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Abstract

An integral equation based scheme is presented for the fast and accurate
computation of effective conductivities of two-component checkerboard-like
composites with complicated unit cells at very high contrast ratios. The
scheme extends recent work on multi-component checkerboards at medium
contrast ratios. General improvement include the simplification of a long-
range preconditioner, the use of a banded solver, and a more efficient place-
ment of quadrature points. This, together with a reduction in the number
of unknowns, allows for a substantial increase in achievable accuracy as well
as in tractable system size. Results, accurate to at least nine digits, are
obtained for random checkerboards with over a million squares in the unit
cell at contrast ratio 106. Furthermore, the scheme is flexible enough to
handle complex valued conductivities and, using a homotopy method, purely
negative contrast ratios. Examples of the accurate computation of resonant
spectra are given.

Keywords: Random checkerboard, Homogenization, Integral equation,
Fast solver, Metamaterial

1. Introduction

This paper is devoted to solving the electrostatic equation for periodic
composites with unit cells made of squares of conductivity σ2 that are ei-

Email address: helsing@maths.lth.se (Johan Helsing)
URL: http://www.maths.lth.se/na/staff/helsing/ (Johan Helsing)

1Tel.:+46 46 2223372

Preprint submitted to Journal of Computational Physics April 27, 2022

http://arxiv.org/abs/1106.1767v1


ther mixed with other squares of conductivity σ1, to form a checkerboard
structure, or simply embedded in a background material of conductivity σ1.
There are Nsq squares in the unit cell and the area fraction of squares with
conductivity σ2 is denoted p. The goal is to compute the effective conduc-
tivity σ∗ rapidly, with high accuracy, and for almost any combination of σ1,
σ2, and p for which the electrostatic equation has a solution.

1.1. Motivation and challenges

There are several applications that motivate our study. The homogeniza-
tion of checkerboards with random unit cells at high real valued contrast ra-
tios σ2/σ1 (or σ1/σ2) is a classic problem in materials science. It is of interest
to study how σ∗ depends on p and in particular what happens when one type
of squares forms a connected path throughout the composite (percolation).
The contrast ratio can be considerable in materials of technological impor-
tance. A ratio of 107 is not unusual [23]. Very large Nsq are then needed to
reach convergence to statistical limits. See Chapters 10.10 and 10.11 of [25]
for a review of this field. In the metamaterial community there is a strong
interest in a related issue, namely how to compute resonant spectra of effec-
tive dielectric permittivity functions (spectra of plasmonic excitations) for
composites made of polygonal metamaterial inclusions embedded in a dielec-
tric background material [7, 27]. The electrostatic equation is the same for
conducting and for dielectric materials. Only the notation differs, see Ta-
ble on p. 19 of [25]. For simplicity, we will talk about conductivity in this
context, too. Of particular interest is the behavior of σ∗ close to values of
σ2/σ1 where the electrostatic equation does not have a solution or only has
a solution as a limit in the complex σ2/σ1-plane.

The computational tasks just discussed offer extreme challenges. Non-
smooth interfaces tend to make solutions singular and hard to resolve. The
electric fields close to certain corner vertices may just barely be square inte-
grable. As Nsq grows, the interaction between distantly separated parts in
the computational domain may cause problems which cannot be resolved by
discretization and local techniques alone. Being in the vicinity of parame-
ter combinations where the electrostatic equation ceases to have a solution
is often hard. All these difficulties add up and may manifest themselves
as artificial ill-conditioning, slow convergence with mesh refinement, criti-
cal slowing down in iterative solvers, and severe loss of precision. Several
methods have been suggested to alleviate these problems including variants
of the finite element method [1, 6], network models [23, 12], renormalization
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schemes [20], mode-matching methods [27], and Brownian motion simula-
tion [21]. See also Section 3 of [26] for state-of-the-art algorithms to combat
critical slowing down in network models and [8] for a discussion of future
directions in the research field at large.

1.2. Our scheme

Let Γ denote the boundary (the interfaces) of a composite. We shall
reformulate the electrostatic equation as a Fredholm second kind integral
equation

(I +K)µ(z) = g(z) , z ∈ Γ , (1)

where I is the identity, K is an integral operator which is compact on smooth
Γ, µ(z) is an unknown layer density, and g(z) is a right hand side.

Solvers for large-scale boundary values problems on smooth domains often
rely on integral equation reformulations of the form (1). The last few years
have seen increased activity in the development of efficient solvers using (1)
also when Γ is non-smooth. The scheme of the present paper originates from
work on non-smooth inclusion problems in free-space [17]. The ideas in [17]
were later improved and extended to encompass the biharmonic equation [18],
mixed boundary conditions [13], singular integral equations with non-zero
indices [14], and boundaries with quadruple-junctions [15]. The present paper
is a direct sequel to [15]. As in [15], we apply a combination of short- and
long-range preconditioners to (1). Major new features include:

• A better strategy for choosing quadrature nodes which makes the error
in σ∗ grow linearly with contrast ratio. In [15] the growth is superlinear.

• An improved long-range preconditioner which makes the computational
cost grow almost linearly with Nsq. In [15] the growth is cubic.

• A homotopy-type method which allows for computing σ∗ at points in
the complex σ2/σ1-plane where the solution to the electrostatic equa-
tion only exists as a non-unique limit.

In addition there are several minor improvements.

1.3. Relation to the Bremer–Rokhlin scheme

Other recent work on the efficient solution of (1) in the presence of
non-smooth boundaries includes [5], which exploits cancellation of singulari-
ties, and a comprehensive mechanism currently being developed by a group
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around Bremer and Rokhlin [2, 3, 4]. Let us discuss the relation of the
Bremer–Rokhlin scheme to our scheme.

