2µ)

ri

and B2 ≡ Λr + Λz − d with the coefficients

a1(i, k) = r̄iµ̃, a2(i, k) = ri ˜(λ+ 2µ), d(i, k) = ri
h2

4
ρ̃

By virtue of the assumption that the contrast of the medium is moderate and the use of a supercomputer
implies a great number of mesh nodes, this class of preconditioners enables a good convergence rate. More-
over, the sought solution will be achieved in the number of iterations, which does not practically depend on
the number of mesh nodes [17].

Since in the proposed scheme of solution of to problem the main computational and communication costs
fall on the preconditioner inversion, the algorithm efficiency, as a whole, is determined by performance of
the parallel procedure of solution of the problems Bαy = φ.

3. Numerical Experiments

3.1. Parallel Performance

For estimating the performance of the proposed algorithm, using Fortran-90 and the MPI paradigm, we
implemented numerical procedures for solving problems (3) and (10). The Fast Fourier transform, which
is necessary for the preconditioner inversion, was done using FFTW library [38]; the tridiagonal systems
of linear equations were solved using the Dichotomy Algorithm [26, 30]. Calculations were performed on
MBC-100k supercomputer (from the Interdepartment Supercomputer Center of the Russian Academy of
Sciences) and on NKS-30t supercomputer (from the Siberian Supercomputer Center of the Siberian Branch
of the Russian Academy of Sciences). The computer are based on Intel Xeon four-core processors operating
at 3 GHz and connected via the Infiniband communication medium.

2Introduce the notation f̃ = 1

2
(minx∈G f(x) + maxx∈G f(x)) .
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Table 1 and Fig. 1.a represent measurement results of performance for the conjugate gradient method;
Table 2 and Fig. 1.b show those for the GMRES(10) method. Implementing these algorithms, we achieved
a nearly linear dependence of the speedup on the number of processors for meshes of different resolution.
Within one calculation, we managed to involve a considerable number of processors (from 1024 to 8192)
with an efficiency of 90% to 50%, respectively. The achieved performance and scalability are provided due to
using the Dichotomy Algorithm in the context of the parallel preconditioner inversion. Thus, the algorithm
will substantially increase the efficiency of usage of supercomputer computational resources in solving elliptic
equations. Thus, in solving applied geophysics problems.

size 2048x2048 4096x4096 8192x8192 16384x16384 32768x32768

NP T S T S T S T S T S

64 1.4e-02 - 8.0e-02 - 3.5e-01 - 1.7 - - -
128 7.3e-03 122 6.3e-02 138 1.8e-01 124 7.2e-01 151 3.9 -
256 6.3e-03 142 1.8e-02 284 9.0e-02 254 4.3e-01 253 2.15 172
512 - - 1.1e-02 465 5.0e-02 448 2.0e-01 544 1.01 463
1024 - - 1.0e-02 512 2.7e-02 829 1.0e-01 1088 5.4e-01 924
2048 - - - - 2.3e-02 973 7.0e-02 1554 3.2e-01 1560
4096 - - - - 2.0e-02 1120 5.8e-02 1875 2.1e-01 2377

Table 1: Calculation time (T) and speedup (S) versus the number of processors for one iteration of the CG method.

size 2048x2048 4096x4096 8192x8192 16384x16384 32768x32768

NP T S T S T S T S T S

64 0.53 - 3.51 - 14.6 - - - - -
128 0.27 125 1.58 142 7.3 128 31.3 - - -
256 0.17 200 0.72 312 3.8 245 15.5 258 - -
512 0.32 106 0.38 591 1.93 484 8.4 476 35 -
1024 - - 0.35 641 1 934 4.5 890 17.1 1047
2048 - - 0.5 450 0.8 1168 2.63 1523 9.62 1862
4096 - - - - 0.76 1229 2.3 1741 5.7 3132
8192 - - - - - - - - 4.15 4318

Table 2: Calculation time (T) and speedup (S) versus the number of processors for one cycle of the GMRES(10) method.

Dupros et al. [39] considered a parallel algorithm for solving the dynamic problem of the elasticity theory.
They demonstrated the possibility of using 1024 processors. Up to 256 processors, the authors have obtained
a high speedup; however, the algorithm efficiency was lower in the range from 256 to 1024 processors. Our
algorithm ensures a high efficiency in the range from 64 to 8192 processors, the software implementation
been much simpler.

