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a b s t r a c t

A novel methodology is proposed for the solution of the flow equation in a variably satu-
rated heterogeneous porous medium. The computational domain is descretized using tri-
angular meshes and the governing PDEs are discretized using a lumped in the edge
centres numerical technique. The dependent unknown variable of the problem is the pie-
zometric head. A fractional time step methodology is applied for the solution of the original
system, solving consecutively a prediction and a correction problem. A scalar potential of
the flow field exists and in the prediction step a MArching in Space and Time (MAST) for-
mulation is applied for the sequential solution of the Ordinary Differential Equation of the
cells, ordered according to their potential value computed at the beginning of the time step.
In the correction step, the solution of a large linear system with order equal to the number
of edges is required. A semi-analytical procedure is also proposed for the solution of the
prediction step. The computational performance, the order of convergence and the mass
balance error have been estimated in several tests and compared with the results of other
literature models.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Many environmental problems are strongly related to the flow dynamic occurring in variably saturated soils, affecting the
heat and/or chemical transport and the resulting groundwater quality.

Flow in variably saturated porous media is mathematically described by the Darcy equation of fluid motion and by the
fluid mass conservation equation. The resulting governing Partial Differential Equation (PDE), called Richards equation
[40], is characterized by the strongly non linear relationship between the water content (or the saturation rate) and the
water piezometric depth and between the relative hydraulic conductivity and the water content (or saturation rate), as
explained in details in the following.

Due to the strong non-linearity, analytical solutions are restricted to very simple cases and numerical methods are almost
regularly required. Because of the highly nonlinearity of the governing equation, linearization techniques, that maintain both
the accuracy and the mass conservation property, are commonly applied. Typical linearization techniques used are Newton
and Picard methods. A comparison of the two techniques in the solution of variably saturated multidimensional porous med-
ia can be found in [35].

The dependent variables of the process are the water piezometric depth and the volumetric water content (or the satu-
ration rate). To close the mathematical model, a constitutive relationship between the piezometric depth and the water con-
tent functions is needed to convert one variable to the other (and vice versa). A second relationship between the water

0021-9991/$ - see front matter � 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2011.10.012

⇑ Corresponding author.
E-mail addresses: arico@idra.unipa.it (C. Aricò), sinagra@idra.unipa.it (M. Sinagra), tucciar@idra.unipa.it (T. Tucciarelli).

Journal of Computational Physics 231 (2012) 1387–1425

Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp



Author's personal copy

content (or the saturation rate) and the relative hydraulic conductivity is additionally required. In order to reduce the dimen-
sionality of the problem, it is possible to merge one set of equations (the momentum equations) in the other (the continuity
equations) solving the problem in the piezometric depth unknown only or in the water content unknown only. Depending on
such a choice, different modelling approaches result which are mathematically equivalent in the continuous formulation, but
different in their discrete analogous.

Three forms of the variably saturated flow equation can be derived: (1) the pressure based – form, where the primary
variable is the piezometric depth (or the piezometric head), (2) the water content – form, where the volumetric water con-
tent is chosen as the primary variable, and (3) the mixed – form, where both variables are employed and, in solving the dis-
crete equation system, the piezometric depth is actually used as the primary variable.

Each of the three different forms has its own advantages and drawbacks. The water content – form is restricted to unsat-
urated flow conditions because the water content variable is unique for saturated regions and the piezometric depth – water
content relationship no longer exists. The use of this formulation also requires the assumption that the parameters of the
capillary pressure relation are spatially invariable (see for example discussion in [28]).

The pressure based – form can be used for both saturated and unsaturated soils. The piezometric depth variable is unique
and continuous. Models of this type have been extensively used in various applications [17,18,23,31,34,35,41]. It has been
shown [12] that, under very dry conditions, where the piezometric depth – water content curve is strongly non-linear, this
approach shows convergence difficulties and the resulting approximations could produce significant global mass balance er-
rors, unless very small time steps are used. Tocci et al. [42] have shown that a differential algebraic approximation (DAE) of
the method of lines (MOL) gives solutions of the pressure based – form of the RE that are accurate, with good mass balance
properties, specially if higher order methods in times are used.

These difficulties can be avoided if the mixed form is used. Celia et al. [12] solve the mixed form by a modified Picard
scheme, where the piezometric depth is assumed as primary variable for the solution at each new iteration step. The authors
expanded each element of the water content at the new iteration step in Taylor series truncated to the linear term. They
obtained the so-called delta form of the Picard scheme. Manzini and Ferraris [30] applied the same procedure in a 2D Finite
Volume code. According to Celia et al. [12] and Manzini and Ferraris [30], it is the term related to the time change of the
water content in the Picard scheme that guarantees a more accurate mass balance with respect to the piezometric depth
formulation, where this term does not appear.

Forsyth et al. [16] introduced from multiphase flow modelling the idea of the ‘‘primary variable substitution’’ or ‘‘primary
variable switching’’ technique. In this approach, a full Newton method is used where the different primary variables, namely
saturation and pressure, are switched in different regions depending on the prevailing saturation conditions at each node of a
mesh. This technique was found to yield rapid convergence in both the unsaturated and saturated zones compared to the
pressure based – formulation.

