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Abstract 

In this report, a new simple meshless method is presented for the solution of incompressible 

inviscid fluid flow problems with moving boundaries. A Lagrangian formulation established on 

pressure, as a potential equation, is employed.  In this method, the approximate solution is 

expressed by a linear combination of exponential basis functions (EBFs), with complex-valued 

exponents, satisfying the governing equation. Constant coefficients of the solution series are 

evaluated through point collocation on the domain boundaries via a complex discrete transformation 

technique. The numerical solution is performed in a time marching approach using an implicit 

algorithm.  In each time step, the governing equation is solved at the beginning and the end of the 

step, with the aid of an intermediate geometry. The use of EBFs helps to find boundary velocities 

with high accuracy leading to a precise geometry updating. The developed Lagrangian meshless 

algorithm is applied to variety of linear and nonlinear benchmark problems. Non-linear sloshing 

fluids in rigid rectangular two-dimensional basins are particularly addressed. 
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1. INTRODUCTION 

Modelling of free surface fluid flow with moving boundaries has several applications in engineering 

problems such as the simulation of dam-reservoir interaction, liquid containing tanks subjected to 

earthquake, mould filling. The continuous variation of the shape of the domain with time during the 

numerical solution of such problems is a challenging issue. The main problem is thus the 

determination of the free surface position in order to update the geometry by considering the 

available numerical data. 

Two fundamental approaches are generally implemented for the numerical solution of transient 

problems via a grid of points, e.g. in finite element method. The first is the use of Eulerian 

description, which treats the grid as a fixed computational reference and allows the fluid to move 

through it. The second approach is the Lagrangian description, in which the computational grid is 

embedded in the fluid and moves with it. Over the past thirty years, majority of the fluid flow 

simulations have been performed based on the Eulerian description [1]. However, methods based on 

the Lagrangian description have recently received more attention especially for solving free surface 

flow problems considering interaction with structures [2-5].  

An intermediate approach is also sought in which the grid points are allowed to move 

independently of the fluid motion. This approach is named as arbitrary Lagrangian-Eulerian (ALE) 

method, and may be considered as a merged Lagrangian and Eulerian method for fluid flow. ALE 

has been widely used in conjunction with finite element method (FEM) for solving free surface 

flow problems [6-10]. 

Rigorous and unavoidable grid distortion is expected when Lagrangian methods are applied to 

problems involving moving boundaries. In order to avoid this problem, some researchers focus on 

adaptive meshing not only for re-discretization of the fluid domain according to the new geometry 

but also for improving the accuracy of the solution (see e.g. [11] and the references therein). The 

major drawback of this method, however, is the high computational cost imposed to the problem. 

Another classification of the existing approaches for addressing free surface flow problems is 

according to the necessity of using a grid in the computational procedure; e.g. mesh-based, 

meshless and particle methods. More recently, researchers show considerable tendency to develop 

new methods avoiding mesh generation. In particle methods for instance, fluid particles are tracked 

using the Lagrangian description. The idea is traceable in the method proposed by Gingold and 

Monaghan [12] for the study of astrophysical hydrodynamic problems, known as Smooth Particle 

Hydrodynamics (SPH). This idea has been further developed and generalized for the solution of 

fluid mechanic problems [13-16]. On a similar basis, several computational methods using grids of 

points, known generally as meshless method, have so far been developed for fluid mechanic 

problems and sloshing phenomenon (see [17-19] for instance). 

In the current work, a new simple method using the Lagrangian description is presented for the 

solution of a class of engineering problems involving incompressible inviscid fluid flow with 

moving boundaries interacting with rigid structures (weak interaction). In this method, the solution 

is expressed as a linear combination of exponential basis functions (EBFs), with complex-valued 

exponents, which satisfy the governing equations. Constant coefficients of the solution series are 

evaluated through point collocation on the domain boundaries via a complex discrete transformation 

technique. A time marching algorithm is used to solve the non-linear problems. Hence, in each time 

step, with the use of EBFs the pressure Laplace equation is solved at the beginning and end of the 

step, with the aid of an intermediate geometry. Other fluid variables such as acceleration, velocity 

and displacement are calculated accordingly. The geometry is then updated based on the Lagrangian 

formulation of motion through an implicit algorithm.  

The transformation, proposed in [20-22], allows us to use a larger number of basis functions 

compared with the number of boundary information. The method has been applied to static and time 
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harmonic elastic problems and described in more details in [23]. Also, in [24] the authors have 

recently used the method for analyzing fully incompressible elastic materials and incompressible 

steady Stokes flow in different domain shapes.  Here, the developed Lagrangian meshless algorithm 

is applied to variety of linear and nonlinear benchmark problems such as liquid sloshing in 

rectangular basins, solitary wave propagation, etc.  

With the use of basis functions satisfying the Laplace equation, the proposed method falls in the 

category of Trefftz methods (see [25] for a good review). However, the application of Trefftz 

method in problems with moving boundaries has not been previously reported in the literature.      

