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Abstract

We develop a “semi-parallel” simulation technique suggested by Pretorius
and Lehner, in which the simulation spacetime volume is divided into a large
number of small 4-volumes which have only initial and final surfaces. Thus
there is no two-way communication between processors, and the 4-volumes
can be simulated independently without the use of MPI. This technique
allows us to simulate much larger volumes than we otherwise could, because
we are not limited by total memory size. No processor time is lost waiting
for other processors.

We compare a cosmic string simulation we developed using the semi-
parallel technique with our previous MPI-based code for several test cases
and find a factor of 2.6 improvement in the total amount of processor time
required to accomplish the same job for strings evolving in the matter-
dominated era.
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1. Introduction

A common task in computational physics is the simulation of some large
physical system. If the system is too large to be represented on a single
computer, or the resulting simulation would be very slow, one simulates
it using a number of processors (cores) working in parallel. Typically the
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spatial volume to be simulated is divided into regions, and each processor
handles one region. At the boundaries of the regions the processors must
communicate using some protocol such as MPI.

This technique has been used successfully for many simulations, but it is
not without drawbacks. First, the processors must all be available simultane-
ously. In certain cases the number of processors must have special properties,
such as being a perfect cube. In any case, the largest domain that can be
simulated is limited by the number of available processors multiplied by the
capability of each. If one processor crashes, due either to hardware failure or
problems with the code, the entire simulation must terminate.

Furthermore, for certain simulations there is a serious problem of load
balancing. This poses no difficulty if the processors are identical and the
amount of work that each must do is the same. For example, to evolve
equations of motion on a uniform grid one performs the same operations on
each point, so if all processors handle the same number of points, there is
no load balancing problem. But for other cases, the work is very different.
In the cosmic string example to be discussed below, at late times many
volumes are free of string and incur no simulation overhead, while others
have densely-packed string points and require much work. When the load is
not balanced in a conventional parallel simulation, all processors wait for the
slowest processor, and perhaps only a tiny fraction of the total processing
power can be utilized.

We describe here a different division of simulation work among processors.
The idea is originally due to Pretorius and Lehner [1, §4.3], although we
discovered it independently and did not learn of their work until later. The
fundamental difference is that instead of dividing the spatial volume to be
simulated into as many regions as we have processors, we divide the spacetime
4-volume to be simulated into a much larger number of 4-dimensional regions.
Each available processor will simulate many of these regions. We construct
the regions in such a way that they take in information through some initial
surfaces and produce information that is transmitted through some final
surfaces, but there are no surfaces with a two-way flow of information [1]. In
general relativity, such a region is called globally hyperbolic.

Since there is no two-way information flow, there is no need for multiple
processors to be running simultaneously. Instead, the simulation of each re-
gion is a well-defined task that one processor can perform alone, given only
that it has the initial-surface information provided by predecessor regions.
Thus even a single processor could perform a simulation of arbitrary size
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without concern about memory usage, by simulating the 4-dimensional re-
gions one by one. The total simulation volume is thus not limited by the
available number of processors, although of course large simulations run on
few processors will take a great deal of time to complete.

Furthermore, there is no issue of load balancing. The processors run
independently, so no processor ever sits idle waiting for others. Suppose
one region takes much longer than others. Its successors must wait for it to
finish, but other regions can be run simultaneously, even if they are at later
times but distant in space. Eventually all regions that are not successors
(directly or indirectly) of the slow region will be completed. In this case the
simulation is running on a single processor only, but no other processors are
tied up waiting for the slow region to complete. They can be used to run
other simulations or unrelated tasks.

In order for this technique to work, it must be possible to construct regions
with the proper causal structure. For example, if one’s simulation consists
of many nodes each of whose action at each moment depends on the state of
all other nodes at the immediately preceding time, the division into regions
cannot be done (except trivially by having one node in each region). But
in the case of a simulation of causal physics in spacetime, the propagation
of information is limited by the speed of light. A null 3-surface divides
spacetime into a future and a past side; it is not possible for any information
to propagate across it in the reverse direction. Thus if the regions are divided
by null surfaces, the necessary conditions apply. In other areas of research,
the propagation speed might be the speed of sound or some other limiting
speed. As long as such a speed exists, the necessary division of spacetime
can be made.1

In the rest of this paper we discuss this “semi-parallel” simulation tech-
nique in some detail, and describe a cosmic string simulation using it. In the
next section we discuss the division of the simulation 4-volume. We discuss
the choice of region size in Sec. 3 and the management of a simulation con-
sisting of very many regions in Sec. 4. In Sec. 5 we describe the cosmic string
simulation that we did using the semi-parallel technique, and in Sec. 6 we
compare the performance of this technique versus conventional parallelism.
We conclude and summarize in Sec. 7.

