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Abstract

We propose a novel method to implicitly two-way couple Eulerian compressible flow to volumetric Lagrangian
solids. The method works for both deformable and rigid solids and for arbitrary equations of state. The
method exploits the formulation of [11] which solves compressible fluid in a semi-implicit manner, solving
for the advection part explicitly and then correcting the intermediate state to time tn+1 using an implicit
pressure, obtained by solving a modified Poisson system. Similar to previous fluid-structure interaction
methods, we apply pressure forces to the solid and enforce a velocity boundary condition on the fluid in
order to satisfy a no-slip constraint. Unlike previous methods, however, we apply these coupled interactions
implicitly by adding the constraint to the pressure system and combining it with any implicit solid forces
in order to obtain a strongly coupled, symmetric indefinite system (similar to [17], which only handles
incompressible flow). We also show that, under a few reasonable assumptions, this system can be made
symmetric positive-definite by following the methodology of [16]. Because our method handles the fluid-
structure interactions implicitly, we avoid introducing any new time step restrictions and obtain stable results
even for high density-to-mass ratios, where explicit methods struggle or fail. We exactly conserve momentum
and kinetic energy (thermal fluid-structure interactions are not considered) at the fluid-structure interface,
and hence naturally handle highly non-linear phenomenon such as shocks, contacts and rarefactions.

1. Introduction

Direct numerical simulations (DNS) are often used to study the interactions between fluid flows and
solid structural models. Under certain assumptions these can be reduced to a one-way coupled system; for
example if one wishes to determine the steady-state lift of an airfoil in subsonic flow, it is often reasonable
to simulate the airfoil as a kinematic body. With a clever choice of boundary conditions, one can even
begin to examine two-way coupled interactions, albeit in a limited fashion. In the more general case, these
assumptions miss the interesting two-way coupled interactions between the fluid and the structure. These
two-way coupled interactions can be quite important and, if not properly captured in the DNS, can lead to
non-physical results. It is therefore important to have a robust numerical method that accurately captures
two-way coupled interactions across a fluid-structure interface.

Methods to capture fluid-structure interactions can be broadly separated into two categories. Weakly
coupled (partitioned) systems interleave the disparate subsystems by integrating them forward in time sepa-
rately, using each others’ results as boundary conditions in an alternating one-way coupled fashion (see e.g.
[21, 15, 6]). This approach is appealing as it permits the use of specialized numerical methods for each of the
different materials with only slight modifications to account for the modified time integration and changing
boundaries. There are disadvantages to this approach, however, for example new and poorly understood
stability restrictions arise independent of the individual subsystems, such as the lumped-mass instability
discussed in [4]. The alternative is to employ a strongly coupled (monolithic) system, which are systems
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where the fluid and structure are evolved forward in time simultaneously using a solver specially crafted to
incorporate phenomena from both fluid and solid phases. Our method is a hybrid of the two; the explicit
components of both fluid and solid solvers are evolved forward independently, while the implicit components
and interactions are coupled together in a monolithic solve.

State-of-the-art solvers typically use an Eulerian framework to treat fluid flows and a Lagrangian frame-
work to treat solids, and so any coupled system must do one of three things: model the solid in an Eulerian
framework, model the fluid in a Lagrangian framework, or find a way to couple Eulerian fluids with La-
grangian solids. The first two options are undesirable as they impose significant limitations on the numerical
method, for example Eulerian models only capture material properties (rather than tracking them) which
makes it difficult to compute time history variables important to structural simulation, such as loading and
damage. Many fluid Lagrangian models have difficulty in obtaining the correct shock speeds due to the
lack of discrete flux differencing, and therefore resort to artificial viscosity methods that require a number
of zones within a shock in order to obtain the right speed [2, 3]. Lagrangian fluid models also struggle
with high-speed and deforming flows, as large deformations can cause significant numerical errors in the
flow field and can drive the time step to zero. This can be partially alleviated by applying complex and
expensive remeshing, but if the flow field tangles and inverts, the simulation can cease altogether. Arbitrary
Lagrange-Eulerian (ALE) methods address the problem of a deforming Lagrangian fluid grid by permitting
the fluid grid to move at some velocity other than the velocity of the fluid, but this can still lead to high
aspect ratios that necessitate remeshing, especially in the presence of a fluid-structure interface. We address
the challenge of coupling Eulerian fluids with Lagrangian solids by introducing an interpolation operator,
which conservatively maps quantities from Eulerian boundaries to nearby Lagrangian boundary nodes, and
vice versa.

At the fluid-structure interface there is a transfer of information. This information transfer can be handled
by weakly coupling each separate subsystem using a one-sided estimate of the transfer, or by strongly coupling
subsystems together and introducing new variables to the equations. Weakly coupled approaches have been
shown to give high-fidelity results [1, 8, 7], but can struggle when applied to a system with high density-to-
mass ratios (and are prone to going unstable, as we discuss in Section 4.3). These problems can be alleviated
by using a better estimate of values at the interface, as suggested by [12], but this typically involves solving
expensive general Riemann problems at every fluid-structure face. These problems can be avoided entirely
by handling the interface in a strongly coupled fashion, but previous work has been limited to incompressible
flows [14, 17]. Our method exploits the structure of [11], which treats the pressure flux of compressible flows
implicitly. This permits us to treat the fluid pressure as an implicit force on the solid, and use an implicit
velocity boundary condition on the Poisson solve, much like previous strongly-coupled work.

