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Abstract

In this work, a Fourier solver [McMillan et. al., Comput. Phys. Com-

mun. 181, 715 (2010)] is implemented in the global Eulerian gyrokinetic

code GT5D [Y. Idomura et. al., Nucl. Fusion 49, 065029, 2009] and in the

global Particle-In-Cell code ORB5 [S. Jolliet et. al., Comput. Phys. Com-

mun 177, 477 (2007)] in order to reduce the memory of the matrix associated

with the field equation. This scheme is verified with linear and nonlinear

simulations of turbulence. It is demonstrated that the straight-field-line an-

gle is the coordinate that optimizes the Fourier solver, that both linear and

nonlinear turbulent states are unaffected by the parallel filtering, and that

the k‖ spectrum is independent of plasma size at fixed normalized poloidal

wave number.
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1. Introduction

It is now commonly accepted that plasma turbulence is responsible for the

anomalous transport observed in Tokamaks [1]. The best numerical tools to

study this issue are gyrokinetic codes, which consistently solve the Vlasov-

Maxwell system [2]. The gyrokinetic theory assumes that the typical fre-

quency of micro-instabilities is much smaller than the cyclotron frequency,

thus reducing the number of dimensions from 6 to 5. However, when deriving

gyrokinetic equations (see for ex. [3]), other small parameters are introduced:

this is called the gyrokinetic ordering. In particular, it is assumed that the

parallel wavenumber k‖ is small (k‖ρs ∼ O(ρ∗), ρ∗ = ρs/a ∼ 10−2 − 10−3,

where ρs is the ion sound gyroradius and a is the minor radius of the Toka-

mak) whereas the perpendicular wavenumber can be large (k⊥ρs ∼ O(1)).

This assumption is based on the theoretical argument that small parallel

wavelengths are Landau damped and has been observed experimentally [4].

This strong anisoptropy of plasma turbulence is the starting point of the

so-called flux-tube codes [5], which solve the turbulence on a field-aligned

domain. Field-aligned coordinates allow a huge reduction of computational

requirements, but may unfortunately be inconvenient once used in a global

code due to the magnetic shear: non-rational field lines do not close on

themselves and special care must be employed to ensure the poloidal peri-

odicity of the perturbations. Several techniques exist to avoid this problem.

In [6], the shifting-metric procedure is applied to have a locally orthogo-

nal coordinate system at each poloidal plane. Another useful technique is

to use quasi-ballooning coordinates [7], where the parallel coordinate is not

exactly aligned to give straightforward boundary conditions in the poloidal
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and toroidal directions. This technique is used by several global gyrokinetic

codes [8], [9], [10]. Quasi-ballooning coordinates result in an improved scal-

ing of CPU time (∝ (ρ∗)−2) compared to the (ρ∗)−3 scaling with standard

unaligned coordinates, due to the low resolution needed in the parallel direc-

tion. These coordinates act as a natural filter for unwanted high frequencies

and allow larger time steps. However, implementing a field-aligned solver

is rather complicated due to non-rectangular grids and the treatment of the

magnetic axis is generally avoided. Due to magnetic shear, the grid is dis-

torted which may result in poor resolution for radial derivatives. This can be

resolved by using an unstructured grid [34]. Unfortunately, the field equa-

tion is in that case solved with an iterative solver whose convergence is not

guaranteed and depends on the physical problem. For these reasons, many

of the global gyrokinetic codes [23, 11, 12, 13] still solve the field equation

on the poloidal plane with direct solvers. The GT3D code [23] uses a bal-

looning phase factor to extract analytically the k‖ = 0 structure at a given

magnetic surface: the grid resolution of the field equation can be strongly

reduced. However, when solving the field equation on the poloidal plane, the

discretized spectrum may contain modes with k‖ρs ≫ ρ∗ that are unphysical.

Indeed, Particle-In-Cell (PIC) simulations may be polluted by high parallel

components generated by inherent statistical noise [12]. This has been re-

solved by applying a Fourier filter specifically designed to remove high k‖ρs

modes on the perturbed density [12]. This scheme has been recently improved

by applying the same filtering procedure to the potential [14] and results in

massive computational savings in global Particle-In-Cell (PIC) codes: mem-

ory is decreased by 2 orders of magnitude, the number of Fourier modes is
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decreased by one order of magnitude and the number of particles required

for a given accuracy is decreased by the same factor as the number of par-

ticle per Fourier modes dictates the noise level [15]. It means that in PIC

codes, parallel filtering cannot be dissociated from the number of markers.

On the other hand, Eulerian codes are free from such noise, and influences of

the filtering can be clearly estimated by comparing filtered and non-filtered

simulations at a fixed number of grid points.Therefore, this work presents

the implementation of the Fourier filtering technique in the Eulerian code

GT5D [11] and in the PIC code ORB5 [12].

The rest of this paper is organized as follows. Sec. 2 briefly presents both

codes, the implementation of the Fourier solver [14], and further focuses on

the choice of the poloidal angle. The solver is verified with linear and non-

linear simulations in Sec. 3. Then, turbulent spectra are studied in Sec. 4,

and conclusions are given in Sec. 5.

2. Implementation of the Fourier solver

2.1. The GT5D code

The detailed implementation of the GT5D code can be found in Refs. [11]

and [16]. It is briefly summarized for completeness.