1Of course if the speed of information is too fast, the resulting regions may be too small
for efficient simulation.
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Figure 1: A 2-dimensional spacetime volume divided into 15 regions by null lines. Each
square represents a region that can be simulated separately, using only conditions read
in from predecessor regions. If the edges with matching letters are identified, our volume
becomes periodic in the one spatial dimension. The dotted line represents a possible initial
time for a simulation using these regions.

2. Geometry

In [1], Pretorius and Lehner considered the two-dimensional case and
used square regions oriented with the time direction diagonal, so that the
edges would be null lines, as shown in Fig. 1. We generalize this to four
dimensions and use 4-cubes, oriented so that the time direction lies along a
main diagonal. This does not give null 3-surfaces as the boundaries, but we
can fix the problem by rescaling the time coordinate.

Let us work in units where the speed of light (or the maximum speed
of information flow) is 1. We choose our regions to have unit edges and
consider a region whose past vertex is at the origin and whose future vertex
is thus at (x, y, z, t) = (0, 0, 0, 2). The simulation regions make up a 4-
cubical lattice. We can choose the four future-directed generators of this lat-
tice to be (1/2, 1/2, 1/2, 1/2), (1/2,−1/2,−1/2, 1/2), (−1/2, 1/2,−1/2, 1/2),
and (−1/2,−1/2, 1/2, 1/2). Then the four initial surfaces of our region
are 3-cubes that end at time 3/2 at spatial positions (−1/2,−1/2,−1/2),
(−1/2, 1/2, 1/2), (1/2,−1/2, 1/2), and (1/2, 1/2,−1/2). The main diagonal
of such a region has spatial length

√
3/2 and temporal length 3/2. To make
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Figure 2: The division of a 3-dimensional spacetime volume into cubical simulation regions.
Regions shown in the same color (shading) have the same starting time and touch each
other along their edges. A cube of one layer touches three cubes of the next layer along
three of its faces. The top points of the cubes of the bottom layer shown are the same as
the bottom points of the cubes of the top layer shown. In four dimensions, the volumes
are 4-cubes. A 4-cube of one layer touches four 4-cubes of the next layer along four of its
eight 3-cubical faces. The top points of the cubes of one layer are the same as the bottom
points of the cubes four layers later.

it null, we can shrink our time coordinate by factor
√
3.

If we follow a generator into the future and then another generator into
the past, we get a new region whose starting time is the same as that of the
original region. Thus the regions can be arranged into “layers” that share a
common starting time. The analogous division of a 3-dimensional spacetime
volume is shown in Fig. 2.

2.1. Initial conditions

We will start our simulation at some particular initial time t0. The initial
time surface will cut through the 4-lattice of simulation regions. The 3-
dimensional analogue is shown in Fig. 3, and the 2-dimensional analogue in
Fig. 1. There will be some cubes whose final vertex lies after t0, but all of
whose other vertices lie at or before t0. Such a cube has no predecessors. We
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Figure 3: A slice through the simulation volumes shown in Fig. 2 at a time t0. The large
red (lighter gray) triangles are near the latest points of cubes with no predecessors before
t0. Initial conditions there can be generated immediately. The hexagonal yellow (white)
regions are in the next layer of cubes and the small triangular blue (darker gray) regions
are in the final layer shown in Fig. 2, which is the last for which initial conditions are
necessary. In four dimensions there are four layers of cubes that require initial conditions.

can generate initial conditions inside this cube, and then evolve them until
our ending point, writing out information on the four final surfaces to be
used by our successors. All such cubes can be done independently; they have
no need to communicate with each other.

There will be another family of cubes that are cut further in their pasts by
the initial surface. These require some conditions on the t = t0 hypersurface
but also input from the first layer of initial regions. In all there will be four
different families of cubes that require initial conditions, one of which may
be trivial if the cubes are chosen to have vertices at t0. After these initial
regions, all subsequent regions will take their starting conditions only from
their predecessors.