Both schemes take as a starting point the observation that an accurate
and economical discretization of (1) can only be effected by restricting the
operator on the left hand side to a finite-dimensional subspace, determined by
the right hand side g(z). High resolution in combination with compression
is used as a means to achieve this. The result is a kind of precomputed
purpose-made composite quadrature, suitable for Nyström discretization.

The Bremer–Rokhlin scheme employs an elaborate machinery to con-
struct families of ‘universal quadratures’. Each universal quadrature is ap-
propriate for the discretization of a given integral equation over an entire
class of boundary segments with complicated geometry. When the integral
equation depends on material parameters, in addition to geometry, more
universal quadratures are needed. The approach has the advantage that the
precomputation is done once and for all and can be stored on disk. When
solving a particular problem involving many boundary singularities of similar
shapes, only a few universal quadratures need to be activated. Our scheme
precomputes ‘quadrature-weighted inverses’ afresh around every boundary
singularity. This offers greater flexibility when applying the scheme to new
situations and opens up for a parallel implementation, but requires more
RAM storage.

Another difference between the two schemes is the way in which the pro-
cess of resolution and compression is carried out. The Bremer–Rokhlin com-
pression is done via a series of solutions of large linear systems followed by
rank-revealing QR decompositions. Our scheme deals with resolution and
compression in tandem, using a fast and stable recursion. No large linear
systems are ever set up. This is an advantage for boundary segments where
extremely high resolution is needed.

The schemes also differ in the assumptions made on g(z). The Bremer–
Rokhlin scheme assumes that g(z) is a restriction to Γ of a function that
satisfies the underlying partial differential equation in a neighborhood of
each point on Γ. This assumption applies, for example, to certain important
acoustic scattering problems. Our scheme only assumes that g(z) is piece-
wise smooth. This is an advantage when the computational domain models
granular materials or materials containing branching cracks.

An open question is how easily the two schemes generalize to three di-
mensions. Perhaps one can combine their best features?
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1.4. Organization of the paper

The paper is divided into eight sections. Section 2 introduces unit cells
and integral equations that will be used in all examples. Section 3 is on
discretization. The leading ideas in our compression scheme are summa-
rized in Sections 4 and 5. Section 6 is on implementation. This material is
essential for the understanding of how limits are taken in the complex σ2/σ1-
plane and how the compression of inverses of giant matrices corresponding
to intensely resolved integral operators can be executed in sub-linear time.
Section 7 presents improvements to the long-range preconditioner proposed
in [15]. The paper ends in Section 8 with some truly large-scale and accurate
numerical examples for random checkerboards along with the computation
of resonant spectra of two metamaterial composites. The reader interested
in more examples is referred to a forthcoming paper [16].

2. Integral equations for the electrostatic problem

We shall solve the electrostatic partial differential equation on three types
of doubly-periodic domains in a plane D: square arrays of squares, staggered
arrays of squares, and two-component random checkerboards. An average
electric field e = (ex, ey) of unit strength is applied to D and we seek the
potential U(r) for the computation of σ∗ in direction e

σ∗ =

∫

D0

(σ(r)∇U(r) · e) dVr , (2)

where σ(r) is the local conductivity, dVr is an infinitesimal area element, and
the unit cell D0 is [−1/2, 1/2)×[−1/2, 1/2). We make no distinction between
points or vectors in a real plane R2 and points in a complex plane C. From
now on, all points will be denoted z or τ .

The interfaces Γ in D are given orientation. The restriction of Γ to D0

is denoted Γ0 and the outward unit normal of Γ at z is nz = n(z). Corner
vertices are denoted γk. Obviously, σ(z) may jump as Γ is crossed. Let σ+(z)
denote the conductivity on the positive side of Γ at z, let σ−(z) denote the
conductivity on the negative side, and introduce as in [15]

a(z) = σ+(z)− σ−(z) , z ∈ Γ , (3)

b(z) = σ+(z) + σ−(z) , z ∈ Γ , (4)

c(z) = σ+(z)σ−(z) , z ∈ Γ , (5)

λ(z) = a(z)/b(z) , z ∈ Γ . (6)
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Figure 1: Left: a cutout of a square array of squares with p = 0.5 and a unit cell with a
16-panel coarse mesh on Γ0. Right: a staggered array of squares with p = 0.4 and a unit cell
with a 32-panel coarse mesh on Γ0. The vertex separation distance is d and the dots indicate
double-corner concentration points δk.

Our domains exhibit similarities, but they also differ in important re-
spects. Different integral equation reformulations will be used for efficiency.

2.1. Ordered arrays of squares

The two ordered arrays are made by placing squares with conductivity
σ2 in a plane with conductivity σ1. Fig. 1 shows cutouts of unit cells. The
orientation of Γ is positive. The arrays are overall isotropic, so σ∗ is indepen-
dent of e. The points in between neighboring corner vertices in the staggered
array are called double-corner concentration points and denoted δk.

The conductivity σ2 may be complex valued while σ1 is assumed real.
The special case of real valued and negative ratios σ2/σ1 poses a particular
challenge. The electrostatic equation may not have a unique solution and
this property is then carried over to the integral equation. Sometimes σ∗,
viewed as a function of σ2 with σ1 held constant, has a well defined limit
which depends on whether σ2/σ1 approaches the negative real axis from
above or from below in the complex plane. Hetherington and Thorpe [19]
argue that such a branch cut occurs for σ∗ of composites with right-angled
interfaces whenever σ2/σ1 ∈ [−3,−1/3]. See also p. 378 of Milton [25]. We
shall capture the limit of σ∗ from above.

