
ar
X

iv
:1

10
4.

35
16

v2
 [

co
nd

-m
at

.s
of

t]
 2

8
D

ec
 2

01
1

An Adaptive Hierarchical Domain Decomposition Method for Parallel

Contact Dynamics Simulations of Granular Materials

Zahra Shojaaee∗, M. Reza Shaebani, Lothar Brendel, János Török, Dietrich E. Wolf

Computational and Statistical Physics Group, Department of Theoretical Physics, University of Duisburg-Essen, 47048

Duisburg, Germany

Abstract

A fully parallel version of the Contact Dynamics (CD) method is presented in this paper. For large enough
systems, 100% efficiency has been demonstrated for up to 256 processors using a hierarchical domain decom-
position with dynamic load balancing. The iterative scheme to calculate the contact forces is left domain-wise
sequential, with data exchange after each iteration step, which ensures its stability. The number of addi-
tional iterations required for convergence by the partially parallel updates at the domain boundaries becomes
negligible with increasing number of particles, which allows for an effective parallelization. Compared to the
sequential implementation, we found no influence of the parallelization on simulation results.

Keywords: Contact dynamics method, Granular materials, Hierarchical domain decomposition, Load
balancing, MPI library
PACS: 45.70.-n, 02.70.-c, 45.10.-b

1. Introduction

Discrete element method simulations have been widely employed in scientific studies and industrial ap-
plications to understand the behavior of complex many-particle systems such as granular materials. The
common property of these methods is that the time evolution of the system is treated on the level of in-
dividual particles, i.e. the trajectory of each particle is calculated by integrating its equations of motion.
Among the discrete element methods, soft particle molecular dynamics (MD) [1, 2], event driven (ED) [3, 4]
and contact dynamics (CD) [5, 6, 7, 8] are often used for simulating granular media.

Molecular dynamics is the most widely used algorithm for discrete element simulations. For granular
materials, the contact forces between the soft particles stem from visco-elastic force laws. Interactions
are local, therefore efficient parallelization is possible [9, 10, 11, 12] with 100% efficiency for large systems
(Throughout the paper, the performance of a parallel algorithm is quantified by the usual quantities: the
speedup S(Np), which is the ratio of the run time of the non-parallel version on a single processor to the
run time of the parallel version on Np processors, and the efficiency E=S/Np×100%). The time step and
therefore the speed of MD simulations is strongly limited by the stiffness of the particles, as collisions must
be sufficiently resolved in time. Molecular dynamics is efficient for dense systems of soft particles, but much
less so for hard particles and dilute systems.

The event driven dynamics [13, 14] considers particle interactions of negligible duration compared to the
time between collisions. Particle collisions are thus treated as instantaneous events, and trajectories are
analytically integrated in between. This makes ED favorable in dilute granular systems, where the above
condition holds. The parallelization of this algorithm poses extreme difficulties, since the collisional events
are taken from a global list, which in turn is changed by the actual collision. In general, a naive domain

∗Corresponding author
Email address: zahra.shojaaee@uni-duisburg-essen.de (Zahra Shojaaee)

Preprint submitted to Journal of Computational Physics April 22, 2022

http://arxiv.org/abs/1104.3516v2

decomposition leads to causality problems. The algorithm presented in [15] conserves causality by reverting
to an older state when violated. The best efficiency reached so far is a speedup proportional to the square
root of the number of processors [15].

In contrast to ED, lasting contacts between rigid bodies are considered in the realm of (multi)-rigid-body
dynamics. Common to all its realizations is the treatment of contact forces as constraint forces, preventing
interpenetration and, to a certain extent in the case of frictional contacts, sliding. When applying the rigid
body modelling to problems like e.g. robotics [16, 17] or granular media [18, 19, 20, 21], different algorithms
can in principle be used. Approximations with respect to the constraint of dry Coulomb friction enable
the usage of powerful standard techniques for linear complementary problems (LCP) [22]. Other algorithms
keep the isotropic friction cone, using a solver based on a modified time stepping scheme leading to a cone
complementary problem (CCP) for the simulation of frictional contact dynamics [23]. Other approximations,
leading to fast frictional dynamics (FFD) [24], yield a computational cost being only linear in the number of
contacts and thus allow for impressive system sizes in terms of the number of particles. For investigations of
e.g. the stress field in granular media, these approximations are prohibitive, though, and thus the non-smooth
contact dynamics method [7], or commonly just contact dynamics, is widely employed. We will sketch the
principle of this iterative procedure in section 2.1. Parallelization of the FFD method is straightforward
and efficient [25, 26], on the other hand, the parallel version suffers also from the undesired approximations.
The parallel implementation of the CCP algorithm by the use of the Graphics Processing Unit (GPU) for
large-scale multibody dynamics simulations is presented in [27]. In the present work we investigate the
impact of the parallelization on the numerical solution of the CD method going beyond [25, 26, 27].

Providing a parallel CD code is motivated by the need for large-scale simulations of dense granular sys-
tems of hard particles. The computation time even scales as O(N1+2/d) with the number of particles in CD
[8] (d is the dimension of the system), while it grows linearly with N in MD. However, parallelization of CD
poses difficulties as in general the most time consuming part of the algorithm is a global iteration proce-
dure, which cannot be performed completely in parallel. So far, a static geometrical domain decomposition
method has been proposed in Ref. [28], and a partially parallel version is introduced in Ref. [29], where only
the iterative solver is distributed between shared memory CPUs. In the former work, the force calculation
is studied just on 8 processors and in the latter, already with 16 processors the performance efficiency is
below 70%. None of these studies deal with computational load balancing during the execution of the code.

There is a large variety of domain decomposition methods proposed for parallel particle simulations
in the literature, from Voronoi tessellation [30] to orthogonal recursive bisection (ORB) [31, 32]. For the
parallelization of CD the size of the interfaces between domains is more crucial than for MD, since besides
communication overhead it also influences the parallel/sequential nature of the global iteration. So the ORB
methods are the most suited for the CD code together with adaptive load balancing approaches [33], which
is not only important in heterogeneous clusters but also in the case of changing simulation setup and local
particle/contact density.

In the present work, we introduce a completely parallel version of the contact dynamics method using
MPI communication with orthogonal recursive bisection domain decomposition for an arbitrary number of
processors. The method minimizes the computational costs by optimizing the surface-to-volume ratio of the
subdomains, and it is coupled with an adaptive load balancing procedure. The validation of our code is done
by numerical simulations of different test systems. We presented our implementation in two dimensions and
for spherical particles. However, our code is also capable of handling polygonal particles and the extension
to three dimensions is straightforward.

This article is organized as follows. The contact dynamics method is described briefly in Sec. 2 and
particular attention is paid to the numerical stability of the sequential and parallel update schemes, and to
the identification of the most time consuming parts of the code. In Sec. 3 we present an adaptive domain
decomposition method, and implement it in a parallel version of the CD algorithm. The results of some test
simulations with respect to the performance of the parallel CD code are presented in Sec. 4 and the effect
of our parallelization approach on the physical properties of the solutions are investigated. We conclude the
paper in Sec. 5 with a summary of the work and a brief discussion.

2

2. Contact Dynamics Method

2.1. A brief description of the CD algorithm

In this section, we present the basic principles of the CD method [7] in a language closer to MD and
with special emphasis on those parts where changes are applied in the parallel version of the code. For
more details and a broader overview cf. [7, 34]. The central point is that the forces are not calculated from
particle deformation, instead they are obtained from the constraints of impenetrability and friction laws.
Imposing constraints requires implicit forces, which are calculated to counteract all movement that would
cause constraint violation.

