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Abstract

In this paper we present a method to treat interface jump conditions for
constant coefficients Poisson problems that allows the use of standard “black
box” solvers, without compromising accuracy. The basic idea of the new ap-
proach is similar to the Ghost Fluid Method (GFM). The GFM relies on cor-
rections applied on nodes located across the interface for discretization sten-
cils that straddle the interface. If the corrections are solution-independent,
they can be moved to the right-hand-side (RHS) of the equations, producing
a problem with the same linear system as if there were no jumps, only with a
different RHS. However, achieving high accuracy is very hard (if not impos-
sible) with the “standard” approaches used to compute the GFM correction
terms.

In this paper we generalize the GFM correction terms to a correction func-
tion, defined on a band around the interface. This function is then shown to
be characterized as the solution to a PDE, with appropriate boundary condi-
tions. This PDE can, in principle, be solved to any desired order of accuracy.
As an example, we apply this new method to devise a 4th order accurate
scheme for the constant coefficients Poisson equation with discontinuities in
2D. This scheme is based on (i) the standard 9-point stencil discretization
of the Poisson equation, (ii) a representation of the correction function in
terms of bicubics, and (iii) a solution of the correction function PDE by a
least squares minimization. Several applications of the method are presented
to illustrate its robustness dealing with a variety of interface geometries, its
capability to capture sharp discontinuities, and its high convergence rate.
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1. Introduction.

1.1. Motivation and background information.
In this paper we present a new and efficient method to solve the constant

coefficients Poisson equation in the presence of discontinuities across an in-
terface, with a high order of accuracy. Solutions of the Poisson equation with
discontinuities are of fundamental importance in the description of fluid flows
separated by interfaces (e.g. the contact surfaces for immiscible multiphase
fluids, or fluids separated by a membrane) and other multiphase diffusion
phenomena. Over the last three decades, several methods have been devel-
oped to solve problems of this type numerically [1–17]. However, obtaining
a high order of accuracy still poses great challenges in terms of complexity
and computational efficiency.

When the solution is known to be smooth, it is easy to obtain highly
accurate finite-difference discretizations of the Poisson equation on a regu-
lar grid. Furthermore, these discretizations commonly yield symmetric and
banded linear systems, which can be inverted efficiently [18]. On the other
hand, when singularities occur (e.g. discontinuities) across internal interfaces,
some of the regular discretization stencils will straddle the interface, which
renders the whole procedure invalid.

Several strategies have been proposed to tackle this issue. Peskin [1] intro-
duced the Immersed Boundary Method (IBM) [1, 10], in which the disconti-
nuities are re-interpreted as additional (singular) source terms concentrated
on the interface. These singular terms are then “regularized” and appro-
priately spread out over the regular grid — in a “thin” band enclosing the
interface. The result is a first order scheme that smears discontinuities. In
order to avoid this smearing of the interface information, LeVeque and Li [3]
developed the Immersed Interface Method (IIM) [3, 4, 11, 13], which is a
methodology to modify the discretization stencils, taking into consideration
the discontinuities at their actual locations. The IIM guarantees second order
accuracy and sharp discontinuities, but at the cost of added discretization
complexity and loss of symmetry.
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The new method advanced in this paper builds on the ideas introduced
by the Ghost Fluid Method (GFM) [6–9, 12, 14, 19]. The GFM is based
on defining both actual and “ghost” fluid variables at every node on a nar-
row band enclosing the interface. The ghost variables work as extensions of
the actual variables across the interface — the solution on each side of the
interface is assumed to have a smooth extension into the other side. This ap-
proach allows the use of standard discretizations everywhere in the domain.
In most GFM versions, the ghost values are written as the actual values, plus
corrections that are independent of the underlying solution to the Poisson
problem. Hence, the corrections can be pre-computed, and moved into the
source term for the equation. In this fashion the GFM yields the same linear
system as the one produced by the problem without an interface, except for
changes in the right-hand-side (sources) only, which can then be inverted just
as efficiently.

The key difficulty in the GFM is the calculation of the correction terms,
since the overall accuracy of the scheme depends heavily on the quality of the
assigned ghost values. In [6–9, 12] the authors develop first order accurate
approaches to deal with discontinuities. In the present work, we show that
for the constant coefficients Poisson equation we can generalize the GFM cor-
rection term (at each ghost point) concept to that of a correction function
defined on a narrow band enclosing the interface. Hence we call this new
approach the Correction Function Method (CFM). This correction function
is then shown to be characterized as the solution to a PDE, with appro-
priate boundary conditions on the interface — see § 4. Thus, at least in
principle, one can calculate the correction function to any order of accuracy,
by designing algorithms to solve the PDE that defines it. In this paper we
present examples of 2nd and 4th order accurate schemes (to solve the con-
stant coefficients Poisson equation, with discontinuities across interfaces, in
2D) developed using this general framework.

A key point (see § 5) in the scheme developed here is the way we solve
the PDE defining the correction function. This PDE is solved in a weak
fashion using a least squares minimization procedure. This provides a flexible
approach that allows the development of a robust scheme that can deal with
the geometrical complications of the placement of the regular grid stencils
relative to the interface. Furthermore, this approach is easy to generalize to
3D, or to higher orders of accuracy.
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1.2. Other related work.

It is relevant to note other developments to solve the Poisson equation
under similar circumstances — multiple phases separated by interfaces —
but with different interface conditions. The Poisson problem with Dirichlet
boundary conditions, on an irregular boundary embedded in a regular grid,
has been solved to second order of accuracy using fast Poisson solvers [19],
finite volume [5], and finite differences [20–23] approaches. In particular,
Gibou et al. [21] and Jomaa and Macaskill [22] have shown that it is possi-
ble to obtain symmetric discretizations of the embedded Dirichlet problem,
up to second order of accuracy. Gibou and Fedkiw [23] have developed a
fourth order accurate discretization of the problem, at the cost of giving up
symmetry. More recently, the same problem has also been solved, to second
order of accuracy, in non-graded adaptive Cartesian grids by Chen et al. [24].
Furthermore, the embedded Dirichlet problem is closely related to the Stefan
problem modeling dendritic growth, as described in [25, 26].

The finite-element community has also made significant progress in incor-
porating the IIM and similar techniques to solve the Poisson equation using
embedded grids. In particular the works by Gong et al. [15], Dolbow and
Harari [16], and Bedrossian et al. [17] describe second order accurate finite-
element discretizations that result in symmetric linear systems. Moreover,
in these works the interface (or boundary) conditions are imposed in a weak
fashion, which bears some conceptual similarities with the CFM presented
here, although the execution is rather different.

1.3. Interface representation.

Another issue of primary importance to multiphase problems is the repre-
sentation of the interface (and its tracking in unsteady cases). Some authors
(see [1, 19, 20]) choose to represent the interface explicitly, by tracking in-
terface particles. The location of the neighboring particles is then used to
produce local interpolations (e.g. splines), which are then applied to compute
geometric information — such as curvature and normal directions. Although
this approach can be quite accurate, it requires special treatment when the
interface undergoes either large deformations or topological changes — such
as mergers or splits. Even though we are not concerned with these issues
in this paper, we elected to adopt an implicit representation, to avoid com-
plications in future applications. In an implicit representation, the interface
is given as the zero level of a function that is defined everywhere in the
regular grid — the level set function [27]. In particular, we adopted the
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Gradient-Augmented Level Set (GA-LS) method [28]. With this extension
of the level set method, we can obtain highly accurate representations of the
interface, and other geometric information, with the additional advantage
that this method uses only local grid information. We discuss the question
of interface representation in more detail in § 5.6.

1.4. Organization of the paper.

The remainder of the paper is organized as follows. In § 2 we introduce
the Poisson problem that we seek to solve. In § 3 the basic idea behind
the solution method, and its relationship to the GFM, are explored. Next,
in § 4, we introduce the concept of the correction function and show how
it is defined by a PDE problem. In § 5 we apply this new framework to
build a 4th order accurate scheme in 2D. Since the emphasis of this paper
is on high-order schemes, we describe the 2nd order accurate scheme in ap-
pendix C. Next, in § 6 we demonstrate the robustness and accuracy of the
2D scheme by applying it to several example problems. The conclusions are
in § 7. In appendix A we review some background material, and notation,
on bicubic interpolation. Finally, in appendix B we discuss some technical
issues regarding the construction of the sets where the correction function is
solved for.

2. Definition of the problem.

Our objective is to solve the constant coefficients Poisson’s equation in
a domain Ω in which the solution is discontinuous across a co-dimension
1 interface Γ, which divides the domain into the subdomains Ω+ and Ω−,
as illustrated in figure 1. We use the notation u+ and u− to denote the
solution in each of the subdomains. Let the discontinuities across Γ be given
in terms of two functions defined on the interface: a = a(~x) for the jump
in the function values, and b = b(~x) for the jump in the normal derivatives.
Furthermore, assume Dirichlet boundary conditions on the “outer” boundary
∂Ω (see figure 1). Thus the problem to be solved is

∇2u (~x) = f (~x) for ~x ∈ Ω, (1a)

[u]Γ = a (~x) for ~x ∈ Γ, (1b)

[un]Γ = b (~x) for ~x ∈ Γ, (1c)

u (~x) = g (~x) for ~x ∈ ∂Ω, (1d)
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where

[u]Γ = u+ (~x)− u− (~x) for ~x ∈ Γ, (2a)

[un]Γ = u+
n (~x)− u−n (~x) for ~x ∈ Γ. (2b)

Throughout this paper, ~x = (x1, x2, . . . ) ∈ Rν is the spatial vector (where
ν = 2, or ν = 3), and ∇2 is the Laplacian operator defined by

∇2 =
ν∑
i=1

∂2

∂x2
i

. (3)

Furthermore,
un = n̂ · ~∇u = n̂ · (ux1 , ux2 , . . . ) (4)

denotes the derivative of u in the direction of n̂, the unit vector normal to
the interface Γ pointing towards Ω+ (see figure 1).

Figure 1: Example of a domain Ω, with an interface Γ.

It is important to note that our method focuses on the discretization
of the problem in the vicinity of the interface only. Thus, the method is
compatible with any set of boundary conditions on ∂Ω, not just Dirichlet.
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3. Solution method – the basic idea.

To achieve the goal of efficient high order discretizations of Poisson equa-
tion in the presence of discontinuities, we build on the idea of the Ghost Fluid
Method (GFM). In essence, we use a standard discretization of the Laplace
operator (on a domain without an interface Γ) and modify the right-hand-
side (RHS) to incorporate the jump conditions across Γ. Thus, the resulting
linear system can be inverted as efficiently as in the case of a solution without
discontinuities.

Figure 2: Example in 1D of a solution with a jump discontinuity.

