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Abstract

We present a class of asymptotic-preserving (AP) schemes for thigommgeneous Fokker-Planck-Landau
(nFPL) equation. Filbet and Jin [14] designed a class of AP schemékdalassical Boltzmann equation, by pe-
nalization with the BGK operator, so they become efficient in the fluid dynaegione. We generalize their idea
to the nFPL equation, with a different penalization operator, the FokleercR operator that can be inverted by the
conjugate-gradient method. We compare the effects of differemtiigation operators, and conclude that the Fokker-
Planck (FP) operator is a good choice. Such schemes overcome thesstibf the collision operator in the fluid
regime, and can capture the fluid dynamic limit without numerically resoltirggmall Knudsen number. Numerical
experiments demonstrate that the schemes possess the AP propgedwdaal initial data, with numerical accuracy
uniformly in the Knudsen number.

1 Introduction

The nonlinear Fokker-Planck-Landau (nFPL) equation islyidised in plasma physics. It's a Boltzmann type kinetic
equation that describes the dynamics of the phase spadgydéissibution functionf = f(t,x,v) of charged particles
at positionx, timet with velocity v. The rescaled nFPL equation reads

0If+v-DXf:%Q(f), xe RM veRM (1.1)

with the nFPL operator
Q(f)= DV~/RNVA(va*)(f(v*)DVf(V) — f(v)Oy, f(vi))dv,, (1.2)

where the semi-positive definite mat#Xz) is given by

AZ) = [2]"+2 (| _ le;> .

Heree is the Knudsen number, defined as the ratio of mean free pdtthartypical length scale. The parameyés
determined by the type of interaction between particleghéncase of inverse power law relationship, that is, when
two particles at distanaeinteract with a force proportional tg/8°, y = $=3. For example, in the cases of the Maxwell
moleculesy = 0 (corresponding ts = 5) and for the Coulomb potentigl= —3 (corresponding ts = 2).

The nFPL equation is derived as a limit of the Boltzmann gqnawhen all the collisions become grazing. It is

more relevant in physics for charged particles, where thad@ab potential is presented. The first derivation was due
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to Landau ([19],[20]). For a mathematical derivation andlgsis, we refer to the work of Arsenev and Buryak [1],
Degond and Lucquin-Desreux [9], Desvillettes [11], ana @sletailed review by Villani [30]. In this article we will
always takey = —3, while the scheme itself can be applied to gny

Similar to the classical Boltzmann operator, the nFPL dper@.2) also preserves mass, momentum and energy.
This can be seen from its weak formulation. Noting,

Q(f)="0y- / A(v—v,) f(v,) f(v) (Oylog f(v) — Oy, log f(vi)) dvs,
JRNv
one obtains
L Q(F)gdv= 7% //RNXX]RNV F(v,) £ (V) (Ty@(V) — O, @(v)) T A(v=v.) (Oylog f (v) — Dy, log f (v.)) dv.dv. (1.3)

Here[gis a column vector an@)T is the matrix transpose operation. The conservations of mag momentum are
straightforward. The conservation of energy follows frdma fact that the null space 8{z) is spadz}, i.e.,

A(z)z=0.

Besides if one takeg = logf in (1.3), due to the semi-positivity d&(z), one obtains the entropy dissipation
inequality,

/RNV Q(f)logf < 0. (1.4)
Here the equality holds only if is the (local) equilibrium
_ P (v—u(x))?
o) = Gt~ arte ) 9

where the macroscopic quantities are given by

p:/ fdy
R

Ny
u= Rvade

L
)
T—i/ (v—u)?fdv

o Np,RNv )

Finally, as in the classical Boltzmann equation, wiger 0, the moments of solution to (1.1) are governed asymp-
totically by the macroscopic Euler equations

dthFDxPU: 07
d(pu) +Ox- (pu®u+pl) =0, (1.6)
GE+0Ox- ((E+p)u)=0.

where the total energy = %pu2 + %pT and the pressure is given by the equation of state

p=pT.

A lot of efforts have been devoted to the numerical schemethtonFPL equation recently. In [31], [2], [10],
[4], [5], [6], conservative finite difference type discitions were applied to the space homogeneous equation was
derived. To reduce the computational cost caused by thediigénsional integral in the collision operator, spectral
schemes were derived in [25], [26], [15]. However all theseplicit) schemes suffer from the stability constraint
At < CeAV?. Lemou and Mieussens [22] proposed a class of implicit selsemvhich invert a linear system, instead
of a nonlinear one. However a full matrix needs to be invemetieir scheme.



