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Abstract

We present a class of asymptotic-preserving (AP) schemes for the nonhomogeneous Fokker-Planck-Landau
(nFPL) equation. Filbet and Jin [14] designed a class of AP schemes for the classical Boltzmann equation, by pe-
nalization with the BGK operator, so they become efficient in the fluid dynamicregime. We generalize their idea
to the nFPL equation, with a different penalization operator, the Fokker-Planck operator that can be inverted by the
conjugate-gradient method. We compare the effects of different penalization operators, and conclude that the Fokker-
Planck (FP) operator is a good choice. Such schemes overcome the stiffness of the collision operator in the fluid
regime, and can capture the fluid dynamic limit without numerically resolvingthe small Knudsen number. Numerical
experiments demonstrate that the schemes possess the AP property forgeneral initial data, with numerical accuracy
uniformly in the Knudsen number.

1 Introduction

The nonlinear Fokker-Planck-Landau (nFPL) equation is widely used in plasma physics. It’s a Boltzmann type kinetic
equation that describes the dynamics of the phase space density distribution functionf = f (t,x,v) of charged particles
at positionx, time t with velocityv. The rescaled nFPL equation reads

∂t f +v·∇x f =
1
ε

Q( f ), x∈ R
Nx,v∈ R

Nv (1.1)

with the nFPL operator

Q( f ) = ∇v ·
∫

RNv
A(v−v∗)( f (v∗)∇v f (v)− f (v)∇v∗ f (v∗))dv∗, (1.2)

where the semi-positive definite matrixA(z) is given by

A(z) = |z|γ+2
(

I − z⊗z
|z|2

)

.

Hereε is the Knudsen number, defined as the ratio of mean free path and the typical length scale. The parameterγ is
determined by the type of interaction between particles. Inthe case of inverse power law relationship, that is, when
two particles at distancer interact with a force proportional to 1/rs, γ = s−5

s−1. For example, in the cases of the Maxwell
moleculesγ = 0 (corresponding tos= 5) and for the Coulomb potentialγ = −3 (corresponding tos= 2).

The nFPL equation is derived as a limit of the Boltzmann equation when all the collisions become grazing. It is
more relevant in physics for charged particles, where the Coulomb potential is presented. The first derivation was due
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to Landau ([19],[20]). For a mathematical derivation and analysis, we refer to the work of Arsenev and Buryak [1],
Degond and Lucquin-Desreux [9], Desvillettes [11], and also a detailed review by Villani [30]. In this article we will
always takeγ = −3, while the scheme itself can be applied to anyγ.

Similar to the classical Boltzmann operator, the nFPL operator (1.2) also preserves mass, momentum and energy.
This can be seen from its weak formulation. Noting,

Q( f ) = ∇v ·
∫

RNv
A(v−v∗) f (v∗) f (v)(∇v log f (v)−∇v∗ log f (v∗))dv∗,

one obtains
∫

RNv
Q( f )φdv= −1

2

∫∫

RNx×RNv
f (v∗) f (v)(∇vφ(v)−∇v∗φ(v∗))

T A(v−v∗)(∇v log f (v)−∇v∗ log f (v∗))dv∗dv. (1.3)

Here∇φ is a column vector and(·)T is the matrix transpose operation. The conservations of mass and momentum are
straightforward. The conservation of energy follows from the fact that the null space ofA(z) is span{z}, i.e.,

A(z)z= 0.

Besides if one takesφ = log f in (1.3), due to the semi-positivity ofA(z), one obtains the entropy dissipation
inequality,

∫

RNv
Q( f ) log f ≤ 0. (1.4)

Here the equality holds only iff is the (local) equilibrium

M(x,v) =
ρ(x)

(2πT(x))Nv/2
exp

(

− (v−u(x))2

2T(x)

)

, (1.5)

where the macroscopic quantities are given by































ρ =
∫

RNv
f dv,

u =
1
ρ

∫

RNv
v f dv,

T =
1

Nρ

∫

RNv
(v−u)2 f dv.

Finally, as in the classical Boltzmann equation, whenε → 0, the moments of solution to (1.1) are governed asymp-
totically by the macroscopic Euler equations











∂tρ +∇x ·ρu = 0,

∂t(ρu)+∇x · (ρu⊗u+ pI) = 0,

∂tE +∇x · ((E + p)u) = 0.

(1.6)

where the total energyE = 1
2ρu2 + N

2 ρT and the pressure is given by the equation of state

p = ρT.

A lot of efforts have been devoted to the numerical schemes for the nFPL equation recently. In [31], [2], [10],
[4], [5], [6], conservative finite difference type discretizations were applied to the space homogeneous equation was
derived. To reduce the computational cost caused by the highdimensional integral in the collision operator, spectral
schemes were derived in [25], [26], [15]. However all these (explicit) schemes suffer from the stability constraint
∆t < Cε∆v2. Lemou and Mieussens [22] proposed a class of implicit schemes, which invert a linear system, instead
of a nonlinear one. However a full matrix needs to be invertedin their scheme.
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We would like to develop numerical schemes for equation (1.1) that can capture the fluid dynamic limit (1.6)
automaticallywhenε → 0. This is the so-called Asymptotic Preserving (AP) scheme,a term first introduced by Jin
[16]. An AP scheme is efficient in the fluid dynamic regime (ε ≪ 1) since it allows one to capture the fluid dynamic
limit (1.6) without numerically resolving small scaleε. In recent years many AP schemes have been designed for
kinetic equations, see for example [14] and references therein.