Let us first illustrate the key concept in the GFM with a simple example,
involving a regular grid and the standard second order discretization of the
1D analog of the problem we are interested in. Thus, consider the problem of
discretizing the equation uxx = f(x) in some interval Ω = {x : xL < x < xR},
where u is discontinuous across some point xΓ — hence Ω+ (respectively Ω−)
is the domain xL < x < xΓ (respectively xΓ < x < xR). Then, see figure 2,
when trying to approximate uxx at a grid point xi such that xi < xΓ < xi+1,
we would like to write

u+
xxi
≈
u+
i−1 − 2u+

i + u+
i+1

h2
, (5)

where h = xj+1−xj is the grid spacing. However, we do not have information
on u+

i+1, but rather on u−i+1. Thus, the idea is to estimate a correction for
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u−i+1, to recover u+
i+1, such that Eq. (5) can be applied:

u+
xxi
≈
u+
i−1 − 2u+

i +

u+
i+1︷ ︸︸ ︷(

u−i+1 +Di+1

)
h2

, (6)

where Di+1 = u+
i+1 − u−i+1 is the correction term. Now we note that, if Di+1

can be written as a correction that is independent on the solution u, then it
can be moved to the RHS of the equation, and absorbed into f . That is

u+
i−1 − 2u+

i + u−i+1

h2
= fi −

Di+1

h2
. (7)

This allows the solution of the problem with prescribed discontinuities using
the same discretization as the one employed to solve the simpler problem
without an interface — which leads to a great efficiency gain.

Remark 1. The error in estimating D is crucial in determining the accuracy
of the final discretization. Liu, Fedkiw, and Kang [9] introduced a dimension-
by-dimension linear extrapolation of the interface jump conditions, to get a
first order approximation for D. Our new method is based on generalizing
the idea of a correction term to that of a correction function, for which we
can write an equation. One can then obtain high accuracy representations for
D by solving this equation, without the complications into which dimension-
by-dimension (with Taylor expansions) approaches run into. ♣

Remark 2. An additional advantage of the correction function approach is
that D can be calculated at any point near the interface Γ. Hence it can
be used with any finite differences discretization of the Poisson equation,
without regard to the particulars of its stencil (as would be the case with
any approach based on Taylor expansions). ♣

4. The correction function and the equation defining it.

As mentioned earlier, the aim here is to generalize the correction term
concept to that of a correction function, and then to find an equation (a
PDE, with appropriate boundary conditions) that uniquely characterizes the
correction function. Then, at least in principle, one can design algorithms to
solve the PDE in order to obtain solutions to the correction function of any
desired order of accuracy.
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Let us begin by considering a small region ΩΓ enclosing the interface Γ,
defined as the set of all the points within some distance R of Γ, where R is
of the order of the grid size h. As we will see below, we would like to have
R as small as possible. On the other hand, ΩΓ has to include all the points
where the CFM requires corrections to be computed, which means1 that R
cannot be smaller than

√
2h. In addition, algorithmic considerations (to be

seen later) force R to be slightly larger than this last value.
Next, we assume we that can extrapolate both u+ and u−, so that they

are valid everywhere within ΩΓ, in such a way that they satisfy the Poisson
equations

∇2u+ (~x) = f+ (~x) for ~x ∈ ΩΓ, (8a)

∇2u− (~x) = f− (~x) for ~x ∈ ΩΓ, (8b)

where f+ and f− are smooth enough (see remark 3 below) extensions of the
source term f to ΩΓ. In particular, notice that the introduction of f+ and
f− allows the possibility of the source term changing (i.e. a discontinuous
source term) across Γ. The correction function is then defined by D(~x) =
u+(~x)− u−(~x).

Taking the difference between the equations in (8), and using the jump
conditions (1b-1c), yields

∇2D (~x) = f+ (~x)− f− (~x) = fD (~x) for ~x ∈ ΩΓ, (9a)

D (~x) = a (~x) for ~x ∈ Γ, (9b)

Dn (~x) = b (~x) for ~x ∈ Γ. (9c)

This achieves the aim of having the correction function defined by a set of
equations, with some provisos — see remark 4 below. Note that:

1. If f+ (~x) = f− (~x), for ~x ∈ ΩΓ, then fD (~x) = 0, for ~x ∈ ΩΓ.

2. Equation (9c) imposes the true jump condition in the normal direction,
whereas some versions of the GFM rely on a dimension-by-dimension
approximation of this condition (see Ref. [9]).

Remark 3. The smoothness requirement on f+ and f− is tied up to how
accurate an approximation to the correction term D is needed. For example,

1For the particular discretization of the Laplace operator that we use in this paper.
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if a 4th order algorithm is used to find D, this will (generally) necessitate D
to be at least C4 for the errors to actually be 4th order. Hence, in this case,
fD = f+ − f− must be C2. ♣

Remark 4. Equation (9) is an elliptic Cauchy problem for D in ΩΓ. In
general, such problems are ill-posed. However, we are seeking for solutions
within the context of a numerical approximation where

(a) There is a frequency cut-off in both the data a = a(~x) and b = b(~x), and
the description of the curve Γ.

(b) We are interested in the solution only a small distance away from the
interface Γ, where this distance vanishes simultaneously with the inverse
of the cut-off frequency in point (a).

What (a) and (b) mean is that the arbitrarily large growth rate for arbitrarily
small perturbations, which is responsible for the ill-posedness of the Cauchy
problem in Eq. (9), does not occur within the special context where we need
to solve the problem. This large growth rate does not occur because, for the
solutions of the Poisson equation, the growth rate for a perturbation of wave
number 0 < k <∞ along some straight line, is given by e2πkd — where d is
the distance from the line. However, by construction, in the case of interest
to us kd is bounded. ♣

Remark 5. Let us be more precise, and define a number characterizing how
well posed the discretized version of Eq. (9) is, by

α = largest growth rate possible,

where growth is defined relative to the size of a perturbation to the solution
on the interface. This number is determined by R (the “radius” of ΩΓ) as
the following calculation shows: First of all, there is no loss of generality in
assuming that the interface is flat, provided that the numerical grid is fine
enough to resolve Γ. In this case, let us introduce an orthogonal coordinate
system ~y on Γ, and let d be the signed distance to Γ (say, d > 0 in Ω−).
Expanding the perturbations in Fourier modes along the interface, the typical
mode has the form

ϕ~k = e2πi~k·~y±2πkd,

where ~k is the Fourier wave vector, and k = |~k|. The shortest wave-length
that can be represented on a grid with mesh size 0 < h � 1 corresponds to
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k = kmax = 1/(2h). Hence, we obtain the estimate

α ≈ eπRc/h

for the maximum growth rate. ♣

Remark 6. Clearly, α is intimately related to the condition number for the
discretized problem — see § 5. In fact, at leading order, the two numbers
should be (roughly) proportional to each other — with a proportionality con-
stant that depends on the details of the discretization. For the discretization
used in this paper (described further below),

√
2h ≤ R ≤ 2

√
2h, which leads

to the rough estimate 85 < α < 7, 200. On the other hand, the observed con-
dition numbers vary between 5,000 and 10,000. Hence, the actual condition
numbers are only slightly higher than α for the ranges of grid sizes h that
we used (we did not explore the asymptotic limit h→ 0). ♣

Remark 7. Equation (9) depends on the known inputs for the problem only.
Namely: f+, f−, a, and b. Consequently D does not depend on the solution
u. Hence, after solving for D, we can use a discretization for u that does not
involve the interface: Whenever u is discontinuous, we evaluate D where the
correction is needed, and transfer these values to the RHS. ♣

Remark 8. When developing an algorithm for a linear Cauchy problem,
such as the one in Eq. (9), the two key requirements are consistency and
stability. In particular, when the solution depends on the “initial conditions”
globally, stability (typically) imposes stringent constraints on the “time” step
for any local (explicit) scheme. This would seem to suggest that, in order
to solve Eq. (9), a “global” (involving the whole domain ΩΓ) method will
be needed. This, however, is not true: because we need to solve Eq. (9) for
one “time” step only — i.e. within an O(h) distance from Γ, stability is not
relevant. Hence, consistency is enough, and a fully local scheme is possible.
In the algorithm described in § 5 we found that, for (local) quadrangular
patches, the Cauchy problem leads to a well behaved algorithm when the
length of the interface contained in each patch is of the same order as the
diagonal length of the patch. This result is in line with the calculation in
remark 5: we want to keep the “wavelength” (along Γ) of the perturbations
introduced by the discretization as long as possible. In particular, this should
then minimize the condition number for the local problems — see remark 6.♣
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5. A 4th Order Accurate Scheme in 2D.

5.1. Overview.

In this section we use the general ideas presented earlier to develop a
specific example of a 4th order accurate scheme in 2D. Before proceeding
with an in-depth description of the scheme, we highlight a few key points:

(a) We discretize Poisson’s equation using a compact 9-point stencil. Com-
pactness is important since it is directly related to the size of Rc, which
has a direct impact on the problem’s conditioning — see remarks 4 – 6.

(b) We approximate D using bicubic interpolations (bicubics), each valid in a
small neighborhood Ωi,j

Γ of the interface. This guarantees local 4th order
accuracy with only 12 interpolation parameters — see [28]. Each Ωi,j

Γ

corresponds to a point in the grid at which the standard discretization
of Poisson’s equation involves a stencil that straddles the interface Γ.

(c) The domains Ωi,j
Γ are rectangular regions, each enclosing a portion of Γ,

and all the nodes where D is needed to complete the discretization of the
Poisson equation at the (i, j)-th stencil. Each is a sub-domain of ΩΓ.

(d) Starting from (b) and (c), we design a local solver that provides an
approximation to D inside each domain Ωi,j

Γ .

(e) The interface Γ is represented using the Gradient-Augmented Level Set
approach — see [28]. This guarantees a local 4th order representation of
the interface, as required to keep the overall accuracy of the scheme.

(f) In each Ωi,j
Γ , we solve the PDE in (9) in a least squares sense. Namely:

First we define an appropriate positive quadratic integral quantity JP —
Eq. (17) — for which the solution is a minimum (actually, zero). Next
we substitute the bicubic approximation for the solution into JP , and
discretize the integrals using Gaussian quadrature. Finally, we find the
bicubic parameters by minimizing the discretized JP .

Remark 9. Solving the PDE in a least squares sense is crucial, since an
algorithm is needed that can deal with the myriad ways in which the inter-
face Γ can be placed relative to the fixed rectangular grid used to discretize
Poisson’s equation. This approach provides a scheme that (i) is robust with
respect to the details of the interface geometry, (ii) has a formulation that
is (essentially) dimension independent — there are no fundamental changes
from 2D to 3D, and (iii) has a clear theoretical underpinning that allows
extensions to higher orders, or to other discretizations of the Poisson equa-
tion. ♣
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5.2. Standard Stencil.