We would like to develop numerical schemes for equation)(that can capture the fluid dynamic limit (1.6)
automaticallywhene — 0. This is the so-called Asymptotic Preserving (AP) scheanterm first introduced by Jin
[16]. An AP scheme is efficient in the fluid dynamic reginge< 1) since it allows one to capture the fluid dynamic
limit (1.6) without numerically resolving small scaie In recent years many AP schemes have been designed for
kinetic equations, see for example [14] and referenceeitier

Recently Filbet and Jin [14] proposed a new class of AP schdarghe Boltzmann equation by penalization with
BGK operator,

fn+l —_ fn
At
The stiffness in the Boltzmann collision operaém(f) can be overcome by the implicitly discretized BGK operator

g(M”+1 — ™1, for large enough constaft Since the implicit BGK operator can be solved explicithistmethod
avoids the complexation of inverting tig¥ f) for smalle.

The goal of this paper is to generalize their idea to the nFilagon. The diffusive nature in the nFPL operator
introduces new stiffness, which requires the penalizatom to be also diffusive. The BGK operator is not suitable
as a penalization any more. Several candidates are awilabhklytical and numerical study in this paper show that
the best choice is the following Fokker-Planck (FP) opetato

Pep(f) = PR f = Oy (MD(JA)) (18)

The FP operator is a linear operator when the MaxweNas time independent, in the case of the space homogeneous
Fokker-Planck equation

+v- O f" = % [QUf™) — B(M" — ") + B(M™T — fMH)] (1.7)

of=PM1.

SincePM, f preserves the macroscopic variables (density, momentdrersrgy), the MaxwelliaM does not change
in time. The study of the FP operator can provide a usefulandd to study the classical Boltzmann operator (see
[29]). We refer to [24] [12] and the references therein forendetailed study. The numerical methods of FP equation
were first introduced by Chang and Cooper ([8]). Since thbastbeen studied in many works, such as [21], [13], [7].
In this article we also introduce a new discretization fa BP operator, which leads to a symmetric matrix, hence is
easy to invert.

Here we summarize our new schemes. The first order schenteefaFPL equation (1.1)(1.2) reads

fn+l _ fn 1
T+V'Dxf”:E(Q(f“)—ﬁP“f”+BP”+lf”+l) (1.9)
whereP"f" = Pé"; f" is the FP operator (1.8) ar@flis given by
B= m\fiX/\ (Da(f)). (1.10)
HereA (Da) is the spectral radius of the positive symmetric malr with Da(f) defined by
Da(f) = /A(v—v*)f*dv*. (1.11)
A second order implicit-explicit (IMEX) type scheme reads
x __ N ny _ n¢n * £ %
fr—f v O — Q(fM — pP"f Jr[3P f ’
At/2 £ £ (1.12)
fn+li fn . o Q(f*) 7B*P*f* N B*Pnfn+B*Pn+lfn+l .
At T £ 2 '
with P(f) the FP operator (1.8). Suggested by numerical experimepttake
B=(2+V2ma(Da(f)),
v (1.13)

B*= (2+V2)maxh(Da(f").
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If the initial data is close to equilibrium, i.ef! = M' + O(g), then the numerical solutions computed by schemes
(1.9) and (1.12) always satisfi’ — M" = O(¢), due to the implicit discretized FP operaf@t** "1, Therefore the
moments off solve (1.6) automatically, as— 0 with fixed Ax, Av,At. Note that for an explicit scheme one cannot
expectf” —M" = O(¢g) even if initially it is.

If the initial data is far away from equilibrium, i.ef! = M' +O(1), our numerical experiments shows tH&t—

M" = O(¢) for sufficiently largen. This is the weakened AP property introduced in [14].

This article is organized as following. In section 2 we désethe time discretization of the nFPL equation based
on penalization. Then we give further details on the impletaigon of the schemes in section 3, where we also
introduce a symmetric operator to solve the linear systesmiing P,’:‘;l efficiently. Finally we perform a series of
numerical simulation in section 4 to demonstrate the ddg\e property and the numerical accuracy.

2 An AP Schemefor the nFPL equation by penalization

An explicit scheme for the classical Boltzmann equationtbasse time stegt ~ &, due to the stiffness introduced
by % in the collision operator. As — 0 this would be too expensive. This is even worse for the nRRlagon since
one has to takét ~ eAv2. An implicit scheme has no such restriction on the time sBap.implicit schemes involve
inverting an operator containin@( f), which cost a lot if one uses Newton'’s solver.

In [14] a penalization method (1.7) was introduced to overedhis difficulty. The BGK operator is used as the
penalization, whe®(f) is the classical Boltzmann operator. In this section werektélbet and Jin's idea in [14] in
very different way.