In general for molecular dynamics, where trajectories are smooth (soft particle model), simulation codes
use second (or higher) order schemes to integrate the particle positions. In CD method, the non-smooth
mechanics (hard particle limit) requires strong discontinuity, which can only be achieved by first order
schemes. Thus we apply a first-order Euler scheme for the time stepping of particle i:

~vi(t+∆t) = ~vi(t) +
1

mi

~Fi ∆t, (1)

~ri(t+∆t) = ~ri(t) + ~vi(t+∆t)∆t , (2)

which determines the new velocity ~vi and position ~ri of the center of mass of the particle after a time step
∆t. The effective force on particle i is denoted by Fi. The scheme is semi-implicit in the sense that the
right-hand-side velocities are (necessarily) the ones at time t+∆t while forces other than the constraint
forces may be treated implicitly or explicitly. The size of the time step ∆t is chosen such that the relative
displacement of the neighboring particles during one time step is much smaller compared to the size of
particles and to the radius of curvature of contacting surfaces. Similar equations are used for the rotational
degrees of freedom, i.e. to obtain the new angular velocity ~ωi(t+∆t) (caused by the new torque ~Ti(t+∆t)),
and the new orientation of particle i.

For simplicity, in the following we assume that particles are dry and non-cohesive having only unilateral
repulsive contact forces. Furthermore, we assume perfectly inelastic particles, which remain in contact after
collision and do not rebounce. The implicit scheme must fulfill the following two constraints:

(i) the impenetrability condition: the overlapping of two adjacent particles has to be prevented by the
contact force between them.

(ii) the no-slip condition: the contact force has to keep the contact from sliding below the Coulomb friction
limit, i.e. the tangential component of the contact force cannot be larger than the friction coefficient
times the normal force.

The contact forces should be calculated in such a way that the constraint conditions are satisfied at time
t+∆t, for the new particle configuration [8]. Once the total force and torque acting on the particles, including
the external forces and also the contact forces from the adjacent particles, are determined, one can let the
system evolve from time t to t+∆t.

Figure 1: Schematic picture showing two adjacent rigid particles.

3

Let us now consider a pair of neighboring rigid particles in contact or with a small gap between them as
shown in Fig. 1. We define ~n as the unit vector along the shortest path of length g between the surfaces of
the two particles. The relative velocity of the closest points is called the relative velocity of the contact ~vg.
In the case that the particles are in contact, the gap g equals to zero, and ~n denotes the contact normal.

We first assume that there will be no interaction between the two particles at t+∆t, i.e. the new contact
force ~R(t+∆t) equals to zero. This allows the calculation of a hypothetical new relative velocity of the two
particles ~vg,0(t+∆t) through Eq. (1), only affected by the remaining forces on the two particles. The new
gap reads as:

g(t+∆t) = g(t) + ~vg,0(t+∆t)·~n∆t. (3)

If the new gap stays indeed positive (0<g(t+∆t)) then no contact is formed and the zero contact force is

kept: ~R(t+∆t)=0.
On the other hand, if the gap turns out to be negative (g(t+∆t) ≤ 0), a finite contact force must be

applied. First, we determine the new relative velocity from the condition that the particles remain in contact
after the collision,

0 ≡ g(t+∆t)~n = g(t)~n+ ~vg(t+∆t)∆t (4)

Here we assume sticking contacts with no relative velocity in the tangential direction (~v t
g (t+∆t)=0), which

implies that the Coulomb condition holds. The new contact force satisfying the impenetrability can be
obtained using Eq. (1) as

~R(t+∆t) =
M

∆t

(

~vg(t+∆t)− ~vg,0(t+∆t)

)

=
−M

∆t

(

g(t)

∆t
~n+ ~vg,0(t+∆t)

)

(5)

where the mass matrix M, which is built up from the masses and moments of inertia of both particles [8],

reflects the inertia of the particle pair in the sense that M−1 ~R corresponds to the relative acceleration of
the contacting surfaces induced by the contact force ~R.

At this point, we have to check for the second constraint: the Coulomb friction. Let us first define the
normal and tangential contact forces:

Rn(t) ≡ ~R(t)·~n ,
~Rt(t) ≡ ~R(t)−Rn(t)~n . (6)

Then the Coulomb inequality reads as

∣

∣

∣

~Rt(t+∆t)
∣

∣

∣
≤ µRn(t+∆t) , (7)

where µ is the friction coefficient (being the same for static and dynamic friction, the standard Coulomb
model of dry friction [34]). If the inequality (7) holds true, then we have already got the correct contact
forces. Otherwise, the contact is sliding, i.e. ~vg(t+∆t) has a tangential component and Eq. (4) reads

0 ≡ g(t+∆t) = g(t) + ~n·~vg(t+∆t)∆t , (8)

which determines the normal component of ~vg(t+∆t). The remaining five unknowns, three components of

the contact force ~R(t+∆t) and two tangential components of the relative velocity, are determined by the
following two equations:

(i) Impenetrability by combining Eqs. (4) and (5)

~R(t+∆t)=
M

∆t

(

−
g(t)

∆t
~n+ ~v t

g (t+∆t)− ~vg,0(t+∆t)

)

. (9)

(ii) Coulomb condition

~Rt(t+∆t) = −µRn(t+∆t)
~v t
g (t+∆t)

∣

∣~v t
g (t+∆t)

∣

∣

. (10)

4

❍
❍
❍
❍
❍
❍
❍
❍

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

g(t)+~v
g,0(t+∆t)·~n∆t > 0

Yes No

~
R(t + ∆t)=0

No Contat

Evaluation of

~
R

test

via Eq. (5)

P
P
P
P
P
P
P
P
P

✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥

∣

∣

∣

~
R

t

test

∣

∣

∣
≤ µRtest

n

Yes No

~
R(t+∆t)= ~

R

test

Stiking Contat

Evaluation of

~
R(t + ∆t) via

Eqs. (9) and (10)

Sliding Contat

1

Figure 2: The force calculation process for a single contact.

In two dimensions and for spheres in three dimensions, these equations have an explicit analytical solution,
otherwise one has to resort to a numerical one[7].

Figure 2 summarizes the force calculation process for a single incipient or existing contact. Assuming
that all other forces acting on the participating particles are known, the Nassi-Shneiderman diagram [35] in
Fig. 2 enables us to determine the contact force.

The above process assumes that apart from the contact forces all other interactions are known for the
selected two particles. However, in dense granular media, many particles interact simultaneously and form
a contact network, which may even span the whole system. In such cases, the contact forces cannot be
determined locally because each unknown contact force depends on the adjacent unknown contact forces
acting on the particles. In order to find the unilateral frictional forces throughout the entire contact network,
an iterative method is mostly used in CD as follows: At each iteration step, we choose the contacts randomly
one by one and calculate the new contact force considering the surrounding contact forces to be already the
correct ones. It is natural to update the contact forces sequentially in the sense that each freshly calculated
force is immediately used for further force calculations. One iteration step does not provide a globally
consistent solution, but slightly approaches it. Therefore, the iteration has to be repeated many times until
the forces relax towards an admissible state. To assess whether or not the convergence is achieved, we
measure the relative change of each contact force ~Ri at each iteration step j, as well as the relative change in
the average contact force ~Ravg at this iteration step. Generally, we choose one of the following convergence
criteria to stop the force calculation procedure:

(I) local convergence test : if, at least for 90% of the contacts, the following condition holds

(~R
j

i−
~R

j−1

i)2

(~R
j

i+
~R

j−1

i)2
< α,

and the rest of contacts fulfill
(~R

j

i−
~R

j−1

i)2 < α(~R
j−1

avg)
2.

(II) global convergence test : if the relative change in the average contact force falls below the threshold
value α, i.e.

(~R
j

avg−~R
j−1

avg)
2

(~Rj

avg+
~Rj−1

avg)
2
< α.