2.2. Boundary conditions

Often, as in our cosmic string simulation below, one wants to simulate
a finite volume with periodic boundary conditions. Such conditions can be
implemented without additional effort merely by adjusting the connections
between simulation regions and their successors. First, suppose that we want
only one region in each layer. The four successors of this region will all then
be the unique region in the subsequent layer, and so on. When we finish
simulating a region, we write out four files corresponding to the four future
surfaces. When we go on to the next region, we read these four files and
consider them the communication from our four virtual predecessors.

6



Figure 4: The most compact representation of the simulation volume is a rhombic dodeca-
hedron, shown on the left. But for most purposes it is easier to consider it a rhombohedron
made of 60◦ rhombuses, shown on the right.

A generic surface of constant time then intersects four regions, one from
each of the four layers active at that time. The periodicity vectors of the
compactification can be found by going from a region to a successor in one
of the four future directions and then to a predecessor in a different past
direction. Thus there are 12 periodicity vectors. With the generators above,
these are the 3-vectors having one component 0 and the others each ±1.
A point and its images form a face-centered cubic lattice. If we take as
the representative of each point the one which is closest to the origin, we
see that the simulation volume is a rhombic dodecahedron. But it is easier
to understand if we reorganize the volume into a rhombohedron made of
rhombuses whose acute angles are 60◦. Both regions are shown in Fig. 4.
With the coordinates we have been using, the edges of the rhombohedron
have length 1, and the spatial volume of the simulation region is 1/

√
2.

Suppose information travels at some speed v through a periodic simula-
tion volume. The volume influenced by the initial conditions at a given point
at time t fills a sphere of radius vt. When the sphere around a point touches
that around an image of the point, then the existence of periodicity might
affect the simulation results. We would like to delay this time as much as
possible for a given simulation volume, and thus we would like the spheres
around a point and its images to be close-packed. Conveniently, the f.c.c.
lattice is a close-packed system, so we get this advantage for free.

To simulate larger volumes, the easiest plan is to combine unit rhom-
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= 27×

Figure 5: A larger rhombohedral volume made of 27 rhombohedra.

bohedral volumes into a 3-dimensional array of such volumes, as shown in
Fig. 5. One could choose the three dimensions of this array independently,
but in our case we chose them to be the same, so the overall volume is again
a rhombohedron, and the close-packing property above is preserved. Thus
each layer consists of N3 regions, for some “split factor” N . Our largest
simulations to date were done with N = 50.

3. Tuning

How should we choose the size of our regions? Clearly, the smaller the
regions the larger the ratio of their 3-surface area to their interior 4-volume,
and thus the more time will be spent reading information from predecessors
and sending to successors as compared to evolution. So, all other things
being equal, larger regions will be more efficient. However, there are two
factors that argue for smaller regions.

First, the available memory per processor (core) may limit the amount of
simulation volume that can be handled by a single processor. By making the
simulation volumes smaller than this limit, we buy the opportunity to trade
running time for space usage in the simulation code. The cost is an increase
in the relative communication time, but in our case we found that optimizing
time at the expense of space in our code was much more important than the
increase in the small percentage of time spent on communication.

Second, there is more opportunity for parallelism if one splits up the
simulation volume into more pieces. The maximum number of processors that
can be running simultaneously is given by the number of regions in each layer.
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With perfect load-balancing the processors will all advance simultaneously
to the next layer, but when that cannot be achieved, the realistic parallelism
will be significantly less. So, for example, if you have one thousand processors
available, you should split up each layer into several thousand regions.

Even finer splitting may be desirable if some regions are more difficult
to simulate than others. In this case, when the simulation reaches the diffi-
cult regions, the number of processors that can be used simultaneously will
decrease. (Other processors are not tied up, but still the available computa-
tional resources are not being used to complete the simulation in the short-
est possible time.) A finer split will give significantly more simultaneously-
runnable regions than there are processors, so if the possible parallelism is
reduced by difficult regions, more of the available processors will nevertheless
be kept busy.

The problem of difficult regions could also be solved by dynamical split-
ting [1]. A single region could be subdivided into several regions to be han-
dled separately, and the initial data for the original region parceled out to
different processors. Some of these subregions could be simulated in parallel
with others, so the difficult job is spread across several processors. Once
the difficult region is past, the final data from several regions could be com-
bined into initial data for a subsequent, larger region. However, we have not
implemented such a technique.