The first question is, which operator is suitable as the peatadn P( f) for the nFPL operator. Unlike the classical
Boltzmann operator, the nFPL operator behaves more likéfwsitin operator. The stiffness on the right side of (1.1)
comes from two parts: the stiffness due%twhens is small and the stiffness due to the diffusive nature of)(1.2

We first use a toy model to motivate our idea.

2.1 A toy nonlinear diffusion equation

Consider theN-dimensional diffusion equation far(x, t), with x € RN,

% = %Dx (A(u,x)0xu), (2.1)
whereA(u,X) is a semi-positive definitd x N matrix. A can depend on andx.

When ¢ is small, this equation suffers from the stiffness origatafrom the diffusive operator and the large
coefficient%. An explicit scheme requiret ~ O(g(Ax)?). We apply the penalization idea to remove this stiffness.
The same idea has been used to solve the fourth order suifacsah equation by Smereka [28]. See also a more
recent application in imaging processing [3].

Consider the following scheme with an diffusion teé‘mfu added and subtracted, but discretized at different time

level.

un+1 —_un 1
—er=g&(wame—€ﬁw+gﬁw“~ (2.2)
For stability one requires
1
B>- max A(A(uXx)). (2.3)

xRN ueR

One can show the following result.

Theorem 2.1. The scheme (2.2) is a stable time discretization of (2.1¢utite condition (2.3). More precisely, define

the energy
At
E" :/ (u”|2+ BEDXU”Z) dx

then E"*1 < EM, for any n> 0.



The proof is similar to that in [3]. For completeness, we dhve proof in the Appendix.

Remark 2.2. For diffusion equation (2.1), one cannot takeupP= —gu as the penalization operator. We give a simple
argument here. For simplicity, we consider the one dimeraiequation

U = s U
with the penalization scheme
un+l —_uyn 1
N - Eu{&+€u"—€u"“. (2.4)
After the Fourier transform on x, one gets
M - _kjgn+ Egn _ EQHH
At € € € ’

whered is the Fourier transform of u, and k the Fourier number. Then

gt E+(B- K2)At
£+ BA
For stability uniformly ing, one needs
> —_ = = —_—
B> szXk O(NY) O((Ax)2> ,

where N is the number of grid points in the x direction.

Since appears in the truncation error for (2.4), this gives theagrof (2.4) like %2), which is not good in
the regimeAt > O(&(Ax)?).

On the other hand, if one applies the parabolic penaliazatio

n+1 n
et 1 B B
At - £ XX c XX € XX 9

thenf > % gives a stable schemg. = % is the well known Crank-Nicolson scheme wifile- 1 gives the backward
Euler scheme.

2.2 Thechoice of penalization operator for the nFPL equation

As illustrated in the last subsection, the classical BGKrafme P = (M — ) used in [14] to penalize the classical
Boltzmann equation can not be used here. Instead, we impedeltowing criteria for the choice d¥:

(C1) P(f) preserves mass, momentum and energy.

(C2) P(f)is easy toinvert, or at least easier th@ff ).

(C3) P(f) contains a diffusion operator.

(C4) P(f) can pushf toward the equilibriunM, a necessary condition for AP.

To find a suitable penalizatid?( f), a key observation is the fact that the diffusion in the nFperator (1.2) is on
(f —M), notonf. In other words, one needs to extract a diffusion operatdif eénM) from (1.2). To do this, note that

f f f f
Of =0 (MM> = 7OM+ MO = fOlogM + MO



thus the nFPL operator (1.2) can be rewritten as

Qf) — DV~/A(V—V*)(f*DVf—fDV*f*)dv*

DV./A(Viv*) <f*f(DVIOgM o DV* IOgM*) + f*MD$ - fM*DV* l\;*> dV*

f
o (DA ) = B (a1, 25)
whereDa( f) is defined in (1.11), and
Fa(f) = /‘A(v—v*)M*DV*'\;idv*.
Here we have used the fact
A(v—v,)(OylogM — Oy, logM,.) = 0.
The first term in (2.5) is a diffusion operator dn- M we desire, which can be written as

Oy - (DA(f)MDfKAM> .

Thus a natural choice of the penalization operator is thd&&eRlanck (FP) operator

P(f)zpéﬂpfzmv-<mmv<,\;)>. (2.6)

It's easy to check that thiB( f) satisfies all the requirements (C1)-(C4) we looked for. Magd by Theorem 2.1, the
stability condition on3 is conjectured as

B> 5 maxh (DA(1)). 2.7)

The convolution type & 2 or 3x 3 matrixDa(f) can be computed without difficulty by the Fast Fourier Transt.
Actually the Fourier transform oA(v) and f (v) are obtained as a by-product during the computatioQ(df), if one
applies a spectral scheme such as in [26]. Then the eigengatube computed easily.