We follow standard practice for inclusion problems and represent U(z)
as a continuous function which is a sum of a driving term and a single-layer
potential with density ρ(z) [10]. Enforcing continuity of the normal current
across Γ we arrive at the integral equation

ρ(z) +
λ(z)

π

∫

Γ

ρ(τ)ℑ
{

nzn̄τ dτ

τ − z

}

= 2λ(z)ℜ{ēnz} , z ∈ Γ0 , (7)
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Figure 2: Left: a cutout of a two-component ordered checkerboard. Middle and right: A unit
cell D0 of a random checkerboard with Nsq = 16 squares. Orientation of Γ0 (solid lines) and
L0 \ Γ1 (dashed lines) along with a point z ∈ Γ1 and its periodic image zper ∈ L0 \ Γ1.

where the ‘bar’ symbol denotes complex conjugation. We observe that (7)
is a Fredholm integral equation of the second kind with an integral operator
which is compact away from the corner vertices.

The parameter λ(z) in (7) is independent of z. Should the integral op-
erator in (7) have been compact everywhere, then, in a finite portion of the
complex λ-plane, there could exist a finite number of values |λ| ≥ 1, called
eigenvalues of the equation, for which the solution ρ(z) may not be unique
or may not even exist as a limit. See Sections 8 and 38 of Mikhlin [24].
If, however, (7) can be solved for ρ(z) and under the assumption that the
inclusions do not overlap the unit cell boundary, the effective conductivity
can be computed from

σ∗ = σ1 + σ1

∫

Γ0

ρ(z)ℜ{ēz} d|z| . (8)

Depending on how the unit cell is chosen, the squares in the staggered
array may overlap the unit cell boundary. With the choice in Fig. 1, they
certainly do. But since the layer density ρ(z) is periodic and identical on all
squares one can modify (8) so that it integrates ρ(z) twice on the square at
the center of the unit cell and ignores ρ(z) on the other squares.

2.2. Checkerboards

Fig. 2 shows checkerboards. The squares in D have either high conduc-
tivity σ2 or low conductivity σ1. Here σ2 and σ1 are real so that σ2/σ1 > 1.
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Figure 3: Left: a coarse mesh on Γ0 for a checkerboard unit cell with Nsq = 16. There are
four quadrature panels on each square side. Right: local meshes Mb and Mc centered around
a corner vertex. There will be 192 discretization points on Mb and 128 points on Mc.

The challenge is to achieve linear complexity and high accuracy in difficult
situations.

The middle image of Fig. 2 is from a random checkerboard with Nsq=16.
The right image indicates Γ0 by solid lines. The boundary of D0 is denoted
L0 and Γ1 = Γ0 ∩ L0. Note that some or all squares that meet at a corner
vertex γk could have the same conductivity. Vertices where two squares of
conductivity σ1 and two squares of conductivity σ2 meet diagonally, like in
the left image of Fig. 2, will be referred to as special corner vertices.

An efficient Fredholm second kind integral equation for checkerboard
problems can be derived by applying Green’s third identity to the periodic
function U(z)−ℜ{ēz}. In terms of a transformed potential u(z), this double-
layer type equation assumes the simple form

u(z)− λ(z)

π

∫

Γ

u(τ)ℑ
{

dτ

τ − z

}

= 2
c(z)

b(z)
ℜ{ēl0(z)} , z ∈ Γ0 , (9)

where l0(z) is zero for z ∈ Γ0 \ Γ1 and equal to the vector difference of z
and its periodic image zper ∈ L0 \ Γ1 for z ∈ Γ1, see Section 2.2 of [15]. The
effective conductivity can be computed from

σ∗ =

∫

Γ0

u(z)ℑ{ē dz} . (10)

We observe that the integral operator in (9) is compact away from the corner
vertices.
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3. Discretization

We discretize (7) and (9) using a Nyström scheme based on compos-
ite polynomial interpolatory quadrature and a parameterization z(t) of Γ0.
Coarse meshes with four quadrature panels per square side are constructed
on Γ0, see Figs. 1 and 3. We also need fine meshes obtained from coarse
meshes by subdividing panels neighboring corner vertices nsub times in a
direction towards the vertices.

The layer densities ρ(z) and u(z) in (7) and (9) are smooth on most
quadrature panels. We choose quadrature nodes and weights according to
composite 16-point Gauss–Legendre quadrature in parameter t on such pan-
els. This quadrature has panelwise polynomial degree 31.

Panels neighboring corner vertices of ordered arrays of squares or special
corner vertices of checkerboards require special attention and will be referred
to as special panels. The layer densities ρ(z) and u(z) may undergo rapid
changes there. This is so because of strong singularities that arise in ∇U(z).
For checkerboards, as σ2/σ1 → ∞, this field is barely square integrable in D0

and barely absolutely integrable on Γ0, see Section 2.3 of [15]. See p. 378
of Milton [25] for a discussion of similar singularities that arise at corner
vertices as σ2/σ1 approaches values in the range [−3,−1/3].

Legendre nodes are not optimal for capturing the behavior of layer den-
sities on special panels. Rather, it pays off to bunch quadrature nodes in
a direction towards the vertices. An experimental investigation, see Sec-
tion 8.2, shows that nodes corresponding to zeros of the Jacobi polynomial
P (x)

(α,β)
16 on the canonical interval x ∈ [−1, 1], for certain α and β, are more

efficient. For checkerboards and with the corner vertex at a special panel’s
right endpoint, we take α=(σ1/σ2)

0.4−1 and β=0. With the corner vertex
at a special panel’s left endpoint, we take α=0 and β = (σ1/σ2)

0.4−1. For
ordered arrays of squares at negative contrast ratios we take α = 10−6 − 1
and β=0 or α=0 and β=10−6 − 1. The corresponding quadrature weights
are determined so that the panelwise polynomial degree is 15.