We use the standard 4th order accurate 9-point discretization of Poisson’s
equation2:

L5ui,j +
1

12

(
h2
x + h2

y

)
∂̂xx∂̂yyui,j = fi,j +

1

12

(
h2
x (fxx)i,j + h2

y (fyy)i,j
)
, (10)

where L5 is the second order 5-point discretization of the Laplace operator:

L5ui,j = ∂̂xxui,j + ∂̂yyui,j, (11)

and

∂̂xxui,j =
ui+1,j − 2ui,j + ui−1,j

h2
x

, (12)

∂̂yyui,j =
ui,j+1 − 2ui,j + ui,j−1

h2
y

. (13)

The terms (fxx)i,j and (fyy)i,j may be given analytically (if known), or com-
puted using appropriate second order discretizations.

In the absence of discontinuities, Eq. (10) provides a compact 4th order
accurate representation of Poisson’s equation. In the vicinity of the disconti-
nuities at the interface Γ, we define an appropriate domain Ωi,j

Γ , and compute
the correction terms necessary to Eq. (10) — as described in detail next.

To understand how the correction terms affect the discretization, let us
consider the situation depicted in figure 3. In this case, the node (i, j) lies in
Ω+ while the nodes (i+ 1, j), (i+ 1, j + 1), and (i, j + 1) are in Ω−. Hence,
to be able to use Eq. (10), we need to compute Di+1,j, Di+1,j+1, and Di,j+1.

After having solved for D where necessary (see § 5.3 and § 5.4), we modify
Eq. (10) and write

L5ui,j +
1

12

(
h2
x + h2

y

)
∂̂xx∂̂yyui,j = fi,j +

1

12

(
h2
x (fxx)i,j + h2

y (fyy)i,j
)

+ Ci,j,

(14)
which differs from Eq. (10) by the terms Ci,j on the RHS only. Here the
Ci,j are the CFM correction terms needed to complete the stencil across the

2Notice that here we allow for the possibility of different grid spacings in each direction.
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Figure 3: The 9-point compact stencil next to the interface Γ.

discontinuity at Γ. In the particular case illustrated in figure 3, we have

Ci,j =

[
1

6

(
h2
x + h2

y

)
(hxhy)

2 −
1

h2
y

]
Di+1,j +

[
1

6

(
h2
x + h2

y

)
(hxhy)

2 −
1

h2
x

]
Di,j+1

− 1

12

(
h2
x + h2

y

)
(hxhy)

2 Di+1,j+1.

(15)

Similar formulas apply for the other possible arrangements of the Poisson’s
equation stencil relative to the interface Γ.

5.3. Definition of Ωi,j
Γ .

There is some freedom on how to define Ωi,j
Γ . The basic requirements are

(i) Ωi,j
Γ should be a rectangle.

(ii) the edges of Ωi,j
Γ should be parallel to the grid lines.

(iii) Ωi,j
Γ should be small, since the problem’s condition number increases

exponentially with the distance from Γ — see remarks 5 and 6.

(iv) Ωi,j
Γ should contain all the nodes where D is needed. For the example,

in figure 3 we need to know Di+1,j+1, Di+1,j, and Di,j+1. Hence, in this
case, Ωi,j

Γ should include the nodes (i+1, j+1), (i+1, j), and (i, j+1).
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(v) Ωi,j
Γ should contain a segment of Γ, with a length that is as large as

possible — i.e. comparable to the length of the diagonal of Ωi,j
Γ . This

follows from the calculation in remark 5, which indicates that the wave-
length of the perturbations (along Γ) introduced by the discretization
should be as long as possible. This should then minimize the condition
number for the local problem — see remark 6.

Requirements (i) and (ii) are needed for algorithmic convenience only, and
do not arise from any particular argument in § 4. Thus, in principle, this
convenience could be traded for improvements in other areas — for example,
for better condition numbers for the local problems, or for additional flex-
ibility in dealing with complex geometries. However, for simplicity, in this
paper we enforce (i) and (ii). As explained earlier (see remark 9), we solve
Eq. (9) in a least squares sense. Hence integrations over Ωi,j

Γ are required. It
is thus useful to keep Ωi,j

Γ as simple as possible.
A discussion of various aspects regarding the proper definition of Ωi,j

Γ can
be found in appendix B. For instance, the requirement in item (ii) is con-
venient only when an implicit representation of the interface is used. Fur-
thermore, although the definition of Ωi,j

Γ presented here proved robust for all
the applications of the 4th order accurate scheme (see § 6), there are specific
geometrical arrangements of the interface for which (ii) results in extremely
elongated Ωi,j

Γ . These elongated geometries can have negative effects on the
accuracy of the scheme. We noticed this effect in the 2nd order accurate ver-
sion of the method described in appendix C. These issues are addressed by
the various algorithms (of increasing complexity) presented in appendix B.

With the points above in mind, here (for simplicity) we define Ωi,j
Γ as the

smallest rectangle that satisfies the requirements in (i), (ii), (iv), and (v)
— then (iii) follows automatically. Hence Ωi,j

Γ can be constructed using the
following three easy steps:

1. Find the coordinates (xminΓ
, xmaxΓ

) and (yminΓ
, ymaxΓ

) of the smallest rect-
angle satisfying condition (ii), which completely encloses the section of the
interface Γ contained by the region covered by the 9-point stencil.

2. Find the coordinates (xminD
, xmaxD

) and (yminD
, ymaxD

) of the smallest
rectangle satisfying condition (ii), which completely encloses all the nodes
at which D needs to be known.

3. Then Ωi,j
Γ is the smallest rectangle that encloses the two previous rectan-
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gles. Its edges are given by

xmin = min (xminΓ
, xminD

) , (16a)

xmax = max (xmaxΓ
, xmaxD

) , (16b)

ymin = min (yminΓ
, yminD

) , (16c)

ymax = max (ymaxΓ
, ymaxD

) . (16d)

Figure 4 shows an example of Ωi,j
Γ defined using these specifications.

Figure 4: The set Ωi,j
Γ for the situation in figure 3.

Remark 10. Notice that for each node next to the interface we construct a
domain Ωi,j

Γ . When doing so, we allow the domains to overlap. For example,
the domain Ωi,j

Γ shown in figure 4 is used to determine Ci,j. It should be clear
that Ωi−1,j+1

Γ (used to determine Ci−1,j+1), and Ωi+1,j−1
Γ (used to determine

Ci+1,j−1), each will overlap with Ωi,j
Γ .

The consequence of these overlaps is that different computed values for D
at the same node can (in fact, will) happen — depending on which domain is
used to solve the local Cauchy problem. However, because we solve for D —
within each Ωi,j

Γ — to 4th order accuracy, any differences that arise from this
multiple definition of D lie within the order of accuracy of the scheme. Since
it is convenient to keep the computations local, the values of D resulting
from the domain Ωi,j

Γ , are used to evaluate the correction term Ci,j. ♣
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Remark 11. While rare, cases where a single interface crosses the same
stencil multiple times can occur. In § 6.3 we present such an example. A
simple approach to deal with situations like this is as follows: First associate
each node where the correction function is needed to a particular piece of
interface crossing the stencil (say, the closest one). Then define one Ωi,j

Γ for
each of the individual pieces of interface crossing the stencil.

For example, figure 5(a) depicts a situation where the stencil is crossed
by two pieces of the same interface (Γ1 and Γ2), with D needed at the nodes
(i + 1, j + 1), (i + 1, j), (i, j + 1), and (i − 1, j − 1). Then, first associate:
(i) (i + 1, j + 1), (i + 1, j), and (i, j + 1) to Γ1, and (ii) (i − 1, j − 1) to Γ2.
Second, define

1. Ωi,j
Γ1

is the smallest rectangle, parallel to the grid lines, that includes Γ1

and the nodes (i+ 1, j + 1), (i+ 1, j), and (i, j + 1).

2. Ωi,j
Γ2

is the smallest rectangle, parallel to the grid lines, that includes Γ2

and the node (i− 1, j − 1).

(a) (b)

Figure 5: Configuration where multiple Ωi,j
Γ2

are needed in the same stencil. (a) Same
interface crossing the stencil multiple times. (b) Distinct interfaces crossing the same
stencil.

After the multiple Ωi,j
Γ are defined within a given stencil, the local Cauchy

problem is solved for each Ωi,j
Γ separately. For example, in the case shown
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in figure 5(a), the solution for D inside Ωi,j
Γ1

is done completely independent

of the solution for D inside Ωi,j
Γ2

. The decoupling between multiple crossings
renders the CFM flexible and robust enough to handle complex geometries
without any special algorithmic considerations. ♣

Remark 12. When multiple distinct interfaces are involved, a single stencil
can be crossed by different interfaces – e.g.: see § 6.5 and § 6.6. This sit-
uation is similar to the one described in remark 11, but with an additional
complication: there may occur distinct domain regions that are not sepa-
rated by an interface, but rather by a third (or more) regions between them.
An example is shown in figure 5(b), where Γ1−2 and Γ2−3 are not part of the
same interface. Here Γ1−2 is the interface between Ω1 and Ω2, while Γ2−3

is the interface between Ω2 and Ω3. There is no interface Γ1−3 separating
Ω1 from Ω3, hence no jump conditions between these regions are provided.
Nonetheless, D1−3 = (u3 − u1) is needed at (i+ 1, j + 1).

Situations such as these can be easily handled by noticing that we can
distinguish between primary (e.g. D1−2 and D2−3) and secondary correction
functions, which can be written in terms of the primary functions
(e.g. D1−3 = D1−2 + D2−3) and need not be computed directly. Hence we
can proceed exactly as in remark 11, except that we have to make sure that
the intersections of the regions where the primary correction functions are
computed include the nodes where the secondary correction functions are
needed. For example, in the particular case in figure 5(b), we define

1. Ωi,j
Γ1−2

is the smallest rectangle, parallel to the grid lines, that includes
Γ1−2 and the nodes (i+ 1, j + 1), (i+ 1, j), and (i, j + 1).

2. Ωi,j
Γ2−3

is the smallest rectangle, parallel to the grid lines, that includes
Γ2−3 and the node (i+ 1, j + 1).