GT5D is a five-dimensional full-f Vlasov code that solves a gyrokinetic equa-

tion [17] in Tokamaks:

∂J f
∂t

+ ∇ · (J Ṙf) +
∂

∂v‖
(J v̇‖f)

= J
[

C(f) + Ssrc(f) + Ssnk(f)
]

(1)
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where f(R, v‖, µ, t) is the ion guiding-center distribution function, R is the

guiding-center position, v‖ is the velocity parallel to the magnetic field, µ

is the magnetic moment and J is the phase-space Jacobian. The nonlinear

equations of motion (Ṙ, v̇‖) are obtained from a Hamiltonian approach:

H =
1

2
miv

2
‖ + µB + qi〈φ〉α (2)

Ṙ = v‖b +
c

qiB
∗
‖

×
(

qi∇〈φ〉α

+miv
2
‖b · ∇b + µ∇B

)

(3)

v̇‖ = − B∗

miB
∗
‖

·
(

qi∇〈φ〉α + µ∇B
)

(4)

where B = Bb is the magnetic field, B∗ = B+Bv‖/Ωi∇×b, B∗
‖ = b·B∗,Ωi =

qiB/(mic) is the cyclotron frequency and 〈·〉α = 1/(2π)
∮
·dα is the gyro-

averaging operator where α is the gyro-phase angle. The equations of motion

are obtained through Ṙ ≡ {R, H} and v̇‖ ≡ {v‖, H}, where {F,G} is the

Poisson bracket operator defined by:

{F,G} ≡ Ωi

B

(∂F

∂α

∂G

∂µ
− ∂G

∂α

∂F

∂µ

)

+
B∗

miB∗
‖

·
(

∇F ∂G
∂v‖

−∇G∂F
∂v‖

)

− c

qiB∗
‖

b ·
(

∇F ×∇G
)

(5)

The collision operator C(f) is a linearized, drift-kinetic Fokker-Planck oper-

ator [18] C(f) ≡ CT (δf)+CF (f), where CT (δf) is the test-particle operator

and CF (f) is the field-particle operator. In particular, the field-particle oper-

ator is constructed numerically in order to conserve density, parallel momen-

tum and energy up to machine precision [19]. Finite Larmor Radius (FLR)

effects are neglected.
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The source operator is Ssrc = Asrc(R)τ−1
src (fM1 − fM2), where Asrc is a depo-

sition profile, fM1 and fM2 are (shifted) Maxwellian distributions and τsrc is

a time constant. τsrc is set by imposing zero particle and momentum input,

but a fixed power input Pin:

0 =

∫

Ssrcd
6Z =

∫

miv‖Ssrcd
6Z (6)

Pin =

∫ (1

2
miv

2
‖ + µB

)

Ssrcd
6Z (7)

The sink operator is Ssnk = Asnk(R)τ−1
snk(f0 − f), where Asnk is a deposition

profile, f0 is the initial distribution and τsnk is a time constant.

Self-consistency is imposed by the quasi-neutrality equation:

−∇⊥ · ρ
2
ti

λ2
Di

∇⊥φ+
1

λ2
De

(

φ− 〈φ〉f
)

= 4πe
[ ∫

fδ(R + ρ− x)d6Z − n0e

]

(8)

where R+ρ is the particle position, d6Z = J dRdv‖dµdα = m2
iB

∗
‖dRdv‖dµdα

is the phase space volume, ρti is the Larmor radius evaluated with the ther-

mal velocity vti, λDi, λDe are the ion and electron Debye lengths, 〈·〉f is

a flux-surface-average operator and n0e is the equilibrium electron density.

Electrons are adiabatic. Dirichlet boundary conditions are imposed at the

plasma edge while no boundary condition is imposed at the magnetic axis.

The gyrokinetic Poisson bracket operator is discretized using a 4th order

non-dissipative conservative finite difference scheme [20], and the collision

operator is discretized with a 6th order centered finite difference scheme, thus

enabling long and accurate computation of the turbulence. The time integra-

tion is performed using the 2nd order semi-implicit Runge-Kutta method [21]

and a stiff linear term involving the parallel streaming is treated implicitly
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based on a generalized conjugate residual method [22]. The separation of

linear and nonlinear motions is written H(R,Z, ϕ, v‖, µ) = H0(R,Z, v‖, µ) +

H1(R,Z, ϕ, µ), where R,Z, ϕ are cylindrical coordinates. Since µ appears as

a parameter in these equations, the computational cost of the Vlasov solver

scales as (ρ∗)−3.

GT5D is heavily parallelized with MPI and openMP. A simulation uses

N = NMPINOMP processors, where NOMP is the number of processors of

the openMP parallelization and NMPI is the number of processors for MPI

parallelization. The distribution function is parallelized over a 3D decom-

position domain NMPI = NµNpt, where Nµ is the number of points in the

µ direction and Npt = NpRNpZ is the number of processors in the (R − Z)

direction. The field-solver is parallelized in the ϕ direction over Npt proces-

sors. Within a time iteration, parallel communications appear in 3 different

stages. Firstly, communications in the R and Z directions must be performed

after the advection of the distribution function (the derivative operator may

require the value of f at a grid point located in another processor). Secondly,

the perturbed density in the r.h.s. of the quasi-neutrality equation includes

an integral over µ, which translates into a sum over the processors in the µ

direction. Also, since the distribution function is parallelized in the (R,Z)

directions but the perturbed density must be parallelized in the ϕ direction,

a parallel data transpose must be performed. Thirdly, the collision operator

involves derivatives in the µ direction which would require parallel communi-

cations. By applying a parallel data transpose before computing the collision

operator, the distribution function, originally parallelized with Npt processors

in the (R,Z) direction and with Nµ processors in the µ direction, becomes
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parallelized with NptNµ processors in the (R,Z) direction. In this way, every

processors contains all grid points in velocity space.

GT5D has been benchmarked [16, 19] against the global PIC code GT3D [23]

for collisionless ITG turbulence, and against the global PIC code FORTEC-

3D [24] for neoclassical physics.

2.2. The ORB5 code

The ORB5 code [12] is a global PIC code whose gyrokinetic model is very

similar to the one used in GT5D: the quasi-neutrality equation is identical

and the trajectory of numerical markers is evolved according to Eqs. 3 and 4.