Our fluid evolution is comprised of two steps: an advection stage and a pressure solver phase. This permits
us to address the complexities arising from the truly non-linear components of the flow separately from the
linearly degenerate components. In the pressure phase, we freeze everything to their time tn+1 location and
perform an implicit solve for the fluid pressure and solid velocity. It is in this phase that we handle the
transfer of momentum and kinetic energy across the fluid-structure interface, and as such it is important
to be conservative in transferring information between the two sets of degrees of freedom. In the advection
stage no information should be transmitted across the interface, but instead we must address the issues which
arise by virtue of a moving solid (i.e. the covering and uncovering of fluid cells). There are many examples
of how to address these problems in the literature, for example we could track cut cells, re-discretize the
fluid in an ALE formulation—all of which significantly complicate the fluid evolution. Instead we make the
key observation that since the interface is a contact discontinuity we can afford to be non-conservative, but
only in the linearly degenerate components of the flow.

In a traditional explicit method the linearly degenerate and truly non-linear fluxes aren’t separated,
and as such these methods need to deal with all of the complexities of moving boundaries and information
transmission at the same time. That is, they need to be conservative when dealing with information that
crosses the interface while at the same time dealing with an interface that moves. Finally, the flux needs to be
re-examined carefully in order to determine what forces should be applied to the interface. One could modify
traditional methods by separating the conserved quantities into their Riemann invariants, and be conservative
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in the truly non-linear invariants while allowing the linearly degenerate invariants to be non-conservative
—however this doesn’t address the moving boundary, and still leaves us with the (poorly-understood) CFL
restriction that arises from explicit fluid-structure interactions. Because of these complications, our method
hinges on the existence of [11].

2. Semi-implicit compressible flow

We briefly describe the semi-implicit evolution for compressible flow [11] which forms the basis for our
implicit coupling scheme. Consider the multi-dimensional Navier-Stokes equations, given by: ρ

ρ~u
E


t

+

 ∇ · ρ~u
∇ · (ρ~u)~u
∇ · (E~u)

+

 0
∇p

∇ · (p~u)

 = f (1)

where we have split the flux terms into an advection and non-advection part and lumped viscous terms into
f . The advection part (as well as any body forces) is integrated explicitly to give intermediate values ρ?,
(ρ~u)? and E?. Since pressure does not affect the continuity equation, ρn+1 = ρ?. The momentum update
equation can be divided by ρn+1 to obtain

~un+1 = ~u? −∆t
∇p
ρn+1

, (2)

and taking its divergence gives

∇ · ~un+1 = ∇ · ~u? −∆t∇ ·
(
∇p
ρn+1

)
. (3)

In the case of incompressible flow, we would set ∇ · ~un+1 = 0, but for compressible flow we instead use the
pressure evolution equation (see e.g. [9]),

pt + ~u · ∇p = −ρc2∇ · ~u. (4)

If we fix ∇ · ~u to be at time tn+1 through the time step (making an O(∆t) error), discretize pt + ~u · ∇p
explicitly using a forward Euler time step (i.e. pn+1−pn

∆t + ~un · ∇pn), and define the advected pressure as
pa = pn −∆t(~un · ∇pn) we obtain

pn+1 = pa −∆tρc2∇ · ~un+1. (5)

Substituting this in Equation (3) and rearranging gives

pn+1 − ρn(c2)n∆t2∇ ·
(
∇pn+1

ρn+1

)
= pa − ρn(c2)n∆t∇ · ~u?, (6)

where we have defined ρc2 at time tn and the pressure p at time tn+1. Discretizing the gradient and divergence
operators yields [

I + ρn(c2)n∆t2GT
(

1
ρ̂n+1

G

)]
pn+1 = pa + ρn(c2)n∆tGT ~̂u?, (7)

where G is our discretized gradient operator, −GT is our discretized divergence operator, and ρ̂ and û
represent variables interpolated to cell faces. This is solved to obtain pn+1 at cell centers. The time
tn+1 pressures are then applied in a flux-based manner to the intermediate momentum and energy values to
obtain time tn+1 quantities in a discretely conservative manner (thereby giving correct shock speeds). This

is done by averaging the pressures to cell faces by pn+1
i+1/2 =

pn+1
i+1 ρ

n+1
i +pn+1

i ρn+1
i+1

ρn+1
i +ρn+1

i+1
, rewriting Equation (2) using
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face-averaged quantities ûi+1/2 = û?i+1/2 −∆tGi+1/2p
n+1

ρ̂i+1/2
(where ρ̂i+1/2 = (ρi + ρi+1)/2), and updating the

values using

(ρ~u)n+1 = (ρ~u)? −∆t

(
pn+1
i+1/2 − p

n+1
i−1/2

∆x

)
, En+1 = E? −∆t

(
(pû)n+1

i+1/2 − (pû)n+1
i−1/2

∆x

)
. (8)