♣

5.4. Solution of the Local Cauchy Problem.

Since we use a 4th order accurate discretization of the Poisson problem, we
need to find D with 4th order errors (or better) to keep the overall accuracy of
the scheme — see § 5.7. Hence we approximate D using cubic Hermite splines
(bicubic interpolants in 2D), which guarantees 4th order accuracy — see [28].
Note also that, even though the example scheme developed here is for 2D,
this representation can be easily extended to any number of dimensions.
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Given a choice of basis functions,3 we solve the local Cauchy problem
defined in Eq. (9) in a least squares sense, using a minimization procedure.
Since we do not have boundary conditions, but interface conditions, we must
resort to a minimization functional that is different from the standard one
associated with the Poisson equation. Thus we impose the Cauchy interface
conditions by using a penalization method. The functional to be minimized
is then

JP = (`i,jc )3

∫
Ωi,j

Γ

[
∇2D (~x)− fD (~x)

]2
dV

+ cP

∫
Γ∩Ωi,j

Γ

[D (~x)− a (~x)]2 dS

+ cP (`i,jc )2

∫
Γ∩Ωi,j

Γ

[Dn (~x)− b (~x)]2 dS,

(17)

where cP > 0 is the penalization coefficient used to enforce the interface
conditions, and `i,jc > 0 is a characteristic length associated with Ωi,j

Γ — we
used the shortest side length. Clearly JP is a quadratic functional whose
minimum (zero) occurs at the solution to Eq. (9).

In order to compute D in the domain Ωi,j
Γ , its bicubic representation is

substituted into the formula above for JP , with the integrals approximated
by Gaussian quadratures — in this paper we used six quadrature points for
the 1D line integrals, and 36 points for the 2D area integrals. The resulting
discrete problem is then minimized. Because the bicubic representation for D
involves 12 basis polynomials, the minimization problem produces a 12× 12
(self-adjoint) linear system.

Remark 13. We explored the option of enforcing the interface conditions
using Lagrange multipliers. While this second approach yields good results,
our experience shows that the penalization method is better. ♣

Remark 14. The scaling using `i,jc in Eq. (17) is so that all the three terms
in the definition of Jp behave in the same fashion as the size of Ωi,j

Γ changes
with (i, j), or when the computational grid is refined.4 This follows because

3The basis functions that we use for the bicubic interpolation can be found in ap-
pendix A.

4The scaling also follows from dimensional consistency.
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we expect that

∇2D − f = O
(
`2
c

)
,

D − a = O
(
`4
c

)
,

Dn − b = O
(
`3
c

)
.

Hence each of the three terms in Eq. (17) should be O (`9
c). ♣

Remark 15. Once all the terms in Eq. (17) are guaranteed to scale the same
way with the size of Ωi,j

Γ , the penalization coefficient cP should be selected
so that the three terms have (roughly) the same size for the numerical solu-
tion (they will, of course, not vanish). In principle, cP could be determined
from knowledge of the fourth order derivatives of the solution, which control
the error in the numerical solution. This approach does not appear to be
practical. A simpler method is based on the observation that cP should not
depend on the grid size (at least to leading order, and we do not need better
than this). Hence it can be determined empirically from a low resolution
calculation. In the examples in this paper we found that cP ≈ 50 produced
good results. ♣

Remark 16. A more general version of JP in Eq. (17) would involve different
penalization coefficients for the two line integrals, as well as the possibility of
these coefficients having a dependence on the position along Γ of Ωi,j

Γ . These
modifications could be useful in cases where the solution to the Poisson prob-
lem has large variations — e.g. a very irregular interface Γ, or a complicated
forcing f . ♣

5.5. Computational Cost.

We can now infer something about the cost of the present scheme. To
start with, let us denote the number of nodes in the x and y directions by

Nx =
1

hx
+ 1, Ny =

1

hy
+ 1, (18)

assuming a 1 by 1 computational square. Hence, the total number of degrees
of freedom is M = NxNy. Furthermore, the number of nodes adjacent to the
interface is O(M1/2), since the interface is a 1D entity.

The discretization of Poisson’s equation results in a M×M linear system.
Furthermore, the present method produces changes only on the RHS of the
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equations. Thus, the basic cost of inverting the system is unchanged from
that of inverting the system resulting from a problem without an interface Γ.
Namely: it varies from O(M) to O(M2), depending on the solution method.

Let us now consider the computational cost added by the modifications
to the RHS. As presented above, for each node adjacent to the interface,
we must construct Ωi,j

Γ , compute the integrals that define the local 12 × 12
linear system, and invert it. The cost associated with these tasks is constant:
it does not vary from node to node, and it does not change with the size
of the mesh. Consequently the resulting additional cost is a constant times
the number of nodes adjacent to the interface. Hence it scales as M1/2.
Because of the (relatively large) coefficient of proportionality, for small M
this additional cost can be comparable to the cost of inverting the Poisson
problem. Obviously, this extra cost becomes less significant as M increases.

5.6. Interface Representation.

As far as the CFM is concerned, the framework needed to solve the local
Cauchy problems is entirely described above. However, there is an impor-
tant issue that deserves attention: the representation of the interface. This
question is independent of the CFM. Many approaches are possible, and the
optimal choice is geometry dependent. The discussion below is meant to shed
some light on this issue, and motivate the solution we have adopted.

In the present work, generally we proceed assuming that the interface
is not known exactly – since this is what frequently happens. The only
exceptions to this are the examples in § 6.5 and § 6.6, which involve two
distinct (circular) interfaces touching at a point. In the generic setting, in
addition to a proper representation of the interfaces, one needs to be able
to identify the distinct interfaces, regions in between, contact points, as well
as distinguish between a single interface crossing the same stencil multiple
times and multiple distinct interfaces crossing one stencil. While the CFM
algorithm is capable of dealing with these situations once they have been
identified (e.g. see remarks 11 and 12), the development of an algorithm with
the capability to detect such generic geometries is beyond the scope of this
paper, and a (hard) problem in interface representation. For these reasons,
in the examples in § 6.5 and § 6.6 we use an explicit exact representation of
the interface.

To guarantee the accuracy of the solution for D, the interface conditions
must be applied with the appropriate accuracy — see § 5.7. Since these
conditions are imposed on the interface Γ, the location of Γ must be known
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with the same order of accuracy desired for D. In the particular case of the
4th order implementation of the CFM algorithm in this paper, this means 4th

order accuracy. For this reason, we adopted the gradient-augmented level
set (GA-LS) approach, as introduced in [28]. This method allows a simple
and completely local 4th order accurate representation of the interface, using
Hermite cubics defined everywhere in the domain. The approach also allows
the computation of normal vectors in a straightforward and accurate fashion.

We point out that the GA-LS method is not the only option for an implicit
4th order representation of the interface. For example, a regular level set
method [27], combined with a high-order interpolation scheme, could be used
as well. Here we adopted the GA-LS approach because of the algorithmic
coherence that results from representing both the level set, and the correction
functions, using the same bicubic polynomial base.

5.7. Error analysis.

A naive reading of the discretized system in Eq. (14) suggests that, in
order to obtain a fourth order accurate solution u, we need to compute the
CFM correction terms Ci,j with fourth order accuracy. Thus, from Eq. (15),
it would follow that we need to know the correction function D with sixth
order accuracy! This is, however, not correct, as explained below.

Since we need to compute the correction function D only at grid-points
an O(h) distance away from Γ, it should be clear that errors in the Di,j

are equivalent to errors in a and b of the same order. But errors in a and b
produce errors of the same order in u — see Eq. (1) and Eq. (2). Hence, if we
desire a fourth order accurate solution u, we need to compute the correction
terms Di,j with fourth order accuracy only. This argument is confirmed by
the convergence plots in figures 7, 9, and 11.

5.8. Computation of gradients.

Some applications require not only the solution to the Poisson problem,
but also its gradient. Hence, in § 6, we include plots characterizing the
behavior of the errors in the gradients of the solutions. A key question is
then: how are these gradients computed?

To compute the gradients near the interface, the correction function can
be used to extend the solution across the interface, so that a standard stencil
can be used. However, for this to work, it is important to discretize the
gradient operator using the same nodes that are part of the 9-point stencil
— so that the same correction functions obtained while solving the Poisson
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equation can be used. Hence we discretize the gradient operator with a
procedure similar to the one used to obtain the 9-point stencil. Specifically,
we use the following 4th order accurate discretization:

∂xui,j = ∂̂xui,j +
h2
x

6

[
∂̂xx∂̂yui,j − (fx)i,j

]
, (19)

∂yui,j = ∂̂yui,j +
h2
y

6

[
∂̂yy∂̂yui,j − (fy)i,j

]
, (20)

where

∂̂xui,j =
ui+1,j − ui−1,j

2hx
, (21)

∂̂yui,j =
ui,j+1 − ui,j−1

2hy
, (22)

and ∂̂xx and ∂̂yy are defined by (12) and (13), respectively. The terms (fx)i,j
and (fy)i,j may be given analytically (if known), or computed using appro-
priate second order accurate discretizations.

This discretization is 4th order accurate. However, since the error in the
correction function is (generally) not smooth, the resulting gradient will be
less than 4th order accurate (worse case scenario is 3rd order accurate) next
to the interface.

6. Results.

6.1. General Comments.

In this section we present five examples of computations in 2D using the
algorithm introduced in § 5. We solve the Poisson problem in the unit square
[0, 1]× [0, 1] for five different configurations. Each example is defined below
in terms of the problem parameters (source term f , and jump conditions
across Γ), the representation of the interface(s) — either exact or using a
level set function, and the exact solution (needed to evaluate the errors in
the convergence plots). Notice that

1. As explained in § 5.6, in examples 1 through 3 we represent the inter-
face(s) using the GA-LS method. Hence, the interface is defined by a

level set function φ, with gradient ~∇φ = (φx, φy) — both of which are
carried within the GA-LS framework [28].
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2. Below the level set is described via an analytic formula. In examples 1
through 3 this formula is converted into the GA-LS representation for
the level set, before it is fed into the code. Only this representation is
used for the actual computations. This is done so as to test the code’s
performance under generic conditions – where the interface Γ would be
known via a level set representation only.

3. Within the GA-LS framework we can, easily and accurately, compute
the vectors normal to the interface — anywhere in the domain. Hence,
it is convenient to write the jump in the normal derivative, [un]Γ, in
terms of the jump in the gradient of u dotted with the normal to the
interface n̂ = (nx, ny).

The last two examples involve touching circular interfaces and were devised
to demonstrate the robustness of the CFM in the presence of interfaces that
are very close together. In these last two examples, for the reasons discussed
in § 5.6, we decided to use an exact representation of the circular interfaces.

6.2. Example 1.

• Problem parameters:

f+ (x, y) = −2π2 sin(πx) sin(πy),

f− (x, y) = −2π2 sin(πx) sin(πy),

[u]Γ = sin(πx) exp(πy),

[un]Γ = π [cos(πx) exp(πy)nx + sin(πx) exp(πy)ny] .

• Level set defining the interface: φ (x, y) = (x− x0)2 + (y − y0)2 − r2
0,

where x0 = 0.5, y0 = 0.5, and r0 = 0.1.

• Exact solution:

u+ (x, y) = sin(πx) sin(πy),

u− (x, y) = sin(πx)[sin(πy)− exp(πy)].