Recently Filbet and Jin [14] proposed a new class of AP schemes for the Boltzmann equation by penalization with
BGK operator,

f n+1− f n

∆t
+v·∇x f n =

1
ε
[

Q( f n)−β (Mn− f n)+β (Mn+1− f n+1)
]

. (1.7)

The stiffness in the Boltzmann collision operator1
ε Q( f ) can be overcome by the implicitly discretized BGK operator

β
ε (Mn+1− f n+1), for large enough constantβ . Since the implicit BGK operator can be solved explicitly, this method
avoids the complexation of inverting theQ( f ) for smallε.

The goal of this paper is to generalize their idea to the nFPL equation. The diffusive nature in the nFPL operator
introduces new stiffness, which requires the penalizationterm to be also diffusive. The BGK operator is not suitable
as a penalization any more. Several candidates are available. Analytical and numerical study in this paper show that
the best choice is the following Fokker-Planck (FP) operator,

PFP( f ) = PM
FP f = ∇v ·

(

M∇v

(

f
M

))

. (1.8)

The FP operator is a linear operator when the MaxwellianM is time independent, in the case of the space homogeneous
Fokker-Planck equation

∂t f = PM
FP f .

SincePM
FP f preserves the macroscopic variables (density, momentum and energy), the MaxwellianM does not change

in time. The study of the FP operator can provide a useful guidance to study the classical Boltzmann operator (see
[29]). We refer to [24] [12] and the references therein for more detailed study. The numerical methods of FP equation
were first introduced by Chang and Cooper ([8]). Since then ithas been studied in many works, such as [21], [13], [7].
In this article we also introduce a new discretization for the FP operator, which leads to a symmetric matrix, hence is
easy to invert.

Here we summarize our new schemes. The first order scheme for the nFPL equation (1.1)(1.2) reads

f n+1− f n

∆t
+v·∇x f n =

1
ε
(

Q( f n)−βPn f n +βPn+1 f n+1) (1.9)

wherePn f n = PMn

FP f n is the FP operator (1.8) andβ is given by

β = max
v

λ (DA( f )). (1.10)

Hereλ (DA) is the spectral radius of the positive symmetric matrixDA, with DA( f ) defined by

DA( f ) =
∫

A(v−v∗) f∗dv∗. (1.11)

A second order implicit-explicit (IMEX) type scheme reads














f ∗− f n

∆t/2
+v·∇x f n =

Q( f n)−βPn f n

ε
+

βP∗ f ∗

ε
,

f n+1− f n

∆t
+v·∇x f ∗ =

Q( f ∗)−β ∗P∗ f ∗

ε
+

β ∗Pn f n +β ∗Pn+1 f n+1

2ε
.

(1.12)

with P( f ) the FP operator (1.8). Suggested by numerical experiments,we take

β = (2+
√

2)max
v,λ

λ (DA( f )),

β ∗ = (2+
√

2)max
v,λ

λ (DA( f ∗)).
(1.13)
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If the initial data is close to equilibrium, i.e.,f I = MI +O(ε), then the numerical solutions computed by schemes
(1.9) and (1.12) always satisfyf n−Mn = O(ε), due to the implicit discretized FP operatorPn+1 f n+1. Therefore the
moments off solve (1.6) automatically, asε → 0 with fixed∆x,∆v,∆t. Note that for an explicit scheme one cannot
expectf n−Mn = O(ε) even if initially it is.

If the initial data is far away from equilibrium, i.e.,f I = MI +O(1), our numerical experiments shows thatf n−
Mn = O(ε) for sufficiently largen. This is the weakened AP property introduced in [14].

This article is organized as following. In section 2 we describe the time discretization of the nFPL equation based
on penalization. Then we give further details on the implementation of the schemes in section 3, where we also
introduce a symmetric operator to solve the linear system involving Pn+1

FP efficiently. Finally we perform a series of
numerical simulation in section 4 to demonstrate the desired AP property and the numerical accuracy.

2 An AP Scheme for the nFPL equation by penalization

An explicit scheme for the classical Boltzmann equation hasto use time step∆t ∼ ε, due to the stiffness introduced
by 1

ε in the collision operator. Asε → 0 this would be too expensive. This is even worse for the nFPL equation since
one has to take∆t ∼ ε∆v2. An implicit scheme has no such restriction on the time step.But implicit schemes involve
inverting an operator containingQ( f ), which cost a lot if one uses Newton’s solver.

In [14] a penalization method (1.7) was introduced to overcome this difficulty. The BGK operator is used as the
penalization, whenQ( f ) is the classical Boltzmann operator. In this section we extend Filbet and Jin’s idea in [14] in
very different way.

The first question is, which operator is suitable as the penalizationP( f ) for the nFPL operator. Unlike the classical
Boltzmann operator, the nFPL operator behaves more like a diffusion operator. The stiffness on the right side of (1.1)
comes from two parts: the stiffness due to1

ε whenε is small and the stiffness due to the diffusive nature of (1.2).
We first use a toy model to motivate our idea.