In the past decades, both Finite Volumes (FV) and Finite Elements (FE) methods have been widely applied for the solution
of flow fields in variably saturated porous media. FE schemes guarantee both global and local mass conservation (for local
mass conservation see the discussion provided in [22]). Unlike FV first order and second order methods, the potential con-
tinuity is guaranteed across the elements, but velocity is calculated by differentiation of the potentials inside the elements.
This implies that the discrete normal fluxes are discontinuous across inter-element boundaries. The control volume where
mass balance is enforced is properly identified [37]. For example, in the Galerkin technique applied on 2D triangulation, the
subdomains can be defined as the Voronoi (or Thiessen) polygons. Application of this approach in 3D is very complicated and
provides a strong increment of the computational time. On the other hand, the FV approach is locally mass conservative be-
cause the subdomain where the mass balance is applied is the same mesh element. The Mixed Finite Element (MFE) methods
provide and attractive framework for these types of problems: by simultaneously approximating the potential and the nor-
mal fluxes, the computed normal fluxes are continuous across inter-element edges and the local and global mass balance are
automatically achieved in the case of constant parameters. MFE methods have been extensively used for the solution of par-
abolic problem in many application fields (groundwater flow problems, petroleum reservoir problems, potential flow prob-
lems, . . .), but in elliptic problems (i.e. steady state problems) the matrix of the system becomes ill-conditioned, leading to
saddle-point problem [9,20]. Mixed Hybrid Finite Element (MHFE) methods represent a way to solve this problem. In the
MHFE method, piezometric heads at element edges are assumed as additional variables to overcome this problem. The final
linear algebraic systems are always symmetric and positive definite. In engineering applications concerning porous media,
the lowest order (zero order [39]) RT0-P0 is the most common formulation of MHFE.

MFE method leads to the solution of a symmetric positive definite linear system in approximating pure transient para-
bolic problems. In the case of triangular elements, the MHFE needs to invert a (3 � 3) order matrix for each element. Flat
triangles could blow up the conditioning of the corresponding (3 � 3) matrices, so the way these matrices are inverted is
important [20]. Hoteit et al. [20] proved that in heterogeneous media, the conditioning of the resulting linear system for
the MHFE grows up linearly according to the ratio between the highest and the lowest values of the hydraulic conductivity
of adjacent elements and the algorithm could accumulate numerical errors if large jumps in the conductivity values take
place.

Putti and Sartoretto [38] compared the conforming linear Galerkin FE scheme with the RT0-P0 MHFE for the solution of 2D
diffusion problems, like saturated porous media flow, discretized on unstructured triangular meshes. They found that both
methods are mass conservative with constant parameters if the proper control volume is chosen: the Galerkin linear FE is
conservative on the Voronoi cell, while the RT0-P0 MHFE is conservative on both triangle and Voronoi cell. The authors
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compared also the streamlines obtained from the two numerical vector fields on both homogeneous and heterogeneous
media. The Galerkin FE velocities are not parallel to the impervious boundaries, while the RT0-P0 do are because of the con-
tinuity of normal component of the velocity vectors at element edges. In heterogeneous media the streamlines computed by
means of the FE scheme show unfeasible behaviour also where a strong change of the hydraulic conductivity occurs, since
the mass balance control volumes (Voronoi cells) across the discontinuity.

In a work by Brezzi et al. [10] it is shown that MHFE methods applied to time-independent advection-diffusion problems
do not obey the discrete maximum principle. The maximum principle problem states that the solution cannot have a max-
imum or a minimum within the interior of the domain [36]. Hoteit et al. [19] have shown that the MHFE scheme condition-
ally satisfies the maximum principle for parabolic time dependent problems, like groundwater problems. A mass-lumping
technique is one of the alternative approaches suggested by the authors to prevent unphysical oscillations.

Recently, an edge centred lumped formulation of the MHFE schemes has been proposed [44]. The flow equations are spa-
tially discretized in a set of continuity equations across all the edges of the mesh, using the average potentials along these
edges as unknowns. The formulation leads to final linear algebraic systems that are always symmetric and positive definite.
Numerical experiments have shown that the LMHFE, compared to the standard MHFE, avoids oscillations for acute triangu-
lations, strongly reduces oscillations with rectangular or quadrangular meshes and does not create additional numerical er-
rors [19,44].

In the present paper, a numerical methodology for the simulation of the 2D flow field (in the vertical plane x–z) in variably
saturated homogeneous and heterogeneous porous media is proposed. The governing equations are solved applying a frac-
tional time step procedure, solving consecutively a prediction and a correction problem. The non-linear components of the
problem are concentrated in the prediction step, while the correction step leads to the solution of a linear system, with order
equal to the number of computational cells. The governing equations are written in pressure – form and the unknown of the
problem is the piezometric head.