Figure 6 shows the numerical solution with a fine grid (193× 193 nodes).
The discontinuity is captured very sharply, and it causes no oscillations in
the solution. In addition, figure 7 shows the behavior of the error of the
solution and its gradient in the L2 and L∞ norms. As expected, the solution
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presents 4th order convergence as the grid is refined. Moreover, the gradient
converges to 3rd order in the L∞ norm and to 4th order in the L2 norm, which
is a reflection of the fact that the error in the solution is not smooth in a
narrow region close to the interface only.

Figure 6: Example 1 - numerical solution with 193× 193 nodes.
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(a) Solution. (b) Gradient.

Figure 7: Example 1 - Error behavior of the solution and its gradient in the L2 and L∞
norms.
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6.3. Example 2.

• Problem parameters:

f+ (x, y) = 0,

f− (x, y) = 0,

[u]Γ = − exp(x) cos(y),

[un]Γ = − exp(x) cos(y)nx + exp(x) sin(y)ny.

• Level set defining the interface: φ (x, y) = (x−x0)2 + (y−x0)2− r2(θ),

where r(θ) = r0 + ε sin(5 θ), θ (x, y) = arctan

(
y − y0

x− x0

)
, x0 = 0.5,

y0 = 0.5, r = 0.25, and ε = 0.05.

• Exact solution:

u+ (x, y) = 0,

u− (x, y) = exp(x) cos(y).

Figure 8 shows the numerical solution with a fine grid (193× 193 nodes).
Once again, the overall quality of the solution is very satisfactory. Figure 9
shows the behavior of the error of the solution and its gradient in the L2 and
L∞ norms. Again, the solution converges to 4th order, while the gradient
converges to 3rd order in the L∞ norm and close to 4th order in the L2 norm.
However, unlike what happens in example 1, small wiggles are observed in the
error plots. This behavior can be explained in terms of the construction of the
sets Ωi,j

Γ — see § 5. The approach used to construct Ωi,j
Γ is highly dependent

on the way in which the grid points are placed relative to the interface.
Thus, as the grid is refined, the arrangement of the Ωi,j

Γ can vary quite a lot
— specially for a “complicated” interface such as the one in this example.
What this means is that, while one can guarantee that the correction function
D is obtained with 4th order precision, the proportionality coefficient is not
constant — it may vary a little from grid to grid. This variation is responsible
for the small oscillations observed in the convergence plot. Nevertheless,
despite these oscillations, the overall convergence is clearly 4th order.
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Figure 8: Example 2 - numerical solution with 193× 193 nodes.
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(a) Solution. (b) Gradient.

Figure 9: Example 2 - Error behavior of the solution and its gradient in the L2 and L∞
norms.

6.4. Example 3.

• Problem parameters:

f+ (x, y) = exp(x)
[
2 + y2 + 2 sin(y) + 4x sin(y)

]
,

f− (x, y) = 40,
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[u]Γ = exp(x)
[
x2 sin(y) + y2

]
− 10

(
x2 + y2

)
,

[un]Γ =
{

exp(x)
[(
x2 + 2x

)
sin(y) + y2

]
− 20x

}
nx

+
{

exp(x)
[
x2 cos(y) + 2y

]
− 20y

}
ny.

• Level set defining the interface:
φ (x, y) = [(x− x1)2 + (y − y1)2 − r2

1] [(x− x2)2 + (y − y2)2 − r2
2], where

x1 = y1 = 0.25, r1 = 0.15, x2 = y2 = 0.75, and r2 = 0.1.

• Exact solution:

u+ (x, y) = exp(x)
[
x2 sin(y) + y2

]
,

u− (x, y) = 10
(
x2 + y2

)
.

Figure 10 shows the numerical solution with a fine grid (193×193 nodes).
In this example, there are two circular interfaces in the solution domain. The
two regions inside the circles make Ω−, while the remainder of the domain
is Ω+. This example shows that the method is general enough to deal with
multiple interfaces, keeping the same quality in the solution. Figure 11 shows
that the solution converges to 4th order in both L∞ and L2 norms, while the
gradient converges to 3rd order in the L∞ norm and close to 4th order in the
L2 norm.

6.5. Example 4.

• Problem parameters:

f1 (x, y) = −2π2 sin(πx) sin(πy),

f2 (x, y) = exp(x)
[
2 + y2 + 2 sin(y) + 4x sin(y)

]
,

f3 (x, y) = −2π2 sin(πx) sin(πy),

[u]Γ1−2 = exp(x)
[
x2 sin(y) + y2

]
− sin(πx) sin(πy)− 5,

[un]Γ1−2
= {exp(x)

[
(x2 + 2x) sin(y) + y2

]
− π cos(πx) sin(πy)}nx

+ {exp(x)
[
x2 cos(y) + 2y

]
− π sin(πx) cos(πy)}ny,

[u]Γ2−3 = sin(πx)[sin(πy)− exp(πy)]− exp(x)
[
x2 sin(y) + y2

]
,

[un]Γ2−3
= {π cos(πx)[sin(πy)− exp(πy)]− exp(x)

[
(x2 + 2x) sin(y) + y2

]
}nx

+ {π sin(πx)[cos(πy)− exp(πy)]− exp(x)
[
x2 cos(y) + 2y

]
}ny.
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Figure 10: Example 3 - numerical solution with 193× 193 nodes.
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(a) Solution. (b) Gradient.

Figure 11: Example 3 - Error behavior of the solution and its gradient in the L2 and L∞
norms.

• Interface (exact representation):

– Region 1: inside of the big circle.

– Region 2: outer region.

– Region 3: inside of the small circle.
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– Interface 1–2 (Big circle):

rB = 0.3,

x0B = 0.5,

y0B = 0.5,

– Interface 2–3 (Small circle):

rS = 0.3,

x0S = x0B + rB cos(π/e2)− rS cos
(
π(1/e2 + 1)

)
,

y0S = y0B + rB sin(π/e2)− rS sin
(
π(1/e2 + 1)

)
.

• Exact solution:

u1 (x, y) = sin(πx) sin(πy) + 5,

u2 (x, y) = exp(x)
[
x2 sin(y) + y2

]
,

u3 (x, y) = sin(πx)[sin(πy)− exp(πy)].

Figure 12 shows the numerical solution with a fine grid (193×193 nodes).
In this example the big circle is centered within the square integration domain
and the small circle is external to it, with a common point of tangency. The
point of contact is placed along the boundary of the big circle at the polar
angle θ = π/e2 — use the center of the big circle as the polar coordinates’
origin. These choices guarantee that, as the grid is refined, a wide variety
of configurations involving two distinct interfaces crossing the same stencil
occurs in a neighborhood of the contact point. In particular, the selection
of the angle θ is so that no special alignments of the grid with the local
geometry near the contact point can happen. Figure 13 shows the behavior
of the error as h → 0 in the L2 and L∞ norms. Once again we observe 4th

order convergence (with small superimposed oscillations) for the solution.
Moreover, the gradient converges to 3rd order in the L∞ norm and close to
4th order in the L2 norm. This example shows that the CFM is robust even
in situations where distinct interfaces can get arbitrarily close (tangent at a
point).
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Figure 12: Example 4 - numerical solution with 193× 193 nodes.
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(a) Solution. (b) Gradient.

Figure 13: Example 4 - Error behavior of the solution and its gradient in the L2 and L∞
norms.

6.6. Example 5.

• Problem parameters:

f1 (x, y) = −2π2 sin(πx) sin(πy),

f2 (x, y) = −2π2 sin(πx) sin(πy),

f3 (x, y) = exp(x)
[
2 + y2 + 2 sin(y) + 4x sin(y)

]
,
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[u]Γ1−2 = − [sin(πx) exp(πy) + 5] ,

[un]Γ1−2
= −π [cos(πx) exp(πy)nx + sin(πx) exp(πy)ny] ,

[u]Γ2−3 = exp(x)
[
x2 sin(y) + y2

]
− sin(πx)[sin(πy)− exp(πy)],

[un]Γ2−3
= {exp(x)

[
(x2 + 2x) sin(y) + y2

]
− π cos(πx)[sin(πy)− exp(πy)]}nx

+ {exp(x)
[
x2 cos(y) + 2y

]
− π sin(πx)[cos(πy)− exp(πy)]}ny.

• Interface (exact representation):

– Region 1: inside small circle.

– Region 2: region between circles.

– Region 3: outer region.

– Interface 2–3 (Big circle):

rB = 0.3,

x0B = 0.5,

y0B = 0.5,

– Interface 1–2 (Small circle):

rS = 0.3,

x0S = x0B + (rB − rS) cos(π/e2),

y0S = y0B + (rB − rS) sin(π/e2).

• Exact solution:

u1 (x, y) = sin(πx) sin(πy) + 5,

u2 (x, y) = sin(πx)[sin(πy)− exp(πy)],

u3 (x, y) = exp(x)
[
x2 sin(y) + y2

]
.

This example complements the example in § 6.5, the sole difference being
that here the small circle is inside the big circle. The results are entirely
similar. Figure 14 shows the numerical solution with a fine grid (193 × 193
nodes), while figure 13 shows the behavior of the error in the L2 and L∞
norms.
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Figure 14: Example 5 - numerical solution with 193× 193 nodes.
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(a) Solution. (b) Gradient.

Figure 15: Example 5 - Error behavior of the solution and its gradient in the L2 and L∞
norms.

7. Conclusions.

In this paper we have introduced the Correction Function Method (CFM),
which can, in principle, be used to obtain (arbitrary) high-order accurate
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solutions to constant coefficients Poisson problems with interface jump con-
ditions. This method is based on extending the correction terms idea of
the Ghost Fluid Method (GFM) to that of a correction function, defined in a
(narrow) band enclosing the interface. This function is the solution of a PDE
problem, which can be solved (at least in principle) to any desired order of
accuracy. Furthermore, like the GFM, the CFM allows the use of standard
Poisson solvers. This feature follows from the fact that the interface jump
conditions modify (via the correction function) only the right-hand-side of
the discretized linear system of equations used in standard linear solvers for
the Poisson equation.

As an example application, the new method was used to create a 4th or-
der accurate scheme to solve the constant coefficients Poisson equation with
interface jump conditions in 2D. In this scheme, the domain of definition of
the correction function is split into many grid size rectangular patches. In
each patch the function is represented in terms of a bicubic (with 12 free
parameters), and the solution is obtained by minimizing an appropriate (dis-
cretized) quadratic functional. The correction function is thus pre-computed,
and then is used to modify (in the standard way of the GFM) the right hand
side of the Poisson linear system, incorporating the jump conditions into
the Poisson solver. We used the standard 4th order accurate 9-point stencil
discretization of the Laplace operator, to thus obtain a 4th order accurate
method.