2.1 A toy nonlinear diffusion equation

Consider theN-dimensional diffusion equation foru(x, t), with x∈ R
N,

∂u
∂ t

=
1
ε

∇x · (A(u,x)∇xu), (2.1)

whereA(u,x) is a semi-positive definiteN×N matrix. A can depend onu andx.
When ε is small, this equation suffers from the stiffness originated from the diffusive operator and the large

coefficient 1
ε . An explicit scheme requires∆t ∼ O(ε(∆x)2). We apply the penalization idea to remove this stiffness.

The same idea has been used to solve the fourth order surface diffusion equation by Smereka [28]. See also a more
recent application in imaging processing [3].

Consider the following scheme with an diffusion termβ
ε ∇2

xu added and subtracted, but discretized at different time
level.

un+1−un

∆t
=

1
ε

∇x · (A(un,x)∇xu
n)− β

ε
∇2

xun +
β
ε

∇2
xun+1 . (2.2)

For stability one requires

β ≥ 1
2

max
x∈RN,u∈R

λ (A(u,x)). (2.3)

One can show the following result.

Theorem 2.1. The scheme (2.2) is a stable time discretization of (2.1) under the condition (2.3). More precisely, define
the energy

En =
∫

(

|un|2 +
β∆t

ε
|∇xu

n|2
)

dx

then En+1 ≤ En, for any n≥ 0.
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The proof is similar to that in [3]. For completeness, we givethe proof in the Appendix.

Remark 2.2. For diffusion equation (2.1), one cannot take P(u) =−β
ε u as the penalization operator. We give a simple

argument here. For simplicity, we consider the one dimensional equation

ut =
1
ε

uxx

with the penalization scheme
un+1−un

∆t
=

1
ε

un
xx+

β
ε

un− β
ε

un+1. (2.4)

After the Fourier transform on x, one gets

ûn+1− ûn

∆t
= −k2

ε
ûn +

β
ε

ûn− β
ε

ûn+1,

whereû is the Fourier transform of u, and k the Fourier number. Then

ûn+1 =
ε +(β −k2)∆t

ε +β∆t
ûn.

For stability uniformly inε, one needs

β ≥ 1
2

max
k

k2 = O(N2
x ) = O

(

1
(∆x)2

)

,

where Nx is the number of grid points in the x direction.

Sinceβ appears in the truncation error for (2.4), this gives the error of (2.4) like O
(

∆t
ε(∆x)2

)

, which is not good in

the regime∆t > O(ε(∆x)2).
On the other hand, if one applies the parabolic penaliazation,

un+1−un

∆t
=

1
ε

un
xx−

β
ε

un
xx+

β
ε

un+1
xx ,

thenβ ≥ 1
2 gives a stable scheme.β = 1

2 is the well known Crank-Nicolson scheme whileβ = 1 gives the backward
Euler scheme.

2.2 The choice of penalization operator for the nFPL equation

As illustrated in the last subsection, the classical BGK operator P = (M − f ) used in [14] to penalize the classical
Boltzmann equation can not be used here. Instead, we impose the following criteria for the choice ofP:

(C1) P( f ) preserves mass, momentum and energy.

(C2) P( f ) is easy to invert, or at least easier thanQ( f ).

(C3) P( f ) contains a diffusion operator.

(C4) P( f ) can pushf toward the equilibriumM, a necessary condition for AP.

To find a suitable penalizationP( f ), a key observation is the fact that the diffusion in the nFPL operator (1.2) is on
( f −M), not on f . In other words, one needs to extract a diffusion operator on( f −M) from (1.2). To do this, note that

∇ f = ∇
(

M
f

M

)

=
f

M
∇M +M∇

f
M

= f ∇ logM +M∇
f

M
,
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thus the nFPL operator (1.2) can be rewritten as

Q( f ) = ∇v ·
∫

A(v−v∗)( f∗∇v f − f ∇v∗ f∗)dv∗

= ∇v ·
∫

A(v−v∗)

(

f∗ f (∇v logM−∇v∗ logM∗)+ f∗M∇
f

M
− f M∗∇v∗

f∗
M∗

)

dv∗

= ∇v ·
(

DA( f )M∇
f

M

)

−∇v · (FA( f ) f ) , (2.5)

whereDA( f ) is defined in (1.11), and

FA( f ) =
∫

A(v−v∗)M∗∇v∗
f∗

M∗
dv∗.

Here we have used the fact
A(v−v∗)(∇v logM−∇v∗ logM∗) = 0.

The first term in (2.5) is a diffusion operator onf −M we desire, which can be written as

∇v ·
(

DA( f )M∇
f −M

M

)

.

Thus a natural choice of the penalization operator is the Fokker-Planck (FP) operator

P( f ) = PM
FP f = ∇v ·

(

M∇v

(

f
M

))

. (2.6)

It’s easy to check that thisP( f ) satisfies all the requirements (C1)-(C4) we looked for. Motivated by Theorem 2.1, the
stability condition onβ is conjectured as

β ≥ 1
2

max
v

λ (DA( f )). (2.7)

The convolution type 2×2 or 3×3 matrixDA( f ) can be computed without difficulty by the Fast Fourier Transform.
Actually the Fourier transform ofA(v) and f (v) are obtained as a by-product during the computation ofQ( f ), if one
applies a spectral scheme such as in [26]. Then the eigenvalue can be computed easily.