We have chosen α=10−6 in all simulations.
The precision of the solution increases smoothly with the number of iterations NI , with the exact solution

being only reached for NI → ∞. Of course we stop at finite NI . It is optional to use a fixed number of

5

Figure 3: The diagram of the main steps of the contact dynamics algorithm.

iterations at each time step, or to prescribe a given precision to the contact force convergence and let NI to
vary at each time step.

Breaking the iteration loop after finite iteration steps is an inevitable source of numerical error in contact
dynamics simulations, which mainly results in overlap of the particles and in spurious elastic behavior [36].
Occurring oscillations are a sign that the iterations were not run long enough to allow the force information
appearing on one side of the system to reach the other side. This effect should be avoided and the number
of iterations should be chosen correspondingly [36].

Once the iteration is stopped, one has to update the particle positions based on the freshly calculated
forces acting on the particles. Figure 3 concludes this section with a diagram depicting the basic steps of
the contact dynamics algorithm.

The question of successful convergence in general is difficult (cf. [37, 38]) but in practice convergence
turns out to be given and hence the CD method has been experimentally validated in different instances,
e.g. as in calculating the normal contact force distribution in static 2D and 3D granular packings especially
for weak forces that are experimentally difficult to access [18], investigating the dynamics of granular flows
e.g. monitoring the evolution of the contact orientations and shear band formation in a biaxial shear cell
[19], studying the mechanical properties of cohesive powders [20], and predicting the refraction of shear zone
in layered granular media [21].

2.2. CPU time analysis

The CD algorithm described in the previous section has three main parts: (i) The contact detection, (ii)
the force calculation (iteration), (iii) the time evolution. In this section we analyze the CPU consumption
of all these parts.

Given a system and the contact detection algorithm, the time consumption of parts (i) and (iii) can be
easily estimated. On the other hand, the computational resource needed by part (ii) is strongly influenced
by the number of iterations. If one uses extremely high values of NI , part (ii) will dominate the CPU usage.
This led Renouf et al. [29] to the conclusion that parallelizing the force calculation is enough.

Our view is that the situation is more delicate and it is demonstrated by a simulation in which diluted
granular material is compressed until a dense packing is reached [39]. The system consists of 1000 polydis-
perse disks in two dimensions with friction coefficient µ=0.5. The stopping criteria for the iteration was the
fulfillment of any of the two conditions:

(1) The global convergence criterion is fulfilled (see Sec. 2.1 for details).

(2) NI ≥ 200

Figure 4 shows the evolution of the relative CPU time consumption of the different parts of the algorithm.
The time stepping contribution always remains less than 5%, and the rest is divided between the other two
subroutines. Initially, the contact detection task consumes the majority of the computational time. After
a while, clusters of contacting particles form, and the cost of force calculation increases and the iterative

6

Figure 4: (color online) The percentage of CPU time consumption (lines) and the packing fraction ν (purple line, full circles)
as a function of time. The insets show typical configurations of particles at different packing fractions. The thickness of the
inter-center connecting red lines is proportional to the magnitude of the contact force.

solver gradually becomes the most time consuming part of the code. Note that the contribution of the solver
saturates to 70% of the total elapsed time. If only the force calculation part is executed in parallel, even
with Eforce = 100%, the remaining 30% non-parallel portions set an upper limit to the overall efficiency E
and the speedup S of the code (Emax ≈ 80% and Smax ≈ 4). Therefore, we aim to provide a fully parallel
version of CD which operates efficiently in all density regimes.

2.3. Sequential versus parallel update scheme

As we pointed out in Sec. 2.1, the problem of finding the unilateral frictional contact forces that satisfy
the constraint conditions cannot be solved locally in a dense granular system. In order to evaluate the
new value of a single contact, one has to know the new values of the adjacent contact forces, which are
unknown as well, i.e. all contact forces are coupled in a cluster of contacting particles. Note that this is a
consequence of the infinite stiffness of the particles; a single collision influences the entire network of contact
forces between perfectly rigid particles. This problem is solved by iterating through all contacts many times
until a given precision is reached.

Similarly to solving the Laplace equation, the information about a disturbance (e.g. collision of a new
particle) appearing on one side of a cluster must diffuse through the whole cluster to satisfy the constraints.
Actually, the iteration scheme is very similar to two traditional schemes for solving a set of linear equations
[40], albeit with nonlinearities introduced by the change of contact states (repulsive vs. force-less, sticking vs.
sliding): the Jacobi scheme and the Gauss-Seidel scheme, corresponding to parallel and sequential contact
updating, respectively.

Here we denote (i) sequential, where the contacts are solved one by one using always the newest informa-
tion available, which is a mixture of new and old values, (ii) parallel, where all contacts are updated using
the old values, and substituted with the new ones at the end of the iteration step. Needless to say that the
second case is favored for parallel applications but instabilities may appear (like when combining the Jacobi
scheme with Successive Over-Relaxation [40]). To study its impact, we investigated a mixed method, where
a fraction p of the contacts are updated in parallel and the rest sequentially. First, a static homogeneous
packing is generated by applying an external confining pressure [39]. Next, the inter-particle forces are set
to zero, while the positions of the particles and the boundary conditions are kept fixed. Now the code
recalculates the contact forces within one time step with an unconstrained number of iterations until the
convergence is reached. We check how many iteration steps are needed to find a consistent equilibrium
solution with a given accuracy threshold. The results are shown in Fig. 5(a).

7

a)

0 200 400 600 800 1000 1200 1400 1600
N

I

10
-3

10
-2

10
-1

10
0

10
1

a m
ea

n/a
ex

t

p=0.00
p=0.55
p=0.65
p=0.67
p=0.68
p=0.69
p=0.70
p=0.71

b)

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

p c
, ν

ν
p

c

0 10 20 30 40 50 60
packing index

0

1

2

3

4

Z

Z

Figure 5: (color online) (a) The mean acceleration of the particles amean scaled by aext=2r̄Pext/m̄ (where r̄ and m̄ are the
mean particle radius and mass, respectively, and Pext is the external pressure) in terms of the number of iterations NI for
several values of the “parallelness” p (cf. text). These results belong to the dense packing in the right panel of Fig. 4. (b) The
critical parallelness ratio pc, the average coordination number Z, and the packing fraction ν for several configurations obtained
during the time evolution of the system in the simulation presented in Fig. 4.

It turns out that, on average, the number of iterations NI to reach a given accuracy level increases with
increasing p. For high values of p, fluctuations appear and beyond pc ≈ 0.65 the iterative solver is practically
unable to find a consistent solution. We discuss the consequence of this behavior for the parallel version of
CD in Secs. 3 and 4.

In order to investigate the dependence of pc on the properties of the contact network, we take snapshots
of the structure during the time evolution of the system in the simulation presented in Fig. 4. The same
procedure as mentioned above is then applied to each of these samples to obtain pc. The results are shown
in Fig. 5(b). In dilute systems, the contacts form small isolated islands and the resulting set of equations is
decomposed into smaller independent sets, so that even a completely parallel update scheme (pc=1.0) can
be tolerated. However, the contact network in dense systems forms a set of fully coupled nonlinear equations
which converges only if the parallelness factor p is less than pc∼0.65. By varying the system size and the
friction coefficient, we conclude that pc is mainly influenced by the degree of coupling between the equations
which is reflected in the connectivity of the sample Z [see Fig. 5(b)].