4. Simulation management

A typical parallel simulation involves a fixed number of processors, each
of which has a particular task, typically the simulation of a specified region.
Using our method, there is a pool of a large number of regions to be simulated,
some of which are ready to go but most of which are waiting for predecessors
to be done. To simulate these regions we have a pool of available processors.
In principle one could merely submit one job for each region to a batch-job
scheduling system, with a set of dependency conditions. The scheduler would
then schedule each region on the next available processor. However, we have
found that the individual regions often execute in a much shorter period of
time (e.g., 1 second) than the time it takes for batch systems to schedule a
new job (e.g., 30 seconds) , so this procedure is quite inefficient.

Instead, we have found it useful to have a “manager” process that assigns
the regions to a variable-size pool of “worker” processes. When a worker
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completes a region, it informs the manager that that region has been com-
pleted and the manager replies with a request giving the worker the next
region on which to work. If a worker fails, the manager shuts down the en-
tire simulation once the currently running regions are finished. We can repair
the problem that caused the failure and continue the simulation to do the
remaining regions. Each transaction between the worker and the manager is
a single exchange of network packets, so network overhead is minimal.

When some regions are more difficult than others, we can find ourselves
in the situation where there are more available workers than regions that
can be simulated in parallel. When this occurs, the manager first tells idle
workers to sleep for a time comparable to the time it takes to schedule a
batch job. If, during this time, another worker finishes a region which makes
more than one new region ready to simulate, the manager wakes sleeping
workers to simulate the newly ready regions. But if the situation persists,
the manager tells the sleeping workers to exit. If at a later time there are
persistently more ready regions than running workers, the manager submits
new batch jobs to increase the number of workers.

The manager, like the simulation described below, was written in LISP.

5. Semi-parallel cosmic string simulation

We have developed a large cosmic string simulation using this technique to
parallelize an algorithm developed earlier by Olum, Vanchurin, and Vilenkin
[2, 3, 4]. Our simulation runs either in flat spacetime or in a flat Robertson-
Walker universe. In the latter case, we use comoving coordinates and con-
formal times, so the causal structure is still that of Minkowski space.

Cosmic strings are astrophysically long, microphysically thin objects which
may have been formed early in the universe through a phase transition [5]
or at the end of inflation driven by superstring theory [6, 7, 8]. See [9] for
further information. In usual models, cosmic strings cannot end, so strings
form a “network” of infinite strings and closed loops. The string network
could potentially be observed in many ways such as cosmic microwave back-
ground variations [10], gravitational lensing [11, 12], cosmic rays [13, 14, 15],
gravitational waves [16, 17] or early reionization [18].

To compute any of these observational effects quantitatively requires a
knowledge of the total amount of string, the distribution of loops and the
spectrum of excitations on the strings. The evolution of the string network
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has so far resisted a complete analytic description2, so we simulate its evolu-
tion to determine the parameters needed to predict observations.

Because the thickness of a cosmic string is so much less than the sizes
of structures that we expect to find on it, we can treat it as an infinitely
thin relativistic string. If we ignore gravitational effects (as we usually do
in simulations), the mass density of the string does not affect its evolution.
Thus one does not need different simulations for different possible string
energy scales.

When two strings cross, they switch partners with some probability p.
For strings formed from a symmetry breaking transition in field theory, p is
essentially 1, but for superstrings, p can be anywhere from 1 down to 10−3

[24]. To perform a simulation one must track the positions and motions of a
large network of strings, detect the intersections, and perform the switching
of partners.

The position of a cosmic string over time can be written x(σ, t), where
σ parameterizes the position on the string and t is the usual time variable.
In the absence of spacetime curvature or reconnections, the string obeys the
Nambu-Goto equations of motion, which can be written

ẍ(σ, t) = x′′(σ, t) , (1)

where a prime denotes differentiation with respect to σ and a dot differenti-
ation with respect to t. The solution is simply

x(σ, t) = (1/2)[a(t− σ) + b(t + σ)] . (2)

We use a piecewise linear form for the functions a and b.
The evolution of the string can be described by a 2-dimensional world

sheet embedded in 4-dimensional spacetime. This surface is composed of
diamond-shaped regions where a given piece of a is combined with a given
piece of b, as shown in Figs. 6 and 5.