3. Solid evolution

We give a brief treatment of solid evolution with sufficient detail to properly handle the fluid-structure
interactions. A solid state is completely described by its velocity and position. We update the position
and velocities in a Newmark scheme in which velocity at time tn+1/2 is used to update the position to time
tn+1 in a second order update. Velocity is then updated from time tn to time tn+1 in a separate step. We
describe below the velocity update for deformable and rigid solids. The same procedure is used twice, once
with a time step of ∆t/2 to obtain V n+1/2 for position update and then with a time step of ∆t for the final
velocity update.
Deformable body formulation: For deformable body evolution we need to handle both elastic and
damping forces. Damping forces can impose strict time step restrictions and are thus treated implicitly. We
will describe a method which treats the elastic forces explicitly and damping forces implicitly although one
could also incorporate implicit elasticity. The deformable body at a given time t can be described by a vector
of positions of its nodes Xs(t) and a vector of velocities of its nodes Vs(t). The evolution of velocities can
be described by Newton’s second law as

Ms(Vs)t = F (Xs, Vs), (9)

where Ms is the mass matrix and F is the vector of all forces acting on the solid nodes. Discretizing and
computing the elastic terms explicitly and damping terms explicit in position, but implicit in velocity, i.e.
F (Xs, Vs) = F (Xn

s , V
n+1
s ), we obtain

MsV
n+1
s = MsV

n
s + ∆tF (Xn

s , V
n+1
s ). (10)

Using a Taylor series expansion on F yields

MsV
n+1
s = MsV

n
s + ∆t(F (Xn

s , V
n
s ) +D(V n+1

s − V ns )). (11)

where D = ∂F
∂Vs

. F (Xn
s , V

n
s ) − DV ns represents the elastic only (and, if present, any non-linear damping

terms [19]) component of the force and one can write

MsV
n+1
s = MsV

?
s + ∆tDV n+1

s , (12)

where V ?s denotes the velocity vector updated explicitly with the elastic terms only.
Rigid body formulation: For a rigid body we define the generalized velocity vector as Vs = (V Tcm, ω

T )T ,
where Vcm is the velocity of its center of mass and ω is its angular velocity. The velocity evolution can then
be described as (

Mr 0
0 Ir

)
(Vs)t =

(
f
τ

)
, (13)

where Mr is a 3× 3 diagonal matrix with the rigid body mass in the diagonals, Ir is the inertia tensor and
f, τ are the net force and torque acting on it. Writing the mass matrix as Ms and combining f, τ into F , we
get a form similar to (9) which can be discretized using forward Euler to obtain

MsV
n+1
s = MsV

n
s + ∆tFn = MsV

?
s . (14)

Where V ?s denotes the velocity vector updated with the explicit forces. Note that this is the same as
Equation (12) except without any damping term. We will therefore use Equation (12) as our general solid
update equation below, as it covers both the rigid and deformable cases.
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(a) Eulerian fluid grid. (b) Lagrangian solid
which overlaps the fluid
domain.

(c) Solid voxelized to
fluid faces.

(d) Solid nodes which
contribute to the raster-
ized face.

Figure 1: A common challenge with FSI problems is one of overlapping grids. We resolve this issue by voxelizing solid
degrees of freedom to the fluid grid using an interpolation operator denoted by the matrix W . The row corresponding
to a fluid face gets contributions from nearby solid nodes.

4. Fluid-structure interaction

We solve for the fluid on an Eulerian grid, and the solids on freely deforming Lagrangian meshes. The
fluid and structure interact with each other by applying equal and opposite forces at the interface, satisfying
physical boundary conditions (we use no-slip, no penetration boundary conditions) in the process. Immersed
boundary methods induce extra force variables at the interface and apply a regularization operator to map
these forces to fluid faces (see e.g. [20]). They also incorporate an interpolation operator to map fluid
velocity to solid nodes for applying boundary conditions. We eliminate the extra interface force variables
and conservatively map the fluid pressures directly to solid nodes, and solid velocities to fluid faces using an
interpolation operator.

Figure 1 illustrates an example fluid grid which is coupled to a Lagrangian solid which occupies the
upper right-hand corner of the grid. In our model, the fluid interacts with a voxelized version of the solid
and the solid directly sees forces acting on its nodes. We define an interpolation operator W which maps
solid node velocity to the fluid cell faces, where the rows correspond to fluid faces and the columns to solid
nodes. W can be constructed in a row-by-row fashion: for each row, we identify the corresponding fluid face
and locate the nearby solid nodes. The entry corresponding to each solid node is populated by a weight
proportional to its contribution to the fluid face, and then finally the row is normalized to ensure that each
row sums to one, making it an interpolation. This is done in a component-by-component manner, e.g. the
x-component of solid velocity is voxelized to x-axis fluid faces but not y- or z-axis fluid faces, and so the
solid velocity at fluid face i+ 1/2 is (WVs)i+1/2. Since pressure is defined at cell centers, we also introduce
an extrapolation operator B which maps cell-centered pressure to face pressures, as illustrated in Figure 2.
These face pressures are then multiplied by the surface area of the cell face to get a force and distributed
back to solid nodes using WT . That is, W maps from solid node degrees of freedom to cell faces, and WT

maps back in the opposite direction. Note that since the rows of W sum to one, the columns of WT sum to
one and therefore the force felt due to the pressure on the face is fully and conservatively distributed to the
solid node degrees of freedom.