A discretization in parameter t on the coarse mesh of a checkerboard gives
Ncoa=128Nsq points zi = z(ti) and the same number of weights wi. On the
fine mesh there are Nfin=(128+64nsub)Nsq discretization points. The square
array of squares has Ncoa=256 and Nfin=256 + 64nsub. The staggered array
of squares has Ncoa = 512 and Nfin = 512 + 128nsub. We collect quadrature
weights on the diagonal of matrices W for later use. The subscripts ‘coa’ and
’fin’ are used to indicate the coarse mesh and the refined mesh, respectively.
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4. Short-range preconditioning

Consider now the Fredholm second kind integral equations (7) and (9) in
the general form (1) where g(z) is piecewise smooth. Let K(τ, z) denote the
kernel of K. Split K(τ, z) into two functions

K(τ, z) = K⋆(τ, z) +K◦(τ, z) , (11)

where K⋆(τ, z) is zero except for when τ and z simultaneously lie in a neigh-
borhood Γ⋆

k centered around a particular γk or δk. Then K◦(τ, z) is zero.
The neighborhoods Γ⋆

k cover four coarse panels around γk of a square array
of squares and eight coarse panels around δk of a staggered array of squares
and around γk of a checkerboard. Compare Section 3.2 of [15].

The kernel split (11) corresponds to an operator split K = K⋆+K◦ where
K◦ is a compact operator. After discretization (1) assumes the form

(I+K⋆ +K◦)µ = g , (12)

where I, K⋆, and K◦ are square matrices and µ and g are columns vectors.
Note that K⋆ is sparse and block diagonal. The blocks of K⋆

coa corresponding
to γk of a square array of squares have size 64 × 64 while the blocks corre-
sponding to δk of a staggered array of squares and to γk of a checkerboard
have size 128× 128.

The change of variables

µ(z) = (I +K⋆)−1 µ̃(z) (13)

makes (12) read
(

I+K◦ (I+K⋆)−1)
µ̃ = g . (14)

This right preconditioned equation corresponds to the discretization of a
Fredholm second kind equation with a composed compact operator and the
solution µ̃ is the discretization of a piecewise smooth function. There should
be no ill-conditioning in (14) due to mesh refinement close to corner vertices
and we can view (I+K⋆)−1 as a short-range preconditioner for (12). There
will, however, be ill-conditioning in (14) for parameter values λ(z) that are
very close to eigenvalues of (7) and (9).
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5. Compression of the preconditioned equation

The matrix K◦ and the right hand side g in (14) can be accurately evalu-
ated on a grid on the coarse mesh. Only (I+K⋆)−1 needs a grid on the refined
mesh for its accurate evaluation. We introduce the compressed weighted in-
verse

R = PT
W (Ifin +K⋆

fin)
−1

P . (15)

Here P is a prolongation operator from the coarse grid to the fine grid,
PW = WfinPW−1

coa is a weighted prolongation operator, see Section 5 of [13].
Furthermore, the block-diagonal Ncoa×Ncoa matrix PT

WP, where superscript
T denotes the transpose, has the property

PT
WP = I . (16)

Strictly speaking, the relation (16) does not hold exactly for matrix blocks
corresponding to special panels. It holds, however, also for these blocks that

fiWcoaP
T
WPfj = fiWcoafj , (17)

where fi and fj are discretizations of piecewise polynomials on the coarse grid
of degree i and j and i + j ≤ 15. One can say that (16) holds to the same
polynomial degree as the overall quadrature holds.

With (15), equation (14) assumes the form

(Icoa +K◦

coaR) µ̃coa = gcoa . (18)

The single-layer equation (7) will be used in this form in the numerical ex-
amples of Section 8. In terms of the new discrete density µ̂coa = Rµ̃coa one
can also write (18) in left preconditioned form

(Icoa +RK◦

coa) µ̂coa = Rgcoa . (19)

The double-layer equation (9) will be used in this form in the more elaborate
scheme for complicated unit cells developed in Section 7.

Functionals on µ(z) of the type
∫

f(z)µ(z) dz =

∫

f(z(t))µ(z(t)) z′(t) dt , (20)

where f(z) is a piecewise smooth function, assume the discretized form

fTcoaZcoaµ̂coa , (21)

where f is a column vector and Z is a matrix containing discrete values
z′i=z′(ti) multiplied with weights wi on the diagonal.
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Figure 4: Local meshes close to corner vertices. Left: the square array. Right: the staggered
array with meshes centered around a double-corner concentration point δk. The vertex sepa-
ration distance is d. Meshes with index i= nrec have the largest panels and Mnc coincides
with the coarse mesh on Γ0 in a neighborhood of δk, see the rightmost image of Fig. 1. The
panels on meshes with index i−1 are half the size of those on meshes with index i.

6. Recursive construction of R

The compressed inverse R has the same block diagonal structure as K⋆
coa,

see Section 4. Its construction from the definition (15) is costly when the
refined mesh has many panels. Actually, the number of subdivisions needed
to reach a given accuracy may grow without bounds due to the singularities
in µ(z) that arise as σ2/σ1 approaches certain values, see Section 3.

Fortunately, the construction of each block Rk of R, associated with
a corner vertex γk or with a double-corner concentration point δk, can be
greatly sped up and also stabilized via a recursion. This recursion uses grids
on local meshes centered around a γk or a δk, see Figs. 3 and 4.