Thus, the results of our numerical simulations reveal that the sequential update scheme is quite robust
and the force convergence is reached smoothly, while the fully parallel update scheme is highly unstable in
dense systems. However, there is a limit of parallel update for which the iteration remains stable. This
is important because the domain decomposition method allows for a sequential update only in the bulk of
each domain, while the boundary contacts are updated in a parallel way (cf. section 3.1). This analysis
suggests that the ratio of bulk contacts to boundary ones after the decomposition should never fall below
1. Fortunately, this is assured in a domain decomposition context anyway.

3. A parallel version of the CD algorithm

3.1. The parallel algorithm

A parallel version of the CD algorithm based on the decomposition of the simulation domain is introduced
in this section. The main challenge is to properly evaluate the inter-particle forces when the contact network
is broken into several subnetworks assigned to different processors. The parallelization presented in this
section is valid only for spherical particles (disks in 2D), but it is straightforward to extend it for other
shape types.

At the beginning of the simulation, a domain decomposition function is called to divide the system
between Np processors. Regarding the fact that neither the performance of the computing environment nor

8

Figure 6: (color online) Schematic picture showing two neighboring processors at their common interface. Their respective
domain and boundary regions are marked. Particle A is a native particle of processor 1 and is in contact (asterisks) with two
foreign particles, namely boundary particles of processor 2. The contacts are boundary contacts of processor 2 and thus foreign

ones to processor 1. Particle B is a boundary particle of processor 2 and has two contacts (asterisks) located inside the domain
of processor 1, i.e. they belong to the latter’s boundary contacts.

the density distribution and the internal dynamics of the system are known initially, a uniform distribution
for all relevant factors is assumed and initially the simulation domain is geometrically divided into Np parts
with the same volume. The details of the hierarchical decomposition method are explained in Sec. 3.2.

After establishing the domains, the particles are distributed among the processors. Each processor
maintains its set of native particles, the center of mass of which lie within its domain. The next task is to
identify in each domain the boundary particles, i.e. those particles which may be in contact with particles
in other domains, as this information should be passed to the neighbors. Two particles may come into
contact if the gap is smaller than 2vmax∆t, where vmax is the maximum velocity in the whole system. So
the maximal distance between the centers of mass of two particles, which may come into contact is

d ≤ 2rmax + 2vmax∆t, (11)

where rmax is the radius of the largest particles. This distance also defines the width of the boundary region
in which particles may have contact with particles outside a processor’s domain, see also Fig. 6.

While rmax is constant during the simulation, vmax varies in time and space. For reasons described
in Sec. 3.2, we use a global upper limit ℓ for the boundary size, which is unchanged during the whole
simulation. It was explained in Sec. 2.1, that the displacement of the particles must be small compared to
particle size for contact dynamics to be valid. Therefore it is legitimate to define the upper limit for the
particle displacement to be 0.1rmax and thus use the boundary size

ℓ = 2.2rmax . (12)

Hence, a small amount of in principle irrelevant neighboring information is transferred. This is dominated
by other effects, though, as will be shown in Sec. 3.2.

After the identification of the boundary particles, their relevant data is sent to the corresponding neighbor
processors, which keep the information of these (to them) foreign particles. Since sender and receiver will
always agree about the forces acting on these particles, the receiver can evolve their state on its own.

The next step is to identify actual and possible contacts between both native and foreign particles. A
position is assigned to each contact, which is the middle of the gap (see Fig. 1). Obviously, for particles
in touch, this is the contact point. Each processor builds a list of native contacts for the iteration loop

9

Figure 7: (color online) The diagram of the parallel version of CD. The colored regions correspond to the new parts compared
to the original CD algorithm shown in Fig. 3.

exclusively from contacts lying in its domain. The remaining ones are called foreign contacts and are in turn
boundary contacts of neighboring processors. During an iteration sweep, they will not be updated but their
forces enter the force calculation algorithm. Only at the end of the sweep, each processor sends the new
forces of its boundary contacts to its corresponding neighbor. This means that during an iteration sweep,
foreign contacts always have the values from the last iteration, while native contacts are gradually updated
realizing a mixture of parallel and sequential update.

The convergence of the force calculation has to be checked after each iteration sweep. This should be a
global test, since the convergence in different subdomains may be achieved at different iteration steps. This
task can only be completed by a single processor. Therefore, the necessary data is collected and submitted
to the root processor, which makes a decision whether the iteration should continue or the convergence
is good enough and time stepping can take place. If further iterations are necessary, then only boundary
contact information are exchanged among neighbors, as particles do not move within the iteration loop.
With new foreign contact values, each processor can perform the next iteration sweep. If the iteration loop
has finished, the particles are displaced according to the implicit Euler scheme of Eqs. (1) and (2). Every
processor is responsible for its own native particles (but evolves its copies of foreign particles as well).

Before starting the next time step, we have to take care of the load balancing: Every processor broadcasts
its own elapsed CPU time, which provides the required information to run the load balancing function. The
detailed description of this function is presented in Sec. 3.3. If the load balancing function redivides the
simulation box, then each processor has to compare its own particle positions to the new domain coordinates
of all other processors to determine to which processor each particle has to be sent. This re-association
of particles takes place also without domain redivision as particles change domains simply due to their
dynamics.

Figure 7 summarizes the parallel algorithm. The main differences (highlighted in the diagram) are that
(i) at certain points data must be sent or received to neighboring domains; (ii) the iteration scheme updates
only native contacts gradually, while foreign contacts are refreshed only after a complete iteration sweep;
(iii) load balancing and domain redivision checks take place at the end of the time step.

10

Figure 8: (color online) An initial hierarchical decomposition of the simulation domain for Np = 14.

A mixture of the sequential and the parallel update scheme occurs for a fraction of the contacts. This
fraction depends on the surface-to-volume ratio of the subdomain. As discussed in Sec. 2.3, a mixed update
can become unstable if the contribution of the parallel update exceeds a threshold of order unity. This
limitation coincides with the standard limitation of parallel computation that the boundary region should
be negligible compared to the bulk. In this sense, for reasonably large systems, we do not expect any
instability impact due to the parallel update. Nevertheless, this issue is investigated in Sec. 4.3.

In the next section we introduce a hierarchical domain decomposition method, which finds the best way
to arrange the orientation and location of the interfaces so that the surface-to-volume ratio is minimal for
a given number of processors.

3.2. Hierarchical domain decomposition

Before describing the domain decomposition, we have to investigate the contact detection. This process,
for which the brute force algorithm scales as O(N2) with the number of particles, can be realized for different
levels of polydispersity [41, 42, 43] within O(N) CPU cycles. We chose to implement the most widespread
one, the cell method [41], which works well for moderate polydispersity and which is the most suitable for
parallel implementation.

The cell method puts a rectangular grid of mesh size ax × ay on the simulation space. Each particle is
assigned to its cell according to its position, and the mesh size is chosen such that the particles can only have
a contact with particles from neighboring cells and their own. That means, the cell diameter has essentially
the same meaning as the width of the boundary region ℓ and thus they should coincide. On the other hand,
the values ax and ay have to be chosen such that in each direction every domain has an integer number of
cells. But this would mean, in general, a different mesh size for all subdomains, which may be far from the
optimal value. Therefore, it is advantageous (for large systems and moderate polydispersities) to choose a
global ax and ay instead, and restrict the domain boundaries to this grid.

The domain decomposition method proposed in this paper is based on the orthogonal recursive bisection
algorithm [31] with axis-aligned domain boundaries. The basis of the algorithm is the hierarchical subdivision
of the system. Each division represents recursive halving of domains into two subsequent domains. The
advantage of such a division is an easy implementation of load balancing, which can be realized at any level,
simply by shifting one boundary.

First, we have to group the Np processors (where Np is not required to be a power of two) hierarchically
into pairs. The division algorithm we use is the following: We start at level 0 with one node1, which initially
is a leaf (a node with no children) as well. A new level l is created by branching each node of level l−1
in succession into two nodes of level l, creating 2l leaves. This continues until 2l < Np ≤ 2l+1. Then, only
Np − 2l leaves from level l are branched from left to right, cf. Fig. 8(a).