As a result of numerical experiments it has been found that the execution time of the first iteration for
the CG and GMRES(k) methods is several times greater than that of subsequent ones. This is explained by
application of dynamic optimization of interprocessor communications on the level of MPI-Reduce(”+”) after
repeated execution of the main communication operation ”+” in the context of the Dichotomy Algorithm.
In this case, due to the associative addition, the order of processor exchanges is set such that to minimize
as much as possible the communication time. Thus, the possibility of applying the algorithms of dynamic
optimization of the communication interactions ensures the high performance of the Dichotomy Algorithm.
We should note that for the cyclic reduction method, a fixed order of elimination of unknowns prevents
optimization of the communication interactions to a full extent. For this reason, in practice, the Dichotomy
Algorithm possesses a much higher performance than the cyclic reduction method.

It is known that the efficiency of variational methods for solving SLAEs on a supercomputer decreases
because of intensive communication interactions while computing‖ · ‖ on distributed data. This problem
can be solved by means of modifications of the known algorithms [36]. Let us compare estimates of the
communication time for computing ‖ · ‖ for the CG and GMRES(k) methods and the communication time

7
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eration for the conjugate gradient method for
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Figure 1:

of the Dichotomy Algorithm:

T
‖·‖, all−reduce
p = 2 log2(p)α+ p−1

p
(γ + 2β) ,

TDichotomy
p = α [log2(p) + 1] log2(p) + l

(
log2(p)− p−1

p

)
(γ + 2β) .

From this it follows that for computer systems with a low latency (α) and for l ≫ 1, the communication
time for calculating ‖ · ‖ is insignificant, compared to the communication costs of the Dichotomy Algorithm.
Thus, the chosen precondition procedure does not need modifications of the CG and GMRES(k) methods.

3.2. Acoustic Waves

The use of mesh methods in spatial derivative approximation cause a numerical effect called a ”phase
error” [8]. In modeling wave propagation processes for long instants of time, this effect determines consider-
ably the accuracy of the solution. For this reason, from the view of practice, an urgent problem is choosing
the number of mesh nodes per characteristic wavelength. The high performance of the proposed algorithm
allows one to estimate the accuracy of solution for meshes with a high resolution (hα = 1/100λ÷ 1/150λ).

Tables 1 and 2 show that calculation of acoustic waves requires much less count time than that of elastic
waves. Hence, we first consider the problem of modeling acoustic wave propagation in a homogeneous
medium ρ, κ ≡ const. This made it possible to investigate the accuracy of solution for meshes with much
more nodes and with less computational costs.

For problem (3), a point source was situated at the origin of coordinates; the time dependence was given
as

f(t) = exp

[
− (2πf0(t− t0))

2

γ2

]
sin(2πf0(t− t0)), (23)

where f0 = 30Hz, t0 = 0.2s, γ = 4.
Approximation of Eq. (9) was done on the uniform mesh ω̄ withN1 = N2 = 2k nodes, k = {12, 13, 14, 15}.

The number of addends in series (8) was n = 3000; the expansion parameters were α = 9, h = 400. The
distances were measured in wavelength λ .
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The time dependencies of the wavefield amplitudes for four receivers situated on the free surface at
different lengths from the source are represented in Fig. 2. It is seen that the accuracy of the obtained
solution for different instants of time depends substantially on the number of mesh nodes per characteristic
wavelength. For instance, for first instants of time, for achieving a reasonable calculation accuracy, the mesh
with a space step hr = hz = 1/40λ is sufficient (Fig. 2.a); for longer time intervals it is required to decrease
the mesh step in order to keep a reasonable level of the calculation accuracy.
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Figure 2: The time dependence of solution u(xi, t) for the acoustic equation, where xi = (Ri, 0), i = 1, 2, 3, 4.

Figure 3 represents dependence of the accuracy of the obtained solution on the receiver position for
meshes with different resolution:

ǫ(xi) =

√√√√
∫ t1

0
[uexact(xi, t)− uh(xi, t)]

2
dt

∫ t1

0
[uexact(xi, t)]

2
dt

, xi = (ihr, 0), i = 1, .., N1,

where uexact(r, 0, t) =
1

2π

f(t− r/
√
κ/ρ)

r
is the exact solution and uh is the numerical solution obtained

on the mesh with the space step hr = hz = h.
It can be easily found that when the time interval of modeling is increased m times, the space step must

be decreased ≈ √
m times; this agrees with theoretical estimates for approximation methods of the second
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Figure 3: Dependence of the solution accuracy on the position of receiver (3.2) for the meshes of different resolution.

order of accuracy[8]. Thus, for acoustic wave simulation for long time intervals, it is necessary to use meshes
with a sufficient number of nodes in order that numerical effects caused by the model resolution do not
predominate.