The layout of the report is as follows.  In Section 2 the model used for incompressible inviscid 

fluid flow is given. The solution procedure is explained in Section 3 which includes the definition 

of EBFs for the Laplace equation and the method of using the complex discrete transformation 

technique for imposition of the boundary conditions. We shall give a step-by-step summary of the 

procedure in the same section. In section 4, some benchmark problems are solved and the numerical 

results are compared with those obtained from analytical methods and other numerical approaches 

to show the capability of the proposed procedure. 

 

2. GOVERNING LAGRANGIAN EQUATIONS 

We consider an incompressible inviscid Newtonian fluid occupying a 2D bounded domain Ω with 

the boundaries as F S∂Ω = Γ ∪ Γ . Here, ΓF represents the free surface and ΓS indicates the fluid-

structure interface which is assumed to be slippery impermeable boundaries (Fig. 1). The governing 

equations of the motion for this problem are then the conservation of mass and momentum equation 

as will be explained in the following. 

 

 
 

Figure 1. Problem domain and its boundaries 

 

2.1 Mass conservation 

The mass conservation equation in its general form can be written as  

D
. 0

D
u

ρ
ρ+ ∇ =

t
   in  Ω  (1) 

in which ρ is the density and u is a vector containing the Cartesian components of the velocity field. 

Also D/Dt  denotes the total or material derivative of the quantity and ∇  is the well known 

gradient operator. This equation for an incompressible fluid with constant density may be written as 

. 0u∇ = . (2) 

The above equation is usually referred to as “incompressibility condition”. 
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2.2. Momentum conservation 

The momentum conservation equation in its general form is expressed as 

2D
( . )

D 3

u
u u g

µ
ρ µ ρ= −∇ + ∇ + ∇ ∇ +p

t
   in  Ω . (3) 

In the above equation, p is the pressure and µ is the fluid dynamic viscosity. The vector 
T[0 ]g = − g  is the source term vector including the gravity. The operator 

2∇  is the Laplacian 

operator. For an incompressible fluid considering (2) we can write 

2D

D

u
u gρ µ ρ= −∇ + ∇ +p

t
, (4) 

and for inviscid fluid that 0µ =  we have 

D

D

u
gρ ρ= −∇ +p

t
. (5) 

The above equation is known as the Euler equation and should be solved by considering (2) as a 

constraint. However, by inner product of the gradient operator to both sides of (5), considering 

again the incompressibility condition (2), the above equation is simplified as follows  

2 0∇ =p    in  Ω . (6) 

Now, instead of (5) and (2), we can consider (5) and (6) as a system of governing differential 

equations.  To solve the problem, one may first find a solution for (6) satisfying appropriate 

boundary conditions for pressure and then use (5) to calculate the velocity field. The boundary 

conditions for (6) are either defined through specifying the pressure values, e.g. at the free surface, 

or by prescribing the derivatives of the pressure, e.g. at fluid-structure interfaces. In the latter case 

(5) is reused to define the conditions from information available for acceleration of the fluid-

structure interfaces. 

2.3. Boundary conditions 

In this subsection we express the fluid boundary conditions in terms of pressure. To this end we 

assume pressure as 

Hp p g yρ= − , (7) 

where y is the vertical coordinate. Introducing (7) in (6) results in the following equation 

2 0Hp∇ = . (8) 

This shows that Hp  in (7) is in fact the homogeneous part of the pressure field. Also by considering 

(7), Equation (5) takes the following form 

D

D

u
ρ = −∇ Hp

t
, (9) 

which can be used in place of (5) when (8) is considered in place of (6). Considering n as the 

outward vector normal to the fluid boundaries (Fig. 1), the boundary condition at the fluid-structure 

interface, ΓS, is obtained by calculating the inner product of n with (9).  This leads to the following 

relation 
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H
s

p

n
ρ

∂
= −

∂

Tn u�    on  ΓS , (10) 

where /s sD Dt=u u�  denotes the predefined acceleration at the solid boundaries. At the free surface 

ΓF, the pressure should be equal to atmospheric pressure which is considered constant not only on 

the surface but also throughout the domain.  Therefore, one may define the pressure as the 

difference between the actual fluid pressure and the atmospheric one and simply write the following 

condition  

0=p    on  ΓF . (11) 

By considering (7) the above equation may be rewritten as 

ρ=Hp g y    on  ΓF , (12) 

which plays the role of boundary condition at the free surface. 

 

3. THE SOLUTION PROCEDURE 

In this section, first the meshless method using EBFs for spatial discretization of Laplace equation 

is described and then the implicit time integration and geometry updating will be explained. 

3.1. Spatial discretization of Laplace equation by the use of EBFs 

The problem defined in the preceding section is to be solved by finding EBFs satisfying the 

governing equation (8). The solution will be completed by satisfying the boundary conditions (10) 

and (12) varying with time. 