In the proposed approach, the governing PDEs are discretized in space using triangular meshes, according to a scheme
equivalent to the LMHFE schemes, enforcing the mass balance in the computational cells located in the middle of each edge.
A linear variation of the piezometric head is assumed inside each element of the computational mesh and the volume of each
triangle is concentrated in the midpoint of each of the three sides, in the measure of one third of the area of each triangle
(one or two) sharing the edge of the cell.

The prediction step is solved applying the MArching in Space and Time (MAST) methodology, recently proposed for the
solution of advection dominated problems [2,7], fully dynamic shallow waters equations [3,4], diffusive form of the shallow
waters equations [6], as well as transport problems in saturated porous media with variable density [5]. The requirement for
the application of the MAST methodology is the existence of an exact or approximated scalar potential for the flow field. In
the present physical problem, an exact scalar potential of the flow field exists and is the piezometric head. At the beginning
of each time step, computational cells are ordered according the their potential values. MAST solves a sequence of Ordinary
Differential Equations (ODEs), one for each computational cell, from the highest to the lowest potential value. MAST has
shown unconditional stability with regard to the time step size, also for Courant–Friedrichs–Levy (CFL) number much great-
er than 1.

The paper is organized as follows: in Section 2 we show the governing PDEs along with the adopted closure relationships;
in Section 3 the prediction and the correction problems are defined in the framework of the fractional time step methodol-
ogy. In Section 4 the MAST procedure for an efficient solution of the two problems defined in Section 3 and the corresponding
flux discretization are presented. In the same Section 4 a semi-analytical solution of the prediction problem in each cell is
proposed. In Section 5 the application of the proposed model to a number of literature tests is presented. The tests are aimed
to investigate the computational efficiency, the convergence ratio and the mass conservation capability of the proposed
scheme.

2. Physical model and governing equations system

The governing PDEs are the mass conservation equation and the momentum equation [8]. The momentum equation,
neglecting the inertial terms as well as the interfacial drag terms (Forchheimer term) and the deviatoric component of
the stress tensor (Brinkmann term), becomes the Darcy expression for the velocity [8]. Assuming isotropic medium, the gov-
erning PDEs system is:

S0
hðwÞ
e

@w
@t
þ @hðwÞ

@t
þr � q ¼ Q ; ð1Þ

q ¼ �KsKrðhðwÞÞ � rH; ð2Þ

where e is the porosity (greater than zero), S0 is the specific storage due to fluid and medium compressibility
(S0 = ec + (1 � e)C, with c and C coefficients of fluid and skeleton compressibility respectively), w is the piezometric depth,
h is the volumetric water content further specified, s(w) = h(w)/e is the saturation rate, q is the Darcy flux vector, Ks is the
hydraulic conductivity for saturated medium, Kr is the relative hydraulic conductivity (0 < Kr 6 1; Kr = 1 for saturated med-
ium), H is the piezometric head (or hydraulic head or potential), H = z + w, where z is the topographic elevation and Q is a
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source term. In the present approach, the air pressure in the unsaturated soil is assumed constant and equal to the atmo-
spheric pressure.

Mass conservation Eq. (1) is written in pressure - form, assuming:

@hðwÞ
@t

¼ @h
@w

@w
@t
; ð3Þ

where @h/@w is referred to as specific capacity. Since @H/@t = @w/ot (because @z/@t = 0), Eq. (1) can be written as:

@H
@t

S0
hðwÞ
e
þ @h
@w

� �
þr � q ¼ Q : ð4Þ

Initial and boundary conditions have to be specified to make the problem well posed. Boundary conditions may be of Dirich-
let (prescribed piezometric head or piezometric depth) or Neumann (prescribed flux) type. If X is the spatial domain where
problem (4) is defined, initial and boundary conditions can be written as:

wðx; tÞ ¼ wDðx; tÞ or Hðx; tÞ ¼ HDðx; tÞ; x 2 CD;

qðx; tÞ � n ¼ gNðx; tÞ; x 2 CN;

wðx;0Þ ¼ w0 or Hðx;0Þ ¼ H0; x 2 X;

ð5Þ

where C = CDU CN is the boundary of X, CD and CN are the portions of C where Dirichlet and Neumann boundary conditions
respectively hold, HD and wD are the assigned Dirichlet values for H and w, gN is the assigned Neumann flux, n is the unit
outward normal to the boundary and the subscript 0 marks the initial state in the domain.

To solve the PDEs governing system, closure relationships linking the volumetric water content and the relative hydraulic
conductivity to the piezometric depth are needed. Neglecting hysteretic phenomena, the following empirical relationships
are used:

(a) the van Genucthen model [43]:

h� ¼ 1
½1þ jlwjk�m

if w < wa; h� ¼ 1 if w P wa; ð6aÞ

Krðh�Þ ¼
ffiffiffiffiffi
h�
p

1� 1�
ffiffiffiffiffi
h�m
p� �mh i2

; ð6bÞ

(b) the Brooks–Corey model [11]:

h� ¼ wb

w

� �k

¼ jwbj
jwj

� �k

if w < wb; h� ¼ 1 if w P wb; ð7aÞ

Krðh�Þ ¼ ðh�Þp�; ð7bÞ

where the effective water content h⁄ is defined as:

h� ¼ h� hr

hs � hr
; ð8Þ

where hr 6 h 6 hs, hs is the volumetric water content at saturation, hr is the residual water content, 0 < h⁄ 6 1, wa is the ‘‘air-
entry pressure head: (wa 6 0), wb is the ‘‘bubble pressure’’ (wb < 0), k is the ‘‘pore size distribution index’’, m = 1 � 1/k, l is a
curve fitting parameter, and p⁄ = 3 + 2/k.