Collisions are neglected. The distribution function f is decomposed into a

Maxwellian f0(ψ̂, ǫ, µ) and a perturbed part δf(~z, t) where ψ̂ is a constant of

motion derived from the canonical angular momentum to avoid the genera-

tion of spurious zonal flows [25], ǫ is the kinetic energy per mass unit, µ is

the magnetic moment per mass unit and ~z are the phase-space coordinates.

The Vlasov equation is:

dδf

dt
= τ( ~E) + SNC(~z, t) (9)

τ( ~E) = − df0

dt

∣
∣
∣
∣
1

(10)

SNC(~z, t) is the noise-control operator [26]. It is composed of a Krook term

−γKδf(~z, t) and a correction term such that SNC(~z, t) does not alter an ar-

bitrary set of moments. In the present simulation, these moments are the

density and the long time structure of zonal flows. The Krook operator in-

troduces some numerical dissipation essential to reach a thermodynamical

steady-state [27]. In addition, the noise-control operator introduces energy

into the system in order to restore the temperature gradient to its initial
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value: the ORB5 simulations presented here are nearly-fixed-gradient simu-

lations, in contrast to GT5D simulations which are fixed-flux. Equations of

motion are integrated with a 4th-order Runge-Kutta scheme. Before solv-

ing the quasi-neutrality equation, the perturbed density is Fourier-filtered in

order to remove the unphysical high parallel wavenumber components from

the numerical representation of the system [12], which greatly decreases the

noise of the simulation. ORB5 is also massively parallelized with MPI. The

markers are parallelized in the toroidal direction, and a 2D parallelization

scheme based on the domain cloning algorithm is further used [28]. The

number of processors is therefore P = PϕPC , where Pϕ is the number of pro-

cessors in the toroidal direction and PC is the number of clones.The quasi-

neutrality equation is parallelized in the toroidal direction (in Fourier space)

over Pϕ processors. There are three communication stages: after the particle

pushing, the attributes of some markers must be communicated toroidally.

Before solving the quasi-neutrality equation, the perturbed density must be

summed over the clones, and finally a parallel data transpose must be per-

formed on the perturbed density in order to compute the Fourier transforms

in the toroidal direction. The parallel data transpose is usually the most

costly communication operation and scales with (ρ∗)−3. While it is negligi-

ble for standard cases ρ∗ = 1/150, it will become dominant at ITER sizes

ρ∗ ∼ 1/1000.

Finally, the filtering procedure is the starting point to define a signal-to-noise

ratio [15]. It is generally observed that a signal-to-noise above 10 is required

to have converged simulations.
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2.3. The Fourier solver

The electrostatic potential is discretized in toroidal Fourier space with B-

splines finite elements [29] on a (r, χ) grid with (Nr, Nχ) grid points, where

r is a radial coordinate and χ is a poloidal angle-like coordinate.

φ(r, χ, ϕ) =
∑

µ,n

φ(n)
µ Λµ(r, χ)einϕ (11)

Where Λµ(r, χ) = Λj(r)Λk(χ) is a product of 1D B-splines, r is the radial

coordinate and χ is a poloidal coordinate which will be discussed later. Ap-

plying the Galerkin method gives a linear system for each n:

∑

µ

M (n)
µν φ

(n)
µ = g(n)

ν (12)

with:

M (n)
µν =

∫

d3x
[ ρ2

ti

λ2
Di

∇polΛµ · ∇polΛν

+
1

λ2
De

(ΛµΛν − δn,0〈Λµ〉fΛν)
]

(13)

g(n)
ν =

∫

d6ZGν(r, χ, µ)δf (n) (14)

Gν(r, χ, µ) =
1

2π

∫

dαΛν

[

R(r, χ) + ρ(µ, α)
]

(15)

Where δf (n) is the Discrete Fourier Transform (DFT) of δf = f − f0 in

the toroidal direction, ∇pol = ∂
∂r
∇r + ∂

∂χ
∇χ is the gradient in the poloidal

plane, d3x = Jrχϕdrdθdϕ, Jrχϕ is the phase-space Jacobian, and 〈·〉f is the

flux-surface average operator:

〈A〉f =

∫

dχdϕJrχϕ(r, χ)A(r, χ, ϕ)
∫

dχdϕJrχϕ(r, χ)

(16)
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The matrix is a symmetric band matrix and is solved with LAPACK [30].

Note that any radial or poloidal coordinate can be used: changes are reflected

in the spatial Jacobian appearing in the integrals of Eqs. 13 and 14, as

well as in ∇pol. The distribution function has Nϕ points in the toroidal

direction. In order to avoid aliasing effects, toroidal modes with |n| > Nϕ/4

are filtered out. A n = 0 matrix and a n 6= 0 matrix must be stored for a

total number of 2(p + 1)(Nr + p)N2
χ ∼ (ρ∗)−3 complex elements where p is

the splines order. For a standard Cyclone [31] simulation of size ρ∗ = 1/150,

Nr = 128, Nχ = 256 with quadratic splines, 800Mb are needed to store the

two matrices. ITER plasmas will have typically ρ∗ ∼ 1/1000 which would

correspond to a total size of 240 Gb and would be impossible to store on a

single node. It is noted that in principle, such a huge operator can be solved

via parallel iterative approaches. However, the convergence of such a solver

may not be always assured. Therefore, a direct solver with smaller operator

sizes is desirable for turbulent simulations, where the robustness of the field-

solver is extremely important. Furthermore, solving the field equation on

the poloidal plane does not restrict the ratio k‖/k⊥. At mid-radius, the

latter can be as high as 0.25, which is inconsistent with the gyrokinetic

ordering [32]. From a theoretical point of view, these modes may be safely

eliminated. Consequently, the Fourier solver described in Ref. [14] and first

applied to the global PIC code ORB5 has been implemented in GT5D as

well. The implementation is therefore identical. It is summarized for the

sake of completeness. First, the linear system is written in poloidal Fourier
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space:
∑