We will note that for solving the problem, higher-order schemes [40, 34] are suitable. In the context of
the parallel algorithm, increasing approximation order does not cause loss of efficiency because the precon-
ditioning for higher-order schemes can be done with the second order. Naturally, in this case the number
of iterations for the CG and GMRES(k) methods for achieving the desired accuracy will be a bit more, but
the behavior of the dependence of the speedup on the number of processors will not change.

3.3. Solid layer over Solid Half Space

Although early results on elastic wavefield modeling have been obtained long ago [41], [42], however,
they were rather qualitative because of a large step of the space mesh h = 1/5λ ÷ 1/2λ. Considerably
increased computer performance and also development of multiprocessor computer systems have made it
possible to increase the calculation accuracy [43, 44, 45]. However, in spite of available theoretical estimates
of the dependence of solution accuracy on mesh step [8], the problem of practical choosing a space step
of meshes is still urgent. By solving the acoustic equation, it was illustrated that calculations for long
instants of time require meshes with many nodes. Taking into account that the proposed parallel algorithm
possesses high performance, we will analyze issues of accuracy for problem (10) for meshes h = hr = hz =
{1/10λs, 1/20λs, 1/45λs, 1/90λs}, where λs = minVs/f0. Here, Vs is the S-wave propagation velocity and
f0 is the source frequency.

Let us consider a problem on elastic wave propagation in a thin layer whose seam thickness is comparable
with the wavelength (Fig. 4.a). The wavefield source is a source of the type of ”center of pressure” [2]:

Fr =
1

2π

d

dr

[
δ(r)

r

]
δ(z − d), Fz =

1

2π

δ(r)

r

d

dz
δ(z − d). (24)

The time dependence of the pulse f(t) was determined in (23), where f0 = 30Hz, t0 = 0.2s and γ = 4. The
source is placed at the depth d = 10m. In the calculations, the instants of time were t ∈ (0, 5]s. The number
of terms of series (11) was n = 2000 with the parameters α = 8 and h = 600.

In problems of simulation of wavefields, in particular, seismic ones, the governing factor is choosing model
problems to estimate accuracy of numerical algorithms. A common method applied for layered media is the
method proposed in [46, 47] and extended in [48, 49], etc. The drawback of the method is that it introduces
interference (artifacts). The use of minor matrices [50] made it possible to extend applicability of the matrix
method, but did not eliminated artifacts. In the present paper, we evaluate the accuracy of the proposed
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parallel algorithm with the use of the approach described in [51, 52]. The essence of the method is that
the sought-for boundary-value problem of second order in the spectral domain is reduced to two Cauchy
problems of first order, to which there exists a stable analytical solution. As a consequence, this made it
possible to remove all constraints on the powers of layers, frequencies, and recording systems. Comparison
of the modeling results and results obtained by means of the analytical method made it possible to estimate
the dependence of the numerical solution accuracy on the space mesh step.

The medium model and a snapshot of the wavefield for the component uz(r, z) at t = 3s. are represented
in Fig. 4.a. Figures 4.b,c and Figs. 5.a,b show the component uz as a function of time for a receiver situated
on the free surface at r = 1500.

Figure 4: (a) A snapshot for the displacement vector component uz(z, r) at t = 3s in the presence of a thin layer. The time
dependence of amplitude t ∈ [1.1, 1.9]s for detector receiver uz(1500m, 0) for calculations on the meshes: (b) Nr × Nz =
{4096 × 4096, 8192 × 8192}; (c) Nr ×Nz = {16384 × 16384, 32768 × 32768}.