By merging Eqs. (2) and (4) you get the final governing PDE:

aðwÞ @H
@t
�r � ðKsKrðhðwÞÞ � rHÞ ¼ Q ; with aðwÞ ¼ S0

hðwÞ
e
þ @h
@w

� �
: ð9Þ

The present model does not account for possible hysteresis in soil hydraulic properties, although this phenomenon can be
incorporated using, for example, the approach developed by Kool and Parker [26], or Huang et al. [21].

3. The fractional time step methodology

Eq. (9) can be solved in the H unknown by means of a fractional time step approach by solving consecutively a prediction
and a correction problem.

Assume a general system of balance laws:

@U
@t
þr � FðUÞ ¼ BðUÞ; ð10Þ
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where U is the vector of the unknown variables, F(U) is the flux vector and B(U) is a source term. Applying a fractional time
step procedure, we set:

FðUÞ ¼ FpðUÞ þ ðFðUÞ � FpðUÞÞ; BðUÞ ¼ BpðUÞ þ ðBðUÞ � BpðUÞÞ; ð11Þ

where Fp(U) and Bp(U) are respectively a suitable numerical flux and a source term, further defined. After integration in time,
system (10) can be split in the two following ones:

Ukþ1=2 � Uk þr �
Z Dt

0
Fp dt ¼

Z Dt

0
Bp dt; ð12aÞ

Ukþ1 � Ukþ1=2 þr �
Z Dt

0
Fdt �r � FpDt ¼

Z Dt

0
Bdt � BpDt; ð12bÞ

where Fp and Bp are the mean in time values of the numerical flux and source terms computed along the prediction step,
Uk+1/2 andUk+1 are the unknown variables computed respectively at the end of the prediction and the correction phase. Fp

and Bp will be estimated ‘‘a posteriori’’ after the solution of the prediction problem, according to the procedure explained
in the next section. We call systems (12a) and (12b) prediction and correction systems respectively. Observe that summing
systems (12a) and (12b), the integral of the original system (10) is formally obtained. The difference between Uk+1 and Uk+1/2

in Eq. (12b) is close to zero as far as the difference between the predicted and mean in time values of the fluxes and source
terms is either small or time-independent. The advantage of using formulations (12) instead of (10) is that, with a suitable
choice of the prediction terms Fp(U) and Bp(U), each of the two systems (12a) and (12b) can be much easier to solve than the
original system (10).

To keep the same structure of Eqs. (10), (9) can be rewritten as:

@H
@t
� 1

aðwÞr � ðKsKrðhðwÞÞ � rHÞ ¼ Q
aðwÞ : ð13aÞ

Observe that formulation (13a) fails if the porous medium becomes incompressible and saturated (a(w) = 0). See in Section
4.3.1 the treatment of saturated condition and the transition from unsaturated to saturated condition with negligible specific
storage coefficient S0.

By setting:

K 0rðhðwÞÞ ¼
KrðhðwÞÞ

aðwÞ ; Q 0 ¼ Q
aðwÞ ; ð13bÞ

in the present case we have:

U ¼ H; F ¼ KsK
0
rðhðwÞÞrH; B ¼ Q 0: ð14Þ

We set:

Fp ¼ KsK
0
rðhðwÞÞðrHÞk; ð15Þ

Bp ¼ B; ð16Þ

where index k marks the beginning of the time step (time level tk). Observe that the flux formulation of the prediction step
differs from the original one (Eq. (13a)) in the time level of the gradients of H. In the prediction step, spatial gradients of the
piezometric head are assumed constant in time and equal to the values computed at the end of the previous time step.

The prediction problem is solved in its integral form, as shown in the following, while the correction problem is solved in
its differential linearized form:

@H
@t
� ðKsK

0
rðhðwÞÞÞr2H ¼ �r � ½ðKsK

0
rðhðwÞÞÞ � ðrHÞk�; ð17aÞ

with

K 0rðhðwÞÞ ¼
KrðhðwÞÞ

�aðwÞ ; �aðwÞ ¼ S0

�hðwÞ
e
þ @h
@w

� �
; ð17bÞ

where ð��Þ is the mean in time operator of the solution of the prediction problem. A simple first order quadrature formula is
applied.