6.1. General recursion

The staggered array of squares needs the recursion in the general form

Rik = PT
Wbc

(

F{R−1
(i−1)k}+ I◦b +K◦

ibk

)

−1

Pbc , i = 1, . . . , nrec , (22)

where the number of recursion steps nrec corresponds to nsub of the refined
mesh and where Rik = Rk for i=nrec. See Section 6 of [13]. The weighted
and unweighted prolongation operators PWbc and Pbc act from a 128-point
grid on a local mesh Mic to a 192-point grid on a local mesh Mib, see the
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right image of Fig. 4. The superscript ’◦’ in (22) has a meaning which can
be explained by considering the discretization of K on a 192-point grid on
Mib and on a 128-point grid on M(i−1)c. Let the resulting matrices be Kibk

and K(i−1)ck. Now K◦

ibk is the 192 × 192 matrix which results from zeroing
all entries of Kibk that also are contained in the 128 × 128 matrix K(i−1)ck.
The operator F{·} expands an 128× 128 matrix into an 192× 192 matrix by
zero-padding in such a way that F{K(i−1)ck}+K◦

ibk = Kibk.

6.2. Fixed-point iteration and Newton’s method

The recursion (22) can be simplified for square arrays of squares and for
checkerboards thanks to scale invariance of the integrals in (7) and (9). The
local meshes Mib and Mic look the same at all recursion steps and the index
i can be dropped, see the right image of Fig. 3 and the left image of Fig. 4.
The recursion (22) assumes the form of a fixed-point iteration

Rik = PT
Wbc

(

F{R−1
(i−1)k}+ I◦b +K◦

bk

)

−1

Pbc , i = 1, . . . , nrec , (23)

which for nrec → ∞ can be cast as a non-linear matrix equation

G(Rk) ≡ PT
WbcA(Rk)Pbc −Rk = 0 , (24)

where
A(Rk) =

(

F{R−1
k }+ I◦b +K◦

bk

)

−1
, (25)

see Sections 3.2 and 3.3 of [15]. The non-linear equation (24), in turn, can be
solved for Rk with a variant of Newton’s method. Let X be a matrix-valued
perturbation of Rk and expand G(Rk+X)=0 to first order in X. This gives
a Sylvester-type matrix equation

X−PT
WbcA(Rk)F{R−1

k XR−1
k }A(Rk)Pbc = G(Rk) (26)

for the Newton update X. One can use the Matlab built-in function dlyap

for (26), but GMRES [28] gives a smaller residual and we use that method.

6.3. Initialization, number of recursion steps, and homotopy

The recursion (22), the fixed-point iteration (23), and Newton’s method
for (24) need to be initialized and nrec has to be decided in (22) and in (23).
The three types of domains call for different strategies.
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Figure 5: Convergence of Rk associated with a γk of an ordered checkerboard with σ2/σ1 =
108. The 500 fixed-point iteration steps in (23) are followed by 9 Newton steps for (24).

Random checkerboards at high contrast ratios are the easiest to deal with.
Here we first use the fixed-point iteration (23), initialized with

F{R−1
0k } = Ic +Kck , (27)

where subscript ‘c’ refers to a discretization on mesh Mc in Fig. 3. Com-
pare eq. (24) of [15]. The iterations are stopped when either ||G(Rk)||/||Rk||
is smaller than 10ǫmach in Frobenius norm or a number of 500 iterations
is reached. The final fixed-point iterate is then used as initial guess in
Newton’s method for (24). The Newton iterations are stopped when either
||G(Rk)||/||Rk|| is smaller than 100ǫmach or a maximum number of 15 itera-
tions is reached. Fig. 5 illustrates this strategy for an Rk associated with a γk
of an ordered checkerboard at σ2/σ1 = 108. One can see that the convergence
of the fixed-point iteration is very slow. About 2 ·105 steps, corresponding to
the same number of subdivisions of the fine mesh, would be needed for full
convergence if only the fixed-point iteration was used. This clearly shows the
power of Newton iterations and explains why methods relying solely on mesh
refinement run into great difficulties on these types of domains. There are
only 16 possible corner configurations in a random checkerboard, correspond-
ing to 16 distinct blocks of R. Therefore, the time- and storage requirements
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for computing R are negligible for large unit cells.
Square arrays of squares at negative contrast ratios are more difficult to

treat. This is so since the solution to the electrostatic equation may only exist
as a limit for σ2/σ1 approaching the negative real axis, see Section 2.1. Again
we first use the fixed-point iteration (23), initialized as in (27) but with σ2

(which enters into K◦

bk) multiplied with a constant q = 1− 0.01i. Again the
final fixed-point iterate is used as initial guess in Newton’s method for (24).
Now, however, we use a homotopy method and at each Newton step we
reduce the imaginary part of q with a factor of ten. After 14 such iterations
q is set to unity and an additional maximum of 15 Newton iterations are
performed. In this way the final expression for Rk may be complex valued
even though the last few matrices K◦

bk, fed into (24), are purely real.
Staggered arrays of squares at negative contrast ratios are the most intri-

cate. Here the choice of nrec and of initializer in (22) are very important. We
choose nrec large enough so that the vertex separation distance d, see Fig. 4,
at the first recursion step (i=1) is at least 1016 times larger than the part
of Γ⋆

k covered by the mesh M1b. In this way the interaction between the two
connected parts of M1b is negligible. The initializer R0k is then chosen as a
compressed inverse computed using the homotopy method just described for
the Rk of the square array of squares, neglecting the interaction between the
connected parts of M1b.