3.1.1. Exponential basis functions (EBFs) 

The pressure EBFs (Laplace equation EBFs) may be found by assuming 

( , , , ) ( , )
x y

Hp x y A e
α βα β α β += , (13) 

where x and y are the coordinates of a generic point in Ω, α  and β are the complex valued 

exponents and ( , )A α β  is a constant independent of the coordinates. By inserting (13) in (8), the 

following equation is obtained 

2 2 0α β+ = . (14) 

From the above characteristic equation one may find α in terms of β or vice versa as follows  

α β= ± i   or   β α= ± i . (15) 

In which 1= −i . With the relation obtained for the exponents, e.g. for α β= ± i , one can write 

{ }1 2( ) ( )i i

β

β β β β
ββ β+ + − +

Ω
= + Ω∫

x y x y

Hp A e A e d , (16) 

In the above relation βΩ  is an appropriate area or locus on the Gaussian plane.  The unknown 

coefficients 1( )A β  and 2 ( )A β  are to be found so that the boundary conditions (10) and (12) are 

satisfied.  This is a very difficult task in many problems and therefore one may think of a discrete 

form of (16), for instance when the integral is to be calculated numerically, and simply write 
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( )1 2ˆ i iβ β β β+ + − += +∑ i i i ix y x y

H i i

i

p c e c e . (17) 

In the above equation ˆ
Hp  is an approximation to Hp , 1

ic  and 2

i
c  represent a set of coefficients to be 

found from the boundary conditions and the summation is taken for the total number of points used 

on Gaussian plane for β . Similar relation can be written when i iβ α= ± i . In these series, iα  and 

iβ   are complex valued exponents that control the amplitude and fluctuations of the basis functions 

in the domain. Considering all cases, one may write the solution series in a general form as follows 

1

ˆ j j

N
x y

H j

j

p c e
α β+

=

=∑ , (18) 

in which N is the total number of selected EBFs to achieve adequate accuracy. Note that in the 

above expression the EBFs obtained from calculating jα  in terms of jβ  and vice versa are 

included. It should also be noted that jα and jβ  in (18) are related via the characteristic equation 

(14). Worthwhile to mention that when we calculate pressure gradients to evaluate fluid 

acceleration and velocity fields, the obtained velocity field satisfies the incompressibility condition 

(2) and therefore the incompressibility of fluid is directly fulfilled. 

 

 
Figure 2. The boundary points used for the collocation approach 

 

3.1.2. Imposition of boundary conditions using a discrete transformation 

In this section, we shall follow the method proposed in [20-24] for the imposition of the boundary 

conditions. To this end, by considering ˆ
Hp  in its general form (18) and applying a collocation 

approach at M boundary points one may write the following relation 

B

1

P V
=

=∑
N

j j

j

C . (19) 

In the above relation, BP  is a vector containing all point-wise boundary conditions, Vj is a 

normalized vector containing the contribution of each exponential basis to the boundaries arranged 

in the same manner as BP , and Cj  is proportional to the coefficient cj in (18) considering the 

normalization factor used in Vj. For instance supposing that m boundary points, out of M, are 

allocated to free surface ΓF (Fig. 2) with prescribed pressure and = −n M m  points are allocated to 

fluid–structure interface ΓS with prescribed acceleration (note that at the corners we choose two 
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close points to define distinct normal vectors), then the vector BP  can be arranged in the following 

form: 

{ }
T

B 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )
B B B m B B B n

p p p p p p= ∂ ∂ ∂P … … , (20) 

where 

, F( ) [ ] ( , ) , 1,...,ρ = == ∀ ∈Γ =
k kB k x x y y k kp g y x y k m , (21) 

and 

, S( ) [ ] ( , ) , 1,...,
k kB k x x y y x x y y k kp n u n u x y k nρ = =∂ = − + ∀ ∈Γ =� � . (22) 

In a similar manner V j  can be arranged as 

{ }
T

1 2 1 2

1
( ) ( ) ( ) ( ) ( ) ( )V = ∂ ∂ ∂… …j j j j m j j j n

j

p p p p p p
s

, (23) 

where js  is a scaling factor for normalization and 

, F( ) [ ] ( , ) , 1,...,
α β+

= == ∀ ∈Γ =j j

k k

x y

j k x x y y k kp e x y k m , (24) 

and 

, S( ) [( ) ] ( , ) , 1,...,
α β

α β
+

= =∂ = + ∀ ∈Γ =j j

k k

x y

j k j x j y x x y y k kp n n e x y k n , (25) 

The scaling factor js  is defined as follows 

max(| |), 1,...,= =l

j j
l

s V l M , (26) 

with 
l

jV  being the lth element of V j  (in the above relations | . | denotes the Hermitian length). Note 

that with defining the scaling factor js  , the coefficient jc  in (18) is now related to jC  in (19) as 

1
=j j

j

c C
s

. (27) 

Now for evaluating the coefficients jC  we assume 

T

BV RP=j jC , (28) 

where R plays the role of a projection matrix assumed to be suitable for all 1,...,=j N . By inserting 

(28) in (19) we find 

T T

B B B

1 1

,P V V RP GRP G V V
= =

= = =∑ ∑
N N

j j j j

j j

. (29) 

In the above relations, G is a symmetric ×M M  matrix. Since the rank of G might be less than M, 

R is evaluated as 

R G+= , (30) 
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where G
+

 is pseudo inverse of G . Now we can evaluate ˆ
Hp  by the following equation 

T

B

1

1
ˆ j j

N
x y

H j

j j

p e
s

α β+

=

  
= ℜ       

∑ V RP . (31) 

In the above equation, [.]ℜ  denotes the real part of the quantity. For further studies on the 

applications of the transformation used above the reader may refer to [20-23]. In view of (7), the 

pressure at any point of the fluid domain may be evaluated by 

T

B

1

1
ˆ j j

N
x y

j

j j

p e g y
s

α β
ρ

+

=

  
= ℜ −      

∑ V RP . (32) 

Now a question may be cast on the way that α and β  are to be chosen. 