Observe that Eq. (17a) can be seen as a PDE with a source term given by its right hand side, but also as a PDE with a zero
source term and a flux F given by:

F ¼ �KSK 0rðhðwÞÞðrH �rHkÞ: ð17cÞ

This implies that fluxes, in the correction step, go to zero along with the time step size or the solution time variability. In the
same conditions, the error associated with the solution of the correction component becomes small with respect to the error
associated to the solution of the prediction component.
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After some simple manipulations, it can be shown that the quasi-linear differential form of the prediction problem is
kinematic, with only one bi-characteristic line passing through each (x, t) point. The prediction PDE system is equivalent
to a single non-linear convection equation, function of the gradient of the piezometric head at time level tk. The correction
system has the functional characteristics of a pure diffusive process. For these reasons we call the prediction and the correc-
tion systems respectively convective prediction system and diffusive correction system.

4. The MAST procedure

Spatial discretization of the governing PDE (13a) is based on a generally unstructured triangular mesh. Let X � R2 be a
bounded domain, Xh a polygonal approximation of X and Th an unstructured Delaunay-type non overlapping triangulation
of Xh. The triangulation Th is called basic mesh, NT is the number of triangles of Th, Ti, i = 1, . . . ,NT is the generic triangle of Th

(black dashed lines in Fig. 1(a)) and jTij is the area of Ti. Let Ph = {Pi, i = 1, . . . ,L} be the set of the midpoints of the edges
ej

Ti
ðj ¼ 1;2;3Þ of all Ti 2 Th and L the number of the sides in the mesh. A dual mesh Eh = {ei, i = 1, . . . ,L} is constructed over

the basic mesh. The dual finite volume ei associated with the midpoint Pi, i = 1, . . . ,L, is the closed polygon given by the union
of the sub-triangles sharing side i and bounded by the orthogonals to each side passing through the opposite node in the
basic mesh (blue polygons in Fig. 1(a)). In the following of the paper the dual volumes ei are called also cells or control vol-
umes and the edge midpoints, computational nodes. The storage capacity is assumed to be concentrated only in the cells, in
the measure of 1/3 of the area of each triangle (one or two) sharing the cell edge.

A linear variation of the piezometric head inside each triangle is assumed on the base of the values at midpoints of the
three sides. Piezometric head is also assumed continuous at midpoints. According to the linear variation of H, it is possible to
compute the flux from node i to node j (as well as from node i to node k) of the same triangle as the flux through the common
side of the two corresponding sub-triangles (see Fig. 1(b)).

After integration of the prediction equations in space, the differential form of the prediction system is:

Ai
dHi

dt
þ
X

j

Flout
i;j ¼ AiQ

0
i þ
X

l

Flin
i;l ; i ¼ 1; . . . ; L ð18aÞ

with

Ai ¼
1
3

X
NT

jTmjdim; ð18bÞ

where Ai is the area of the ith computational cell, dim is the Kronecker delta and it is equal to 1 if side i belongs to triangle Tm,
0 otherwise. Flout

i;j is the flux leaving from cell i to any neighbouring cell j with lower potential value at time level tk, Flin
i;l is the

flux entering in cell i from any neighbouring cell l with higher potential value at the same time level.
Solution of the prediction problem (18) can be strongly simplified if we change the second term on the r.h.s. of each equa-

tion with its mean value along the given time step, according to:

Ai
dHi

dt
þ
X

j

Flout
i;j ¼ AiQ

0
i þ
X

l

Flin
i;l; i ¼ 1; . . . ; L; ð19Þ

where Flin
i;l is the mean in time value of the incoming flux Flin

i;l , known from the solution of the previously solved cells, as fur-
ther specified and Q 0i is the mean in time value of Q 0i. In this case, the system can be solved using the marching in space and
time (MAST) procedure: the cells are ordered according to their potential values at the beginning of the time step and Eq.
(19) are then solved sequentially, one after the others. After the ODE in cell i is solved, the mean total flux Flout

i leaving from
cell i along the time step is computed from the local mass balance, that is:

Basic mesh 

Dual mesh 

Fictiosus channel 

Computational cell in the 

edge midpoint 
i 

j

k 

(a)  (b)  

Fig. 1. (a) The computational mesh, (b) flux between cell i and j (k) inside the same triangle.
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Flout
i ¼

X
l

Flin
i;l � Ai

hkþ1=2
i � hk

i

Dt
þ AiQ

0
i; ð20Þ

where h is the volumetric water content and index k + 1/2 is assigned to the values computed at the end of the prediction
step.

Once the total mean leaving flux is computed, the mean flux Flout
i;j going from cell i to the neighbouring cell j with Hk

i > Hk
j

can be estimated by partitioning Flout
i according to the ratio between the flux Flout

i;j and the sum of the leaving fluxes at the end
of the time step, that is:

Flout
i;j ¼

Flout
i;j

� �kþ1=2

P
j Flout

i;j

� �kþ1=2 Flout
i : ð21Þ

Finally you set:

Flin
j;i ¼ Flout

i;j ð22Þ

for all the neighbouring cells with Hk
i > Hk

j and you can proceed to solve Eq. (19) for the next cell, that has among the un-
solved ones the maximum potential value smaller than or equal to Hk

i .
The basic idea of the proposed numerical technique is to compute the solution, within a given time step, by marching in

space along the velocity direction throughout the computational domain, computing the solution for each cell, one after the
other according to the potential scale. MAST scheme can be classified as ‘‘explicit’’, because the solution in each cell depends
only on the initial state in the cell and on the incoming information (i. e. the flux) from the upstream (in the potential scale)
cells, previously solved.