Now our first order scheme reads,

fn+1_ fn

. n:
A +v- Oy f

M|

(Q(fn) _ BPnfn +Bpn+lfn+1) (2.8)

with P" = PM. the FP operator.
First M" can be obtaineéxplicitly thanks to the fact that the right side of (2.8) preservesitiemsomentum

and energy. Multiply both sides of (2.8) lpy=1,v, @ and integrate over, one obtains

. fn+1_fn
/ cp(At +v- Dxf”) dv=0.

So the moments &t can be deriveexplicitly by,
(p,pu,E)™1 = /(p(f“ — Atv- Oy fMdv (2.9)
andM™1 is defined by (1.5). Then one can sol&?!
= (1- %P“*l)‘l (f" —Otv- O f"+ %(Q(f“) —/3P“f“)> (2.10)

Section 3.2 describes a detailed algorithm to computemierse of(1 — %P“*l).



2.3 Thechoice of the penalization weight 3

Roughly speaking, the value @f determines how much the stiffness in the nFPL oper@d) is removed. (2.7)
gives a lower bound g8 for stability. However the equal sign does not give a sattsiy choice of3. One reason is
there is always numerical error in the computation of mddix f). The choice of3 on borderline is of high risk. In
numerical simulation we tak@ as

B = Bomas (Da(f)) (2.11)

wheref > 1 is a constant.
To find a suitablgy, we reconsider the toy model studied by Filbet and Jin [14],

af :—%f. (2.12)

Apply the first order penalization,
fn+1 _ fn

o =—%(f“—vf“+vf“+1). (2.13)

Then one obtains
frl _ e+ (v—-1At ,

T e+ VAt

A simple analysis shows that the scheme (2.13) is stableumiy in ¢ if v > % analogous to the stability condition
Bo > % in (2.11). (2.13) withv = % gives a second order discretization in time for (2.12). Hmve = 1 seems to be
a better choicey = 1 gives a first order discretization in time, but it gives thetést decay to equilibrium. Besides,
the nonnegativity is guaranteed as longvas 1. The nonnegativity is a natural requirement siricis the density
distribution. The fast decay is important for the AP purpegieen the initial data is not close to the local equilibrium.
For the same reasons, we also t@ke= 1 in (2.11).
Similarly the second order scheme

* __ fNn
n+1__ ¢n
% _ —%(f*—vf*+v(f”+ £+ /2)

gives
€2+ et(v—1)+ A2 (v2—4v +2)

fl‘H—l _
(e+Atv/2)?

f".

Again the scheme is stableuf> % To guarantee the nonnegativity, one needs
v—1>0, andv?>—4v+2>0.

Hencev > (2+ +/2) is a sufficient condition. Ana = (2+ 1/2) gives the fastest decay whah>> ¢.
Therefore the3 is chosen as in (1.13) for the second order scheme (1.12).

2.4 Other penalizations

Another candidate of the penalization operator is giverhigyfamily
P(f)=0-((a+ (b+cv)?)0(f —M)),
with a > 0,b € RN, c € R. Without loss of generality, we assurae- 1. The operator the reads

P(f)=0-((1+ (b+cv)?)0(f —M)). (2.14)



One can check that this family of operators satisfies theireapents (C1)-(C3). Besides, for the homogenous equation

%f =0 ((1+ (b+cv)O(f - M)),

one has the inequality
%/(f —M)%dv= —/(1+ (b+cv)?) |Oy(f —M)[Pdv< 0.
A special case is the classical diffusion operator, when0 andc =0 in (2.14),
Po(f) = D02(f —M). (2.15)

This classical diffusion operator can be connected to theg&rator (1.8) by

DZ(fM)DD(MfKAM) D-(MD(&))JrD((fM)DMM).

uf ((f —M)Dl\;/l> - _0o. ((f —M)V;“>

also drivesf — M to zero. This can be seen by noting that the solution to

The second operator

0tu = —0dy(Xxu)

is given by
u(x,t) = e tup(xe™).

Remark 2.3. Although the above heuristic analysis suggests that thesial diffusion operator (2.15) is more effec-
tive than the FP operator (1.8) in driving f to the local edpilum M, our numerical simulation in section 4.5 shows
that (2.15) is not appropriate. Actually it seems that ugiad5) is not AP in long time=rom now on, we will always
take P(f) to be the FP operator (1.8), except otherwise specified.