Next, we have to assign a domain to each leaf/processor. In the beginning, having no information about
the system, all domains should have the same size. Actually, their sizes equal only approximatively due to
grid restriction described above, cf. Fig. 9(a). To achieve this, the recursive division of the sample is done

1These are abstract nodes in a tree rather than (compounds of) CPUs.

11

according to the tree just described. Each non-leaf node represents a bisection with areas corresponding to
the number of leaves of its branches (subtrees). The direction of the cut is always chosen as to minimize the
boundary length.

The hierarchical decomposition method provides the possibility of quick searches through the binary tree
structure. For example, the task to find the corresponding subdomain of each particle after load balancing
requires a search of order O(log(Np)) for Np processors. With respect to bookkeeping overhead, a further
advantage of this decomposition scheme is that local load imbalance does not necessarily affects higher level
subdomain boundaries. For example, if particle exchange takes place across a low level domain boundary
only this boundary will move leaving the others untouched.

3.3. Adaptive load balancing

For homogeneous quasi-static systems, the initially equal-sized subdomains provide already a reasonably
uniform load distribution, but for any other case the domain boundaries should dynamically move during
the simulation. In the load balancing function, we take advantage of the possibility provided by MPI to
measure the wall clock time accurately. For every time step, the processors measure the computational time
spent on calculations and broadcast it, so that all processors can decide simultaneously whether or not the
load balancing procedure has to be executed. To quantify the global load imbalance, the relative standard
deviation of the elapsed CPU time in this time step 2 is calculated via the dimensionless quantity

σT ≡
1

〈T 〉

√

〈T 2〉 − 〈T 〉
2
, (13)

where the average is taken over the processors.
A threshold value σ∗

T is defined to control the function of the load balancing algorithm: If σT < σ∗

T , then
the simulation is continued with the same domain configuration, otherwise load balancing must take place.
This load balancing test is performed by all processors simultaneously, since all of them have the necessary
data. The result being the same on all processors, no more communication is needed.

If the above test indicates load imbalance, we have to move the domain boundaries. This may happen
at any non-leaf node of the domain hierarchy tree. The relevant parameter for the domain division is the
calculating capacity of the branches, which is defined as

νj =
∑

i

Vi

Ti
, (14)

where Ti and Vi are the CPU time and volume of domain i, respectively, and the summation includes all
leaves under branch j. Let us denote the two branches of a node as j and k, then the domain must be
bisectioned according to

ν̃j ≡
νj

νj + νk
and ν̃k ≡ 1− ν̃j . (15)

The above procedure is repeated for all parent nodes. If the size of a domain was changed, then all subdomain
walls must be recalculated as even with perfect local load balance the orientation of the domain boundary
may be subject to change. Note that boundaries must be aligned to the grid boundaries as explained in
Sec. 3.2.

As an example, let us consider the situation of Fig. 8 at the node of level 0 with branch 1 to the left
and branch 2 to the right. If all Ti would be the same, then ν̃1 = 8/14 and ν̃2 = 6/14, just as the initial
configuration. Let us now assume that the processors 12 and 13 [top right in Fig. 8(b)] are only half as fast
as the others, thus, the elapsed time is twice as much. In this case ν̃1 = 8/13 and ν̃2 = 5/13, so the thick,
solid division line moves to the right. Furthermore, the thin, solid division line on the right moves up from
the position 4/6 to 4/5.

2Assuming exclusive access to the computing resources on every processor, we identify wall clock time and CPU time
throughout this work.

12

a)

⇒

C
P
U

 T
im

e

 1 2 3 4 5 6 7
processor number

b)

⇒

C
P
U

 T
im

e

 1 2 3 4 5 6 7
processor number

Figure 9: (color online) (a) Geometrical domain decomposition at the beginning of the simulation leads to an unbalanced
distribution of the load over the processors. (b) After load balancing, the volume of the subdomains belonging to different
processors vary according to the CPU time it needed in the previous time step and the load distribution over the processors
becomes more even.

Figure 9 shows how load balancing improves the CPU time distribution over seven processors. The
initial geometrical decomposition leads to an uneven workload distribution because of the inhomogeneous
density of the original particle configuration [Fig. 9(a)]. However, the load balancing function manages to
approximately equalize the CPU times in the next time step by moving the borders [Fig. 9(b)].

4. Numerical results

In the following, we present the results of test simulations for different systems performed by the parallel
code. The main question to answer is how efficient is the parallel code, i.e. how much could we speed
up the calculations by means of parallelization. The sensitivity of the performance to the load balancing
threshold is also studied. The partially parallel updates at the domain boundaries is the main consequence
of parallelization, which may make a difference in the results compared to the sequential implementation.
Therefore, we investigate the impact of parallelization on the number of iterations and on the physical
properties of the solutions.

13

Figure 10: (color online) The simulation setup used for performance tests. The system is confined by two lateral walls in y
direction (exerting a pressure of 0.25 natural units), and periodic boundary conditions are applied in x direction. The packings
contain 500, 8000, and 106 particles with Lx=20, 20, 100 and Ly=20, 320, 10000, respectively. The polydispersity in the small
and medium systems amounts to 20%, while the large system is monodisperse.

4.1. Performance of the force calculation

In this section, we test the efficiency of the parallel algorithm solely with respect to the force calculation.
In general, it is the most time consuming part of the contact dynamics simulation (see Sec. 2.2), so the
efficient parallelization of the iteration scheme is necessary for the overall performance.

To focus just on the force calculation, we chose test systems where large scale inhomogeneities are absent
and adaptive load balancing is unnecessary. Thus, dense static packings of 500, 8000, and 106 particles with
periodic boundary conditions in one direction and confining walls in the other were set up [see Fig. 10].
The calculations started with no information about the contact forces and the simulation was stopped when
the local convergence criterion is fulfilled (see Sec. 2.1). Of course, this requires a different number of
iterations depending on the system size and number of processors. In order to get rid of perturbing factors
like input/output performance, we measured solely the CPU time spent in the iteration loop. Figure 11
summarizes the test results, which show that if the system is large compared to the boundary regions,
the efficiency is about 100%, which is equivalent to a linear speedup. The smallest system is inapt for
parallelization, as already for only 4 processors the boundary regions take up 20% of the particles, which
induces a large communication overhead. The same fraction of boundary particles is reached around Np=32
for the medium sized system with 8000 particles. Therefore, one would expect the same performance for
Np=4 and 32 for the small and medium sizes, respectively. In addition to the above mentioned effect,
the efficiency of the medium system breaks down at Np=24 due to special architecture of the distributed
memory cluster used for simulations (Cray-XT6m with 24 cores per board), since the speed of the inter-
board communications is much slower than the intra-board one. The observed efficiency values over 100%
are possible through caching, which was already observed in molecular dynamics [12]. The largest system
has a large computation task compared to the boundary communication, which is manifested in almost 100%
efficiency. On the other hand, it is also too large for significant caching effects producing over 100% efficiency.
However, a gradual increase in the efficiency is observed as the domain size (per processor) decreases with
increasing the number of processors.