Figure 4.b and Fig. 5.a evidence that the meshes with steps 1/10λs and 1/20λs ensure no accuracy.
Thus, the mesh with 1/45λs or 1/90λs can ensure an acceptable level of accuracy for initial instants of times
(Fig. 4.b and Fig. 5.a). For final instants of time (Fig. 4.c and Fig. 5.b) the calculations have to be done on
the mesh with 1/90λs . The results of evaluating the accuracy of solution for the problem of the elasticity
theory are in good agreement with the results obtained for the acoustic equation. Therefore, we can state
that the main factor determining the accuracy of solution in wave process simulation is the number of mesh
nodes per wavelength. Also, modeling of real space-time scales requires modeling meshes with a higher
resolution.
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Figure 5: The time dependence of amplitude t ∈ [4, 5]s for detector receiver uz(1500m, 0) for calculations on the meshes: (a)
Nr ×Nz = {4096 × 4096, 8192× 8192}; (b) Nr ×Nz = {16384 × 16384, 32768 × 32768}.

3.4. Marmousi

For illustrating the ability of the proposed algorithm to perform (for an acceptable time) elastic wavefield
simulation for real application problems, we will consider problem (10) for the Marmousi medium (Fig. 6.a)
[53].

The calculations were done for t ∈ (0, 6]s on the meshes withNr×Nz = {8192×2048, 16384×4096, 32768×
8192} nodes, which corresponded to a space step hr = hz = {1.5m, 0.75m, 0.375m}. The wavefield was
modeled from a source of the type of center of pressure (23),(24) with the parameters f0 = 10Hz, t0 = 1s
and γ = 4. The number of terms of series (11) was n = 1200 with the parameters α = 8 and h = 300.
Figure 6.b shows a snapshot of a wavefield for the displacement vector component ur(r, z) at t = 6s;
Figs. 7.a,b represent dependencies of the component ur(r, z) along straight lines ”Slice-R” and ”Slice-Z”
. Comparing results obtained for different meshes, we conclude that an acceptable accuracy for the final
instant of time is achieved in calculations with the mesh space step hr = hz = 0.75m, which corresponds to
{Nr×Nz} = {16384×4096} nodes. For this mesh, according to Table 3, computing will take 4.7 hours with
1024 processors. The efficiency is about 90%. We should note that sometimes it is reasonable to perform
computing using more processors, but with a lower efficiency, because in this case the amount of storage
is increased. This makes it possible to choose greater values of k for the GMRES(k) method and, thereby
ensure a higher convergence rate[33].
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NP 256 512 1024 2048 4096

Mesh Time Hours

8192× 2048 3.1 1.6 1.4 2.4 4.2
16384×4096 17 8.6 4.7 3.8 4
32768 × 8192 68 34 19.6 12 11

Table 3: Calculation time versus the number of processors for meshes of different resolution for the Marmousi medium.

Figure 6: (a) Marmousi model (z ≥ 500m): P,S – wave velocities; (b) a snapshot for the displacement vector component
ur(r, z) at t = 6 s.

The numerical experiments have shown that the proposed algorithm enables not only to perform mod-
eling, but also to solve real application geophysics problems. For doing so, both a supercomputer with a
moderate number of processors (64÷ 256) and multiprocessor systems integrating thousands of computing
elements are used effectively.
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Figure 7: Dependence of the field amplitude for the component ur at t = 6 along straight lines (a) Slice-Z and (b) Slice-R.

4. Conclusions

We have proposed the parallel algorithm for solving an acoustic equation and dynamic problem of the
elasticity theory in a cylindrical coordinate system (2.5 D). The Laguerre time transform was used to
perform changing from the initially boundary-value problem to the problem of inversion of the same elliptic
second-order operator for different right-hand sides. The difference equations resulting from elliptic operator
approximation were solved by the CG method or the GMRES method. Choosing the Laplace operator as the
preconditioning one allowed for a high convergence rate of the iterative process for media with a moderate
contrast.

The nearly linear dependence of the speedup and the high scalability of the parallel algorithm on the
number of processors were ensured due to the Dichotomy Algorithm in the context of the variable separation
method for inverting the preconditional operator. The proposed algorithm has validated its efficiency in
calculations with 64 to 8192 processors. Thus, the high performance of the Dichotomy Algorithm and its
simple implementation enable efficient parallelization of economic numerical procedures that require multiple
solution of tridiagonal systems of equations.

The main conclusion is that the wave process modeling for longer time intervals requires increasing
number of space mesh nodes. This causes the necessity of applying high-performance computer systems for
solving application problems. It has been shown that the proposed parallel algorithm, which based on the
known economic numerical methods and the Dichotomy Algorithm, makes it possible to efficiently involve
thousands of processors within one calculation. This enables to perform practical calculations for real models
of media, times, and distances with the desired accuracy.
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