Examples were computed, showing the developed scheme to be robust,
accurate, and able to capture discontinuities sharply, without creating spuri-
ous oscillations. Furthermore, the scheme is cost effective. First, because it
allows the use of standard “black-box” Poisson solvers, which are normally
tuned to be extremely efficient. Second, because the additional costs of solv-
ing for the correction function scale linearly with the mesh spacing, which
means that they become relatively small for large systems.

Finally, we point out that the present method cannot be applied to all
the interesting situations where a Poisson problem must be solved with jump
discontinuities across an interface. Let us begin by displaying a very gen-
eral Poisson problem with jump discontinuities at an interface. Specifically,
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consider

~∇ ·
(
β+ (~x) ~∇u+ (~x)

)
= f+ (~x) for ~x ∈ Ω+, (23a)

~∇ ·
(
β− (~x) ~∇u− (~x)

)
= f− (~x) for ~x ∈ Ω−, (23b)

[αu]Γ = a (~x) for ~x ∈ Γ, (23c)

[(γ u)n]Γ + [η u]Γ = b (~x) for ~x ∈ Γ, (23d)

u (~x) = g (~x) for ~x ∈ ∂Ω, (23e)

where we use the notation in § 2 and

7.1 The brackets indicate jumps across the interface, for example:
[αu]Γ = (α+ u+) (~x)− (α− u−) (~x) for ~x ∈ Γ.

7.2 The subscript n indicates the derivative in the direction of n̂, the unit
normal to the interface Γ pointing towards Ω+.

7.3 β+ > 0 and f+ are smooth functions of ~x, defined in the union of Ω+

and some finite width band enclosing the interface Γ.

7.4 β− > 0 and f− are smooth functions of ~x, defined in the union of Ω−

and some finite width band enclosing the interface Γ.

7.5 α± > 0, γ± > 0, and η± are smooth functions, defined on some finite
width band enclosing the interface Γ.

7.6 The Dirichlet boundary conditions in (23e) could be replaced any other
standard set of boundary conditions on ∂ Ω.

7.7 As usual, the degree of smoothness of the various data functions in-
volved determines how high an order an algorithm can be obtained.

Assume now that γ± = α±, η± = c α± — where c is a constant, and that

~A =
1

β+
~∇β+ =

1

β−
~∇β−,

B =
α+

β+
~∇ ·
(
β+ ~∇

(
1

α+

))
=

α−

β−
~∇ ·
(
β− ~∇

(
1

α−

))
,

 (24)
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applies in the band enclosing Γ where all the functions are defined.5 In this
case the methods introduced in this paper can be used to deal with the
problem in (23) with minimal alterations. The main ideas carry through, as
follows

7.a We assume that both u+ and u− can be extended across Γ, so that they
are defined in some band enclosing the interface.

7.b We define the correction function, in the band enclosing Γ where the
α± and the u± exist, by D = α+(~x)u+ (~x)− α−(~x)u− (~x).

7.c We notice that the correction function satisfies the elliptic Cauchy prob-
lem

∇2D + ~A · ~∇D +BD =
α+

β+
f+ − α−

β−
f−, (25)

with D = a and Dn = b− c a at the interface Γ.

7.d We notice that the GFM correction terms can be written with knowl-
edge of D.

Unfortunately, the conditions in (24) exclude some interesting physical phe-
nomena. In particular, in two-phase flows the case where α± and γ± are
constants (but distinct) and η± = 0 arises. We are currently investigating
ways to circumvent these limitations, so as to extend our method to problems
involving a wider range of physical phenomena.

A. Bicubic interpolation.

Bicubic interpolation is similar to bilinear interpolation, and can also be
used to represent a function in a rectangular domain. However, whereas
bilinear interpolation requires one piece of information per vertex of the
rectangular domain, bicubic interpolation requires 4 pieces of information:
function value, function gradient, and first mixed derivative (i.e. fxy). For
completeness, the relevant formulas for bicubic interpolation are presented
below.

We use the classical multi-index notation, as in Ref. [28]. Thus, we repre-
sent the 4 vertices of the domain using the vector index ~v ∈ {0, 1}2. Namely,

5Note that (24) implies that β+ is a multiple of β−.
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the 4 vertices are ~x~v = (x0
1 + v1 ∆x1, x

0
2 + v2 ∆x2), where (x0

1, x
0
2) are the

coordinates of the left-bottom vertex and ∆xi is the length of the domain
in the xi direction. Furthermore, given a scalar function φ, the 4 pieces of
information needed per vertex are given by

φ~v~α = ∂~αφ (~x~v) , (A.1)

where both ~v, ~α ∈ {0, 1}2 and

∂~α = ∂α1
1 ∂α2

2 , ∂αi
i = (∆xi)

αi
∂αi

∂xαi
i

. (A.2)

Then the 16 polynomials that constitute the standard basis for the bicubic
interpolation can be written in the compact form

W ~v
~α =

2∏
i=1

wviαi
(x̄i) , (A.3)

where x̄i =
xi−x0

i

∆xi
, and wvα is the cubic polynomial

wvα(x) =


f(x) for v = 0 and α = 0,
f(1− x) for v = 1 and α = 0,
g(x) for v = 0 and α = 1,
−g(1− x) for v = 1 and α = 1,

(A.4)

where f(x) = 1− 3x2 + 2x3 and g(x) = x (1− x)2.
Finally, the bicubic interpolation of a scalar function φ is given by the

following linear combination of the basis functions:

H (~x) =
∑

~v, ~α∈{0,1}2
W ~v

~α φ
~v
~α (A.5)

As defined above (standard bicubic interpolation), 16 parameters are needed
to determine the bicubic. However, in Ref. [28] a method (“cell-based ap-
proach”) is introduced, that reduces the number of degrees of freedom to
12, without compromising accuracy. This method uses information from the
first derivatives to obtain approximate formulae for the mixed derivatives.
In the present work, we adopt this cell-based approach.
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B. Issues affecting the construction of Ωi,j
Γ .

B.1. Overview.

As discussed in § 5, the CFM is based on local solutions to the PDE (9)
in sub-regions of ΩΓ – which we call Ωi,j

Γ . However, there is a certain degree
of arbitrariness in how Ωi,j

Γ is defined. Here we discuss several factors that
must be consider when solving equation (9), and how they influence the
choice of Ωi,j

Γ . We also present four distinct approaches to constructing Ωi,j
Γ ,

of increasing level of robustness (and, unfortunately, complexity).
The only requirements on Ωi,j

Γ that the discussion in § 4 imposes are

• Ωi,j
Γ should be small, since the local problems’ condition numbers in-

crease exponentially with distance from Γ — see remarks 5 and 6.

• Ωi,j
Γ should contain all the nodes where the correction function D is

needed.

In addition, practical algorithmic considerations further restrict the definition
of Ωi,j

Γ , as explained below.
First, we solve for D in a weak fashion, by locally minimizing a discrete

version of the functional JP defined in equation (17). This procedure involves
integrations over Ωi,j

Γ . Thus, it is useful if Ωi,j
Γ has an elementary geometrical

shape, so that simple quadrature rules can be applied to evaluate the inte-
grals. Second, if Ωi,j

Γ is a rectangle, we can use a (high-order) bicubic (see
appendix A) to represent D in Ωi,j

Γ . Hence we restrict Ωi,j
Γ to be a rectangle6.

Third, another consideration when constructing Ωi,j
Γ is how the interface is

represented. In principle the solution to the PDE in (9) depends on the infor-
mation given along the interface only, and it is independent of the underlying
grid. Nevertheless, consider an interface described implicitly by a level set
function, known only in terms of its values (and perhaps derivatives) at the
grid points. It is then convenient if the portions of the interface contained
within Ωi,j

Γ can be easily described in terms of the level set function dis-
cretization — e.g. in terms of a pre-determined set of grid cells, such as the
cells that define the discretization stencil. The approaches in § B.2 through
§ B.4 are based on this premise.

6Clearly, other simple geometrical shapes, with other types approximations for D,
should be possible — though we have not investigated them.
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Although the prior paragraph’s strategy makes for an easier implemen-
tation, it also ties Ωi,j

Γ to the underlying grid, whereas it should depend only
on the interface geometry. Hence it results in definitions for Ωi,j

Γ that cannot
track the interface optimally. For this reason, we developed the approach
in § B.5, which allows Ωi,j

Γ to freely adapt to the local interface geometry,
regardless of the underlying grid. The idea is to first identify a piece of the
interface based on a pre-determined set of grid cells, and then use this infor-
mation to construct an optimal Ωi,j

Γ . This yields a somewhat intricate, but
very robust definition for Ωi,j

Γ .
Finally, note that explicit representations of the interface are not con-

strained by the underlying grid. Moreover, information on the interface ge-
ometry is readily available anywhere along the interface. Hence, in this case,
an optimal Ωi,j

Γ can be constructed without the need to identify a piece of
the interface in terms of a pre-determined set of grid cells. This fact makes
the approach § B.5 straightforward with explicit representations of the inter-
face. By contrast, the less robust approaches in § B.2 through § B.4 become
more involved in this context, because they requires the additional work of
constraining the explicit representation to the underlying grid.

Obviously, the algorithms presented here (§ B.2 through § B.5) represent
only a few of the possible ways in which Ωi,j

Γ can be defined. Nevertheless,
these approaches serve as practical examples of how different factors must
be balanced to design robust schemes.

B.2. Naive Grid–Aligned Stencil–Centered Approach.

In this approach, we fit Ωi,j
Γ to the underlying grid by defining it as the

2hx×2hy box that covers the 9-point stencil. Figure B.1 shows two examples.

This approach is very appealing because of its simplicity, but it has se-
rious flaws and we do not recommend it. The reason is that the piece of
the interface contained within Ωi,j

Γ can become arbitrarily small – see fig-
ure B.1(b). Then the arguments that make the local Cauchy problem well
posed no longer apply — see remarks 5, 6, and 8. In essence, the biggest
frequency encoded in the interface, kmax ≈ 1/length(Γ/Ωi,j

Γ ), can become ar-
bitrarily large — while the characteristic length of Ωi,j

Γ remains O(h). As a
consequence, the condition number for the local Cauchy problem can become
arbitrarily large. We describe this approach here merely as an example of
the problems that can arise from too simplistic a definition of Ωi,j

Γ .
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(a) Well–posed. (b) Ill–posed.

Figure B.1: Ωi,j
Γ as defined by the naive grid–aligned stencil–centered approach.

B.3. Compact Grid–Aligned Stencil–Centered Approach.

This is the approach described in detail in § 5.3. In summary: Ωi,j
Γ is

defined as the smallest rectangle that

(i) Is aligned with the grid.

(ii) Includes the piece of the interface contained within the stencil.

(iii) Includes all the nodes where D is needed.