3 A Full discretization of thenFPL equation

We now describe the detailed algorithm for the first ordelesod (1.9). The algorithm for the second order scheme
(1.12) is similar.
Suppose the numerical solutidA at timet" is given, then

Step 1 Apply a first order upwind scheme or second order TVD schemthernransport operator to compute new
moments via (2.9) by a quadrature rule, say the trapezaidi| then the new MaxwelliaM"*! is obtained at
eachx andP"! can be defined.

Step 2 At eachx, compute the nFPL operat@¥(f") and the coefficient matrioaf" defined by (1.11). Then the
penalization weigh = B(x) is determined by (1.10).

Step 3 Discretize the linear FP operatBf andP". One arrives at a linear system in thdirection for eactx.
Step 4 Solve the resulting linear system to obtdft* in (2.10) at eaclx.

It is very important that one computd™* beforeQ(f") andP"(f") are computed. This is equivalent to say that
Q(f™) andP"(f") are assumed to be conservative after numerical approximatiowever this is not true for many
efficient schemes. The spectral scheme on nFPL operatodinted in [26] preserves the mass while conservation of
momentum and energy are “spectrally preserved”. As for Bi@jperator, the discretization we are using (see section



3.2) preserves the mass while the errors in conservationoofientum and energy a@(Av?). For the first order
scheme (2.10), if one comput€¥ f") andP"( ") first and then computes the momentsf&f* from

£ Atv- O 7 1 % (Q(f") — BP(f"),

one would get a error @(%"p) in momentum and energy. This could give totally unphysiealits. For example
one might get negative temperatiré! and then the new equilibriutd"* is not a Gaussian at all.
In the following sections we describe how to compQe ) andP(f).

3.1 Computation of Q(f)

We use the fast spectral method designed by Pareschi, RodSmacani [26]. The computational costd$NIlogN),
whereN = N\‘,j is the grid points in velocity space. The scheme preserves mxactly, and preserves momentum and
energy with the spectral accuracy. Besides, in numerigaldmentation we will replac@( f) by (3( f)=Q(f)—Q(M)
to make sure the equilibrium gives well balanced reQ(N) = 0.

Besides, one obtains the Fourier transformA¢f) and f (v) during the implementation of this spectral method.
Therefore the matria( f) can be obtained easily by a simple inverse Fourier transform

3.2 Discretization of P(f)

The discretization of the FP operator (1.8) has been studiethny works ([21], [13], [7]). Here we introduce a new
one. First we define a symmetric operator

Pin= L, (va (\/hm)) (3.1)
Note ¢
PMf = \/Mﬁ“"ﬁ (3.2)

and we can rewrite (2.10) as

(\/fm)m =(1- A‘tfﬁ”“)—l{\/% <f”Atv~ Oxf"+ %(Q(f”) ﬁJWﬁ“\)%)) } (3.3)

Now we give the discretization &f in one dimension. The extension to higher dimension is aimil
o 1 1 h h h h
oo = i (5 (), ) ) ),
(P (AV)Z\/MT( 'Hl<\/mj+1 M/ P AWM
1 VMji1+ /M-
= <hj+1 j+1 j 1hj+hj1> (3.4)

(Av)?

ThenP is symmetric (under the normal inner product). Besidesy #fiis discretization, we have the well balanced

property B
PMM = vMPMyVM = 0.
This is important for thé\P property.

Remark 3.1. This discretization preserves the mass while the errorsoimservation of momentum and energy are
O(Av?). One might suggest the discretization of the FP operatoetias another equivalent form,

v—u

The discretized operator can indeed preserve all the masresaictly. However, this discretizaiton gives a nonsymmet-
ric matrix, which is not easy to invert.



3.3 Inversion of thelinear system

~ n+1
SinceP is symmetric, one can apply the Conjugate Gradient (CG) oaktim (3.3) to obtair(\/im) . Thenf™1is
obtained. To start the CG algorithm, a good initial guess is

fn+1 Mn+1

Let f;‘“ be the value of "1 afterkth iteration.

Then

fn+1 r{ 1 }

€ VM1t spadr,Ar,... AT},
VML

where
A= _%ﬁm{
£
= e (17 DT - M 2 QU - V) ).
M1 X £ Mn

SinceQ(f) andP(f) preserve mass exactlyy ™ shares the same mass whi+2, for all k > 0. As for the
momentum and energy, one might question that the vectauld introduce an error dD(A‘AVp) wherep is the
order of accuracy of the velocity discretization for operd®. However our numerical experiments show that the
conservations of momentum and energy are quite satisfa@ee Table 1 in Section 4.2.3 for detalils.