A major property of the MAST solution is to guarantee the local mass balance even if the relationship between the poten-
tial and the water content is strongly non-linear, because the mean (along Dt) fluxes leaving from each cell are computed
according to the initial and final state inside the cell and not by numerical integration.

All the soil parameters of the closure relationships (6) or (7), as well as the saturation conductivity are assumed constant
in space inside each triangle of the mesh.

Define Yh the finite element approximate space of the linear functions over each triangle Tj, j = 1, . . . ,NT, continuous at
midpoint Bi of each side i, 1 6 i 6 L. xih(x) are piecewise linear basis functions of Yh, globally defined by the values assumed
at midpoints of the triangle sides, so that xih(Bj) = dij, where i and j are indexes of sides (i, j = 1, . . . ,L) and dij is the Kronecker
delta (see for example [13]). Piezometric head H 2 Yh.

After discretization also in time, Eqs. (17) become:

Ai
Hkþ1

i � Hkþ1=2
i

Dt
þ
X

Tj

Z
Tj

Kj
sK
0
rðhðwÞÞ

� �
rHrxih

� �
dTj ¼

X
Tj

Z
Tj

Kj
sK
0
rðhðwÞÞ

� �
ðrHÞkrxih

� �
dTj; ð23Þ

where Kj
s is the saturated conductivity inside each triangle Tj. The mean in time value K 0rðhðwÞÞ is computed via first order

quadrature formula of the values of K 0rðhðwÞÞ.
A fully implicit time discretization has been chosen for the solution of system (23). This guarantees unconditional stabil-

ity with regard to the time step size [29]. Fully implicit time discretization provides an approximation error that is propor-
tional to the size of the correction and becomes small along this last one.

Observe that the difference between the two integrals in Eq. (23), as well as the piezometric head correction, goes to zero
along with the time step size. Even during abrupt potential changes, the potential correction will be small with respect to the
predicted change. This implies that the absolute error in the estimation of the piezometric head correction will only weakly
affect the piezometric final value computed at time level k + 1.

4.1. Flux computation in acute triangles

Call Pm
j the jth node of triangle m and lm

j

!
the edge vector following in counterclockwise direction. Call Pm the orthocentre,

intersection of the three lines normal to each edge lm
j

!
and passing through Pm

jm, the node opposite to lm
j

!
(see Fig. 2).

Because the storage capacity is assumed to be entirely concentrated in the computational nodes, it is possible to compute
the flux through each side lm

j

!
as the sum of the fluxes trough the Pm

jp � Pm and the Pm � Pm
j subintervals, named respectively

Flout
i;ip and Flout

i;im. Because the line through cells i and im is orthogonal to the subinterval Pm � Pm
j the crossing flux Flout

i;im going
from i to im is proportional to the difference between the two potentials:

Flout
i;im ¼ �rcm

j;jmK 0rðhðwiÞÞ Hk
im � Hk

i

� �
; ð24aÞ

with

K 0rðhðwiÞÞ ¼
KrðhðwiÞÞ

aðwiÞ
ð24bÞ
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and

rcm
j;jm ¼ �

lm
j

!
� lm

jm

�!
Am

Km
s ; ð24cÞ

where jm is the index of the node preceding j in counterclockwise direction, the scalar product in Eq. (24c) is between the
edge vectors sharing node Pm

j , upper index m is assigned to the quantities related to triangle m, Him(i) is the piezometric head

in cell im (i), located in the midpoint of edge lm
jm

�!
lm
j

!� �
, and � is the symbol of scalar product. In the prediction problem the

piezometric head difference on the r.h.s. of Eq. (24a) is kept constant and equal to the value computed at the end of the pre-
vious time step.

The coefficient rcm
j;jm in Eq. (24c) can be computed according to the following equalities (see Fig. 2):

rcm
j;jm ¼ �

lm
j

!
� lm

jm

�!
Am

Km
s ¼

2Dlm
j

lm
jph

Km
s ¼

2Dlm
j

lm
jplmj cos c

Km
s ¼

2D
lm
jp cos c

Km
s ¼

2d
lm
jp

Km
s : ð25Þ

Observe that the flux between nodes i and im is computed in Eq. (24a) as function of the soil parameters in the upstream
node i. According to the upwind estimation of the relative conductivity, the K 0r value is adjusted during the time step in
the solution of the prediction problem as function of the w(H) value. This flux spatial discretization can be viewed as the
reduction of the original 2D problem to a 1D network of cells (the blue polygons in Fig. 1(a)) located in the midpoint of each
edge (green points in Fig. 1(a)) and linked by fictitious channels (red lines in Fig. 1(a)).

Observe that rcm
j;jm coefficient in Eqs. (24) is always positive, unless the jth angle of the triangle m is obtuse. In this case, the

oriented fluxes given by Eq. (24a) inside the triangle m can form a loop. This is inconsistent with the irrotationality of the
velocity field and hampers the sequential solution of the ODEs in each cell (see an example in Fig. 3). To avoid this incon-
venient, a special treatment of the obtuse triangles is required, as better described in the following section.