In flat spacetime, each diamond is a piece of a plane in 4-space. In the
expanding universe, we implement expansion at first order in each diamond,
so that the future edges of the diamond are still linear, but not parallel to
the past edges, and the diamond is curved. The main task of the simulation
is to construct all the diamonds that make up the world sheet, look for

2Although some progress has been made in this regard. See [19, 20, 21, 22, 23]
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Figure 6: A piece of the world sheet of a simulated string. The functions a is composed
of linear pieces a1, a2, . . . and similarly for b. The shaded section shows the piece of the
world sheet where a1 is added to b1 to give x(σ, t).
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Figure 7: The world sheet of a collapsing circle of cosmic string (approximated by a
piecewise-linear shape) shown embedded in 3-dimensional spacetime.
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intersections between different pieces of string, and reconnect the strings at
the intersections.

This procedure has no “simulation resolution”, in the sense that it is able
to simulate arbitrarily small segments of string. In flat space, it simulates the
evolution exactly (to the limits of computer arithmetic), given the piecewise-
linear initial conditions. For details on the algorithm see [2, 3, 4].

We have parallelized our algorithm according to the procedure described
above. The simulation 4-volume is divided into a large number of regions
in the shape of squished 4-cubes standing on one corner. Each diamond is
created during the simulation of the region that contains its earliest point. At
the end of simulating a region, the processor passes on to its successors the
information about all world sheet diamonds that overlap each final surface.

Because diamonds are extended objects, they can stretch through several
simulation regions. In fact, a diamond created in one region may need to
go to several successors. In such a case, we deliver the information about
the diamond to each of these, along with a notation of which portions of the
diamond each successor should handle. Each successor will pass the diamond
on to its successors, until eventually it reaches a single common successor,
whereupon the pieces from the predecessors are reassembled into a single
diamond.

As the string network evolves, cosmic strings can intersect with them-
selves, producing loops. These loops may self-intersect further, but eventu-
ally one finds some non-self-intersecting loops in periodic trajectories. These
loops are the main source of potentially observable effects today, so we are in-
terested in the numbers of loops of different sizes. Small, non-self-intersecting
loops will only rarely rejoin the long-string network, so once such a loop is
formed, its further evolution is not usually of interest. To speed the simula-
tion we record and remove such loops.

As a result of the removal of small loops, the total amount of string in
the network declines with time. The typical distance between the remaining
strings at time t grows as roughly 0.15t. In a large simulation, this distance
eventually becomes larger than the size of each simulation region, and there-
fore most regions contain no string at all. When we find a region with no
strings in its initial conditions, we do not need to simulate it at all: clearly
there will be no string on its output surfaces, and we must merely take note
of this fact.
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6. Results

The results of our simulation from the point of view of cosmic string
physics will be presented elsewhere [25]. Here we discuss this simulation
from a computational point of view.

The largest simulations we have done involved periodicity length 2000 in
units of the initial average distance between strings. The total time simulated
was 3500 in the same units3. We divided the simulation volume according
to the procedure of Sec. 2.2 with N = 50, so that each region has size 40
and volume 403/

√
2. (“Size” here is the edge length of the rhombohedral

region.) The N = 50 division gives 125,000 regions in each layer, and about
54 million regions in all. The job was done on 400 processors in elapsed time
about 66 hours. Of the 54 million regions, only about 7 million contained
string to be simulated. The others were empty.

In such a simulation the number of individual pieces of string grows at
early times because segments are divided by reconnections, but then shrinks
at late times because loops are removed. The peak number of segments in
our size-2000 simulation reached about 14 billion. That makes this among
the largest simulations ever performed if one counts the largest total amount
of data existing at one moment of simulation time. For comparison, the
Millennium Simulation [26] used just over 10 billion particles. In the course
of our simulation, about 1 trillion diamonds were created and about 10 billion
loops of cosmic string produced.

The total comoving length of string in the simulation at a given time does
not depend strongly on the cosmological model. However, because strings
are (typically) not straight, the stretching of a given segment of string is less
than the overall expansion of the universe, and so its length in comoving
units decreases. Thus the total number of segments (and consequently the
simulation effort) required to simulate a certain comoving length of string
at a late time is much higher in expanding-universe simulations. Expansion
in the matter era is faster than that in the radiation era, so the matter era
simulations feel this issue most strongly.

3Information in a string network flows only along the strings, resulting in a net speed of
information flow through the volume about half the speed of light [4]. This makes possible
a simulation of duration 2000 in a volume with periodicity distance 2000. But we run for
longer than that to monitor the evolution of loops to see if they are in non-self-intersecting
trajectories.
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When the number of regions in each layer is much larger than the number
of available processors, and the difference between one region and the next
is not too large, the processors can all run simultaneously. The size 2000
run described above was done in flat space. In this case, there were always
thousands of regions that were ready to go any given time, except when the
simulation was nearly finished. So the 400 processors that we used were
always busy.