Now our first order scheme reads,

f n+1− f n

∆t
+v·∇x f n =

1
ε
(

Q( f n)−βPn f n +βPn+1 f n+1) (2.8)

with Pn = PMn

FP the FP operator.
First Mn+1 can be obtainedexplicitly thanks to the fact that the right side of (2.8) preserves density, momentum

and energy. Multiply both sides of (2.8) byφ = 1,v, |v|
2

2 and integrate overv, one obtains

∫

φ
(

f n+1− f n

∆t
+v·∇x f n

)

dv= 0.

So the moments attn+1 can be derivedexplicitlyby,

(ρ,ρu,E)n+1 =
∫

φ( f n−∆tv·∇x f n)dv (2.9)

andMn+1 is defined by (1.5). Then one can solvef n+1

f n+1 = (1− ∆tβ
ε

Pn+1)−1
(

f n−∆tv·∇x f n +
∆t
ε

(Q( f n)−βPn f n)

)

(2.10)

Section 3.2 describes a detailed algorithm to computer the inverse of(1− ∆tβ
ε Pn+1).
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2.3 The choice of the penalization weight β
Roughly speaking, the value ofβ determines how much the stiffness in the nFPL operatorQ( f ) is removed. (2.7)
gives a lower bound ofβ for stability. However the equal sign does not give a satisfactory choice ofβ . One reason is
there is always numerical error in the computation of matrixDA( f ). The choice ofβ on borderline is of high risk. In
numerical simulation we takeβ as

β = β0max
v

λ (DA( f )) (2.11)

whereβ0 > 1
2 is a constant.

To find a suitableβ0, we reconsider the toy model studied by Filbet and Jin [14],

∂t f = −1
ε

f . (2.12)

Apply the first order penalization,
f n+1− f n

∆t
= −1

ε
( f n−ν f n +ν f n+1). (2.13)

Then one obtains

f n+1 =
ε +(ν −1)∆t

ε +ν∆t
f n.

A simple analysis shows that the scheme (2.13) is stable uniformly in ε if ν ≥ 1
2, analogous to the stability condition

β0 ≥ 1
2 in (2.11). (2.13) withν = 1

2 gives a second order discretization in time for (2.12). However ν = 1 seems to be
a better choice.ν = 1 gives a first order discretization in time, but it gives the fastest decay to equilibrium. Besides,
the nonnegativity is guaranteed as long asν ≥ 1. The nonnegativity is a natural requirement sincef is the density
distribution. The fast decay is important for the AP purpose, when the initial data is not close to the local equilibrium.

For the same reasons, we also takeβ0 = 1 in (2.11).
Similarly the second order scheme















f ∗− f n

∆t/2
= −1

ε
( f n−ν f n +ν f ∗),

f n+1− f n

∆t
= −1

ε
( f ∗−ν f ∗ +ν( f n + f n+1)/2)

gives

f n+1 =
ε2 + ε∆t(ν −1)+ 1

4∆t2(ν2−4ν +2)

(ε +∆tν/2)2 f n.

Again the scheme is stable ifν ≥ 1
2. To guarantee the nonnegativity, one needs

ν −1≥ 0, andν2−4ν +2≥ 0.

Henceν ≥ (2+
√

2) is a sufficient condition. Andν = (2+
√

2) gives the fastest decay when∆t ≫ ε.
Therefore theβ is chosen as in (1.13) for the second order scheme (1.12).

2.4 Other penalizations

Another candidate of the penalization operator is given by the family

P( f ) = ∇ ·
(

(a+(b+cv)2)∇( f −M)
)

,

with a > 0, b∈ R
N, c∈ R. Without loss of generality, we assumea = 1. The operator the reads

P( f ) = ∇ ·
(

(1+(b+cv)2)∇( f −M)
)

. (2.14)
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One can check that this family of operators satisfies the requirements (C1)-(C3). Besides, for the homogenous equation

∂
∂ t

f = ∇ ·
(

(1+(b+cv)2)∇( f −M)
)

,

one has the inequality
∂
∂ t

∫

( f −M)2dv= −
∫

(1+(b+cv)2) |∇v( f −M)|2dv≤ 0.

A special case is the classical diffusion operator, whenb = 0 andc = 0 in (2.14),

PD( f ) = ∇2
v( f −M). (2.15)

This classical diffusion operator can be connected to the FPoperator (1.8) by

∇2( f −M) = ∇ ·∇
(

M
f −M

M

)

= ∇ ·
(

M∇
(

f
M

))

+∇ ·
(

( f −M)
∇M
M

)

.

The second operator

∇ ·
(

( f −M)
∇M
M

)

= −∇ ·
(

( f −M)
v−u

T

)

also drivesf −M to zero. This can be seen by noting that the solution to

∂tu = −∂x(xu)

is given by
u(x, t) = e−tu0(xe−t).