µ

FM (n)
µν F

−1

︸ ︷︷ ︸

≡M̃ (n)

Fφ(n)
µ

︸ ︷︷ ︸

≡φ̃
(n)
µ

= Fg(n)
ν

︸ ︷︷ ︸

≡g̃
(n)
ν

(17)

Where F is the combination of the DFT and the filtering operators: by in-

voking the gyrokinetic ordering k‖/k⊥ ∼ ρ∗, the quasi-neutrality equation is

solved in the subspace of field-aligned modes, characterized by |m−nq(r)| <
∆m, where q(r) is the safety factor profile. Note that this filtering procedure

is surface-dependent. Each toroidal mode has a different matrix, but the

matrix storage is parallelized in the toroidal direction with Pϕ processors,

giving a size of 3(Nr + 2)(2∆m + 1)2Nϕ/(4Pϕ) ∼ (ρ∗)−1 as ∆m is indepen-

dent of plasma size if one chooses the straight-field-line angle for poloidal

coordinate (see Secs. 2.4 and 4), and Nϕ/(4Pϕ) ∼ O(1). For ∆m = 20 and

Nϕ/(4Pϕ) = 1, the size becomes 10 Mb for a Cyclone simulation and 80 Mb

for an ITER simulation.

There are only a few minor differences between the two implementations.

B-splines are polynomials of order p. GT5D uses quadratic splines (p = 2)

and r as a radial coordinate, while ORB5 uses cubic splines (p = 3) and

s =
√

ψ/ψedge, where ψ is the poloidal flux. Moreover, ORB5 stores Nϕ/Pϕ

matrices per processor. These differences have no impact on the results.

2.4. Choice of ∆m

There are a few constraints on the value of ∆m. First, ∆m & 2ŝ, where

ŝ is the magnetic shear, must hold to avoid discontinuities across magnetic

surfaces [12]. The strongest constraint on ∆m is in fact linked with the choice

of the poloidal coordinate χ. In this work, two different poloidal coordinates

will be considered: χ = θ, where θ is the usual poloidal angle, and χ = θ∗,
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where θ∗ is the straight-field-line coordinate, defined by:

θ∗ =
1

q(ψ)

∫ θ

0

dθ′
B · ∇ϕ
B · ∇θ′

= 2 tan−1

(√

1 − ǫ

1 + ǫ
tan(θ/2)

)

(18)

where ψ is the poloidal flux, ǫ = r/R0 is the local aspect ratio and the last

equality has been obtained by assuming a circular equilibrium. The relation

k‖ = (m−nq)/(qR) holds only if the straight-field-line coordinate θ∗ is used.

θ∗ is such that B · ∇ϕ = q(ψ)B · ∇θ∗. In order to understand the link

between ∆m and the choice of the poloidal angle, consider a single toroidal

perturbation propagating along a field line at a given surface r0:

φ(r0, θ∗, ϕ) = φ̂(r0)e
in0(ϕ−qθ∗) (19)

In the large aspect ratio approximation with elliptic surfaces, θ∗ = θ −
ǫκ sin θ + O(ǫ2) where κ is the plasma elongation and so:

φ(r0, θ, ϕ) = φ̃0(r0, θ, ϕ)
+∞∑

δm=−∞

Jδm(x)eiδmθ (20)

x = −ǫn0κq (21)

Where φ̃0(r0, θ, ϕ) = φ̂(r0)e
in0(ϕ−qθ), Jn(x) is the Bessel function of the first

kind and the relation eix sin θ =
∑+∞

n=−∞ Jn(x)eiθ has been used. Therefore,

one sees from Eqs. 19 and 20 that while the perturbation has one single har-

monics m0 = n0q in the θ∗ space, its spectrum is broadened in the θ space.

The broadening can be seen on Fig. 1, which plots Jδm(x) as a function of δm

for different values of x. As limx→∞ Jn(x) =
√

2/(πx) cos(x− nπ/2 − π/4),

the broadening monotonically increases with the argument of the Bessel func-

tions. Physically, it means that the broadening will increase when the aspect
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ratio is lowered, when the safety factor and the elongation are increased or

when n0 is increased. The latter happens when kθρti is increased at fixed

plasma size, or when the plasma size is increased at fixed kθρti. Fig. 1 may

be used to determine a lower bound for ∆m when θ is used. The present

estimation assumes for simplicity a single harmonic perturbation in θ∗ space.

In gyrokinetic simulations, the global spectra are typically wider. Fig. 2

shows the poloidal local field energy spectrum (defined in Appendix A) of a

linear ORB5 simulation for a Cyclone-based MHD equilibrium with κ = 1.5,

corresponding to the bottom plot of Fig. 1. The spectrum in θ∗ space is

very narrow, and a value of ∆m = 3 would seem sufficient to capture all

relevant modes. On the contrary, the spectrum in θ space is very wide and

a value of ∆m = 25 is needed. The estimate from the bottom graph of

Fig. 1 would give a value of ∆m ∼= 12. The middle graph of Fig. 1 is an

estimate of a kθρti = 0.5 ITG mode in an ITER plasma, yielding a minimum

value of ∆m = 60. The finite element matrix would at least be one order

of magnitude larger if the usual poloidal angle is used. This simple model

shows that global codes not using a field-aligned coordinate will need the

straight-field-line coordinate instead to simulate large or highly-shaped plas-

mas. Note also that flux-tube codes often use the ”s − α” model, in which

θ∗ is approximated by θ. Neglecting this finite aspect ratio effects strongly

affects heat transport [33].
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Figure 1: Broadening amplitude Jδm(x = ǫκn0q) as a function of δm for ǫ = 0.18, q = 1.4