4 Numerical ssmulation

4.1 The convergenceorder

First we numerically check that the two schemes (1.9) ariijlare indeed first and second order accurate.
To avoid the influence from the boundary, we take the peribdimdary condition ix. The initial data are given
by f' =M!', with

| 2+sinmx |

o, d =0, T 9+ cosmnx

=) (4.1)

wherex € [~1,1], v € [T, 112,

The spectral scheme described in [26] allows us to competaf#L operator (1.2) efficiently. Numerical experi-
ments shows thatl, = 32 can give satisfactory results.

We compute the solutions with the number of grid poidis= 32,64,128 256 512 1024 respectively. The time
step is given byAt = Ax/8. After timetmax = 0.125 we check the following error,

e = max [ Fax(t) — fanx(t)[]p

(4.2)
te(0,tmax) H f! ||P

This can be considered as an estimation of the relative &ridt norm, wheref, is the numerical solution computed
from a grid of sizeAx = Xmax_x""” . The numerical scheme is said toleéh order ife, < CAXK, for Ax small enough.
For (1.9) the first order upwmd scheme is applied to the prartoperator. As for (1.12), the transport operator is
solved by a second order TVD scheme using the van Leer shajiteti(see [23] for details).
Figure 1 gives the convergence ordetfnnorm, showing that the two schemes are first order and seadedin
x respectively (hence in time) uniformly in as expected.
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(a) First order (b) Second order

Figure 1: Thell errors (4.2) of the first order scheme (1.9) (left) and thesdmrder scheme (1.12) (right) with
different Knudsen numbex.

4.2 TheAP property
421 TheAP property for equilibrium initial data

We first demonstrate that the distributiérnwould stay close to the equilibriud, if initially it does. We apply the
first order scheme (1.9)-(1.11) on the equilibrium initiataif' = M', with the macroscopic variables given by

| 24+sinmx

T 3+ cosTiX
3 )

I _
u =20, 7

(4.3)

wherex € [-1,1], v € [-6,6].
For differente, we show the time evolution of

||f—M\|l:/ |f — M| dxdv
(approximated by the trapezoidal rule). The results arevatin Figure 2. As expected,"—M" = O(¢) foralln > 1.

The second order IMEX scheme (1.12) gives similar results.

4.2.2 Theweakened AP property for non-equilibrium initial data

Next we start with the “double peak” non-equilibrium initdata

| 1\2 1\2
N Y ) (vrd)
fl = 2T 2 (exp( 7] ) +exp( 7] ) (4.49)
where o1 s 3
| 2t SN o, d =020,  T==E0 (4.5)

The time evolutions off f —M||, for differente are shown in Figure 3, with first order (circle) and secondeord
(solid line) schemes. We have numerically shown that, foega! initial data, the scheme is “weak” AP after transient
steps, namelyf" — M" = O(¢) for n sufficiently large. This is the weakened AP property. Thisdwor is similar to
that in [14], where the classical Boltzmann equation is fized by the BGK operator. Figure 3 shows that the second
order scheme has much fewer transient steps.
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Figure 2: The time evolution dff — M||1 for differente with equilibrium initial data. The solutions are computed b
the first order scheme (0) and second order scheme (sol)ddispectively. The mesh sizes are the sane[—6,6]?,
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Figure 3: The time evolution dff —M||; for differente with non-equilibrium initial data. The solutions are cortguli
by the first order scheme (0) and second order scheme (soéiji iespectively.v € [—6,6]%, Ny = 64, x € [-1,1],
N)( = lOO,At = AX/Vmax.
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4.2.3 The conservation of momentsin solving thelinear system (3.3)

Next we show the CG method can preserve the moments well.
We use the “double-peak” non-equilibrium initial conditi¢4.4) with the macroscopic variables (4.5), where
x e [-1,1], ve [-6,6]. We takeNy = 100, whileN, = 32,64,128 respectively. Correspondinghyv = "'"Lm"m"‘ ~

0.4,0.2,0.1.

We use the first order scheme (1.9) with (1.10) for one stepcantpute thé! error in moments
Err(p) =Y

whereg = 1,v, |v|?, M is computed from (2.9) whilé? is obtained by solving (3.3) with a CG scheme.

X Vv

Z((fl—Ml)(p)’szAx,

The results are shown in Table 1. The moments are preservedved when the CG scheme is applied to solve
the linear system. The errors in moments are uniformly siall Besides, the conservations get improved on a finer

grid inv.