Remark 2.3. Although the above heuristic analysis suggests that the classical diffusion operator (2.15) is more effec-
tive than the FP operator (1.8) in driving f to the local equilibrium M, our numerical simulation in section 4.5 shows
that (2.15) is not appropriate. Actually it seems that using(2.15) is not AP in long time.From now on, we will always
takeP( f ) to be the FP operator (1.8), except otherwise specified.

3 A Full discretization of the nFPL equation

We now describe the detailed algorithm for the first order scheme (1.9). The algorithm for the second order scheme
(1.12) is similar.

Suppose the numerical solutionf n at timetn is given, then

Step 1 Apply a first order upwind scheme or second order TVD scheme onthe transport operator to compute new
moments via (2.9) by a quadrature rule, say the trapezoidal rule, then the new MaxwellianMn+1 is obtained at
eachx andPn+1 can be defined.

Step 2 At eachx, compute the nFPL operatorQ( f n) and the coefficient matrixDA f n defined by (1.11). Then the
penalization weightβ = β (x) is determined by (1.10).

Step 3 Discretize the linear FP operatorPn andPn+1. One arrives at a linear system in thev direction for eachx.

Step 4 Solve the resulting linear system to obtainf n+1 in (2.10) at eachx.

It is very important that one computesMn+1 beforeQ( f n) andPn( f n) are computed. This is equivalent to say that
Q( f n) andPn( f n) are assumed to be conservative after numerical approximation. However this is not true for many
efficient schemes. The spectral scheme on nFPL operator introduced in [26] preserves the mass while conservation of
momentum and energy are “spectrally preserved”. As for the FP operator, the discretization we are using (see section

8



3.2) preserves the mass while the errors in conservation of momentum and energy areO(∆v2). For the first order
scheme (2.10), if one computesQ( f n) andPn( f n) first and then computes the moments off n+1 from

f n−∆tv·∇x f n +
∆t
ε

(Q( f n)−βP( f n)) ,

one would get a error ofO(∆t∆vp

ε ) in momentum and energy. This could give totally unphysical results. For example
one might get negative temperatureTn+1 and then the new equilibriumMn+1 is not a Gaussian at all.

In the following sections we describe how to computeQ( f ) andP( f ).

3.1 Computation of Q( f )

We use the fast spectral method designed by Pareschi, Russo and Toscani [26]. The computational cost isO(N logN),
whereN = Nd

v is the grid points in velocity space. The scheme preserves mass exactly, and preserves momentum and
energy with the spectral accuracy. Besides, in numerical implementation we will replaceQ( f ) by Q̃( f ) = Q( f )−Q(M)
to make sure the equilibrium gives well balanced resultQ̃(M) = 0.

Besides, one obtains the Fourier transform ofA(v) and f (v) during the implementation of this spectral method.
Therefore the matrixDA( f ) can be obtained easily by a simple inverse Fourier transform.

3.2 Discretization of P( f )

The discretization of the FP operator (1.8) has been studiedin many works ([21], [13], [7]). Here we introduce a new
one. First we define a symmetric operator

P̃Mh =
1√
M

∇v ·
(

M∇v

(

h√
M

))

(3.1)

Note

PM f =
√

MP̃M f√
M

(3.2)

and we can rewrite (2.10) as
(

f√
M

)n+1

= (1− ∆tβ
ε

P̃n+1)−1
{

1√
Mn+1

(

f n−∆tv·∇x f n +
∆t
ε

(Q( f n)−β
√

MnP̃n f n
√

Mn
)

)}

(3.3)

Now we give the discretization of̃P in one dimension. The extension to higher dimension is similar.

(P̃Mh) j =
1

(∆v)2

1
√

M j

(

√

M jM j+1

(

(

h√
M

)

j+1
−
(

h√
M

)

j

)

−
√

M jM j−1

(

(

h√
M

)

j
−
(

h√
M

)

j−1

))

=
1

(∆v)2

(

h j+1−
√

M j+1 +
√

M j−1
√

M j
h j +h j−1

)

(3.4)

ThenP̃ is symmetric (under the normal inner product). Besides, after this discretization, we have the well balanced
property

PMM =
√

MP̃M
√

M = 0.

This is important for theAPproperty.

Remark 3.1. This discretization preserves the mass while the errors in conservation of momentum and energy are
O(∆v2). One might suggest the discretization of the FP operator based on another equivalent form,

P f = ∇v

(

∇v f +
v−u

T
f

)

.

The discretized operator can indeed preserve all the moments exactly. However, this discretizaiton gives a nonsymmet-
ric matrix, which is not easy to invert.
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3.3 Inversion of the linear system

SinceP̃ is symmetric, one can apply the Conjugate Gradient (CG) method on (3.3) to obtain
(

f√
M

)n+1
. Then f n+1 is

obtained. To start the CG algorithm, a good initial guess is

f n+1
0 = Mn+1.

Let f n+1
k be the value off n+1 afterkth iteration.

Then
f n+1
k√
Mn+1

∈
√

Mn+1 +span{r,Ar, . . . ,Ak−1r},

where

A = I − ∆tβ
ε

P̃n+1,

r =
1√

Mn+1

(

f n−∆tv·∇x f n−Mn+1 +
∆t
ε

(Q( f n)−β
√

MnP̃n f n
√

Mn
)

)

.