and different values of n0 and κ

3. Verification

3.1. CPU cost

As mentioned in Sec. 2.1, the computational cost of the Vlasov part of

the GT5D code scales as (ρ∗)−3. Using the Fourier solver drastically re-

duces the memory and also affects the CPU time. Using the Fourier solver

in GT5D allows a 3% reduction of the CPU time for standard Cyclone case

at ρ∗ = 1/150. Estimates show that this gain is approximatively similar at

ρ∗ = 1/300. The original field-solver part is dominated by LAPACK opera-

tions and communications in the µ direction, which scale as (ρ∗)−3. When the

Fourier solver is used, these parts theoretically scale as (ρ∗)−1 and become

subdominant, therefore the (R − Z) → (r − θ) transpose, proportional to
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Figure 2: Poloidal spectrum in θ (black,solid) and in θ∗ (red, dashes) of local field energy

for a n0 = 20 mode in a MHD equilibrium with κ = 1.5

(ρ∗)−3 will dominate, but tests have shown that this does not happen up to

ρ∗ = 1/300, which was the largest size accessible on the JAEA Altix3700Bx2

system. In practice, the communication scaling can be different depending

on the number of processors and the parallel architecture. At ρ∗ = 1/300,

the Fourier solver part including the charge assignment is 3% of the total

simulation time. In the ORB5 code, the number of particle scale as (ρ∗)−2

and the solver CPU time, dominated by the parallel transpose needed to

perform the toroidal Fourier transform, scales as (ρ∗)−3 , but fortunately

the latter dominates the former from ρ∗ ∼= 1/1000 [14] only. Note that the

original LAPACK solver was 40% of the total CPU time for standard simu-
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lations [14]. Consequently, in terms of CPU usage the ORB5 code with the

Fourier solver is equivalent to a field-aligned code up to large plasma sizes,

with the advantage that the solver is direct and consequently very robust.

It is worth commenting other methods, although a direct comparison is be-

yond the scope of this paper. Quasi-ballooning and unstructured grids reso-

lution N scale as (ρ∗)−2. However, simple Jacobi preconditioning leads to a

N3/2 ∼ (ρ∗)−3 scaling, which can be improved with multigrid techniques, see

Ref. [? ]. The parallelized field-aligned solver developed in this work performs

well (solve time of the order of a few seconds for a ITER-like plasma).

3.2. Linear and neoclassical validation
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Figure 3: Instantaneous growth rates as a function of time for χ = θ (top) and χ = θ∗

(bottom), for different values of ∆m.
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The Fourier solver is first verified with linear simulations, solving only one

toroidal mode. In ORB5, linear simulations are performed by neglecting the

electric field in the equations of motions 3 and 4: in absence of a satura-

tion mechanism, the perturbation grows exponentially and indefinitely. In

GT5D, linear simulations must be understood as the linear phase of single

n mode nonlinear simulations. Choosing a very small initial perturbation

allows a long enough linear phase to extract the growth rate before the non-

linear saturation. Linear results are presented for the GT5D code only, but

are also valid for ORB5. The Fourier solver introduces a new parameter ∆m

with respect to which the simulation must be converged. The unfiltered case

(still solved in poloidal Fourier space) will be noted ∆m = ∞. Compared

to the simulation in real space, the results are identical up to machine preci-

sion. Then, linear Cyclone simulations have been performed (see [16] for the

physical and numerical parameters) by using either θ or θ∗ as the poloidal

coordinate and by varying ∆m. Instantaneous growth rates for χ = θ and

χ = θ∗ are displayed on Fig. 3 . As predicted in the previous section, the

converged value of ∆m is larger in the θ case compared to the θ∗ case. In

the latter situation, ∆m = 3 is sufficient to converge the linear growth rate.

These results are in agreement with those of [12], where the Fourier filter

is applied on the density only. This is indeed not surprising: when applied

on the potential, the Fourier filter suppresses the couplings producing and

produced by poloidal modes m ≷ nq(r) ± ∆m. In the linear regime, these

couplings are triggered by the poloidal dependence of the magnetic field,

which is of the order of the aspect ratio and are expected to be unimportant

for modes at the filter boundaries. ∆m = 3 is also sufficient to converge the
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potential structure on the poloidal plane, as shown by Fig. 4.

Figure 4: Poloidal cross section of the potential for the real space simulation (left) and

the ∆m = 3, θ∗ simulation (right). Axis are in ρs units.

The matrix of the n = 0 mode differs due to the flux-surface-average operator

in Eq. 13, and the n = 0 mode is linearly stable. In order to check its correct

implementation, neoclassical simulations (axisymmetric limit, no sources)

have been performed based on parameters from [11]: the system is initialized

with a local Maxwellian distribution which is not a solution of the Poisson

bracket operator: a radial electric field is produced to satisfy the ambipolarity

condition. Both filtered and unfiltered simulations are identical, showing

relative differences of 10−5 for all fluxes. The poloidal spectra of the field

energy, Fig. 5 are in good agreement. In particular, in the unfiltered case,

the |m| > ∆m components are 10−6 times smaller than the dominant m = 0
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value. Same differences are observed in Rosenbluth-Hinton test [36] with the

ORB5 code.
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Figure 5: Poloidal spectrum of the n = 0 mode global field energy for an unfiltered and

a ∆m = 5, θ∗ neoclassical simulation, normalized to its maximum value. The spectra are

averaged over the quasi-steady-state phase of the simulations.