Table 1: The errors in moments when inverting the linearesyd3.3)

Av=04 Av=0.2 Av=0.1
e=1 2.027x109 | 1.572x 109 | 1.454x 109
Err(1) =102 | 2.017x10° | 1.565x10°° | 1.449x 10°°
£=10%| 4380x 1019 | 3219x 1019 | 2.810x 1010
£=10°%]| 3654x1011 | 1.941x 1011 | 1.145x 1011
e=1 1.502x 10 7 | 3.820x10°8 | 9.601x 10 °
Err(v) =102 | 6.218x106 | 1.529x106 | 3.796x 107
£=10%| 1.135x106 | 2.821x107 | 7.020x 108
€=10°%| 1.229x106 | 3.114x107 | 7.821x10°8
e=1 8.346x 108 | 6.226x 108 | 5691x 108
Err(vP) £=1072| 2691x107 | 1.118x10°7 | 7.584x 108
£=10%| 1.690x 106 | 4471x107 | 1.760x 107
£=10°%| 1.749x 106 | 4.602x10°7 | 1.797x 107

4.3 TheRiemann problem

Now we simulate the Sod shock tube problem, where the imitintlition isf' = M' with

{ (p,up, T) = (1,0,1),

(paulaT) = (1/8707 1/4)a

if —0.5<x<0
if0 <x<05

The Neumann boundary condition in thalirection is applied.
In this test we take € [0,1], v € [—6,6]%, € = 0.001. Numerical experiments show tét= 32 is enough for our

simulation. We choosiy = 100 andAt = 2

~
Vmax

~

(4.6)

5x 102, We compare this under-resolved solution to a fully reswlve

solution by the explicit second order Runger-Kutta schemesre we takdl, = 2000 andit = min{%, %} ~10°°.
We compute the macroscopic varialpleu;, T andg, where the heat flug is given by

1
q(t,X) = E

/Nv(vlf up)|v—ul?f(t,x,v)dv
R

The results are compared @at;x = 0.2 and shown in Figure 4. One can see the macroscopic quarditeewell
approximated although the mesh size and time steps are niggérhihane, thus the computational cost has been
reduced significantly than a fully resolved computation.
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Figure 4: The comparison of density, velocity, temperature heat flux at = 0.2 between the resolved computation
by the explicit second order Runger-Kutta scheme (soli€)land the under-resolved solutions by the second order
IMEX type AP scheme (dots).

4.4 Mixing regimes

Now we consider the case where the Knudsen nuraliecreases smoothly fromy to O(1), then jumps back tep,

1
g0+ (tanh(5—10x) +tanh(5+10x), x<03

o, x>0.3

e(x) =

with &g = 0.001. The picture of is shown in Figure 5. This problem involves mixed kinetic dliuitl regimes.

To avoid the influence from the boundary, we take periodicidauy condition irx. The initial data are given by
f! = M', with the macroscopic quantities given by (4.3). Again wetac [—1,1], v [—6,6]2.

In this test we compare the macroscopic variable obtainemlbypew second order scheme (1.12) and the explicit
Runger-Kutta scheme. For the explicit Runger-Kutta schameetakeN, = 1000,At = min{ 2 A"2} ~ 107°. For

Vmax’ €0

1.2

0o(1)

_0.2 | | | | | | | | |
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 5: Anx-dependeng(x).
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Figure 6: For mixing regime, the comparison between thelvedasolutions (solid line) given by the explicit Runger-
Kutta scheme and the solutions (dots) obtained by our neensel{1.9) with coarse grid and large time step.

Vm

our scheme (1.12), we taltgy = 100,At = % =5x 102, The results are compared upttey = 0.2 in Figure 6.
Our scheme can capture the macroscopic behavior efficigvitty much larger mesh size and time steps.

4.5 The comparison on different penalization operators

This section is devoted to the comparison of the two diffepamnalizing operators (1.8) and (2.15). We will show
numerically that the classical diffusion operator (2.3500t suitable to be the penalization.

45.1 Trend totheequilibrium

We start with the homogeneous equation
7}
—f= f
o1 =BQf)

with Q(f) the nFPL operator, FP operator and classical diffusionaiperespectively. Her8 = 1 for nFPL operator,
andp given by (1.10) for the FP and diffusion operators. We sdhie ¢quation by a second order midpoint scheme,
with At constrained by the CFL conditiakt ~ Av?.

The initial data are given by
g P exp<_ (v— U)“)

o 2T

withp=1,u=0,T = 0.8. We takevmax= 6, N, = 64.
As time evolves, we compute the distaritE— M||p. The results wherp = « are shown in Figure 7. The FP
operator has a much stronger trend to the equilibrium. Iswiver the classical diffusion.
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4.5.2 Penalization on the homogeneous equation

Next we check the behavior of numerical solutions when the aperators, FP and classical diffusion, are used as
penalizations.
We still work on the (rescaled) homogeneous equation anly #ppfirst order scheme,

fn+l_fn 1

o = QUM = BRI + BR(1™)

whereQ(f) is the nFPL operator arfé( f) is either the FP or the classical diffusion operator, andake t
B= Bom\?x)\ (/A(v—v*)f*dv*> .