7. Long-range preconditioning

As the number of squares in a unit cell grows, the problem of computing
σ∗ gets harder, see Section 1.1. This section improves on Section 4 of [15]
and describes a long-range preconditioner for (9) which cures these problems.
The main idea is to split the unknown layer density into two parts and
capture all long-range interaction in a matrix S, which can be rapidly inverted
and used in a right-preconditioner. In combination with the short-range
preconditioner R of Section 5, applied from the left, this results in a scheme
whose computational cost for checkerboards with large random unit cells at
high contrast ratios is almost linear in Nsq.

7.1. An expanded equation

Each square in D0 has a boundary consisting of four straight segments,
see Fig. 2. Introduce piecewise constant local basis functions sk(z), k =
1, . . . , Nsq, on Γ0 ∪ L0 such that sk(z) = 1 when z lies on a boundary part
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of square k with positive orientation, sk(z)=−1 when z lies on a boundary
part with negative orientation, and sk(z)=0 otherwise.

Following Section 4.1 of [15], we take (9) in the general form (1) and
expand it into the system

(I +K)µ0(z) +

Nsq−1
∑

k=1

ak

(

sk(z)− λ(z)|sk(z)|+
2λ(z)

Nsq

)

= g(z) . (28)

∫

sk(z)µ0(z) d|z| = 0 , k = 1, . . . , Nsq − 1 , (29)

where µ0(z) mimics the rapidly varying behavior of µ(z) and ak are unknown
coefficients.

Discretization of (28) and (29) together with left preconditioned compres-
sion, compare (19), results in the linear system

(Icoa +RK◦

coa) µ̂0coa +R
(

B1 −Λcoa|B1|+ λcoau
T
)

a = Rgcoa , (30)

BT
1 |Zcoa|µ̂0coa = 0 . (31)

Here B1 is a Ncoa × (Nsq−1) matrix whose kth column is the discretization
of sk(z), λcoa is a column vector whose Ncoa entries is the discretization of
λ(z), Λcoa is matrix containing λcoa on the diagonal, u is a column vector
with Nsq−1 entries all equal to 2/Nsq, a is a column vector containing the
Nsq−1 coefficients ak, and vertical bars denote entrywise absolute value.

The effective conductivity (10) can be computed from

σ∗ = ℑ
{

ēTcoaZcoa (µ̂0coa +B1a)
}

, (32)

once (30) and (31) is solved. Compare (21).

7.2. An important simplification

The definition of sk(z) together with Cauchy’s integral theorem implies
that

ēTcoaZcoaB1 = 0 . (33)

As a consequence, the second term within parenthesis in (32) does not con-
tribute to σ∗ and can be omitted.

16



The fact that the coefficients ak are not needed in (32) opens up for
another, more important, simplification. With the change of variables

bk = ak +
(σ(k)− σ(Nsq))

σ(Nsq)

∑Nsq−1
i=1 ai
Nsq

, (34)

where σ(k) denotes the conductivity of square k, the expanded equation (28)
assumes the simpler form

(I +K)µ0(z) +

Nsq−1
∑

k=1

bk (sk(z)− λ(z)|sk(z)|) = g(z) (35)

and (30) reduces to

(Icoa +RK◦

coa) µ̂0coa +R (B1 −Λcoa|B1|)b = Rgcoa . (36)

7.3. A Schur complement style preconditioner

The system (36) and (31) can be written in partitioned form
[

I+RK◦ B

C 0

] [

µ̂0

b

]

=

[

Rg

0

]

, (37)

where subscripts ‘coa’ are omitted and

B = R (B1 −Λcoa|B1|) , (38)

C = BT
1 |Zcoa| . (39)

The change of variables
[

µ̂0

b

]

=

[

I B

C 0

]

−1 [
ω

c

]

=

[

I−BS−1C BS−1

S−1C −S−1

] [

ω

c

]

, (40)

where the (Nsq−1)× (Nsq−1) matrix S is given by

S = CB , (41)

transforms (37) into
[

I+RK◦(I−BS−1C) RK◦BS−1

0 I

] [

ω

c

]

=

[

Rg

0

]

. (42)

From (42) it is obvious that c = 0 and we can write (42) as a single
equation for ω:

(

I+RK◦(I−BS−1C)
)

ω = Rg . (43)

The effective conductivity (32) can be expressed in terms of ω as

σ∗ = ℑ
{

ēTcoaZcoa(I−BS−1C)ω
}

. (44)
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7.4. The inverse of S

The matrix S of (41) is sparse. In the limit λ(z) → 0 it approaches a
standard five-point stencil for the discrete Laplace operator. As we soon
shall see, Matlab’s sparse banded solver, obtained using ‘backslash’, is very
efficient at solving linear systems with S as system matrix, at least for system
sizes up toNsq=1.6·106. We shall use that method in all numerical examples.

The condition number of S seems to be lower when σ(Nsq) = σ2 than
when σ(Nsq) = σ1. Therefore, in our numerical examples, we permute the
unit cell so that σ(Nsq)=σ2.

7.5. Reduction in the number of unknowns

Some entries of ω in (43) are easy to solve for. To see this, let Γeq be the
part of Γ0 that lies between squares of equal conductivity. From (6) it follows
that λ(z)=0 for z ∈ Γeq. This means that all entries of K◦ and R whose first
index corresponds to a discretization point zi ∈ Γeq are zero except for the
diagonal entries Rii which are one. From (43) we get the simple entrywise
relation

ωi = gi , zi ∈ Γeq . (45)

Furthermore, the vast majority of these elements gi are zero thanks to l0(z),
see the right hand side of (9).