3.3. Nonlinear verification

In the previous section, it has been shown that the Fourier filtering tech-

nique does not affect the linear stage of the simulations. The nonlinear pic-

ture is more complex. Once ITG turbulence develops, toroidal and poloidal

nonlinear couplings become important. Introducing a parallel filter might af-

fect the turbulent transport, since radial fluxes are produced by non-parallel
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components of the E×B velocity: the convergence with respect to ∆m must

be checked in the steady-state phase of the simulation. Note that a similar

study has been performed for sourceless PIC simulations in [12] when the

filter is applied on the density only, and it was found that ∆m = 9 was

enough to converge the heat flux. However, these simulations had many

drawbacks. Firstly, the plasma size of ρ∗ = 1/40 was unrealistically small

and boundary effects were important. Secondly, the gyrokinetic model did

not have any physical or numerical dissipation. Consequently, the final state

is quasi-steady and dominated by noise [27]. Finally, there were no sources

to maintain the temperature gradient and the final state did not show bursty

transport. Now that these problems have been overcome, a nonlinear ∆m

scan is necessary. It is a tedious task for decaying simulations (when the

temperature gradient is allowed to relax): 320M particles are needed to con-

verge a Cyclone simulation at ∆m = 5 [37], when a noise-control algorithm is

used [26]. The situation becomes easier for nearly-fixed-gradient simulations,

as the signal-to-noise ratio can be maintained high enough with relatively few

markers (80M for the previous example). It becomes even easier with GT5D,

since the Eulerian scheme allows the separation of grid convergence and par-

allel filtering. It enables a more stringent verification of the latter issue.

The aim of this section is to test the convergence of nonlinear simulations

with respect to the parallel filter parameter ∆m for both PIC and Eulerian

methods. It is by no means a benchmarking attempt: fixed-flux and nearly-

fixed-gradient simulations will lead to different transport levels.
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3.3.1. ORB5 simulations

For numerical reasons it is impossible to perform an unfiltered ORB5

simulation. Consequently, 3 simulations at ∆m = 5, 10 and 20 have been

performed. The number of markers is 80M, 160M and 320M such that

the signal to noise ratio is constant. The initial temperature gradient is

R/LT i = 7.2, ρ∗ = 1/155 and a 1/2 wedge torus (solving toroidal modes

0,±2,±4, ...) is used. ∆t = 51Ω−1
i and the finite element grid’s resolution

is (Ns, Nθ∗) = (128, 512). The noise-control decay rate is γK = 7.8 · 10−5Ωi

which is approximatively 7% of the maximum linear growth rate. The sim-

ulations start with a linear phase. Immediately after the saturation, large

heat bursts are produced in the so-called transient phase. Finally, a quasi-

steady-state establishes, with intermittent outward and inward propagating

avalanches. The avalanches dynamics is independent of ∆m. In order to

assess the influence of this parameter on the system, one must quantify the

radial heat transport. This is a difficult task as bursts are chaotic: the turbu-

lence has a so-called intrinsic variability. This phenomenon has been studied

in [26] and [38] for ORB5 simulations: identical simulations differing only

by the initialization are performed, and are compared by applying a mov-

ing time-average of width ∆tw. A standard deviation over the ensemble of

simulations of about 15% is found for ∆tw = 500a/cs. In order to measure

the influence of ∆m on the simulations, the moving time-average procedure

is applied, with a starting time t0 = 500a/cs and ∆tw = 300a/cs. Fig. 6

shows the moving time-average of χi/χGB and R/LT i for the 3 simulations,

where χi = −Qi/(ni∇Ti), Qi is the ion heat flux, ni is the ion density and

χGB = ρ2
scs/a is the Gyrobohm normalization. For χi/χGB, the intrinsic
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variability (thin lines), estimated to be 15% of the radial and time-averaged

value of χi/χGB, is added and can be viewed as the ”error bar” for each

simulation. The 3 enclosed regions overlap almost all the time. Then, the

values of R/LT i differ maximum by 0.2. This is sufficient to say that the

parallel filtering does not influence ORB5 simulations, and that ∆m = 5 can

be employed.
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Figure 6: Temporal evolution of χi/χGB (top) and R/LTi (bottom) for ∆m = 5 (blue,

solid), ∆m = 10 (red, dashed) and ∆m = 20 (green, dotted) ORB5 simulations. For

each simulation on the top graph, the thick line is the moving time-average and thin lines

represent the intrinsic variability, estimated to be 15% of the space and time-average of

χi/χGB. Profiles are averaged between r/a = 0.35 and r/a = 0.65.
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Figure 7: Spatio-temporal evolution of χi/χGB for the ∆m = ∞ GT5D (top) and ∆m = 5

ORB5 (bottom) simulations. The minimum (resp. maximum) of the color bar is chosen

as one half (resp. two times) the average on the radial regions of interest.

3.3.2. GT5D simulations

One unfiltered (∆m = ∞) and two filtered (∆m = 20 and ∆m = 5)

Cyclone GT5D simulations have been performed. ρ∗ = 1/150 and 1/3 wedge

torus (solving toroidal modes 0,±3,±6, ...) is simulated. The initial temper-

ature gradient is R/LT i = 10. The numerical parameters are ∆t = 5Ω−1
i ,

(NR, NZ , Nϕ, Nv‖ , Nµ) = (160, 160, 64, 80, 20) and (Nr, Nχ) = (128, 256) for

the finite element grid. Only 16 toroidal modes are kept in the system

and the others are filtered out. This ensures a minimum resolution of 4

points per wavelength to avoid aliasing effects. The input heating power is

Pin = 2MW . The heat deposition profile extends between r/a = 0 and
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r/a = 0.5, while the sink deposition profile extends from r/a = 0.8 to

r/a = 1.0 with τ−1
snk = 0.1vti/a (see [11]). The numerical scheme is a 4th

order centered difference scheme and is therefore non dissipative. The L2-

norm conservation inherent to this scheme prevents any growth of spurious

modes that would be caused by numerical dispersion. Physical collisions pre-

vent filamentation in velocity space.