3.1.3. Selection of α and β 

The parameters α and β play an important role in the variation of EBFs throughout the solution 

domain and thus have a prominent effect on the projection matrix R. Since these parameters can 

take on complex values, we define a grid of points on Gaussian plane. The solution accuracy may 

differ by changing the grid.  A detailed discussion on the selection of α and β is out of the scope of 

this report and the reader may refer to [23] for further information. In this reference, the authors 

have suggested two simple strategies in this regard; one with mathematical basis and another 

heuristically based on numerical experiments. As shown in [23], the obtained accuracy with either 

of these approaches is satisfactory in all the cases studied.  In this report we have used the heuristic 

strategy (see Appendix A).  Note that the coefficients jα , jβ  are chosen once at the beginning of 

the solution, i.e. 0t = , and are treated as constant coefficients during the time marching algorithm. 

3.2. The time splitting and the geometry updating 

Suppose that the total solution time has been divided into small increments. In the proposed 

algorithm here, the Laplace equation (8) should be solved twice at each time step. Assume that the 

solution is advanced to the nth time step ( ∆ nt = 1n nt t+ − ) and all static and kinematic variables from 

0=t  to = nt t  are available. Let xn  and ( , )u u x=n n n
t  denote the current configuration and the 

current velocity, respectively. Vector of boundary conditions in the current configuration and time 

can then be evaluated using (20) in the following form 

B B ( , )P P x=n n nt . (33) 

Also for the contribution of the EBFs according to (23) we have 

( , )V V x=n n n

j j t . (34) 

The projection matrix Rn  may be calculated as 

( )Tn

1

,G V V R G
+

=

= =∑
N

n n n n

j j

j

. (35) 

Now ˆ ˆ ( , )n n n

H Hp p t= x  can be evaluated using (31) as follows 
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T

B

1

1
ˆ V R P

α β+

=

  
= ℜ       

∑ j j

N
x yn n n n

H jn
j j

p e
s

. (36) 

Considering a as fluid acceleration vector, inserting (36) in (9) results in the following relation 

T

B

1

1 1
( , )a a x V R P

α β
α

βρ

+

=

    
= = − ℜ          

∑ j j

N
j x yn n n n n n

jn
j jj

t e
s

. (37) 

By calculating acceleration at all boundary points, the new geometry 1x +
�

n , termed as intermediate 

configuration here, can be evaluated as  

1 21

2
x x u a

+ = + ∆ + ∆�
n n n n

t t . (38) 

We shall employ such a configuration for calculating the accelerations of the boundary points at the 

end of the time step. The coordinates given by (38) serve just as intermediate positions for the 

boundary points for calculating the boundary conditions to solve Laplace equation (8) at time 
1+= n

t t . In view of (20) and (33), the vector of boundary conditions for the intermediate 

configuration can be evaluated as 

1 1 1

B B( , )P P x+ + += �
n n nt . (39) 

Also for the vectors representing the contribution of EBFs  

1 1 1
( , )V V x

+ + += �
n n n

j j t . (40) 

The projection matrix is then obtained as 

( )T1 1 n+1 1 1

1

,G V V R G
+

+ + + +

=

= =∑
N

n n n n

j j

j

. (41) 

Now the acceleration vector can be evaluated in manner analogous to (37) as  

T1 1 1 1

B1
1

1 1
a V R P

α β
α

βρ

++ + + +

+
=

    
= − ℜ          

∑ j j

N
j x yn n n n

jn
j jj

e
s

. (42) 

After calculating ( , )a a x=n n n
t  and 1 1 1( , )a a x+ + += �

n n n
t  at all boundary points, assuming linear 

acceleration within each time step, the final configuration 1x +n  of boundary points at the end of step 

can be evaluated as 

( )1 1 1 21
( , ) 2 ( , ) ( , )

6
x x u x a x a x

+ + += + ∆ + + ∆�
n n n n n n n n

t t t t t . (43) 

The velocity field at the boundary points of the final configuration can be then calculated as 

( )1 1 1 1 11
( , ) ( , ) ( , )

2
u u x a x a x+ + + + += + + ∆n n n n n n nt t t t . (44) 

The new configuration may be regarded as a new intermediate one and the procedure may be 

repeated until a unique 1x +n  is obtained, but our experience shows that excellent accuracy is 
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achievable by just one step. Having calculated 1x +n  and 1u +n , one may use them as the initial 

position and velocity, respectively, of the boundary points at the beginning of the next time step. 