SinceQ( f ) andP( f ) preserve mass exactly,f n+1
k shares the same mass withMn+1, for all k ≥ 0. As for the

momentum and energy, one might question that the vectorr could introduce an error ofO(∆t∆vp

ε ), wherep is the
order of accuracy of the velocity discretization for operator P̃. However our numerical experiments show that the
conservations of momentum and energy are quite satisfactory. See Table 1 in Section 4.2.3 for details.

4 Numerical simulation

4.1 The convergence order

First we numerically check that the two schemes (1.9) and (1.12) are indeed first and second order accurate.
To avoid the influence from the boundary, we take the periodicboundary condition inx. The initial data are given

by f I = MI , with

ρ I =
2+sinπx

3
, uI = 0, T I =

9+cosπx
50

(4.1)

wherex∈ [−1,1], v∈ [−π,π]2.
The spectral scheme described in [26] allows us to compute the nFPL operator (1.2) efficiently. Numerical experi-

ments shows thatNv = 32 can give satisfactory results.
We compute the solutions with the number of grid pointsNx = 32,64,128,256,512,1024 respectively. The time

step is given by∆t = ∆x/8. After timetmax = 0.125 we check the following error,

e∆x = max
t∈(0,tmax)

|| f∆x(t)− f2∆x(t)||p
|| f I ||p

(4.2)

This can be considered as an estimation of the relative errorin Lp norm, wherefh is the numerical solution computed
from a grid of size∆x = xmax−xmin

Nx
. The numerical scheme is said to bek-th order ife∆x ≤C∆xk, for ∆x small enough.

For (1.9) the first order upwind scheme is applied to the transport operator. As for (1.12), the transport operator is
solved by a second order TVD scheme using the van Leer slope limiter (see [23] for details).

Figure 1 gives the convergence order inL1 norm, showing that the two schemes are first order and second order in
x respectively (hence in time) uniformly inε, as expected.
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Figure 1: Thel1 errors (4.2) of the first order scheme (1.9) (left) and the second order scheme (1.12) (right) with
different Knudsen numberε.

4.2 The AP property

4.2.1 The AP property for equilibrium initial data

We first demonstrate that the distributionf would stay close to the equilibriumM, if initially it does. We apply the
first order scheme (1.9)-(1.11) on the equilibrium initial data f I = MI , with the macroscopic variables given by

ρ I =
2+sinπx

3
, uI = 0, T I =

3+cosπx
4

(4.3)

wherex∈ [−1,1], v∈ [−6,6]2.
For differentε, we show the time evolution of

‖ f −M‖1 =
∫∫

| f −M|dxdv

(approximated by the trapezoidal rule). The results are shown in Figure 2. As expected,f n−Mn = O(ε) for all n≥ 1.

The second order IMEX scheme (1.12) gives similar results.

4.2.2 The weakened AP property for non-equilibrium initial data

Next we start with the “double peak” non-equilibrium initial data

f I =
ρ I

2πT I ·
1
2

(

exp(− (v−uI )2

2T I )+exp(− (v+uI )2

2T I )

)

(4.4)

where

ρ I =
2+sinπx

3
, uI = (0.2,0), T I =

3+cosπx
4

. (4.5)

The time evolutions of‖ f −M‖1 for differentε are shown in Figure 3, with first order (circle) and second order
(solid line) schemes. We have numerically shown that, for general initial data, the scheme is “weak” AP after transient
steps, namely,f n−Mn = O(ε) for n sufficiently large. This is the weakened AP property. This behavior is similar to
that in [14], where the classical Boltzmann equation is penalized by the BGK operator. Figure 3 shows that the second
order scheme has much fewer transient steps.
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Figure 2: The time evolution of|| f −M||1 for differentε with equilibrium initial data. The solutions are computed by
the first order scheme (o) and second order scheme (solid line) respectively. The mesh sizes are the same.v∈ [−6,6]2,
Nv = 64,x∈ [−1,1], Nx = 100,∆t = ∆x/vmax.
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Figure 3: The time evolution of|| f −M||1 for differentε with non-equilibrium initial data. The solutions are computed
by the first order scheme (o) and second order scheme (solid line) respectively.v ∈ [−6,6]2, Nv = 64, x ∈ [−1,1],
Nx = 100,∆t = ∆x/vmax.
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4.2.3 The conservation of moments in solving the linear system (3.3)

Next we show the CG method can preserve the moments well.
We use the “double-peak” non-equilibrium initial condition (4.4) with the macroscopic variables (4.5), where

x ∈ [−1,1], v ∈ [−6,6]. We takeNx = 100, whileNv = 32,64,128 respectively. Correspondingly∆v = vmax−vmin
Nv

≈
0.4,0.2,0.1.

We use the first order scheme (1.9) with (1.10) for one step andcompute thel1 error in moments

Err(φ) = ∑
x

∣

∣

∣

∣

∑
v

(

( f 1−M1)φ
)

∣

∣

∣

∣

∆v2∆x,

whereφ = 1,v, |v|2, M1 is computed from (2.9) whilef 1 is obtained by solving (3.3) with a CG scheme.
The results are shown in Table 1. The moments are preserved very well when the CG scheme is applied to solve

the linear system. The errors in moments are uniformly smallin ε. Besides, the conservations get improved on a finer
grid in v.