The three simulations show similar particle number and energy conservation

properties. The spatio-temporal evolution of χi/χGB is shown on the top

graph of Fig. 7. Here, simulations with different initial conditions could not

be performed due to the huge cost of a simulation (250’000 CPU hours on

the JAEA Altix3700Bx2 system), but it can be anticipated that the intrin-

sic variability of GT5D should be equal or higher than the one of ORB5

since GT5D operates much closer to the critical gradient (R/LT i,GT5D
∼=

6.5, R/LT i,ORB5
∼= 7.2 and R/LT i,crit = 6.0). For that reason, the bursts in

GT5D are less frequent but more important in relative value (see Fig. 7).

Consequently, the moving time-average procedure must be adapted in that

situation. This is further confirmed on Fig. 8, where moving time-averages

with different ∆tw are shown. For ORB5, ∆tw = 300a/cs seems enough

to reproduce the quantitative transport, but for GT5D ∆t > 500a/cs is re-

quired. However, in fixed-flux simulations the turbulent transport and the

temperature profile, constrained by a power balance relation, should reach

a steady-state (in the average sense). The turbulent diffusivity is affected

by the radial electric field, which, due to collisions, is constrained by the

force balance relation (this is not necessarily the case in ORB5). A measure

of the steadiness of the simulation can be obtained by defining the opera-
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tor < A >t0 (t) as being the average of a physical quantity A between the

times t0 and t. Fig. 9 shows the result for A = χi/χGB and A = R/LT i

with t0 = 500a/cs. A radial average is applied in the source free region

0.5 < r/a < 0.8. At the end of the time window, t = 2000, the relative

difference between the values of χi/χGB is 10%, and R/LT i values differ by

0.1. Then, Fig. 10 shows the radial profiles of χi/χGB and R/LT i aver-

aged between 500 and 2000 a/cs, where one sees that changing ∆m does

not modify the global shape and the local variations of these profiles. These

results demonstrate that parallel filtering does not influence the steady-state

of GT5D simulations.
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Figure 8: Moving time-average of χi/χGB for the ∆m = 20 GT5D (top) and ∆m = 5

ORB5 (bottom) simulations for ∆tw = 300 a/cs (solid line, blue), ∆tw = 500 a/cs (dashed

line, red) and ∆tw = 1000 a/cs (dotted, green)
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Figure 9: Temporal evolution of < χi/χGB >500 (t) (top) and < R/LTi >500 (t) (bottom)

for ∆m = ∞ (blue, solid), ∆m = 20 (red, dashed) and ∆m = 5 (green, dotted) GT5D

simulations.

4. Convergence of nonlinear spectra

In pure ITG turbulence, the adiabaticity of electrons implies that the

entire linear spectrum lies in the 0 < kθρti < 1 range. It peaks at around

kθρti ∼ 0.35 and then decreases due to FLR effects. Physically converged

nonlinear simulations require that the relevant nonlinear spectrum stays
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Figure 10: Radial profile of χi/χGB (top) and R/LTi (bottom) for ∆m = ∞ (blue, solid),

∆m = 20 (red, dashed) and ∆m = 5 (green, dotted) GT5D simulations.

within this range. This is fortunately the case as nonlinear couplings trigger

an energy cascade towards longer wavelengths [39]. In the previous section,

it was demonstrated that the filtering procedure did not affect the fluxes. It

must be checked that the same holds for the turbulent spectra.

4.1. GT5D spectra

Fig. 11 shows, for the ∆m = 20 simulation, the time evolution of the local

(r0/a = 0.7) poloidal spectrum of the n = 12 mode, which is the most dom-

inant mode in the quasi-steady-state phase. At the end of the linear phase

(t ∼= 80), large couplings are seen. However, at that time the contribution

of the n = 12 mode on the global field energy of the system is negligible

because the system is initialized with a single toroidal mode n 6= 12 which
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dominates the other toroidal modes by several orders of magnitudes. On this

surface, q(r0) = 2 and the mode is peaked around m = 24. The relative mode

amplitude hardly exceeds 10% outside |∆m| < 5. Consequently, ∆m = 20

seems large enough to capture the avalanche dynamics on the n = 12 mode.

However, ∆m might be a function of n, or equivalently of kθρti. In fact, from

a slab toroidal ITG dispersion relation, one can derive the maximum k‖ (or

∆m) to have an instability [40]:

∆m <
R0

LT i

1/2kθρtiΛ0(ξi)√
1 + τ−1

√

τ−1 + 1 − Λ0(ξi)
×

√

1 − 2LT i

Lni

− 2ξi
Λ1(ξi) − Λ0(ξi)

Λ0(ξi)
(22)

Where ξi = (kθρti)
2,Λn(x) = e−xIn(x), In(x) is the nth order modified Bessel

function of the first kind, τ = Te/Ti and Lni is the characteristic length of

density. The r.h.s. of this equation is an increasing function with ξi: although

it is local and contains many assumptions, it predicts an increase of ∆m

with the toroidal mode number. This has been verified by plotting the local

poloidal field energy spectrum (averaged in the quasi-steady-state phase) for

n = 12, n = 24 and n = 36, corresponding to kθρti = 0.235, kθρti = 0.47 and

kθρti = 0.94, respectively (see top graph of Fig. 12). The kθρti = 0.47 mode

has a slightly broader spectrum, confirming the qualitative picture given by

the linear dispersion relation. The kθρti = 0.94 spectrum is significantly

broader. The broadening may be enhanced by finite size of splines for high

m numbers. High kθρti modes are 1-2 orders of magnitude smaller than

the dominant low kθρti modes. This is confirmed by Fig. 13, where the time-

averaged global field energy is plotted against the toroidal wave number. The

kθρti dependency of ∆m has been further checked for a larger plasma size
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ρ∗ = 1/230 filtered simulation: NR, NZ , Nϕ, Nr and Nχ have been multiplied

by 1.5. The width of each poloidal spectra for same values of kθρti is identical

to the ρ∗ = 1/150 value: the parallel filtering is independent of plasma size.