For the medium sized system, we also measured the overall performance including time stepping and
load balancing. For this purpose, the top wall was removed and the bottom wall was pushed upwards in
order to generate internal dynamical processes, which unbalances the load distribution. As shown in Fig. 11,

14

a)

1 8 16 24 32 40 48 56 64
number of processors

10

20

30

40

50

60

sp
ee

du
p

1 32 64 128 256
number of processors

0

50

100

150

200

250

sp
ee

d-
up

b)

1 2 4 8 16 32 64 128 25624
number of processors

0

50

100

150

200

ef
fi

ci
en

cy
 (

%
)

500 particles
8000 particles
8000 particles, overall
1,000,000 particles

Figure 11: (color online) (a) Speedup and (b) efficiency of the force calculations for a small system with 500 particles (full
squares), a medium system with 8000 particles (full circles), and a large system with 106 particles (full diamonds). The open
circles present the overall efficiency for the medium sized system.

10
-4

10
-3

10
-2

10
-1

10
0

σ
T

*

20

30

40

50

60

70

80

90

100

C
PU

 T
im

e
(s

)

N
p
=2

N
p
=4

10
-4

10
-2

10
0

σ
T

*

0

10

20

30

40

50

N
L

B

Figure 12: (color online) CPU time as a function of the load balancing threshold σ∗

T . The simulation runs over 50 time steps
with 2 or 4 processors. The inset shows the number of load balancing events versus σ∗

T
.

there is no significant difference in efficiency due to the fact that time stepping and contact detection are
perfectly parallelizable processes.

4.2. Load balancing threshold

In Sec. 3.3, we defined the load balancing threshold σ∗

T for the relative standard deviation of the elapsed
CPU time on different processors, above which load balancing takes place. While the load balancing test is
performed at each time step, the frequency of load redistribution is determined by the choice of σ∗

T . On the
one hand, if the subdomain redivision happens frequently, a waste of CPU time is avoided because of even
load distribution. On the other hand, the change of domain boundaries requires extra communication and
administration. Doing this too often leads to unwanted overhead.

For load balancing, contact dynamics has the advantage, compared to other DEM methods, that the
configuration changes rather infrequently (with respect to CPU time), because the force calculation with
typically 50−200 iteration sweeps (for reasonably accurate precision of contact forces) dominates the com-
putation. Thus, even taking the minimal value of σ∗

T=0 does not lead to measurable overhead. Moreover,
in our implementation the domain boundaries must be on the cell grid, which avoids unnecessary small
displacements of the domain walls. Hence, the optimal value of σ∗

T is the minimal one as shown in Fig. 12.

15

a)

F

b)

1 2 3 4 5 6 7 8
N

P

1

1.05

1.1

1.15

1.2

1.25

N~
I

n=10
n=20
n=48
n=96

c)
F

F

F

F

F

F

F

F

F

F

F

F

F F F F F F

F F F F F F d)

1 2 3 4 5 6 7 8
N

p

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

N~
I

Figure 13: (color online) (a) A chain of n touching monodisperse particles, which are compressed with a force F . (b) The
number of iterations needed to reach a given accuracy scaled by the value for a single processor (ÑI) vs. the number of
processors. The data points are simulation results, and the lines are linear fits (see text). (c) An ordered configuration of
monodisperse particles, where the external forces F push the outer particles inwards. (d) ÑI vs. Np, where open circles denote
the simulation results and the crosses are the theoretical estimations.

4.3. Increase of the iteration number with the number of processors

In the iteration scheme of contact dynamics, the forces relax towards the solution in a diffusive way [36].
The diffusion constant was found to be

D = q
4 r2 NI

∆t
, (16)

where ∆t is the time step, r is the diameter of a particle, and q is a constant depending on the update
method: qp=0.5 for parallel and qs≃0.797 for random sequential update. Thus the diffusion coefficient of
the parallel update, Dp, is smaller than that of the sequential update Ds, for a given set of parameters NI ,
∆t, and r. Boundaries between sub-domains handled by different processors behave like parallel update,
since the new information only arrives at the end of an iteration sweep. It is therefore expected that the
same system requires more iterations in the multiprocessor version, as the number of iterations is inversely
proportional to the diffusion constant.

We test this conjecture on two examples: Let us first consider a linear chain of n touching identical
particles placed between two perpendicular plates [cf. Fig. 13(a)]. We suddenly switch on a compressing
force on one side wall, while keeping the other wall fixed. The resulting contact forces are calculated by
the iterative solver. In order to estimate the number of required iterations, we define the effective diffusion
coefficient as of [44]:

D = Dpp+Ds(1 − p), (17)

16

a)
N

p
=1

N
p
=1 , rndseed

N
p
=4

N
p
=8

N
p
=16

N
p
=32

0 30 60 90 120 150 180
φ

-0.03

-0.02

-0.01

0

0.01

f N
p(φ

) /
 f

1(φ
) -

 1

0

30

60
90

120

150

180

210

240
270

300

330

300050006000
b)

0 30 60 90 120 150 180
φ

-0.03
-0.02
-0.01

0
0.01
0.02

f N
p(φ

) /
 f

1(φ
) -

 1

0

30

60
90

120

150

180

210

240
270

300

330

30004000
6000

Figure 14: (color online) Angular distribution of the contact force orientations in (a) the relaxed static packing and (b) the
sheared system with moving confining walls, with 8000 frictional particles calculated for different number of processors.

where p is the portion of the chain with a parallel update. In general, for each boundary one particle diameter
is handled parallel and the rest sequential, which gives p=Np/n. This is compared to the numerical results
in Fig. 13(b). While in principle there is no fit parameter in Eq. (17), by adjusting the ratio to Ds/Dp=1.53
we get an almost perfect agreement for all different system sizes, as shown in Fig. 13(b). This fitted value
is 4% smaller than the theoretical estimation of [36].

We have tested this scenario in a similar two-dimensional setup, where the forces were directly applied
to the boundary particles as shown in Fig. 13(c). The number of iterations required for the prescribed force
accuracy increases with the number of processors in a sub-linear manner [Fig. 13(d)]. This is expected as
the fraction of boundary particles in a two-dimensional system scales as

√

Np/n. The theoretical estimation
used in the above one dimensional example with Ds/Dp=1.53 is in good agreement with the results of the
two dimensional system as well. The graph of simulation results is characterized by plateaus (e.g. between
Np=2−4 and 6−8), where the convergence rate is dominated by the higher number of domain walls in one
direction.

Let us conclude here that the slower parallel diffusion part takes place in a portion p∝
√

Np/n of the
two dimensional system, which is negligible in reasonably large systems. For example for the medium sized
system of 8000 particles, we get p≃4% for Np=16, which would lead to about 2% increase in the iteration
number. The measured value was about 1% justifying the insignificance of the iteration number increase in
large systems. Indeed, we do not see a decrease in efficiency due to an increase of the iteration number for
large parallel systems in Fig. 11.

4.4. Influence of the parallelization on the physical properties of the solutions

As a last check, we tested the physical properties of the system calculated by different number of pro-
cessors. It is known that in the rigid limit, the force network of a given geometrical packing is not unique
[45, 46]. Running the contact dynamics with different random seeds (for the random sequential update) leads
to different sets of contact forces, which all ensure the dynamical equilibrium. The domain decomposition
also changes the update order and the solutions will be microscopically different. Thus, a direct comparison
is impossible and we have to resort to comparing distributions.