4.1. The strongly coupled system
The fluid acts on solid degrees of freedom via pressure along the interface. The pressure exerts a force

given by WTAfBp on the solid degrees of freedom, where Af is a diagonal matrix whose entries correspond
to the areas of fluid-structure faces. We can incorporate these forces into the implicit solid system given by
Equation (12):

MsV
n+1
s = MsV

?
s + ∆tDV n+1

s + ∆tWTAfBp. (15)

The fluid sees a velocity boundary condition at the fluid-structure interface. To incorporate this into
the fluid equations, we partition the discrete divergence operator −GT into two components. GTf operates
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B =

0 0
0 0
0 1


Figure 2: Operator B maps pressure from cell centers to bordering fluid-structure faces. In this example there are
x-direction faces, of which the one to the far right represents a rasterized solid face. Therefore B has three rows
(one for each vertical face, with the top and the bottom rows corresponding to the far left and far right vertical faces
respectively, and the middle row corresponding to the middle vertical face), and two columns (one for each pressure
at each cell center). Since the only contribution to the solid is from the second pressure to the third face, B has the
form shown above with a single non-zero element. Note that (1/dx)BT equals −GTs , as defined in Figure 3(b).

over fluid-fluid faces, while GTs is the component of the divergence operator which operates on rasterized
fluid-structure faces (as outlined in Figure 3), and GT = GTf +GTs . We can then set fluid-structure faces to
have implicit Neumann boundary conditions; that is,

~un+1 =

{
~u? −∆tGfp

ρ̂ at a fluid-fluid face; and
WV n+1

s at a fluid-structure face.
(16)

Taking the divergence of the velocity field yields

GT~un+1 = GTf ~u
? −∆tGTf

1
ρ̂
Gp+GTsWV n+1

s (17)

Using this modified definition for GT~un+1 in Equation (5) and substituting into Equation (3) gives[
1

∆tρn(cn)2
I + ∆tGTf

G

ρ̂n+1

]
pn+1 −GTsWV n+1

s =
pa

∆tρc2
+GTf ~u

?. (18)

If we define V = ∆x∆y∆z to be the volume of the fluid cell, then V GTs = AfB
T . Combining equations

(15) and (18), using scaled pressure p̃ = ∆tp and scaled advected pressure p̃a = ∆tpa, and rescaling the fluid
equations by cell volume gives us our symmetric system(

V
∆t2ρc2 I + V GTf

1
ρGf −AfBTW

−WTBAf −Ms + ∆tD

)(
p̃n+1

V n+1
s

)
=
(

V
∆t2ρc2 p̃

a + V GTf ~u
?

−MsV
?
s

)
. (19)

It is interesting to note that if we take the incompressibility assumption (i.e. c → ∞) then this system
reduces to one similar to [17].

The system in Equation (19) is symmetric but indefinite, and can be solved using efficient solvers such
as Conjugate Residuals [13] to obtain the final time tn+1 solid velocity and pressure. The solid part of our
update is now complete, but we still need to use the tn+1 pressure to update the fluid momentum and energy
(noting that ρn+1 = ρ? is already done).

4.2. Updating fluid momentum and energy
To obtain correct shock speeds we use the flux-based method discussed above, with modifications to

account for fluid-structure faces. At a fluid-structure face i+1/2, the fluid applied a force of (BAfp)i+1/2 to
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(a) GTf = 1
dx

»
−1 1 0
0 −1 0

–
(b) GTs = 1

dx

»
0 0 0
0 0 1

–

Figure 3: In our derivation, the divergence operator −GT is split into GTf (which operates only on fluid-fluid faces)
and GTs (which operates only on fluid-structure faces). We show this splitting for a simple two cell example where
the right-most face is a fluid-structure interface. The rows in the above matrices correspond to cells and columns
to faces. The left most face corresponds to the first column of GTf and only has one non-zero element since it only
borders one fluid cell. The middle face (which corresponds to the second column of GTf ) contributes to both fluid
cells and hence has two non-zero elements. The third column of GTf is zero, as the third face is a fluid-structure face
and instead corresponds to GTs . Figure (b) depicts GTs , which is defined as −(1/dx)BT in Figure 2.

the solid. To conserve momentum, fluid face i+1/2 should apply an equal and opposite force −(BAfp)i+1/2

on fluid cell i. In our momentum update this is numerically equivalent to setting pi+1/2 = (Bp)i+1/2 at
fluid-structure faces.

Next, we need to consider the work done by the fluid on the solid at a fluid-structure face. We are
applying an impulse ∆t(BAfp)i+1/2 on the solid, which is equivalent to applying a constant force over the
interval ∆t. In order to compute the work done on the solid system by a single force ~f in the presence of
other forces, we lump all forces acting on the solid into a vector ~F and examine∫ ∆t

0

~f · Vs(t)dt =
∫ ∆t

0

~f · (V ns +M−1
s

~Ft)dt = ∆t ~f ·
[
V ns +M−1

s
~F

∆t
2

]
= ∆t ~f ·

[
V ns + V n+1

s

2

]
, (20)

where we take advantage of ~F and ~f being constant over the interval. We are interested in calculating the
work done by a single fluid face on the solid, so if we take WT

i+1/2 to be the column vector which distributes

the pressure from cell face i + 1/2 to the solid node degrees of freedom then ~f = WT
i+1/2(BAfp)i+1/2, and

the work done on the solid by this face is exactly

∆t
[
WT
i+1/2(BAfp)i+1/2

]T [V ns + V n+1
s

2

]
= ∆t

[
(BAfp)i+1/2

]
Wi+1/2

[
V ns + V n+1

s

2

]
. (21)

This, if pi+1/2 is defined to be (Bp)i+1/2 as suggested above in the momentum update, then we merely need
to set ~ui+1/2 = (1/2)(W [V ns + V n+1

s ])i+1/2 in order to obtain a flux p~u which exactly conserves the kinetic
energy transferred.