3.3. Error indicator and regenerating boundary points 

Similar to other boundary mesh based or meshless methods, here deviation of the numerical 

solution from the exact one may be understood by evaluating the discrepancy of the approximated 

boundary values from the exact ones [23]. It must be noted that since the EBFs satisfy the elliptic 

equation (8), i.e. there is no residual in the interior parts of the domain, the residuals of the 

boundary conditions can be employed as an appropriate error indicator. Considering the content of 

Section 3.1, an error indicator may be devised by the re-evaluation of the boundary collocated 

values. This means that by (31) in hand, one may find approximated vector of BP  named here as 

BP
� so that 

{ }
T

B 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )B B B m B B B np p p p p p= ∂ ∂ ∂P

�
… … , (45) 

where 

,
ˆ ˆ( ) [ ]

k kB k H x x y yp p = == , (46) 

,

ˆ
ˆ( ) [ ]

k k

H
B k x x y y

p
p

n
= =

∂
∂ =

∂
. (47) 

By a collocation error defined as 

B Be P P= − �� , (48) 

one may define an error norm as an indicator for the errors in the collocated boundary values. A 

similar error norm may be defined for other boundary points different from those used for the 

collocation. Such indicators are suitable for judging the performance of the transformation 

technique used in Section 3.1. The smallness of the error norms indicates the suitability of the EBFs 

and boundary points used.  

In problems with large displacements where the surfaces deform considerably, the distribution of 

boundary points may become irregular after several time steps and thus the accuracy of the 

calculated pressure may decrease. This can be checked by evaluating the error norms in each time 

step as in (48). In such a case, by using a simple strategy we can regenerate regular boundary points 

to decrease such errors in the next time step. To alleviate this effect one may use a regularization 

technique for rearranging the boundary nodes. In this study, we suppose that the free surface profile 

between two adjacent boundary points, in Figure 2 for instance, at the end of the step is linear and 

can be approximated as 

1

1

( )i i
i i

i i

y y
y x x y

x x

+

+

−
= − +

−
, (49) 

where ( , )i ix y  and 1 1( , )i ix y+ + are the coordinates of the two adjacent boundary points. Now we can 

easily generate new regular points with similar distances on free surface boundary. These new 

boundary points should be used as 1x +n  in (44) for evaluating the initial velocities of the next step. 

This simple strategy does not impose remarkable computational cost and so in this research we 

regenerate the boundary points in each time step without evaluating the errors. 
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3.4. The step by step procedure of the method 

To give an insight into the implementation of the method, we present the step by step procedure. 

After defining the problem geometry, 
 

1. Choose a series of points on the boundary of the domain. At corners choose two close 

points to define distinct normal vectors. 

2. Initialize the velocities of the boundary points if the problem does not start at rest. 

3. Choose a grid of points on Gaussian plane. The bounds of the values are preliminarily 

determined by considering the oscillation of the boundary values [23] (see Appendix A). 

4. For each point of the grid in step 3, for instance when iα β= ±i i , evaluate the set of EBFs 

as given in (17) and analogously proceed for when iβ α= ±i i . 

5. Evaluate the collocated values of the boundary conditions in the current time and 

configuration in a vector as defined in (33), that is B B( , )P P x=n n nt . 

6. For each EBF constructed in step 4, evaluate its contribution on the boundaries, that is Vn

j . 

7. Evaluate 
Tn

1

G V V
=

=∑
N

n n

j j

j

. 

8. Evaluate ( )R G
+

=n n . 

9. Evaluate the Lagrangian acceleration for each boundary points at the beginning of the step 

as given in (37). 

10. Calculate the coordinates of the intermediate configuration 1x +
�

n  by (38).  

11. Evaluate the collocated values of the boundary conditions at time 1+= n
t t  and intermediate 

configuration in a vector as defined in (39), that is 1 1 1

B B ( , )P P x+ + += �
n n nt . 

12. For each EBF of step 4, evaluate its contribution on the new boundaries, that is 1V +n

j . 

13. Evaluate 
T1 1 n+1

1

G V V
+ +

=

=∑
N

n n

j j

j

. 

14. Evaluate ( )1 1R G
+

+ +=n n
. 

15. Evaluate the Lagrangian acceleration for each boundary points at the end of the step as 

given in (42). 

16. Calculate the final position of the boundary points by (43). (One may consider this final 

configuration as a new intermediate configuration and repeat from 11 until the difference 

between the last two configurations become sufficiently small.)  

17. Regenerate a set of new regular boundary points according to the free surface profile in the 

previous step and consider them as 1x +n . 

18. Calculate the velocities of the new boundary points through (44). 

19. Set 1x +n  and 1u +n  as initial configuration and velocity of each boundary point for the next 

time step. 

20. Repeat from 5 for the next time step. 

 

4. NUMERICAL RESULTS 

In this part we present the results of the method applied to some benchmark problems. Numerical 

results have been compared with those obtained from analytical methods and other numerical 

approaches to show the capability of the proposed procedure. 
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4.1. Water container under harmonic excitation 

We consider the problem of sloshing in a water container under harmonic excitation as the first 

numerical experiment. Sloshing effect is seen in many engineering applications such as liquid 

containing tanks or dams subjected to earthquake. Many numerical methods have so far been 

employed to solve sloshing problems, such as FEM [2], finite difference methods (FDM) [26], and 

boundary element methods (BEM) [27]. The main aim is to accurately calculate the hydrodynamic 

pressure which is considered a key-factor in designing of the structure. An extended history of the 

sloshing problems has been given in [28]. 