Table 1: The errors in moments when inverting the linear system (3.3)
∆v = 0.4 ∆v = 0.2 ∆v = 0.1

Err(1)

ε = 1 2.027×10−9 1.572×10−9 1.454×10−9

ε = 10−2 2.017×10−9 1.565×10−9 1.449×10−9

ε = 10−4 4.380×10−10 3.219×10−10 2.810×10−10

ε = 10−6 3.654×10−11 1.941×10−11 1.145×10−11

Err(v)

ε = 1 1.502×10−7 3.820×10−8 9.601×10−9

ε = 10−2 6.218×10−6 1.529×10−6 3.796×10−7

ε = 10−4 1.135×10−6 2.821×10−7 7.020×10−8

ε = 10−6 1.229×10−6 3.114×10−7 7.821×10−8

Err(|v|2)
ε = 1 8.346×10−8 6.226×10−8 5.691×10−8

ε = 10−2 2.691×10−7 1.118×10−7 7.584×10−8

ε = 10−4 1.690×10−6 4.471×10−7 1.760×10−7

ε = 10−6 1.749×10−6 4.602×10−7 1.797×10−7

4.3 The Riemann problem

Now we simulate the Sod shock tube problem, where the initialcondition is f I = MI with
{

(ρ,u1,T) = (1,0,1), if −0.5≤ x < 0

(ρ,u1,T) = (1/8,0,1/4), if 0 ≤ x≤ 0.5
(4.6)

The Neumann boundary condition in thex-direction is applied.
In this test we takex∈ [0,1], v∈ [−6,6]2, ε = 0.001. Numerical experiments show thatNv = 32 is enough for our

simulation. We chooseNx = 100 and∆t = ∆x
vmax

≈ 5×10−3. We compare this under-resolved solution to a fully resolved

solution by the explicit second order Runger-Kutta scheme,where we takeNx = 2000 and∆t = min{ ∆x
vmax

, ∆v2

ε }≈ 10−5.
We compute the macroscopic variableρ , u1, T andq, where the heat fluxq is given by

q(t,x) =
1
ε

∫

RNv
(v1−u1)|v−u|2 f (t,x,v)dv

The results are compared attmax = 0.2 and shown in Figure 4. One can see the macroscopic quantities are well
approximated although the mesh size and time steps are much bigger thanε, thus the computational cost has been
reduced significantly than a fully resolved computation.
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Figure 4: The comparison of density, velocity, temperatureand heat flux att = 0.2 between the resolved computation
by the explicit second order Runger-Kutta scheme (solid line) and the under-resolved solutions by the second order
IMEX type AP scheme (dots).

4.4 Mixing regimes

Now we consider the case where the Knudsen numberε increases smoothly fromε0 to O(1), then jumps back toε0,

ε(x) =







ε0 +
1
2

(tanh(5−10x)+ tanh(5+10x)) , x≤ 0.3

ε0, x > 0.3

with ε0 = 0.001. The picture ofε is shown in Figure 5. This problem involves mixed kinetic andfluid regimes.
To avoid the influence from the boundary, we take periodic boundary condition inx. The initial data are given by

f I = MI , with the macroscopic quantities given by (4.3). Again we takex∈ [−1,1], v∈ [−6,6]2.
In this test we compare the macroscopic variable obtained byour new second order scheme (1.12) and the explicit

Runger-Kutta scheme. For the explicit Runger-Kutta scheme, we takeNx = 1000,∆t = min{ ∆x
vmax

, ∆v2

ε0
} ≈ 10−5. For
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−0.2

0
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0.4

0.6

0.8

1
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ε

ε
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O(1)

Figure 5: Anx-dependentε(x).
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Kutta scheme and the solutions (dots) obtained by our new scheme (1.9) with coarse grid and large time step.

our scheme (1.12), we takeNx = 100,∆t = ∆x
vmax

= 5×10−3. The results are compared up totmax = 0.2 in Figure 6.
Our scheme can capture the macroscopic behavior efficiently, with much larger mesh size and time steps.

4.5 The comparison on different penalization operators

This section is devoted to the comparison of the two different penalizing operators (1.8) and (2.15). We will show
numerically that the classical diffusion operator (2.15) is not suitable to be the penalization.

4.5.1 Trend to the equilibrium

We start with the homogeneous equation
∂
∂ t

f = βQ( f )

with Q( f ) the nFPL operator, FP operator and classical diffusion operator respectively. Hereβ = 1 for nFPL operator,
andβ given by (1.10) for the FP and diffusion operators. We solve this equation by a second order midpoint scheme,
with ∆t constrained by the CFL condition∆t ∼ ∆v2.

The initial data are given by

f I =
ρ

2πT
exp

(

− (v−u)4

2T

)

with ρ = 1, u = 0, T = 0.8. We takevmax = 6, Nv = 64.
As time evolves, we compute the distance|| f −M||p. The results whenp = ∞ are shown in Figure 7. The FP

operator has a much stronger trend to the equilibrium. It wins over the classical diffusion.
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4.5.2 Penalization on the homogeneous equation

Next we check the behavior of numerical solutions when the two operators, FP and classical diffusion, are used as
penalizations.