The equilibrium initial dataf' = M' is used, withv € [-6,6], N, = 64, andp = 1, u=0, T = 0.8. We take
€ =10"%andAt = 0.01.

ForP(f) to be the FP operator, we tag= 1. ForP(f) to be the classical diffusion operator, we tgige= 2,4, 6.
We compute the time evolution gff — firue||. NOte that the true solution is just the steady sfatg = M for all the
time. The results are shown in figure 8. The solution derivadmpenalized by FP stays at equilibridr= M, while
the solution penalized by the classical diffusion deviéitesy the equilibrium very soon, whatever the choiceBof

This gives a direct numerical evidence that the classidélgion cannot be used as penalization for the nFPL
operator.

4.5.3 Nonhomogeneous case.

Finally we move to the fully nonhomogeneous equation. Weshaymerically checked the AP property in section
4.2, when the FP operator is used as penalization. Here we tileolMEX schemes (1.9) and (1.12) are not AP if
penalized by the classical diffusion.

The equilibrium initial dataf' = M' is considered, with the macroscopic quantities given bg)(4We take
x € [-1,1], Ny =100,v € [—6,6]2, N, = 64,At = AX/Vimax.

We takeP(f) in (1.9) to be the classical diffusion operator. We comphgeresults with the one obtained when
penalized by the FP operator. The comparison is shown inr€iguWe give the time evolution dff — M||,, for the
scheme with the FPBf = 1 in solid lines) and with the classical diffusion with diféat 5. The simulation shows,
if the classical diffusion operator is used as penalizatfowould get away fromM even if initially they are close. A
larger3 can decelerate this departing. But after long time we alvggegs — M ~ O(1). Therefore the scheme is not
AP anymore.
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5 Conclusion

A penalization based asymptotic-preserving scheme fomtirdinear Fokker-Planck-Landau (nFPL) equation has
been introduced in this article. The basic idea comes frenBIBK-penalization for the classical Boltzmann equation
studied by Filbet and Jin [14]. However the diffusive natafenFPL operator makes the BGK operator not suitable
as the penalization term. We use the (linear) Fokker-PIléiREl operator as the penalization instead. The FP operator
possesses the good properties of collision operator, ssitheaconservation of moments and entropy dissipation.
Besides, the FP operator, which also contains a diffusiia,tean overcome the stiffness in the nFPL operator. To
solve the linear system involving FP operator implicitlye wtroduce a central discretization and derive a symmetric
matrix, therefore a Conjugate Gradient scheme can be apgpdisily. Several numerical experiments are also carried
out to verify the performance of the new scheme for differegimes and its AP property.

The case of particles interacting through Coulomb potéigtiatudied. However the scheme can apply to other
cases (e.g. the Maxwell potential) without any difficulties

The boundary conditions are beyond the scope of this pagereTare very few studies on AP schemes in this
direction except [17] [18]. It is an important subject fotdte research.

We numerically verified our scheme is AP beyond the initiahsient layer. However the theoretical analysis for
our scheme is still lacking and is a subject of future redearc

6 Acknowledgment

The authors would like to thank Professor Francis FilbetHerfruitful discussions about this work.

7 Appendix: Proof of Theorem 2.1

Proof of Theorem 2.1We take[Ju as a column vector. Its transpose is writter{@s)".
Multiply (2.2) by u™"* on both sides, then integrate owerFor the left side, we usé™? = 2 (UM +u") 4 (™1 —u")).
For the right side, we apply the integration by parts. Then

1 e
2/t 2/t £

wherel is N x N identity matrix and| - ||z is the regulat.? norm.
While for a symmetric matri¥, we have the following inequality holds,

/[(Du”*l)T(BI —AU",x))0u"] dx—%/[Du”*l-Dunﬂ] dx,  (7.1)

1
X' Py < 5 (X"x+yy),

with A the spectral radius d?. One can easily show this by first diagonaliziRgand then applying the Cauchy-
Schwarz inequality.
Then
(DU HT(BI = A", X)) 0u" < Smax|B — A (A)|(|Ou™ 1+ 0u"?)

<

NI NI =

B(IOU™ 2+ |Ou).

The last inequality follows from the condition (2.3).
Hence 1 5 L 5
[u™H5 = [unfl5 | [Ju™ -l

At At

< g/(mu“m o+ Pjax- 2 [ 1 2

- _g [ = o Rdx
Therefore, the total energy afby
E(u):/(u2+Atg\Du\2)dx (7.2)
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satisfies the energy dissipation
E(U™) —E(U") < —[u™ —u"Z <o
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