However, in a matter era run the situation is very different. After the
beginning stages of the simulation are past, often only a few processors are
running. These are the ones that have most of the string, which is in quite
small segments. Meanwhile, all regions that are not in the future of these
regions have been completed, so there is nothing more to do. In this case the
elapsed time depends on the simulation of regions with the largest number
of string segments, but the rest of the available processors are not tied up
waiting, so they can be used for other things. In the same simulation with
conventional parallelism, most of the CPU time would be wasted as the
processors wait for the processor with the highest number of string segments
to run.

The difference between cosmological models also affects the choice of the
optimal region size. Memory constraints limit us to a region size of order 65
per processor, meaning that total periodicity distance 2000 must be split by
a factor of at least 31 (in each direction). The communications overhead in
this simulation is generally negligible, so additional splitting has a low cost.

For matter-era simulations, a much more important issue is to split the
regions with the largest density of string at late times. Thus in that case we
usually split into much smaller pieces whose size is of order 17.4

Because we had our simulation based on the above algorithm already
running under MPI before we converted it to the semi-parallel technique,
we were able to compare the two techniques. Unfortunately, along the way
we also did quite a bit of optimization of the code, so the total CPU times
for the new code are significantly lower and the comparison is not as direct

4The initial conditions in our simulation are generated by the algorithm of Vachaspati
and Vilenkin [27], which is non-local in that the initial strings in a particular region
of spacetime depend on the generation of initial data outside that region. This sets a
minimum size for each simulation region. If regions are smaller than 12

√
2 ≈ 16.97 it is

not possible for different regions in the first layer to generate consistent initial data, since
they are not in communication with each other.
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MPI-based semi-parallel
flat rad. matter flat rad. matter

Size 250 180 120 250 180 120
Split Factor N 10 10 7

Total CPU time (hours) 28.96 47.78 73.33 8.17 32.78 14.23
Elapsed time (hours) 0.887 1.60 3.75 0.155 0.669 0.595

Total real time (hours) 56.74 102.24 240.01 9.75 37.26 17.75
Avg. number of processors 64.00 64.00 64.00 62.83 55.66 29.83
CPU utilization percentage 51.03 46.73 30.55 83.84 87.98 80.18

Degree of parallelism 32.66 29.91 19.56 52.67 48.97 23.92

Table 1: Comparison of new and old parallelization techniques for cosmic string simulation.

as one might wish. Some of this improvement was made possible because
the new technique avoids memory limitations and so permitted us to use
algorithms that were faster (mostly because of additional caching) at the
expense of greater memory use. But the majority of the improvement was
simply careful optimization of time-intensive portions of the code and is not
related to the change of parallelization techniques.

In Table 1, we compare the two techniques for several small simula-
tions done in flat space, in a radiation-dominated universe, and in a matter-
dominated universe. The flat space case has the most balanced load, and the
matter-dominated case the most unbalanced. All simulations were started
on 64 processors and the numbers in the table are the average of 5 runs. We
show the total amount of CPU time used by all the processors, the elapsed
time from start to finish of the run, and the total amount of processor-time
devoted to this task, whether the processor is running or idle. In the case
of the MPI-based simulation, all 64 processors are in use simultaneously, so
the total real time is just 64 times the elapsed time. But in the semi-parallel
simulation, processors with nothing to do are freed, so that the total real
time is a smaller multiple of the elapsed time. This multiple is the average
number of processors, shown in the table. The CPU utilization percentage is
(100 times) the total CPU time divided by the total real time, and the degree
of parallelism is the total CPU time divided by the elapsed time, i.e., how
many times faster the code ran in the multiprocessing system as compared
to a single processor with 100% utilization.

In Table 2, we show the advantage of the new code over the old. Each row
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flat rad. matter
Size 250 180 120

CPU time 3.54 1.46 5.15
Elapsed time 5.72 2.39 6.30

Total real time 5.82 2.74 13.52
CPU utilization 1.64 1.88 2.62

Degree of parallelism 1.61 1.64 1.22

Table 2: Advantages of the new parallelization technique over the old.