We still work on the (rescaled) homogeneous equation and apply the first order scheme,

f n+1− f n

∆t
=

1
ε
(

Q( f n)−βP( f n)+βP( f n+1)
)

,

whereQ( f ) is the nFPL operator andP( f ) is either the FP or the classical diffusion operator, and we take

β = β0max
v

λ
(

∫

A(v−v∗) f∗dv∗

)

.

The equilibrium initial dataf I = MI is used, withv ∈ [−6,6], Nv = 64, andρ = 1, u = 0, T = 0.8. We take
ε = 10−6 and∆t = 0.01.

ForP( f ) to be the FP operator, we takeβ0 = 1. ForP( f ) to be the classical diffusion operator, we takeβ0 = 2,4,6.
We compute the time evolution of|| f − ftrue||∞. Note that the true solution is just the steady stateftrue = M for all the
time. The results are shown in figure 8. The solution derived when penalized by FP stays at equilibriumf = M, while
the solution penalized by the classical diffusion deviatesfrom the equilibrium very soon, whatever the choice ofβ .

This gives a direct numerical evidence that the classical diffusion cannot be used as penalization for the nFPL
operator.

4.5.3 Nonhomogeneous case.

Finally we move to the fully nonhomogeneous equation. We have numerically checked the AP property in section
4.2, when the FP operator is used as penalization. Here we show the IMEX schemes (1.9) and (1.12) are not AP if
penalized by the classical diffusion.

The equilibrium initial dataf I = MI is considered, with the macroscopic quantities given by (4.3). We take
x∈ [−1,1], Nx = 100,v∈ [−6,6]2, Nv = 64,∆t = ∆x/vmax.

We takeP( f ) in (1.9) to be the classical diffusion operator. We compare the results with the one obtained when
penalized by the FP operator. The comparison is shown in Figure 9. We give the time evolution of‖ f −M‖∞ for the
scheme with the FP (β0 = 1 in solid lines) and with the classical diffusion with different β0. The simulation shows,
if the classical diffusion operator is used as penalization, f would get away fromM even if initially they are close. A
largerβ can decelerate this departing. But after long time we alwaysget f −M ∼ O(1). Therefore the scheme is not
AP anymore.
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5 Conclusion

A penalization based asymptotic-preserving scheme for thenonlinear Fokker-Planck-Landau (nFPL) equation has
been introduced in this article. The basic idea comes from the BGK-penalization for the classical Boltzmann equation
studied by Filbet and Jin [14]. However the diffusive natureof nFPL operator makes the BGK operator not suitable
as the penalization term. We use the (linear) Fokker-Planck(FP) operator as the penalization instead. The FP operator
possesses the good properties of collision operator, such as the conservation of moments and entropy dissipation.
Besides, the FP operator, which also contains a diffusive term, can overcome the stiffness in the nFPL operator. To
solve the linear system involving FP operator implicitly, we introduce a central discretization and derive a symmetric
matrix, therefore a Conjugate Gradient scheme can be applied easily. Several numerical experiments are also carried
out to verify the performance of the new scheme for differentregimes and its AP property.

The case of particles interacting through Coulomb potential is studied. However the scheme can apply to other
cases (e.g. the Maxwell potential) without any difficulties.

The boundary conditions are beyond the scope of this paper. There are very few studies on AP schemes in this
direction except [17] [18]. It is an important subject for future research.

We numerically verified our scheme is AP beyond the initial transient layer. However the theoretical analysis for
our scheme is still lacking and is a subject of future research.
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7 Appendix: Proof of Theorem 2.1

Proof of Theorem 2.1.We take∇u as a column vector. Its transpose is written as(∇u)T .
Multiply (2.2) byun+1 on both sides, then integrate overx. For the left side, we useun+1 = 1

2

(

(un+1 +un)+(un+1−un)
)

.
For the right side, we apply the integration by parts. Then

||un+1||22−||un||22
2∆t

+
||un+1−un||22

2∆t
=

1
ε

∫

[

(∇un+1)T(β I −A(un,x))∇un]dx− β
ε

∫

[

∇un+1 ·∇un+1]dx, (7.1)

whereI is N×N identity matrix and|| · ||2 is the regularL2 norm.
While for a symmetric matrixP, we have the following inequality holds,

xTPy≤ 1
2

λ (xTx+yTy),

with λ the spectral radius ofP. One can easily show this by first diagonalizingP and then applying the Cauchy-
Schwarz inequality.

Then

(∇un+1)T(β I −A(un,x))∇un ≤ 1
2

max|β −λ (A)|(|∇un+1|2 + |∇un|2)

≤ 1
2

β (|∇un+1|2 + |∇un|2).

The last inequality follows from the condition (2.3).
Hence

||un+1||22−||un||22
∆t

+
||un+1−un||22

∆t
≤ β

ε

∫

(|∇un|2 + |∇un+1|2)dx− 2β
ε

∫

|∇un+1|2dx

= −β
ε

∫

(|∇un+1|2−|∇un|2)dx.

Therefore, the total energy ofu by

E(u) =
∫

(u2 +∆t
β
ε
|∇u|2)dx (7.2)
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satisfies the energy dissipation
E(un+1)−E(un) ≤−||un+1−un||22 ≤ 0.
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