We first investigate the distribution of the contact force orientations f(φ) in the relaxed system of 8000
particles described in Sec. 4.1. The contact forces are calculated from scratch for the given geometry and
boundary conditions using different number of processors. Since the system is very tall (Ly/Lx=16), it is
divided only vertically for up to Np=16, while for Np=32 the 16 domains are cut horizontally as well. The
orientation of each contact force is defined as φ=arctan(Ry/Rx). The distributions of the contact force

17

0 100 200 300
y / (2 r

max
)

-1.2

-1

-0.8

σ yy
 /

P ex
t

sequential
parallel , N

p
=3

y=107 y=212domain boundaries at: and

Figure 15: (color online) σyy(y) scaled by the external pressure Pext in terms of the height y scaled by the diameter of the
largest particle in the system (2 rmax). The results obtained by the non-parallel code are compared with those obtained by the
parallel code for Np = 3.

orientations, fNp
(φ), are compared for several values of Np in Fig. 14(a). The range of possible values for φ

([0, π]) is divided into 18 bins, and each data point in the figure corresponds to total number of contacts in
the same bin. For comparison, we have presented the results of the simulations with Np=1 for two different
random seeds as well. The match among the different runs are so good that the curves coincide. Hence,
we also plot the relative difference fNp

(φ)/f1(φ)−1 to the non-parallel run for comparison, which shows
negligible random noise. Evidently, parallelization has no systematic impact on the angular distribution of
the contact forces. Similar results were obtained when the system is sheared by the horizontal confining
walls moving with a constant velocity in opposite directions as shown in Fig. 14(b).

We also calculate the σyy component of the stress tensor as a function of the distance y from the bottom
wall in the same system. σyy(y) at a given height y is averaged over a horizontal stripe of width dy=2rmax,
where rmax is the largest particle radius in the system. The system height is thus divided into nearly 320
stripes. Figure 15 displays the results obtained by the non-parallel code as well as the parallel code with
Np=3. In the parallel case, the system is divided horizontally into three parts. The results of the parallel
run match perfectly with the one of the non-parallel run. Especially, no kind of discontinuity or anomaly is
observed at y ≃ 107 and y ≃ 212, where the interfaces between the processors are located.

5. Conclusion and Discussion

We have presented an efficient parallel version of a contact dynamics method in this work, which allows
for large-scale granular simulations with almost 100% efficiency. We aimed at the full parallelization of
the code with hierarchical domain decomposition and dynamic load balancing, in which the interface area
between subdomains is also minimized. The parallel code is hence applicable to a broad range of densities
and different simulation conditions.

The force calculation in CD is done by an iterative scheme, which shows an instability if more than about
half of the contacts are calculated in parallel. The iteration scheme was kept domain-wise sequential while
data across the domain boundaries is exchanged after each iteration sweep, ensuring that the iteration
is stable for all system sizes. It is known that the CD iterative scheme approaches the solution in a
diffusive manner. The diffusion constant is smaller for parallel update, which happens at domain boundaries.
However, this overhead is proportional to the square root of the number of processors divided by the number
of particles (in 2D), which vanishes for large systems. Regarding this as the only impact of the parallelization
on the convergence, it must be expected that the efficiency is not affected by modifications at the local level
i.e. non-spherical particles, three-dimensional particles, more sophisticated contact laws, etc. Of course,
those can deteriorate the convergence per se but the parallel version will simply “inherit” that.

The other point of discussion raised here concerns the choice of the mesh size and adjusting the subdomain
borders to it. Communication overhead was reduced because between iteration steps not all boundary

18

information is sent but only the relevant part of it. The subdomain wall position is only important if the
particle size is not small compared to the system size. For large scale parallel applications this can only
be a problem for highly polydisperse systems, for which the cell method for contact detection breaks down
anyway.

The load balancing is done only at the end of each time step. Our investigations show that this happens
rarely enough that load balancing overhead and CPU time fluctuations are negligible but often enough to
achieve fast load balance. We used a global criterion for stopping the iteration scheme. This ensures that
the physical properties of the tested samples do not show any difference compared to the non-parallel version
of the code.

Blocking point-to-point communications were used to transfer data among processors. Since our algo-
rithm needs synchronization after each iteration, non-blocking data transfer would not be advantageous.
The whole amount of data is transmitted in one single packet, which reduces communication overhead over
the pure data. This method introduces parallel contact update at domain boundaries, which induces an
iteration number overhead due to the lower diffusivity of the information in parallel update. This overhead
vanishes, e.g. with the square root of the processor number over particle number in two dimensions, which
is in general negligible.

An alternative method would be to use non-blocking communications for the iteration scheme, namely
to immediately send a freshly updated contact force in the vicinity of the borders to the corresponding
processors, while on the other side this would trigger an interrupt when the other processor immediately
updates the received contact data. This prevents the mixture of sequential and parallel update schemes.
However, we do not expect that the performance of the method is greatly enhanced by the use of non-
blocking communication because the information of each contact force is sent individually and the overhead
associated with the increase of the inter-processor communications significantly affects the performance.

The last point to discuss concerns the load balancing method. The most exact method would be to
consider the number of particles and/or contacts in each subdomain to calculate their new boundaries.
Practically, this would cause difficulties, since each processor is just aware of particles and contacts within
its own borders. The amount of calculations and communications between neighboring processors to place
the interface according to the current contact and particle positions would make the load balancing a
computationally expensive process. This lead us to balance the load further by dividing the simulation
domain according to the current subdomain volumes (not always proportional to the number of particles
and/or contacts), which is in fact a control loop with the inherent problems of under- and over-damping.

Acknowledgments

We would like to thank M. Magiera, M. Gruner and A. Hucht for technical support and useful discussions,
and M. Vennemann for comments on the manuscript. Computation time provided by John-von-Neumann
Institute of Computing (NIC) in Jülich is gratefully acknowledged. This research was supported by DFG
Grant No. Wo577/8 within the priority program “Particles in Contact”.

References

[1] P. A. Cundall, O. D. L. Strack, A discrete numerical model for granular assemblies, Géotechnique 29 (1979) 47-65.
[2] S. Luding, Molecular dynamics simulations of granular materials, in: The Physics of Granular Media, Wiley-VCH, Wein-

heim, 2004, pp. 299-324.
[3] D. C. Rapaport, The event scheduling problem in molecular dynamic simulation, J. Comp. Phys. 34 (1980) 184-201.
[4] O. R. Walton, R. L. Braun, Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic,

frictional disks, Journal of Rheology 30 (1986) 949-980.
[5] M. Jean, J. J. Moreau, Unilaterality and dry friction in the dynamics of rigid body collections, in: Proc. of Contact

Mechanics Intern. Symposium, Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 1992, pp.
31-48.

[6] J. J. Moreau, Some numerical-methods in multibody dynamics - application to granular-materials, Eur. J. Mech. A-Solids
13 (1994) 93-114.

[7] M. Jean, The non-smooth contact dynamics method, Comput. Methods Appl. Mech. Engrg. 177 (1999) 235-257.

19

[8] L. Brendel, T. Unger, D. E. Wolf, Contact dynamics for beginners, in: The Physics of Granular Media, Wiley-VCH,
Weinheim, 2004, pp. 325-343.

[9] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys. 117 (1995) 1-19.
[10] L. Nyland, J. Prins, R. H. Yun, J. Hermans, H.-C. Kum, L. Wang, Achieving Scalable Parallel Molecular Dynamics Using

Dynamic Spatial Domain Decomposition Techniques, J. Parallel Distrib. Comput. 47 (1997) 125-138.
[11] Y. Deng, R. F. Peierls, C. Rivera, An adaptive load balancing method for parallel molecular dynamics simulations, J.

Comp. Phys. 161 (2000) 250-263.
[12] S. J. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, (1995) 1-19.
[13] P. K. Haff, Grain flow as a fluid-mechanical phenomenon, J. Fluid Mech. 134 (1983) 401-430.
[14] S. McNamara, W. R. Young, Inelastic collapse in two dimensions, Phys. Rev. E 50 (1994) R28-R31.
[15] S. Miller, S. Luding, Event-driven molecular dynamics in parallel, J. Comp. Phys. 193, (2003) 306-316.
[16] P. Lötstedt, Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints, SIAM Journal on Applied Mathematics

42 (1982) 281-296.
[17] D. E. Stewart, J. C. Trinkle, An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Coulomb Friction,

International journal of numerical methods in engineering 39 (1996) 2673-2691.
[18] D-M. Mueth, H. M. Jaeger, S. R. Nagel, Force distribution in a granular medium, Phys. Rev. E 57 (1998) 3164; B. Miller,

Corey O’Hern, R. P. Behringer, Stress fluctuations for continuously sheared granular materials, Phys. Rev. Lett. 77 (1996)
3110; F. Radjai, Multicontact dynamics of granular systems, Comput. Phys. Commun. 121 (1999) 294; F. Radjai, M.
Jean, J. J. Moraeu, S. Roux, Force distributions in dense two-dimensional granular systems, Phys. Rev. Lett. 77 (1996)
274.