Figure B.2 shows three examples of this definition. As it should be clear
from this figure, a key consequence of (i–iii) is that the piece of interface
contained within Ωi,j

Γ is always close to its diagonal — hence it is never too
small relative to the size of Ωi,j

Γ . Consequently, this approach is considerably
more robust than the one in § B.2. In fact, we successfully employed it for
all the examples using the 4th order accurate scheme — see § 6.

Unfortunately, the requirements (i–ii) in this approach tie Ωi,j
Γ to the grid

and the stencil. As mentioned earlier, these constraints may lead to an Ωi,j
Γ

which is not the best fit to the geometry of the interface. Figure B.2(c)
depicts a situation where this strategy yields relatively poor results. This
happens when there is an almost perfect alignment of the interface with the
grid, which can result in an excessively elongated Ωi,j

Γ — in the worse case
scenario, this set could reduce to a line. Although the local Cauchy problem
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(a) Well balanced. (b) Well balanced. (c) Elongated.

Figure B.2: Ωi,j
Γ as defined by the compact grid–aligned stencil–centered approach.

remains well conditioned, the elongated sets can interfere with the process
we use to solve the equation for D in (9). Essentially, the representation of a
function by a bicubic (or a modified bilinear in the case of the 2nd accurate
scheme in appendix C) becomes an ill-defined problem as the aspect ratio of
the rectangle Ωi,j

Γ vanishes (however, see the next paragraph). In the authors’
experience, when this sort of alignment happens the solution remains valid
and the errors are still relatively small — but the convergence rate may be
affected if the bad alignment persists over several grid refinements.

We note that we observed the difficulties described in the paragraph above
with the 2nd accurate scheme in appendix C only. We attribute this to the
fact that the bicubics result in a much better enforcement of the PDE (9)
than the modified bilinears. The latter are mostly determined by the interface
conditions — see remark C.1. Hence, the PDE (9) provides a much stronger
control over the bicubic parameters, making this interpolation more robust
in elongated sets.

Note that this issue is much less severe than the problem affecting the
approach in § B.2, and could be corrected by making the Cauchy solver
“smarter” when dealing with elongated sets. Instead we adopted the simpler
solution of having a definition for Ωi,j

Γ that avoids elongated sets. The most
robust way to do this is to abandon the requirements in (i–ii), and allow
Ωi,j

Γ to adapt to the local geometry of the interface. This is the approach
introduced in § B.5. A simpler, compromise solution, is presented in § B.4.
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B.4. Free Stencil–Centered Approach.
Here we present a compromise solution for avoiding elongated Ωi,j

Γ , which
abandons the requirement in (i), but not in (ii) — since (ii) is convenient
when the interface is represented implicitly. In this approach Ωi,j

Γ is defined
as the smallest rectangle that

(i*) Is aligned with the grid rotated by an angle θr, where θr = θΓ − π/4
and θΓ characterizes the interface alignment with respect to the grid
(e.g. the polar angle for the tangent vector to the interface section at
its mid-point inside the stencil).

(ii*) Includes the piece of the interface contained within the stencil.
(iii*) Includes all the nodes where D is needed.

Figure B.2 shows two examples of this approach.

(a) (b)

Figure B.3: Ωi,j
Γ as defined by the free stencil–centered approach.

The implementation of the present approach is very similar to that of
the one in § B.3. The only additional work is to compute θr and to write
the interface and points where D is needed in the rotated frame of reference.
In both these approaches the diagonal of Ωi,j

Γ is very close to the piece of
interface contained within the stencil, which guarantees a well conditioned
local problem. However, here the addition of a rotation keeps Ωi,j

Γ nearly
square, and avoids elongated geometries. The price paid for this is that the
sets Ωi,j

Γ created using § B.4 can be a little larger than the ones from § B.3 —
with both sets including the exact same piece of interface. In such situations,
the present approach results in a somewhat larger condition number.

42



B.5. Node-Centered Approach.

Here we define Ωi,j
Γ in a fashion that is completely independent from

the underlying grid and stencils. In fact, instead of associating each Ωi,j
Γ to a

particular stencil, we define a different Ωi,j
Γ for each node where the correction

is needed — hence the name node-centered, rather than stencil-centered. As
a consequence, whereas the prior strategies lead to multiple values of D at
the same node (one value per stencil, see remark 10), here there is a unique
value of D at each node.

In this approach, Ωi,j
Γ is defined by the following steps:

1. Identify the interface in the 4 grid cells that surround a given node. This
step can be skipped if the interface is represented explicitly.

2. Find the point, P0, along the interface that is closest to the node. This
point becomes the center of Ωi,j

Γ . There is no need to obtain P0 very
accurately. Small errors in P0 result in small shifts in Ωi,j

Γ only.

3. Compute t̂0, the vector tangent to the interface at P0. This vector de-
fines one of the diagonals of Ωi,j

Γ . The normal vector n̂0 defines the other
diagonal. Again, high accuracy is not needed.

4. Then Ωi,j
Γ is the square with side length 2

√
h2
x + h2

y, centered at P0, and

diagonals parallel to t̂0 and n̂0 — Ωi,j
Γ need not be aligned with the grid.

Figure B.4 shows two examples of this approach.

(a) (b)

Figure B.4: Ωi,j
Γ as defined by the node–centered approach.
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Note that the piece of interface contained within Ωi,j
Γ , as defined by steps

1–4 above, is not necessarily the same found in step 1. Hence, after defining
Ωi,j

Γ , we still need to identify the piece of interface that lies within it. For an
explicit representation of the interface, this additional step is not particularly
costly, but the same is not true for an implicit representation.

This approach is very robust because it always creates a square Ωi,j
Γ , with

the interface within it close to one of the diagonals — as guaranteed by
steps 2 and 3. Hence, the local Cauchy problem is always well conditioned.
Furthermore, making Ωi,j

Γ square (to avoid elongation) does not result in
larger condition numbers as in § B.4 because the larger Ωi,j

Γ contain an equally
larger piece of the interface.

Finally, we point out that the (small) oscillations observed in the con-
vergence plots shown in § 6 occur because in these calculations we use the
approach in § B.3 — which produces sets Ωi,j

Γ that are not uniform in size,
nor shape, along the interface. Tests we have done show that these oscilla-
tions do not occur with the node-centered approach here, for which all the
Ωi,j

Γ are squares of the same size. Unfortunately, as pointed out earlier, the
node-centered approach is not well suited for calculations using an interface
represented implicitly.

C. 2nd Order Accurate Scheme in 2D.

C.1. Overview.

In § 5 we present a 4th order accurate scheme to solve the 2D Poisson
problem with interface jump conditions, based on the correction function
defined in § 4. However, there are many situations in which a 2nd order
version of the method could be of practical relevance. Hence, in this section
we use the general framework provided by the correction function method
(CFM) to develop a specific example of a 2nd order accurate scheme in 2D.
The basic approach is analogous to the 4th version presented in § 5. A few
key points are

(a) We discretize Poisson’s equation using the standard 5-point stencil. This
stencil is compact, which is an important requirement for a well condi-
tioned problem for the correction function D — see remarks 4–6.

(b) We approximateD using modified bilinear interpolants (defined in § C.2),
each valid in a small neighborhood Ωi,j

Γ of the interface. This guarantees
local 2nd order accuracy with only 5 interpolation parameters. Each
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Ωi,j
Γ corresponds to a grid point at which the standard discretization of

Poisson’s equation involves a stencil that straddles the interface Γ.

(c) The domains Ωi,j
Γ are rectangular regions, each enclosing a portion of Γ,

and all the nodes where D is needed to complete the discretization of
Poisson’s equation at the (i, j)-th stencil. Each is a sub-domain of ΩΓ.

(d) Starting from (b) and (c), we design a local solver that provides an
approximation to D inside each domain Ωi,j

Γ .

(e) The interface Γ is represented using the standard level set approach —
see [27]. This guarantees a local 2nd order representation of the interface,
as required to keep the overall accuracy of the scheme.

(f) In each Ωi,j
Γ , we solve the PDE in (9) in a least squares sense — see re-

mark 9. Namely, we seek the minimum of the positive quadratic integral
quantity JP in (17), which vanishes at the solution: We substitute the
modified bilinear approximation for D into JP , discretize the integrals
using Gaussian quadratures, and minimize the resulting discrete JP .

Remark C.1. Using standard bilinear interpolants to approximate D in
each Ωi,j

Γ also yields 2nd order accuracy. However, the Laplacian of a standard
bilinear interpolant vanishes. Thus, this basis cannot take full advantage of
the fact that D is the solution to the Cauchy problem in (9). The modified
bilinears, on the other hand, incorporate the average of the Laplacian into the
formulation — see § C.2. In § C.6 we include results with both the standard
and the modified bilinears, to demonstrate the advantages of the latter. ♣

Below, in § C.2–C.5 we describe the 2nd order accurate scheme, and in
§ C.6 we present applications of the scheme to three test cases.

C.2. Modified Bilinear.

The modified bilinear interpolant used here builds on the standard bi-
linear polynomials. To define them, we use the multi-index notation —
see appendix A and Ref. [28]. Thus, we label the 4 vertices of a rect-
angular cell using the vector index ~v ∈ {0, 1}2. Then the vertices are
~x~v = (x0

1 + v1 ∆x1, x
0
2 + v2 ∆x2), where (x0

1, x
0
2) are the coordinates of the

left-bottom vertex and ∆xi is the length of the domain in the xi direction.
The standard bilinear interpolation basis is then given by the 4 polynomials

W ~v =
2∏
i=1

wvi (x̄i) , (C.1)
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where x̄i =
xi−x0

i

∆xi
, and wv is the linear polynomial

wv(x) =

{
1− x for v = 0,
x for v = 1.

(C.2)

The standard bilinear interpolation of a scalar function φ is given (in each
cell) by

Hs (~x) =
∑

~v ∈{0,1}2
W ~v φ (~x~v) . (C.3)

In the modified version, we add a quadratic term proportional to x2 + y2, so
that the Laplacian of the modified bilinear is no longer identically zero. The
coefficient of the quadratic term can be written in terms of the average value
of the Laplacian over the domain, ∇2 φ. This yields the following formula
for the modified bilinear interpolant

Hm (~x) = Hs (~x)− 1

4

[
w0(x̄)w1(x̄)(∆x)2 + w0(ȳ)w1(ȳ)(∆y)2

]
∇2 φ. (C.4)

C.3. Standard Stencil.

We use the standard 2nd order accurate 5-point discretization of the Pois-
son equation

L5ui,j = fi,j, (C.5)

where L5 is defined in (11). In the absence of discontinuities, (C.5) provides
a compact 2nd order accurate representation of the Poisson equation. In the
vicinity of the discontinuities at the interface Γ, we define an appropriate
domain Ωi,j

Γ , and use it to compute the correction terms needed by (C.5) —
as described below.