  

 
 

Figure 3. Water container under harmonic excitation (Example 4.1) 

 

A rectangular rigid tank is considered as the numerical example (Fig. 3). The length of the 

container L and the still water depth h are 80 cm and 10 cm, respectively. The tank width, B, for 

base shear calculation is 14.1 cm. These parameters have been chosen from reference [27]. The 

water density and gravity acceleration are 31000 kg/mρ =  and 29.81m/sg = , respectively. 

According to linear wave theorem, the first natural frequency 1ω  is as follows  

1 tanh
π π

ω =
g h

L L
. (50) 

Hence, the first natural frequency of this reservoir is 3.79 rad/s. For numerical modeling, 142 points 

are used on boundaries (38 points are on the left and right walls and 104 points are on the bottom 

and free surfaces (Fig. 4)). No regularization is used for the points in this problem. The number of 

EBFs used for this simulation is 400. 

 

 
 

Figure 4. The boundary points used for water container in Example 4.1 (L = 80 cm, h = 10 cm) 

 

The tank is subjected to ground oscillation in the horizontal direction with the following 

acceleration 

2

g f f fX ( ) cos( )ω ω=�� t A t . (51) 

In (51) Af  and ωf  are, respectively, the displacement amplitude and the frequency of the harmonic 

excitation.  
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For the evaluation of the base shear force bF  we write 

S
S

Γ
dΓ= ∫b xF p , (52) 

in which x xp p n= . Also, by calculating the difference of the hydrostatic forces at two sides of the 

lateral walls, the hydrostatic base shear force is calculated by the following equation (see also [27]) 

2 2( )
2

b R L

g B
F h h

ρ
= − . (53) 

In the above relation, Rh  and Lh are the wave elevations on the right and left walls, respectively. 

Here, the simulation has been carried out for harmonic ground motion with the amplitude of 

f 0.04cm=A  and frequencies of 1.9, 3.79 and 11.38 rad/s. We have used 0.01sect∆ = for ωf = 1.9 

rad/s and 0.005sec∆ =t for ωf = 3.79 and 11.38 rad/s.  

 

 

Figure 5. The results obtained for the rectangular tank (Example 4.1) subjected to harmonic excitation with forced 

frequency: (a) ωf = 1. 90 rad/s, (b) ωf = 3.79 rad/s, (c) ωf = 11.38 rad/s. 

 

Figure 5 demonstrates the results of the simulation which are in excellent agreement with those 

given in [27] obtained by BEM.  The results are including the wave height at the right lateral wall 

and the base shear force. Free surface profiles of the rectangular tank subjected to harmonic 

excitation with forced frequency f 3.79 rad/sω =  are shown in Figure 6. 
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Figure 6. Free surface profiles of the rectangular tank (Example 4.1) subjected to harmonic excitation with forced 

frequency ωf = 3.79 rad/s at different time steps. 

 

4.2. Standing wave in a rectangular tank 

Water oscillation with an initial free surface profile in a rectangular tank has been simulated in 

many references by different numerical methods [2,4,8,14,16]. Consider a rectangular rigid tank 

with a cosine wave at the free surface as the initial condition (Fig. 7).  
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Figure 7. Standing wave problem (example 4.2). 

 

 

 

Figure 8. Initial free surface profile and boundary points used for standing wave problem (Example 4.2). 

 

 

The initial free surface profile is given by 

0 ( ) cos[ ( / 2)]x A k xη λ= + , (54) 

where 0 ( )xη  is the initial free surface displacement, A and λ are the wave amplitude and the 

wavelength, respectively. Also, 2 /k π λ=  is the wave number. An analytical solution has been 

given in [29] for the wave height at the center of the tank considering nonlinear effects. According 

to the solution, the wave elevation is the summation of a linear term as 

1 2( ) cos( )η ω= −t A t , (55) 

and a second order term as 

2
2 2 2 4 2 2 4

2 2 2 2 2 2 2 42

2

1
( ) 2( ) cos(2 ) [ ( 3 )cos( )]

8
η ω ω ω ω ω

ω

 
= + + − + 

 

A
t A t k g k g t

g
, (56) 

where 

/π λ=nk n , (57) 

1/ 2[ tanh( )]ω =n n nk g k h . (58) 

In this simulation we have used 31000 kg/mρ =  and 29.81m/s=g . The length of the reservoir is 

2 mλ= =L  and the depth of water is 0.5m=h  in the equilibrium state. The wave amplitude is 

considered as 0.1=A h . For modelling this problem, we have used 306 boundary points (see Fig. 8) 

and 400 EBFs. The time increment ∆t  is chosen as 0.01sec . In Figure 9, wave height at the center 

of the tank is depicted considering both the linear theory 1η η=  and the second order theory 

1 2η η η= + . The results show the accuracy and capability of the method in simulating nonlinear 

effects. The hydrodynamic pressure, in Figure 10, is evaluated as  
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Hydrodynamic wp p g hρ= − . (58) 

in which wh is the water column height above the point under consideration in the fluid domain.  As 

is seen in this Figure, the details of the pressure distribution are fully captured.   