Split factor 5 6 7
CPU time 15.40 14.63 14.23

Elapsed time 0.852 0.655 0.595
Total real time 19.28 18.12 17.75

Avg. number of processors 22.62 27.65 29.83
CPU utilization percentage 79.91 80.77 80.18

Degree of parallelism 18.08 22.33 23.92

Table 3: The effects of the choice of split factor N for a run of size 120 in the matter era.

shows the ratios of the corresponding quantities in Table 1. One can consider
the fundamental quantities in this table to be the CPU time advantage (how
much faster the new code is than the old) and the CPU utilization advan-
tage (how much better the new parallelization procedure is at keeping the
processors doing useful work). The total real time advantage is the product
of the advantages in CPU time and CPU utilization; the elapsed time ad-
vantage is the advantage in CPU time multiplied by the improvement in the
degree of parallelism. Except for the issue of space-time trade-off described
above, the figure of merit of the semi-parallel technique is the improvement
in CPU utilization. Dividing spacetime volume into regions with only initial
and final surfaces has decreased the amount of processing resources needed
to accomplish the most difficult task studied here by a factor of 2.6.

In Table 3, we compare the performance of a small simulation for split
factors N = 5, 6 and 7. The CPU time is somewhat larger for coarser
division of the volume, because we simulate completely each 4-cube that has
any point below the final simulation time. Thus larger 4-cubes lead to a
somewhat larger total volume being simulated. The more important effect,
however, is that finer division leads to greater opportunities for parallelism,
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so that the average number of processors simultaneously in use and the degree
of parallelism are larger, and consequently the elapsed time is less.

7. Conclusion

We have implemented a new “semi-parallel” technique for parallelizing a
large simulation, as suggested by Pretorius and Lehner [1], and used it to do
large simulations of cosmic strings. We have found this technique to have
many advantages, which we summarize briefly here.

First, because the data does not all need to be processed simultaneously,
we are able to perform larger simulations than would otherwise be possible.
For example, the simulation described in Sec. 5 used 125,000 regions per layer,
and each region used at maximum about 400 MB of memory. But a given
layer only occupies 2/3 of the entire volume at most, so the total amount of
memory used for a single time slice through the simulation was 75 TB.5 To
our knowledge, only the largest cluster currently available, TACC Ranger,
has enough total memory to perform such a simulation using conventional
techniques. With our techniques we were able to do this simulation on the
Tufts Research Cluster, which has about 1% the memory of Ranger.

Furthermore, because the regions can be simulated independently, there
is never any need for processors to wait for each other. Processor utilization
can be much higher than in conventional parallelism. For the same reason,
there is no need for a particular number of processors to be available simul-
taneously. Since the time to simulate a single region can be made quite small
by choosing small regions, there is no need to have guaranteed access to pro-
cessing resources, and the simulation functions well in environments where
jobs can be preempted.

In the case where one region requires much more effort than its contem-
poraries, we may find that all regions not dependent on the difficult region
complete, leaving this region and its future yet to be done. In this case, the
simulation is, for the moment, no longer parallel, and the elapsed time until
completion may be dominated by the time to do the job on one processor
at a time. However, it is not tying up any extra processors. This is of par-
ticular importance when there are other users of the processor cluster. The
remaining processors can also be used for additional simulations, so one can

5Of course we have made no attempt to optimize memory usage. On the contrary, we
have preferred larger memory usage in exchange for a decrease in runtime.
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complete many simulations in the same amount of elapsed time that would
otherwise be needed for just one.

Since issues of memory size can be solved by finer division of the simula-
tion volume, we are free to speed up our code by making space-time trade-offs
in the direction of more space consumption and lower runtime.

The division into small, independent regions also makes debugging and
dealing with failures much easier. If a processor crashes, only the work
on its current region is lost. That region can be started again from its
initial surfaces with little waste of effort. In contrast, a conventional parallel
simulation would lose all the work done by all processors since the beginning
or since a checkpoint.

Similarly, if the simulation of a region fails due to a bug, that single
region can be run to investigate the problem, without the need of any other
processors. When the bug is found and corrected, that region can be restarted
and the simulation completed.

This simulation technique could in principle lend itself to “@Home” style
simulations. Such a plan is somewhat constrained by the fact that actual
home computers, while often quite fast, are usually connected to the Internet
by fairly slow links, especially for upload (data transfer from home to the
Internet). So making use of such computers imposes additional constraints
on the ratio of dataset size to runtime. It is possible that idle computers at
workplaces may be a better target. We have not attempted such a project.
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