4.3. Time step restriction
In our method fluid-structure interactions are handled implicitly and thus we avoid introducing any new

time step restrictions. The time step is therefore determined by the minimum of the time steps imposed by
the fluid and the structure. For the structure update the time step restriction is determined by the elastic
part only, as damping terms are handled implicitly, while our semi-implicit fluid update imposes a time step
restriction dependent only on its bulk velocity. The time step restriction imposed by the semi-implicit flow
formulation in two spatial dimensions is

∆t
2

 |u|max
∆x

+
|v|max

∆y
+

√(
|u|max

∆x
+
|v|max

∆y

)2

+ 4
|px|
ρ∆x

+ 4
|py|
ρ∆y

 ≤ 1, (22)
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and we refer the interested reader to [11], which motivates this formulation.
We note that the implicit fluid-structure coupling gives stable results even for very high density-to-mass

ratios, where explicit methods struggle even when the CFL restrictions of both solid and fluid systems are
obeyed. We explore this in example 6.1.1.

5. Unified time integration

We employ a time integration scheme which incorporates fluid evolution into a Newmark-style solid
evolution scheme. The scheme works by computing an intermediate velocity for the solid V

n+1/2
s , and

applying this in a second order update to get solid positions at time tn+1. Velocities are then updated from
time tn to tn+1 (discarding intermediate values), and so two linear systems are solved.

In order to compute the intermediate solid velocity V n+1/2
s , we begin by applying all explicit solid forces

to the system, which gives V n+1/2?
s . Explicit body forces such as gravity and viscosity are also applied to

the fluid system, yielding tn+1/2? fluid quantities. The coupled system (19) is solved in order to obtain
Xn+1
s = Xn

s + ∆tV n+1/2
s , and then the entire fluid state and all solid velocities are restored to their time

tn values.
These new positions are then used to compute an effective velocity for the solids, i.e. (Xn+1

s −Xn
s )/∆t.

Using the effective velocity and then the time tn position of the solid, we fill ghost cells. These ghost cells are
used directly in the stencils of high-order methods, and provide a valid state for which to populate uncovered
cells. In order to compute the ghost cell data at location ~xg, we begin by identifying the closest solid interface
point ~xI , and reflecting across the interface. Density and pressure are interpolated to the reflected point
2~xI − ~xg from neighboring cells and then copied to the ghost cell. The surface normal ~N at the interface is
used to decompose the velocity at the reflected point ~Vr into its normal component VrN = ~Vr · ~N and its
tangential component ~VrT = ~Vr − VrN ~N . In order to remain continuous with the effective velocity of the
structure at the interface ~VI , VrN is reflected across the interface, and so we compute VgN = 2 ~VI · ~N − VrN .
Tangential velocity is decoupled from the interface and thus we can use it directly, giving the final ghost cell
velocity ~Vg = VgN ~N + ~VrT .

Once ghost cells are filled, explicit body forces such as gravity and viscosity are integrated into the system,
and the advection component of flux from Equation (1) is applied using a conservative flux-based method
(see [11]. Explicit solid forces are applied in order to compute V n+1?

s , and then the coupled system (19)
is solved to obtain V n+1

s and pn+1. This pressure is applied as per Section 4.2 to obtain time tn+1 fluid
quantities.

We also fill the ghost cells inside the solid using time tn+1 data from the fluid and solid velocities, as
described above. Although none of our examples use these ghost values, if an explicit body force such as
viscosity were to be applied, its stencil would require valid ghost cells to be defined. Note that these are
valid as instantaneous ghost cells, whereas the ghost cells above use the effective solid velocity, which is the
actual motion of the solid through the mesh. Practical experience shows that this can make a meaningful
difference.

6. Examples and validation

In order to compare our results with previous methods, we implement an explicit coupling scheme which
integrates a fully explicit compressible flow evolution with a Newmark time integration for solids. This
explicit method proceeds in a fashion similar to Section 5, except that instead of solving the system (19) we
simply fill ghost cells inside the solid once and explicitly evolve the fluid once, while time tn pressures along
the fluid-structure interface are applied to the solid as explicit forces. This gives us an explicitly coupled
time evolution scheme, such as the one described in [7].

Although one might assume that the implicit solve would cause efficiency bottlenecks, we observed rela-
tively few Conjugate Residuals iterations per time step. This is likely due to the strongly diagonally dominant
nature of Equation (19), and the good initial guess for pressure provided by the equation of state at time
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tn. For all of our one dimensional examples the maximum number of iterations required per time step was
3. For the two dimensional examples, the rigid body coupling example required a maximum of 4 iterations,
while the deformable coupling example required a up to 24 iterations per time step.

In all of the examples we consider the fluid is simulated using an ideal gas law, with γ = 1.4.

6.1. One-dimensional validation
We examine several one dimensional fluid-structure interactions to validate our method. A third order

ENO scheme [18] is used along with an advection-based CFL number of .6. All quantities below are in SI
units, with density as kg/m3, pressure in Pa, lengths in m, spring coefficients in N/m, etc.