 

 

 

Figure 9. Comparison of the calculated wave heights at the center of the tank (Example 4.2). 

 

 

 

 

Figure 10. Hydrodynamic pressure (Pa) at different time steps (Example 4.2). 
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4.3. Large amplitude water oscillation in a rectangular reservoir 

As the next numerical experiment, we consider a rectangular basin with a half cosine wave at free 

surface (Fig. 11). 

 

 

Figure 11. Rectangular basin with a half cosine wave (Example 4.3). 

 

The initial free surface profile is given by 

0

( / 2)
( ) cos

x L
x A

L

π
η

+ 
=  

 
. (59) 

The definitions of parameters in (59) are the same as those in the previous example. According to 

shallow water theory [30], the fluid velocity field for small amplitude oscillations is as follows 

( / 2)
( , , ) sin sin ,

( / 2) ( / 2)
( , , ) cos sin .

A g h g hx L
u x y t t

h L L

A g h y h g hx L
v x y t t

h L L L

ππ

π ππ

 + 
=        

 + + 
= −        

 (60) 

where u and v are the velocity components and h is the still water depth. So the wave elevation at 

left and right walls and center of the basin may be evaluated by 

( )

( )

( )

(left ) / 2, / 2,0

(center) 0, / 2,0

(right ) / 2, / 2,0

( ) ,

( ) ,

( ) .

η

η

η

−
= +

=

= − +

∫

∫

∫

t

L h t

t

h t

t

L h t

t A v dt

t v dt

t A v dt

 (61) 

This problem has been solved in [8] using arbitrary Lagrangian–Eulerian finite element and 

velocity–vorticity formulation of fluid flow equations. In the reference, 4137 elements have been 

used and the time increment has been chosen as 0.02sect∆ =  to simulate the problem for 98mL =  

and 5mh = . 

Here, we have used 294 boundary points and 400 EBFs for modelling. The time increment ∆t  

and all other parameters are the same as those used in [8]. This simulation has been carried out for 

different wave amplitudes. In Figures 12 and 13 the wave elevation for the wave amplitudes 

0.1mA =  and 0.5m=A  are shown. The results are in excellent agreement with those given in [8]. 

By increasing the initial free surface wave amplitude, the difference between linear analytical 

solution and nonlinear numerical analysis significantly grows.  
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Figure 12. Surface wave elevation for 0.1 m amplitude. Figure 13. Surface wave elevation for 0.5 m amplitude. 

 

In Figure 14 the time history of the wave elevation with amplitude of 2.0 m is presented. For such a 

large amplitude initial wave, the nonlinear effects appear clearly and the wave elevation arises to 

about 3.5 m.  Again comparison between the results and those in [8] shows the capability of the 

presented method in simulation of large amplitude waves.  Figure 15 demonstrates the pressure 

contours and velocity vectors at different time steps; it also shows the free surface configuration at 

different time steps. 
 

 

 

Figure 14. Surface wave elevation for 2.0 m amplitude. 
 

4.4. Solitary wave propagation 

Solitary wave propagation is a benchmark problem that is widely used for evaluating the capability 

of numerical methods in simulating free surface flows. Figure 16 shows the problem geometry and 

the definition of the parameters. A wave moves from the center of the reservoir and, after colliding 

with the right wall, travels back to its initial position. For such a problem experimental [31], 

analytical [32] and numerical [6,8,9,10,33,34] results are available in the literature. 
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Figure 15. Pressure contours and velocity vectors of large amplitude oscillation in a rectangular basin,  

A=2.0 m (Example 4.3). 
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Figure 16. Solitary wave propagation: problem definition. 

 

Total length of the basin is 16L d=  and 1=d . The gravity acceleration is 9.81=g  and the 

density of water is 1000ρ = . The initial conditions are calculated according to the solution 

presented by Laitone [35] for an infinite domain. Based on Laitone’s work, the total wave height, 

velocity components and pressure for a solitary wave propagating in an infinite domain are given as 

2

3

3
sech ( )

4

H
h d H x ct

d

 
= + − 

 
, (62) 

2

3

3
sech ( )

4

H H
u g d x ct

d d

 
= + − 

 
, (63) 

3/ 2

2

3 3

3 3
3 sech ( ) tanh ( )

4 4

H y H H
v g d x ct x ct

d d d d

      
= + − −      

       
, (64)  

and 

( )p g h yρ= − , (65) 

in which c satisfies the following relation 

2 3
1 3

1
2 20

c H H H
O

d d dg d

   
= + − +   

   
. (66) 

 
Figure 17. The maximum run-up height at the right wall versus initial wave height (Example 4.4). 
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The initial conditions including velocity components and free surface position are obtained by 

substituting 0t =  in Laitone’s solution. The simulation was carried out for / 0.1,0.2,0.3,0.4=H d  

using 221 boundary points and 400 EBFs. It is worthwhile to mention that for a FEM simulation 

16000 triangular elements with 4221 nodes are used in [8] and 3838 triangular elements with 2092 

nodes are used in [8] for this problem. Time increment is set to 0.01sect∆ = . Byatt-Smith [32] 

presented the following analytical relation for maximum run-up height at the right wall: 

2 3

max 1
2

2

     
= + +     

     

R H H H
O

d d d d
, (67) 

 

 
Figure 18. Solitary wave propagation (Example 4.4) with H /d = 0.2 at time t = 8.0 (sec): (a) boundary points; (b) u 

(m/s); (c) v (m/s); and (d) p (Pa). 