To understand how the correction terms affect the discretization, consider
the situation in figure C.1. In this case, the node (i, j) lies in Ω+ while the
nodes (i+1, j) and (i, j+1) are in Ω−. Hence, to be able to use equation (C.5),
we need to compute Di+1,j and Di,j+1.

After having solved for D where necessary (see § C.4 and § C.5), we
modify equation (C.5) and write

L5ui,j = fi,j + Ci,j, (C.6)

which differs from (C.5) by the terms Ci,j on the RHS only. Here the Ci,j
are the CFM correction terms needed to complete the stencil across the
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Figure C.1: The 5-point stencil next to the interface Γ. The dashed box shows a compact
quadrangular region that contains the stencil.

discontinuity at Γ. In the particular case illustrated by figure C.1, we have

Ci,j = − 1

h2
x

Di+1,j −
1

h2
y

Di,j+1. (C.7)

Similar formulas apply for all the other possible arrangements of the stencil
for the Poisson’s equation, relative to the interface Γ.

C.4. Definition of Ωi,j
Γ .

As discussed in appendix B, the construction of Ωi,j
Γ presented in § 5.3

may lead to elongated shapes for Ωi,j
Γ , which can cause accuracy loses. As

mentioned earlier (see the end of § B.3) this is not a problem for the 4th

order scheme, but it can be one for the 2nd order one. To resolve this issue
we could have implemented the robust construction of Ωi,j

Γ given in § B.5.
However the simpler compromise version in § B.4 proved sufficient.

The approach in § B.4 requires Ωi,j
Γ to include the piece of interface con-

tained “within the stencil.” For the 9-point stencil, this naturally means
“within the 2hx×2hy box aligned with the grid that includes the nine points
of the stencil.” We could use the same meaning for the 5-point stencil, but
this would not take full advantage of the 5-point stencil compactness. A
better choice is to use the quadrilateral defined by the stencil’s four extreme
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points — i.e. the dashed box in figure C.1. This choice is used only to de-
termine the piece of interface to be included within Ωi,j

Γ . It does not affect
the definition of the interface alignment angle θL used by the § B.4 approach.
Hence the following four steps define Ωi,j

Γ

1. Find the angle θΓ between the vector tangent to the interface at the mid-
point within the stencil, and the x-axis. Introduce the coordinate system
p-q, resulting from rotating x-y by θr = θΓ − π/4 — see figure C.2(a).

2. Find the coordinates (pminΓ
, pmaxΓ

) and (qminΓ
, qmaxΓ

) characterizing the
smallest p-q coordinate rectangle enclosing the section of the interface
contained within the stencil — see figure C.2(b).

3. Find the coordinates (pminD
, pmaxD

) and (qminD
, qmaxD

) characterizing the
smallest p-q coordinate rectangle enclosing all the nodes at which D is
needed — see figure C.2(b).

4. Ωi,j
Γ is the smallest p-q coordinate rectangle enclosing the two previous

rectangles. Its edges are characterized by

pmin = min (pminΓ
, pminD

) , (C.8a)

pmax = max (pmaxΓ
, pmaxD

) , (C.8b)

qmin = min (qminΓ
, qminD

) , (C.8c)

qmax = max (qmaxΓ
, qmaxD

) . (C.8d)

Figure C.2 shows an example of Ωi,j
Γ defined in this way.

C.5. Solution of the Local Cauchy Problem.

The remainder of the 2nd order accurate scheme follows the exact same
procedure used for the 4th order accurate version described in detail in § 5. In
particular, as explained in item (f) of § C.1, we solve the local Cauchy problem
defined by equation (9) in a least squares sense (using the same minimization
procedure described in § 5.4). The only differences are that: (i) In the 2nd

order accurate version of the method we use 4 Gaussian quadrature points
for the 1D line integrals, and 16 points for the 2D area integrals. (ii) Because
the modified bilinear representation for D involves 5 basis polynomials, the
minimization problem produces a 5×5 (self-adjoint) linear system — instead
of the 12× 12 system that occurs for the 4thorder algorithm.
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(a) Step 1. (b) Steps 2–4.

Figure C.2: The set Ωi,j
Γ for the situation in figure C.1.

C.6. Results

Here we present three examples of solutions to the 2D Poisson’s equa-
tion using the algorithm described above. Each example is defined below in
terms of the problem parameters (source term f and jump conditions across
the interface Γ), the representation of the interface, and the exact solution
(needed to evaluate the errors in the convergence plots). Note that

1. In all cases we represent the interface using a level set function φ.

2. Below the level set function is described via an analytic formula. This
formula is converted into a discrete level set representation used by the
code. Only this discrete representation is used for the actual computa-
tions.

3. The level set formulation allows us to compute the vectors normal to the
interface to 2nd order accuracy with a combination of finite differences
and standard bilinear interpolation. Hence, it is convenient to write
the jump in the normal derivative, [un]Γ, in terms of the jump in the
gradient of u dotted with the normal to the interface n̂ = (nx, ny).
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We use7 example 1s to test the 2nd order scheme in a generic problem with
a non-trivial interface geometry. In addition, in this example the correction
function D has a non-zero Laplacian. Thus, we used this problem to compare
the performance of the Standard Bilinear (SB) and Modified Bilinear (MB)
interpolations as basis for the correction function. Finally, examples 2s and
3s here correspond to examples 1 and 3 in [3], respectively. Hence they can
be used to compare the performance of the present 2nd order scheme with
the Immersed Interface Method (IIM), in two distinct situations.

C.6.1. Example 1s.

• Domain: (x, y) ∈ [0, 1]× [0, 1].

• Problem parameters:

f+ (x, y) = 4,

f− (x, y) = 0,

[u]Γ = x2 + y2 − exp(x) cos(y),

[un]Γ = [2x− exp(x) cos(y)] nx + [2y + exp(x) sin(y)] ny.

• Level set defining the interface: φ (x, y) =
√

(x− x0) + (y − x0)−r(θ),

where r(θ) = r0 + ε sin(5 θ), θ (x, y) = arctan

(
y − y0

x− x0

)
, x0 = 0.5,

y0 = 0.5, r = 0.25, and ε = 0.05.

• Exact solution:

u+ (x, y) = x2 + y2,

u− (x, y) = exp(x) cos(y).

Figure C.3 shows the numerical solution with a fine grid (193× 193 nodes).
The non-trivial contour of the interface is accurately represented and the
discontinuity is captured very sharply. For comparison we solved this problem
using both the SB and MB interpolations to represent the correction function.
Although figure C.3 shows the solution obtained with the modified bilinear
version, both versions produce small errors and are visually indistinguishable.

7A subscript s is added to the example numbers of the 2ndorder method, to avoid
confusion with the 4thorder method examples.
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Figure C.4(a) shows the convergence of the solution error in the L2 and
L∞ norms, for both the SB and MB versions. As expected, the overall
behavior indicates 2nd order convergence, despite the small oscillations that
are characteristic of this implementation of the method, as explained in § 6.3.
Note that the MB version produces significantly smaller errors (a factor of
about 20) than the SB version. It also exhibits a more robustly 2nd order
convergence rate. Moreover, figure C.4(b) shows the convergence of the error
of the gradient of the MB solution in the L2 and L∞ norms. Here, the gradient
was computed using standard 2nd order accurate centered differences, as in
(21) and (22). As we can observe, the gradient converges to 1st order in the
L∞ norm and, apparently, as h3/2 in the L2 norm.

Figure C.3: Example 1s. Numerical solution with 193 × 193 nodes, 2ndorder scheme,
modified bilinear version.
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(a) Solution. (b) Gradient.

Figure C.4: Example 1s - Error behavior of the solution and its gradient in the L2 and
L∞ norms.

C.6.2. Example 2s.

• Domain: (x, y) ∈ [−1, 1]× [−1, 1].

• Problem parameters:

f+ (x, y) = 0,

f− (x, y) = 0,

[u]Γ = log
(

2
√
x2 + y2

)
,

[un]Γ =
xnx + y ny
x2 + y2

.

• Level set defining the interface: φ (x, y) =
√

(x− x0)2 + (y − y0)2−r0,
where x0 = 0, y0 = 0, and r0 = 0.5.

• Exact solution:

u+ (x, y) = 1 + log
(

2
√
x2 + y2

)
,

u− (x, y) = 1.
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As mentioned earlier, this example corresponds to example 1 in [3], where
the same problem is solved using the Immersed Interface Method. Hence, this
provides a good opportunity to compare the CFM with the well established
IIM. Figure C.5 shows the numerical solution with a fine grid (161 × 161
nodes). Once again, the overall quality of the solution is very satisfactory.
Figure C.6 shows the behavior of the error in the L2 and L∞ norms and the
solution converges to 2nd order. However, in this example the gradient also
appears to converge to 2nd order.

Figure C.6(a) also includes the convergence of the solution error in the
L∞ norm obtained with the IIM — we plot the errors listed in table 1 of [3].
Both methods produce similar convergence rates. However, in this example
at least, the CFM produces slightly smaller errors — by a factor of about
1.7.

Figure C.5: Example 2s. Numerical solution with 161× 161 nodes.
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Figure C.6: Example 2s - Error behavior of the solution and its gradient in the L2 and
L∞ norms. IIM refers to results obtained with the Immersed Interface Method in [3]
(Copyright c©1994 Society for Industrial and Applied Mathematics. Data compiled with
permission. All rights reserved).

C.6.3. Example 3s.

• Domain: (x, y) ∈ [−1, 1]× [−1, 1].

• Problem parameters:

f+ (x, y) = 0,

f− (x, y) = 0,

[u]Γ = − exp(x) cos(y),

[un]Γ = exp(x) [− cos(y)nx + sin(y)ny] .

• Level set defining the interface: φ (x, y) =
√

(x− x0)2 + (y − y0)2−r0,
where x0 = 0, y0 = 0, and r0 = 0.5.

• Exact solution:

u+ (x, y) = 0,

u− (x, y) = exp(x) cos(y).

This example corresponds to example 3 in [3] for the IIM method. Figure C.7
shows the numerical solution with a fine grid (161 × 161 nodes) while fig-
ure C.8 presents convergence results for the errors in the L2 and L∞ norms.
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In addition, figure C.8(a) also includes the L∞ norm of the error obtained
with the IIM — we plot the errors listed in table 3 of [3]7. In this case the IIM
produces slightly smaller errors than the CFM — by a factor of about 2.8.
Therefore, based on the results from examples 2s and 3s, we may conclude
that the IIM and the CFM produce results of comparable accuracy — each
method generating slightly smaller errors in different cases.

Figure C.7: Example 3s. Numerical solution with 161× 161 nodes.
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