6.1.1. Sod shock coupled with a rigid body
Our first example is a Sod shock interacting with a rigid body, with open boundary conditions. The

initial condition for the fluid is

(ρ(x, 0), u(x, 0), p(x, 0)) =

{
(1, 0, 1) if x ≤ .5,
(.125, 0, .1) if x > .5.

A rigid body of mass 1 and width .2 starts at rest with its center of mass a distance of .8 from the left of the
domain. The domain is of length 2. The rigid body remains at rest until the shock hits it, at which point it
accelerates by virtue of the pressure difference. The solid body continues to accelerate until it converges to
a velocity of .927453, which is precisely the interfacial velocity of the Sod Riemann problem. Figure 4 shows
snapshots of the pressure profile at various times through the simulation. For comparison, results with the
explicit method are shown in Figure 5. We also do a convergence analysis of our method in Figure 6. The
error in the position of the rigid body is computed at time .9 from the highest resolution grid simulated,
which is 6401 grid cells. The convergence order of the error is estimated as 1.6.

It is interesting to consider this simple problem for a variety of density-to-mass ratios. Figure 7(a) shows
the velocity of the rigid body as a function of time for a range of rigid body masses in the semi-implicit
case. Figure 7(b) shows this in the explicit case. We note that the explicit simulation struggles with high
density-mass ratios. In particular it appears as though the rigid body gains too much momentum in a single
time step, causing the fluid on the other side to over-compress, leading to a very stiff oscillatory system, even
though the time step obeyed CFL restrictions. We show snapshots of the pressure profile of simulations with
a light solid of mass .0001, with semi-implicit and explicit schemes in Figure 8 and Figure 9, respectively.

6.1.2. Sod shock interacting with a fluid piston
We consider a similar problem, this time with solid wall boundary conditions and a larger domain, with

the initial discontinuity located at distance 1 from the left of the domain. The rigid body has a mass of 1,
width .2 and starts at rest with its center of mass at 1.5 from the left of the domain. The domain is of length
3. The shock imparts momentum to the rigid body which in turn compresses the fluid on its right. This
compressed fluid creates a high pressure region which pushes back on the solid, in effect creating a “fluid
spring.” This causes the rigid body to oscillate as shown in Figure 10, which plots the position of the center
of mass of the rigid solid as a function of time. Figure 11 shows snapshots of the pressure profile at various
times through the simulation. For comparison, results with the explicit method are shown in Figure 12. We
also do a convergence analysis of our method in Figure 13. The error in the position of the rigid body is
computed at time 4s from the highest resolution grid simulated, which is 6401 grid cells. The convergence
order of the error is estimated as 1.03.

6.1.3. Sod shock coupled with a mass-spring system
To conclude the one-dimensional examples, we consider the mass-spring system interacting with a high

pressure gas described in [1] in order to provide validation for our approach against an analytic solution.
The domain is of length 20, and a spring is fixed to the right side of the domain which has a rest length of
1, a stiffness of 107, no damping and a mass of 3. The fluid is given by

(ρ, p, ~u) = (4, 106, 0)
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Figure 4: Semi-implicit simulation of a Sod shock hitting a rigid body of mass 1. Pressure profile of the fluid is shown at various
times through the simulation. The 1-D rigid body is drawn as a blue line segment at the bottom of the plot, with pressure
inside the solid shown as a linear pressure profile. The simulation was done on a grid of resolution 1601.
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Figure 5: Explicit simulation of a Sod shock hitting a rigid body of mass 1. Pressure profile of the fluid is shown at various
times through the simulation. The 1-D rigid body is drawn as a blue line segment at the bottom of the plot, with pressure
inside the solid shown as a linear pressure profile. The simulation was done on a grid of resolution 1601.
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Figure 6: Position error of the center of mass of a rigid body hit by a Sod shock, as compared to a high-resolution simulation, at
time .9s. We plot the log of the relative error, as a function of the log of the resolution of the underlying grid. The convergence
rate is 1.6.

An outflow boundary condition is used for the left side of the domain. The spring starts at rest length and
is compressed by the gas. Figure 14 shows snapshots of the pressure profile at various times through the
simulation. The position of the moving end of the spring as a function of time is shown in Figure 15(a), and
a convergence analysis in Figure 15(b). The error in the position of the free end of the spring is computed
at time .008, and is compared against the analytic solution provided in [1]. The convergence order of the
error is estimated as 1.16.

6.2. Two-dimensional validation
In this section we validate our method for the multidimensional case, and briefly describe a symmetric

positive-definite reformulation of the Equation (19). We consider interactions with both rigid and deformable
solids. A second order ENO scheme was used along with an advection-based CFL number of .6.

6.2.1. Rigid Cylinder lift-off
This example, which is suggested by [5, 10, 1], examines the interaction of a Mach 3 shock with a rigid

cylinder initially at rest on the floor of a rectangular channel. The cylinder is lifted by the shock, due to an
asymmetric reflection of the incident wave. The test domain is 1× .2, with the initial shock front positioned
at .08 from the left boundary and the remaining domain is filled with the gas at pressure 1 and density 1.4.
The top and bottom of the domains are rigid walls, the left boundary is fixed to be the post shock state and
an outflow boundary condition is used for the right boundary. The cylinder has a density of 10.77, a radius
of .05 and is initially located at (.15, .05). Figure 16 shows the snapshot of the simulation for a selection of
times. Our results compare favorably to those shown in [1], and converges at a rate of .93.