 

 

The maximum run-up height at the right wall is shown in Figure 17. The numerical results are in 

close agreement with the analytical one proposed by Byatt-Smith and in all cases the differences are 

less than 3% with the second order theory. In Figure 18, the boundary points, velocity, and pressure 

distribution are presented. Figure 19 illustrates the time history of the maximum wave height for the 

case of / 0.2=H d  which is in excellent agreement with the results obtained in [9]. In this case, we 

have used 10=d  for comparison.   Figure 20 depicts the distribution of the vertical velocity for 

every 2.5sec when / 0.3=H d . 
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Figure 19. Time history of maximum wave height for H /d = 0.2 and d = 10 (m) (Example 4.4) 

 

 

 
 

Figure 20. Vertical velocity distribution, Example 4.4, for every 2.5 (sec) when H /d = 0.3. 

 



24 

4.5. Interaction of two opposite solitary waves 

In this section, the collision of two opposite solitary waves with different amplitudes is simulated. 

The problem has been analytically and experimentally discussed in [31,36,37]. Also, it has been 

numerically simulated in [7] using ALE approach. In [37] the maximum run-up height during the 

collision has been estimated by the following relation 

max

1 3
( )

2 8
= + + + +L R L R L R L RH H H H H H H H H , (68) 

in which LH and RH  are the initial wave amplitudes on the left and right-hand sides, respectively. 

 

 

Figure 21. Initial velocity distributions for interaction of two opposite solitary waves, Example 4.5, for HL=0.3d  and 

HR=0.2d : (a) u (m/s); (b) v (m/s). 

 

Here we consider a rectangular domain with length 32=L d  while 1=d . Initial geometry and 

velocities are calculated using Laitone’s solution. These initial conditions are demonstrated in 

Figure 21 for when the left-hand side amplitude is 0.3=LH d  and the right-hand side amplitude is 

0.2=RH d . The simulation has been carried out using present method with 240 boundary points 

and 480 EBFs. The results of maximum run-up height for different amplitudes are tabulated in 

Table 1. Figure 22 shows velocity vectors at different time steps. 

 

Table 1. Maximum run-up height for different amplitudes (Example 4.5) 

0.2 , 0.2= =L RH d H d
 

0.3 , 0.2= =L RH d H d
 

0.3 , 0.3= =L RH d H d
  

0.4260 0.54125 0.66525  Eq. (68) 

0.4217 0.52902 0.64659  Present method 

 

 

5. Conclusions 
In this report we presented a method in which a series of EBFs have been used to solve free surface 

flow through a Lagrangian description. The EBFs are found by defining characteristic equations 

from the governing differential equations in incompressible inviscid fluid flow problems. The 

boundary conditions are imposed through a collocation approach and thus the method can be 

categorized in meshless types. In the presented method, the number of EBFs does not need to be 

equal to that of the boundary information. A transformation technique has been employed for the 

evaluation of the unknown coefficients. 
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Figure 22. Velocity vectors for collision between two opposite solitary waves with HL=0.3d  and HR=0.2d. 

 

The use of EBFs helps to find boundary velocities with high accuracy leading to a precise 

geometry updating. The developed Lagrangian meshless algorithm has been applied to variety of 

linear and nonlinear benchmark problems. Excellent agreement is seen between the obtained results 
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and those available in the literature. The results show the capability of the method for simulating 

free surface flows.  

The numerical method used for modeling of sloshing effect can easily be extended to investigate 

three-dimensional free surface flow problems. Our parallel researches show that one can solve 

Laplace equation in three-dimension with high accuracy. For solving such problems it is enough to 

replace the two dimensional EBFs with the three-dimensional ones in the explained procedure after 

defining the geometry, and its normal vectors to the surfaces, in three-dimensional space.  

 

 

Appendix A: 
The heuristic strategy for choosing α and β proposed in [23] is as follows 

 

2 i
γ

α
 

= ± + 
 

m k

L N
,   1,...,=m M ,   1,...,=k N  (A-1) 

 

for β α= ± i . In a similar manner, when iα β= ±  we select 

 

2 i
γ

β
 

= ± + 
 

m k

L N
,   1,...,=m M ,   1,...,=k N  (A-2) 

 

In the above relations, we choose 
2( , )∈M N N , γ ∈R  and L  is a characteristic length. The 

following bounds are found to be appropriate for many cases 

 

5.6 7.2γ≤ ≤  (say 2γ π= ),  1.6max( , )= x yL L L ,  min 4=M ,  min 2=N , max 8=N  (A-3) 

 

where Lx and Ly are the dimensions of the rectangle that circumscribes the domain. According to 

this pattern, the number of constructed EBFs is 8 ×M N . For modelling of the problems presented 

in this report we have used 2γ π= , 5=N  and 10 12= −M . It should be noted that we calculate Lx 

and Ly at 0=t . 
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