Eq. (45) can be used to reduce the number of unknowns in (43). The
savings are huge when the area fraction p is high or low. For simplicity, we
only remove the known entries of ω which are zero. The reduced system
assumes the form

(

↓~I+ ↓~R ↓K◦(~I−BS−1~C)
)

ωu =↓Rg . (46)

Here ωu are the remaining entries of ω, ‘downarrow’ indicates that rows of a
matrix are deleted, and ‘rightarrow’ indicates that columns are deleted. One
can see in (46) that the reduction in the number of unknowns does not induce
a similar reduction in the size of K◦. No columns are deleted. Therefore, the
speedup resulting from (46) is not as great as the savings in storage.

8. Numerical examples

This section investigates the complexity and the achievable accuracy of
our scheme (18) for ordered arrays of squares and (43) and (46) for random
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checkerboards. We also compare with recent numerical results [6] obtained
with the finite element solver Abacus.

The numerical examples are performed in the Matlab environment (ver-
sion 7.9). The GMRES iterative solver [28] and a threaded version of the
fast multipole method [11], coded in C with SIMD instructions, is used for
the main linear systems. The stopping criterion threshold is set to machine
epsilon (ǫmach). See Section 4.1 of [11] and Section 3 of [9] for how to impose
periodic boundary conditions on potential fields due to charges in a unit cell.
The examples involving Nsq up to around 106 are executed on a workstation
equipped with an IntelXeon E5430 CPU at 2.66 GHz and 32 GB of memory
while all other examples are executed on a workstation equipped with an
IntelCore2 Duo E8400 CPU at 3.00 GHz and 4 GB of memory.

When estimating accuracy we rely on some exact relations available for
two-component media and compiled in Chapters 3.2 and 8.7 of Milton [25].
Let us consider σ∗ and the effective conductivity tensor σ∗ as functions of
σ1 and σ2. Then, using a duality transform and the homogeneity of σ∗, one
can show the following relation between an original material and that of a
material where the components have been interchanged

σ∗(σ2, σ1) = σ1σ2σ∗(σ1, σ2)/ det(σ∗(σ1, σ2)) . (47)

Another useful relation which holds for overall isotropic materials is

σ∗(σ1, σ2)σ̄∗(1/σ̄1, 1/σ̄2) = 1 . (48)

An ordered checkerboard has

σ∗ =
√
σ1σ2 (49)

and a square array of squares at p=0.25 has

σ∗ = σ1

√

(σ1 + 3σ2)/(3σ1 + σ2) . (50)

We also observe, see Chapter 1.7 of [25], that the effective conductivity of a
random checkerboard at p=0.5 obeys

lim
Nsq→∞

σ∗ =
√
σ1σ2 . (51)

Note that the tensor σ∗ has four elements and that they all can be com-
puted via (43) (or (46)) and (44). For example, choosing e=1 both in (43),
where e appears in g, and in (44) makes σ∗ assume the value of σ∗xx. Choos-
ing e=1 in (43) and e=i in (44) makes σ∗ assume the value of σ∗yx.
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Figure 6: Unit cells of two random checkerboards used in the numerical examples. The area
fraction of squares with conductivity is σ2 is p = 0.5. Left: Nsq = 104. Right: Nsq = 106.
Please zoom to see the details of the microstructure in the right image.

8.1. Timing and convergence to statistical limit

A sequence of 105 random checkerboards is constructed with unit cell
sizes ranging from Nsq=4 to Nsq=1615441. All unit cells have σ2/σ1=106

and p= 0.5, see Fig. 6 for two layouts. The effective conductivities σ∗yy of
the checkerboards are computed via (46) and (44).

Almost all computing time is spent in the GMRES solver. The setup
time for S of (41) at Nsq=106, for example, is only about 0.4% of the total
computing time. The number of iterations needed for full convergence is
bounded by 18 and the left image of Fig. 7 shows that the time spent in
GMRES grows approximately linearly with Nsq, reflecting the complexity of
the fast multipole method. The total time spent applying the inverse of S,
which is included in the time spent in GMRES, is also shown separately in
the left image of Fig. 7. One can see that while this time grows faster than
linearly, it is still less than 9% of the total computing time at Nsq=106.

The right image of Fig. 7 shows the actual values for the effective conduc-
tivities σ∗ of the checkerboards, presented in terms of their relative deviation
from the statistical limit (51). At Nsq = 1615441, which is the largest unit
cell we can handle due to memory constraints, the deviation is about 1%.
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Figure 7: Solving for the effective conductivity of random checkerboards with σ2/σ1 = 106

and unit cells of increasing sizes. The area fraction of squares with conductivity σ2 is p=0.5.

8.2. Achievable accuracy

Fig. 8, left image, illustrates how the placement of quadrature nodes
influences the achievable accuracy for progressively higher contrast ratios.
The unit cell is that of an ordered checkerboard with Nsq = 4. The circles
show that the relative error in σ∗ grows roughly as (σ2/σ1)

1.5 when Legendre
nodes are used on all panels. This was the strategy in [15]. The stars show
that the growth rate becomes linear in σ2/σ1 when Jacobi nodes are used
on special panels. This is the strategy of the present paper, see Section 3.
Several extra digits can be obtained at high contrast ratios.

Note that for σ2/σ1 > 1016, accurate results are impossible in double pre-
cision arithmetic. This is so since λ(z) of (7) and (9) is then indistinguishable
from unity. The integral equations become independent of σ2 while the ref-
erence solution (49) is not. The error growth rate produced by the Jacobi
nodes in Fig. 8 could therefore be thought of as optimal.