[19] D. Daudon, J. Lanier, M. Jean, A micro mechanical comparison between experimental results and numerical simulation of a
biaxial test on 2D granular material, in: Powders and Grains, A. A. Balkema, Rotterdam, 1997, pp.219-222; F. Calvetti, G.
Combe, J. Lanier, Experimental micromechanical analysis of a 2d granular material: relation between structure evolution
and loading path, Mechanics of Cohesive-Frictional Materials 2 (1997) 121; H. Joer, J. Lanier, J. Desrues, E. Flavigny, A
new shear apparatus to study the behavior of granular materials, Geotech. Test. J. 15 (1992) 129.

[20] D. Kadau, L. Brendel, G. Bartels, D. E. Wolf, M. Morgeneyer, J. Schwedes, Macroscopic and microscopic investigation on
the history dependence of the mechanical behaviour of powders, Chem. Eng. Trans. 3 (2003) 979; M. Rock, M. Morgeneyer,
J. Schwedes, D. Kadau, L. Brendel, D. E. Wolf, Steady state flow of cohesive and non-cohesive powders: Investigations in
experiment and simulation, Granular Matter 10 (2008) 285.

[21] T. Unger, Refraction of shear zones in granular materials, Phys. Rev. Lett. 98 (2007) 018301; H. A. Knudsen, J. Bergli,
Experimental demonstration of snell’s law for shear zone refraction in granular materials, Phys. Rev. Lett. 103 (2009)
108301.

[22] T. M. Preclik , K. Iglberger , U. Rüde, Iterative rigid multibody dynamics, in: Multibody Dynamics 2009, ECCOMAS
Thematic Conference (2009).

[23] M. Anitescu, Optimization-based simulation of nonsmooth rigid multibody dynamics, Math. Program., Ser. A 105 (2006)
113143.

[24] D. M. Kaufman, T. Edmunds, D. K. Pai, Fast Frictional Dynamics For Rigid Bodies, ACM Trans Graph 24 (2005) 946-956.
[25] K. Iglberger, U. Rüde, Massively parallel rigid body dynamics simulations, Computer Science - Research and Development

23 (2009) 159-167.
[26] K. Iglberger, U. Rüde, Massively parallel granular flow simulations with non-spherical particles, Computer Science -

Research and Development 25 (2010), 105-113.
[27] A. Tasora and D. Negrut and M. Anitescu, GPU-Based Parallel Computing for the Simulation of Complex Multibody

Systems with Unilateral and Bilateral Constraints: An Overview, in: Multibody Dynamics: Computational Methods and
Applications, Computational Methods in Applied Sciences 23 (2011), 283-307.

[28] P. Breitkopf, M. Jean, Modélisation parallèle des matériaux granulaires, in: 4ème colloque national en calcul des structures,
Giens, 1999, pp. 387-392.

[29] M. Renouf, F. Dubois, P. Alart, A parallel version of the non smooth cantact dynamics algorithm applied to the simulation
of granular media, J. Comput. Appl. Math. 168 (2004) 375-382.

[30] V. Zhakhovskii, K. Nishihara, Y. Fukuda, S. Shimojo, A new dynamical domain decomposition method for parallel
molecular dynamics simulation on grid, in: Annual Progress Report, Institute of Laser Engineering, Osaka University,
2004.

[31] J. K. Salmon, Parallel hierarchical N-body methods, Ph.D. Thesis, Caltech University, Pasadena, U.S.A., 1990.
[32] M. S. Warren, J. K. Salmon, A parallel hashed oct-tree N-body algorithm, in: Proceedings of Supercomputing 93, 1993,

pp. 12-21.
[33] F. Fleissner, P. Eberhard, Parallel load-balanced simulation for short-range interaction particle methods with hierarchical

particle grouping based on orthogonal recursive bisection, Int. J. Numer. Meth. Engng 74 (2008) 531-553.
[34] D. E. Stewart, Rigid-Body Dynamics with Friction and Impact, SIAM Review 42 (2000), 3-39.
[35] I. Nassi, B. Shneiderman, Flowchart Techniques for Structured Programming, SIGPLAN Notices 8 (1973) 12.
[36] T. Unger, L. Brendel, D. E. Wolf, J. Kertész, Elastic behavior in contact dynamics of rigid particles, Phys. Rev. E 65

(2002) 061305.
[37] D. E. Stewart, Convergence of a Time-Stepping Scheme for Rigid-Body Dynamics and Resolution of Painlevé’s Problem,

Arch. Rational Mech. Anal. 145 (1998) 215260.
[38] F. Jourdan, P. Alart, M. Jean, A Gauss-Seidel like algorithm to solve frictional contact problems, Computer Methods in

Applied Mechanics and Engineering 155 (1998) 31-47.
[39] M. R. Shaebani, T. Unger, J. Kertész, Generation of homogeneous granular packings: Contact dynamics simulations at

20

constant pressure using fully periodic boundaries, Int. J. Mod. Phys. C 20 (2009) 847-867.
[40] W. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, Chapter

19, Cambridge University Press, Cambridge, 2007.
[41] M.P. Allen, D.J. Tildeslay, Computer Simulation of Liquids, Oxford University Press, Oxford, 1987.
[42] M. Wackenhut, S. McNamara, H. Herrmann, Shearing behavior of polydisperse media, Eur. Phys. J. E 17 (2005) 237-246.
[43] V. Ogarko, S. Luding, Data structures and algorithms for contact detection in numerical simulation of discrete particle

systems, in: Proc. of World Congress Particle Technology 6, Nürnberg Messe GmbH (Ed.), Nuremberg, 2010.
[44] S. Revathi, V. Balakrishnan, Effective diffusion constant for inhomogeneous diffusion, J. Phys. A: Math. Gen. 26 (1993)

5661-5673.
[45] M. R. Shaebani, T. Unger, J. Kertész, Extent of force indeterminacy in packings of frictional rigid disks, Phys. Rev. E 79

(2009) 052302.
[46] T. Unger, J. Kertész, Dietrich E. Wolf, Force indeterminacy in the jammed state of hard disks, Phys. Rev. Lett. 94 (2005)

178001.

21

This figure "Figure-2_600dpi.png" is available in "png"
 format from:

http://arxiv.org/ps/1104.3516v2

http://arxiv.org/ps/1104.3516v2

This figure "Figure-2_1200dpi.png" is available in "png"
 format from:

http://arxiv.org/ps/1104.3516v2

http://arxiv.org/ps/1104.3516v2

	1 Introduction
	2 Contact Dynamics Method
	2.1 A brief description of the CD algorithm
	2.2 CPU time analysis
	2.3 Sequential versus parallel update scheme

	3 A parallel version of the CD algorithm
	3.1 The parallel algorithm
	3.2 Hierarchical domain decomposition
	3.3 Adaptive load balancing

	4 Numerical results
	4.1 Performance of the force calculation
	4.2 Load balancing threshold
	4.3 Increase of the iteration number with the number of processors
	4.4 Influence of the parallelization on the physical properties of the solutions

	5 Conclusion and Discussion