6.2.2. Deforming cylinder lift-off
This example is similar to the one described above (in Section 6.2.1), except that the rigid cylinder

is replaced by a deformable mass-spring system with 222 triangles, and edge- and altitude-springs with a
stiffness of .3. The density of the sphere is 10.77, has a radius of .05 and the center of mass is initially
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(a) Semi-Implicit. (b) Explicit.

(c) Semi-Implicit symmetric positive-definite formulation.

Figure 7: Velocity of a 1-D rigid body hit by a Sod shock, as a function of time. Simulations were done on a grid of resolution
1601. All simulations were run with a CFL number of .6, where the explicit simulation CFL is based on |u| ± c and the
semi-implicit simulation was run with the CFL condition specified in Equation (22). The explicit simulations grow increasingly
unstable as mass tends to zero, giving unusable results when mass reaches .0001 (these results are shown in Figure 9), and
crashes for lighter masses. As mass tends to zero, the momentum absorbed by the solid tends to zero and the shock passes
through the solid relatively unperturbed, and so the flat line to which solid velocities appear to converge is in fact the post-shock
velocity of the fluid.
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Figure 8: Semi-implicit simulation of a Sod shock hitting a light solid of mass .0001. Pressure profile of the fluid is shown at
various times through the simulation. The 1-D rigid body is drawn as a blue line segment at the bottom of the plot. The
simulation was done on a grid of resolution 1601. For this light mass, the post-shock state remains practically undisturbed as
very little momentum transfers to the solid.
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Figure 9: Explicit simulation of a Sod shock hitting a light solid of mass .0001. Pressure profile of the fluid is shown at various
times through the simulation. The 1-D rigid body is drawn as a blue line segment at the bottom of the plot. The simulation
was done on a grid of resolution 1601. The CFL number for this simulation is .6, and we use the standard compressible flow
CFL, based on |u| ± c. Despite satisfying a reasonable CFL time step restriction, a fully explicit simulation generates unstable
results, and even goes unstable and crashes for masses lighter than .0001.
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Figure 10: The position of the piston (Section 6.1.2) is plotted as a function of time.

located at (.15, .05). Figure 17 shows snapshots of the simulation for a selection of times. As the shock
front passes through the deforming body, it dissipates, scatters and is partially absorbed by the body. The
example converges at a rate of .99.

6.2.3. Heavy deforming cylinder lift-off
We next consider a heavy deforming cylinder, in the same setup as described in Section 6.2.1 and Sec-

tion 6.2.2 above. In this case, the cylinder matches the cylinder from Section 6.2.2, except the density is
set to 100. As the body absorbs the shock wave, it compresses and delays the shock. Some of the shock is
reflected, but most of the shock passes through the cylinder. Figure 18 shows snapshots of the simulation
at a selection of times. The example converges at a rate of 1.01.

6.2.4. Shock traveling down a deformable tube
This example is similar to the inflatable bladder examples suggested in [1] and [7] in which a shock wave

travels through a deformable tube causing large deformation of the walls. Our results are shown in Figure 19.
We also do a convergence analysis of our method in Figure 20. The error in the position of a particle on
the deformable tube is computed at time .00049s (which is the approximate time of maximum deformation
of that particle in the highest resolution simulation) from the highest resolution grid simulated, which is
800× 600 grid cells. The convergence order of the error is estimated as 1.18.

6.2.5. Symmetric positive-definite reformulation
Our numerical method is symmetric, but not positive-definite. Recent developments in [16] discuss a

modification of the implicit coupling methodology for incompressible flow by separating out the coupling
forces as implicit variables λ (similar to immersed boundary methods), decomposing the symmetric damping
force into D = CTC and solving for V̂s = CV n+1

s . The symmetric positive-definite system they obtain can
be modified for compressible flow in a manner similar to Section 4.1 to obtain
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Figure 11: Semi-implicit simulation of a piston hit by a Sod shock, with closed-wall boundary conditions on both sides. Pressure
profile of the fluid is shown at various times through the semi-implicit simulation. The 1-D rigid body is drawn as a blue line
segment at the bottom of the plot, with pressure inside the solid shown as a linear pressure profile. The simulation was done
on a grid of resolution 1601. The shock on the left pushes the rigid body and compresses the fluid on the right into a small
high pressure pocket against the wall, which in turn pushes the rigid body back to the left.
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Figure 12: Explicit simulation of a piston hit by a Sod shock, with closed-wall boundary conditions on both sides. Pressure
profile of the fluid is shown at various times through the explicit simulation. The 1-D rigid body is drawn as a blue line segment
at the bottom of the plot, with pressure inside the solid shown as a linear pressure profile. The simulation was done on a grid
of resolution 1601. The shock on the left pushes the rigid body and compresses the fluid on the right to a very high pressure
against the wall, which in turn pushes the rigid body back to the left.
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Figure 13: Position error of the center of mass of the piston (Section 6.1.2), as compared to a high-resolution simulation, at
time 4s. We plot the log of the relative error, as a function of the log of the resolution of the underlying grid. The convergence
rate is 1.03.