Three sequences of checkerboards are now constructed with unit cell sizes
ranging from Nsq=4 to Nsq=1468944 and with p=0.5. The first sequence
consists of random checkerboards with σ2/σ1 = 106. The relative errors in
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their computed effective conductivities are estimated via (47) as

||σ∗(σ2, σ1)− σ1σ2σ∗(σ1, σ2)/ det(σ∗(σ1, σ2))||2
||σ∗(σ2, σ1)||2

. (52)

The second sequence consists of ordered checkerboards with σ2/σ1 = 106

and (49) is used as reference solution. The third sequence is the same as the
second sequence, but the contrast ratio is increased to σ2/σ1=108.

Fig. 8, right image, shows the results and it has several interesting fea-
tures. For example, one can see that:

• the error in σ∗ seems to be independent of the unit cell size. This is so
because the total error is dominated by the error caused by corner self-
interaction, computed in local coordinates. The error from long-range
interaction is comparatively small except for Nsq > 5 · 105.

• the error estimate for σ∗ of random checkerboards (52), based on dual-
ity, agrees well with the error estimate for σ∗ of ordered checkerboards,
based on an exact answer (49).
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Figure 9: Random checkerboards with Nsq = 90000 squares in the unit cell and σ2/σ1 = 108.
The area fraction of squares with conductivity σ2 varies from p = 0 to p = 1.

8.3. Continuum percolation

In theoretical materials science it is of interest to study the effective
conductivities of continuum two-component random composites as p varies.
Fig. 9 shows such a study for a unit cell with Nsq =90000 and σ2/σ1 = 108

along with the error estimate (52). Two sequences of realizations are shown
– one based on sequential random addition and one where all realizations are
independent. It is obvious, from the jagged shape of the curve in the left
image and also from the results in Section 8.1, that we are far from the sta-
tistical limit. Percolation thresholds are visible at p ≈ 0.41 and at p ≈ 0.59.
These numbers are consistent with classic results on site percolation for a
square lattice [22]. The overall behavior of σ∗ as a function of p in Fig. 9
is in agreement with the discussion on p. 207 in Milton [25] and also with
results obtained with a discrete network model [23] but it stands in contrast
to results obtained with the finite element method in Fig. 2(a) of [6]. There
only one percolation threshold is observed.

8.4. The square array of squares

Fig. 10 shows computed values of σ∗/σ1 for the square array of squares at
p = 0.25 for negative ratios σ2/σ1. The relative error, with (50) as reference
solution, is shown in the right image. The error is close to ǫmach except for in
a neighborhood of three points where it is higher: the ‘pole’ or ‘resonance’
at σ2/σ1 = −3, the ‘essential singularity’ at σ2/σ1 = −1, and the ‘zero’ at
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Figure 10: Left: the effective conductivity σ∗/σ1 of a square array of squares at p = 0.25. The
curves are supported by 349 adaptively spaced data points. Right: the relative error with (50)
as reference solution.

σ2/σ1 = −1/3. See [27] for an explanation of the significance and physical
meaning of these terms. Note that at σ2/σ1 = −1 we have λ = ±∞ and
that (7) then becomes a first kind equation. Compare also Fig. 2 of [27],
which is similar to the left image of our Fig. 10, but where some problems
are encountered along the branch cut σ2/σ1 ∈ [−3,−1/3].

8.5. The staggered array of squares

Staggered arrays of squares at area fractions close to p=0.5 exhibit rich
resonant spectra on the negative real axis and pose greater challenges to
numerics than the example of Section 8.4. More data points are required
to resolve σ∗. For modeling purposes it is convenient to describe staggered
arrays in terms of a parameter d0, related to the area fraction p and to the
vertex separation distance d, see Figs. 1 and 4, as

p =
2

(d0 + 2)2
and d =

d0√
2(d0 + 2)

. (53)

The left image of Fig. 11 for d0=10−10 shows an oscillatory behavior of
σ∗/σ1 for σ2/σ1 ∈ [−3,−1/3] and a number of resonances on the negative
real axis outside of this interval. The right image shows that the relative
error in these computations, estimated via how well (48) is met, is typically
on the order of 102ǫmach. Close to the eigenvalues of (7), some of which
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Figure 11: The effective conductivity σ∗/σ1 of a staggered array of squares at d0 = 10−10.
The curves are supported by 2006 data points. Right: an error estimate based on (48).

correspond to poles of σ∗, the error is of course larger. The largest relative
error encountered in this example is estimated to 10−8.

9. Conclusions

The homogenization of composite materials with large random unit cells
of squares at extreme material property ratios is a canonical problem in the
theory of composite materials. It has fascinated researchers for decades [25].
The domains look simple, yet they are intriguing. There are analytical results
available for special cases, yet numerical solvers run into trouble. Only a
few years ago, numerical solutions to the type of homogenization problems
presented in this paper would be considered far out of reach.

The present work epitomizes and stretches a recent line of research [13,
14, 15, 17, 18] to a new high. We first show how to treat simple unit cells
with (almost) optimal accuracy using a short-range preconditioner. We then
show that larger unit cells pose no extra problems when a new long-range
preconditioner is added. Our algorithm has (almost) linear complexity in
both execution time and storage requirement. Problems involving unit cells
with a million of squares can be solved to very high precision in a few hours.
Homogenization on checkerboard-like domains have become a simple task.

How useful is our new scheme? The coupling of checkerboard problems
to real-world physics is elusive. One may question the relevance of the small
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length-scales needed for the resolution of various singular fields. Neverthe-
less, a recent surge in physicists’ interest in metamaterials has given new
momentum to the study of these issues [27]. The difficulties arising in ran-
dom checkerboard problems may, further, be representative of the sort of
troubles that arise in several real-world problems. Since integral equation
methods are widely applicable, it is therefore likely that our scheme and gen-
eralizations thereof have many immediate applications. Further work based
on the present scheme and directed towards metamaterial applications is in
progress [16].
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