Fig. 13 shows that the field energy of toroidal modes decays similarly for

all ∆m values. For the latter case, the small value of ∆m alters the broad

spectra of high kθρti modes (see Fig. 13) and thus slightly modifies the decay

exponent. Spectra averages over the heating or source-free regions decay

with the same exponent, suggesting that micro-scale turbulent cascades are

not affected by the differences in macro-scale conditions such as heating and

geometry (local q and ǫ). On the other hand, in the outer region where a

sink is located, toroidal modes have high kθρti and the broadening observed

on Fig. 12 accentuates, which leads to a stronger decay in the ∆m = 5 case.

However, only a small fraction of the field energy is being filtered when a

narrow filter is used. Therefore, although the ∆m = 5 simulation has a

slightly altered energy spectrum, final heat flux and temperature gradient

are converged in the statistical sense.

4.2. ORB5 spectra

The time evolution of the local (r0/a = 0.5) poloidal spectrum of the

n = 12 mode is displayed on the right plot of Fig. 11 for the ∆m = 20 simu-

lation. Like in the GT5D case, the quasi-totality of the spectrum is contained
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Figure 11: Local poloidal spectrum of n = 12 versus time, in logarithmic scale, for ∆m =

20 GT5D(left) and ORB5 (right) simulations. At each time, the spectrum is normalized

to its maximum value

in |∆m| < 5 at all times. The right plot of Fig. 13 shows the global toroidal

energy spectrum as a function of n, time-averaged in the nonlinear phase of

the simulation. The decay is again similar for each value of ∆m, showing

that ∆m = 5 is large enough to converge the turbulent spectra. However,

the ∆m = 5 does not show a stronger decay towards high kθρLi as was ob-

served in GT5D simulations. This may be due to the different treatment of

the toroidal angle: it is treated with Fourier transforms in GT5D and with

splines in ORB5. Therefore, for high n numbers, splines may introduce an

additional smoothing thus modifying the turbulent spectrum.
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5. Conclusions

In this paper, the implementation of a Fourier solver described in [14] has

been successfully applied to the global gyrokinetic codes GT5D and ORB5.

This scheme drastically reduces the memory needed to solve the matrix of the

field equation, turning the scaling from (ρ∗)−3 to (ρ∗)−1. It is shown that the

use of the straight-field-line angle optimizes the memory reduction, and will

be mandatory for ITER-size plasmas. Linearly, ∆m = 3 is sufficient to get a

converged simulation. Then, for the first time, the convergence of nonlinear

global heated simulations with respect to the parallel wave number is demon-

strated, for both the Eulerian and the PIC numerical scheme. The required

width ∆m slightly increases with the normalized poloidal wave number kθρti

but is independent of plasma size. In ITG turbulence where only kθρti ≪ 1

are relevant, keeping 2∆m + 1 = 11 poloidal modes per toroidal mode and

per magnetic surface is sufficient to converge the ion heat diffusivity and the

turbulent spectra. This number is especially important in PIC simulations

because it is proportional to the needed number of markers. In addition to

the different numerical schemes, GT5D and ORB5 use different source mod-

els. Results show that avalanche-like ITG transport (produced by non-zero

parallel components of the electrical field) is not affected by parallel filter-

ing for both fixed-power and nearly-fixed-gradient simulations. The Fourier

solver is therefore a robust alternative to true field-aligned solvers.
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Appendix A. Definition of field energy

The plasma perturbed field energy is defined by:

E =
qi
2

∫

d3xφ(x)δn(x) (A.1)

where δn(x) =

∫

fδ(R+ρ−x)d6Z−n0e is the perturbed density. Introducing

the potential discretization 11 gives:

E =
qiNϕ

2

∑

ν,n

φ(n)
ν g(−n)

ν

=
∑

µ,ν,n

φ(n)
ν M (n)

µν

(
φ(n)

µ

)†
(A.2)

Where Eq. 12 has been used, ν = (jk) describes radial index j and poloidal

index k, and φ
(n)
ν =

(

φ
(−n)
ν

)†

due to the realness of φ(x). The field energy

is positive because M
(n)
µν is positive definite. The sum over n goes from

−Nϕ/2 + 1 to Nϕ/2 but the realness of φ(~x) can again be exploited to give:

E =
Nϕqi

2

∑

j

Nϕ/2
∑

n=0

E
(n)
j (A.3)

E
(n)
j =

∑

k

cn{z(n)
jk + [z

(n)
jk ]†} (A.4)

z
(n)
jk = φ

(n)
jk g

(−n)
jk (A.5)

cn =

(

1 − δn0

2
− δn,Nϕ/2

2

)

(A.6)

E
(n)
j is the local field energy for magnetic surface j. The global field energy

is
∑

j E
(n)
j . Using a DFT in the poloidal direction gives:

E =
qiNϕNχ

2

∑

j

Nϕ/2
∑

n=0

Nχ/2
∑

m=−Nχ/2

E
(n,m)
j (A.7)
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E
(m,n)
j = cn{z(m,n)

j + [z
(m,n)
j ]†} (A.8)

z
(m,n)
j = φ

(m,n)
j g

(−m,−n)
j (A.9)
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Figure 12: local (at r/a = 0.7) poloidal field energy spectrum for kθρti = 0.235, kθρti =

0.47 and kθρti = 0.94 modes for ∆m = 20 filtered simulations at ρ∗ = 1/150 (top) and

ρ∗ = 1/230 (bottom). All spectra are time-averaged in the quasi-steady-state phase of the

simulations, and then normalized to their maximum value.
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Figure 13: Global field energy versus toroidal modes for GT5D (left) and ORB5 (right)

simulations. For each code, a common normalization E0 is chosen, and all the data are

averaged between 500 and 1900a/cs.

40