 V
∆t2ρc2

I + ĜTβ−1Ĝ −ĜTβ−1KT 0

−Kβ−1Ĝ K(β−1 +WM−1WT )KT KWM−1CT

0 CM−1WTKT I + CM−1CT

 p̃
λ

V̂s

 =

 V
∆t2ρc2

p̃a + ĜTu?

KWV ?s −Ku?
CV ?s

, (23)

where Ĝ and −ĜT are the volume weighted gradient and divergence operators respectively, β is the diagonal
matrix of fluid dual cell masses, and KT is the matrix of 1s and 0s mapping λ to the appropriate fluid
velocity scalars (see [16] for more details). Note that in order to avoid confusion in notation we renamed a
few operators. In particular W and J in [16] correspond to the K and W we use here, respectively. This
system is both symmetric and positive-definite. We demonstrate the viability of this modified method in
another example, where we’ve replaced the implicit coupled solve with Equation (23). Our example is similar
to the example in Section 6.2.1 except that the sphere is replaced with a diamond whose major axis is of
length .1 and minor axis is of length .025. The diamond begins rotated by π/4, with a center of mass at
(.15, .04). Snapshots of the resulting simulation are shown in Figure 21. The convergence analysis for this
example is shown in Figure 22 which estimates the convergence order of the error as .84.

7. Conclusions and future work

We have presented a first order method which implicitly couples compressible flow with solid bodies with
arbitrary constitutive models. We show that this method is robust, numerically conservative, and avoids
the numerical instabilities which comparable explicit methods suffer from in the presence of high density-
to-mass ratios. The same methodology can be applied to reformulate our implicit system into a symmetric
positive-definite system.

There are several interesting avenues of future work which we wish to explore. Given the promising results
which arise from handling fluid-structure interactions implicitly, we believe that an alternative approach
would split the fluid flux along Riemann invariants–rather than by pressure–and solve for the Riemann
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Figure 14: Semi-implicit simulation of a 1-D mass-spring system hit by a Sod shock wave. Pressure profile of the fluid is shown
at various times through the semi-implicit simulation. The mass-spring system is drawn as a blue line segment at the bottom
of the plot. The simulation was done on a grid of resolution 1601. Note the formation of a spontaneous shock wave.
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invariant which interacts with the solid implicitly. Our method also relies on the assumption that the solid
has some thickness where ghost cells can be filled, and we believe that the method can be made to work for
thin shell structures (such as parachutes). Given the utility of the scheme proposed in [11] in handling fluid-
structure interactions, it becomes imperative to address the issues of that original scheme. In particular, the
implicit component of the method is overly centrally-differenced, which tends to introduce Gibbs phenomena
at shocks. It would be better to add upwind biasing, although it is unclear how to do so.
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(a) Position of the free end of the spring, as a function of time.

(b) Position error for the left-most side of the mass-spring system, as compared to the analytic
solution provided in [1], at time .008s. We plot the log of the relative error, as a function of the
log of the resolution of the underlying grid. The convergence rate is 1.16.

Figure 15: 1-D mass-spring system hit by a Sod shock wave.
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(d) Position error of the center of mass of the cylinder hit by a planar shock,
as compared to a high-resolution simulation, at time t = .15s, with a con-
vergence of .96.

Figure 16: Pressure contours for semi-implicit simulation of rigid cylinder lift off are shown at t = 0, t = .164 and t = .301.
The simulation is run with a CFL number of .6, using the CFL restriction discussed in Equation 22.
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(d) Position error of the center of mass of the deformable cylinder hit by a
planar shock, as compared to a high-resolution simulation, at time t = .15s.
We plot the log of the relative error, as a function of the log of the resolution
of the underlying grid. The convergence rate is .99.

Figure 17: Pressure contours for semi-implicit simulation of deformable cylinder lift off are shown at t = 0, t = .164 and
t = .301. The simulation is run with a CFL number of .6, using the CFL restriction discussed in Equation 22.
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(d) Position error of the center of mass of the heavy deformable cylinder
hit by a planar shock, as compared to a high-resolution simulation, at time
t = .15s. We plot the log of the relative error, as a function of the log of the
resolution of the underlying grid. The convergence rate is 1.01.

Figure 18: Pressure contours for semi-implicit simulation of deformable cylinder lift off are shown at t = 0, t = .164 and
t = .301. The simulation is run with a CFL number of .6, using the CFL restriction discussed in Equation 22.
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Figure 19: A planar shock travels down a deformable bladder. Shown are the velocity field of the fluid in green and the velocities
of the deformable nodes in red at times t = .0001, t = .0002, t = .0003, t = .0004, t = .0005 and t = .0006.
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Figure 20: Position error of the position of a particle on the deformable tube hit by a planar shock, as compared to a high-
resolution simulation, at time .00049s. We plot the log of the relative error, as a function of the log of the resolution of the
underlying grid. The convergence rate is 1.18.
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Figure 21: A diamond is hit by a planar shock, and then collides with the top of the channel. Shown are pressure contours at
t = 0, t = .04, t = .08, t = .16 and t = .2.
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Figure 22: Position error of the center of mass of the diamond hit by a planar shock, as compared to a high-resolution
simulation, at time .15s. We plot the log of the relative error, as a function of the log of the resolution of the underlying grid.
The convergence rate is .84.
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