4.2. Flux computation in obtuse triangles

Assume j to be the vertex of the obtuse triangle m corresponding to the maximum angle, jp and jm respectively the fol-
lowing and the preceding one in couterclockwise direction. Call i, ip and im the index of the corresponding cells. Define two

auxiliary internal sides lm
j1

!
and lm

jm1

�!
, respectively orthogonal to sides lm

jm

�!
and lm

j

!
, sharing vertex j (see Fig. 4). In the case shown

in Fig. 4, the coefficient rcm
j;jm is negative, while the other two coefficients are positive. Assume rcm

j;jm ¼ 0, so that the fluxes

through the edges lm
j

!
and lm

jm

�!
are proportional only to the difference Hk

ip � Hk
i

� �
and Hk

ip � Hk
im

� �
respectively. The fluxes

Flm
j;jp1 and Flm

j;jm1 through sides lm
j1

!
and lm

jm1

�!
are given by:

i

l jm
l j

ljp

m

m

m

H
imH

ipH

γ
d

h

D

mP

jP
m

jpP
m

jmP
m

Fig. 2. A triangular element – notations.

γ

Pj
m

Pjp
m Pjm

m
α

i im

ip

if  Him > Hi > Hip

δ > π/2

Fig. 3. Example of obtuse triangle with oriented fluxes inconsistent with the velocity irrotationality.
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Flm
j;jp1
¼ �r0j;jp1

Hk
ip � Hk

i

� �
; r0j;jp1

¼
2lm

j;jp1

lm
jm

Km
s ; ð26aÞ

Flm
j;jm1
¼ �r0j;jm1

Hk
ip � Hk

im

� �
; r0j;jm1

¼
2lmj;jm1

lm
j

Km
s : ð26bÞ

On the other hand, since a linear variation of the piezometric heads has been assumed inside each triangle m, flow velocity is

constant along all side lm
j

!
. For instance, given the flow velocity direction shown in Fig. 4, call Pm

np the intersection point be-

tween the velocity vector drawn from point jp1 and side lm
j

!
; lm

j the distance of Pm
jp from Pm

j and lm
np the distance of Pm

np from Pm
j

measured in counterclockwise direction. Position of point Pm
np depends on the direction of the element velocity and is up-

dated after each time step. Flux through side lm
j;np

�!
(between points Pm

j and Pm
np) is equal to Flm

j;jp1
. Because velocity is constant

along the all side lm
j

!
, the total flux Flout

i;ip can be computed as:

Flout
i;ip ¼ Flmj;jp1

lm
j

lmj;np

¼ � Hk
ip � Hk

i

� �2lmj;jp1

lm
jm

Km
s

lm
j

lm
j;np

¼ �r00j;jp1
Hk

ip � Hk
i

� �
; ð27aÞ

where r00j;jp1
¼ r0j;jp1

lm
j

lmj;np

: ð27bÞ

Coefficient r00j;jp1
tends to infinity as point Pm

np approaches node j and takes a negative value if the velocity direction is between

the directions lm
j

!
and lm

jp1

�!
. In this case, a flux estimation error (and a corresponding reduction of the solution accuracy) is

unavoidable using a fixed mesh. To guarantee the computational efficiency and the r00j;jp1
positive sign, the following approx-

imation is made:

lm
j;np � max e0; lm

j;np

��� ���� �
; ð28Þ

where the two arguments of the max function are a small positive number and the absolute value of the lm
j;np distance.

4.3. Numerical solution of the prediction and correction steps

The ODE (19) in the prediction step is integrated along the original time step using a 5th order Runge–Kutta method with
adaptive step-size control [32]. According to the flux definitions given in Eqs. (24) and (25), the ODE for cell i is written as:

Ai
dHi

dt
þ

X
m¼1;...;NT

X
ja¼jm;jp

rcm
j;jaK 0rðhðwiÞÞ Hk

i � Hk
ia

� �
dm

i;ia

h i" #
¼ AiQ

0
i þ Flin

i ; ð29Þ

where j is the local index of triangle m corresponding to cell i, ia is the cell index corresponding to the local index ja, dm
i;ia is

equal to 1 if cells i and ia belong to triangle m and Hk
i > Hk

ia; 0 otherwise.
After the ODE for cell i is solved along the time step, the mean in time flux values from cell i to cell ia is estimated as

explained in Eqs. (20) and (21).
The solution of a linear system associated to each Eq. (23) is required for the correction step. The order of the system is

equal to the number L of mesh sides. A preconditioned conjugate gradient method is used to solve the system.

m

i

i p

imlj1 ljm1

jp 1 jm 1

90°
90°

Flow velocity direction

lj
m

ljm
m

Pjp
m

Pjm
m

Pj
m

Pnp
m

ljp
m

Fig. 4. Triangular element scheme and notations for obtuse triangle.
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According to the fluxes definitions given in Eqs. (24) and (23) can be written as:

Ai
Hkþ1

i � Hkþ1=2
i

Dt
þ

X
m¼1;...;NT

X
ja¼jm;jp

K 0rðhðwsÞÞrcm
j;ja Hkþ1

i � Hkþ1
ia

� �
dm

i

h i" #

¼
X

m¼1;...;NT

X
ja¼jm;jp

K 0rðhðwsÞÞrcm
j;ja Hk

i � Hk
ia

� �
dm

i

h i" #
; i ¼ 1; . . . ; L; ð30Þ

s ¼
i if Hk

i > Hk
ia

ia if Hk
i < Hk

ia

(

where dm
i is equal to 1 or 0 according if cell i belongs to element m or not and the other symbols have been previously de-

fined. System matrix is symmetric with 2 or 4 extra-diagonal elements, respectively for boundary or internal cells.
The numerical structure of the fluxes is the same in the prediction and in the correction steps. The piezometric head dif-

ference on the r. h. s. of Eqs. (24a) and (25) is computed at time level k in the prediction step, at time level k + 1 in the cor-
rection step (where they are the unknowns of the problem). The relative conductivity Kr is computed in both Eqs. (29) and
(30) as function of the h(w) value in the upstream cell. This implies that the solution of Eq. (30), in steady-state conditions,
vanishes for any possible value of the adopted time step.

In the correction problem, matrix system is positive definite and has the so called M-property (positive diagonal elements
and negative or null extra-diagonal elements), because both the mean permeability K 0r and rcm

j;ja coefficients are always po-
sitive. The M-property guarantees the existence of an asymptotic monotonic solution at any point with zero forcing function
[44]. The procedure proposed in the previous Section 4.2 guarantees the M-property of the matrix system also in the case of
obtuse triangles.

4.3.1. Saturated condition and transition from unsaturated to saturated condition in the prediction and correction steps
In most cases, the specific storage coefficient S0 is small with respect to the water content derivative in Eq. (1). When the

soil is saturated during all the time step, both time derivatives in the same Eq. (1) are negligible and the problem becomes
locally elliptic.

In this case the solution of the prediction problem is trivial, because in each cell the total leaving flux is equal to the total
incoming flux. A more detailed procedure is required when the cell remains saturated only during a fraction of the total time
step, that is when only one between the initial and the final pressure is greater than the minimum saturation value.

If the cell is unsaturated at the beginning of the time step, solution of the ODE (29) is carried out as described in the pre-
vious sections, from time tk to the time ~t when saturation is attained. The average incoming flux Flin

i � ððtk þ Dt � ~tÞ=DtÞ, left
out in the prediction step, is then added to the source term of the system in the corrective step in order to save the local mass
balance inside the cell. Equation of this cell in the correction system preserves the same structure as in Eq. (30), plus the
additional source term.

If the cell is saturated at the beginning of the time step, the problem is solved as follows. In the prediction step, if the
potential of all or some of the neighbouring cell is lower than the potential of the considered cell, the incoming flux is trans-
ferred to the lower potential cells as described in the previous section, neglecting the storage term in Eq. (20). If all the neigh-
bouring cells have higher potential, the incoming flux is added to the source term in the solution of the correction system.
Storage term is zero in the equation of this cell in the correction system.

4.3.2. A semi-analytical procedure for the solution of the prediction problem
As previously stated, solution of the ODE (19) can be easily found using a numerical approach. If the specific storage S0 is

negligible with respect to the specific capacity @ h/@w and the Brooks–Corey model (Eqs. (7)) is adopted as closure relation-
ship, an approximated semi-analytical solution can also be found.

According to Eqs. (7a) and (8) we can write:

@h
@w
¼ ðhs � hrÞ

@h�

@w
¼ ðhs � hrÞk

jwbj
jwj

� �k 1
jwj ð31Þ

and, after simple manipulations, the convective step in Eq. (29) can be written as:

Ai
dHi

dt
ðhs � hrÞk

jwbj
jwij

� �k 1
jwij

 !
þ

X
m¼1;...;NT

X
ja¼jm;jp

rcm
j;jaK 0rðhðwiÞÞ Hk

i � Hk
ia

� �
dm

i;ia

h i" #
¼ Fl0 ini ; ð32Þ

where

Fl0 ini ¼ AiQ
0
i þ Flini : ð33Þ
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Eq. (32) can be written as:

k1jwij
a dHi

dt
þ k2jwij

b ¼ Fl0 ini ; ð34Þ

where

k1 ¼ Aikðhs � hrÞjwbj
k
; k2 ¼ Kisjwbj

kp�
; ð35aÞ

Kis ¼
X

m¼1;...;NT

X
ja¼jm;jp

rcm
j;ja Hk

i � Hk
ia

� �
dm

i;ia

h i" #
; ð35bÞ

a ¼ �ðkþ 1Þ; b ¼ �kp�: ð35cÞ

Observe that both exponents a and b are negative.
Call wk

i the value of w at the beginning of the time step in cell i and wkf
i its asymptotic value calculated according to Eq.

(34), that is:

wkf
i

��� ��� ¼ Fl0 ini
k2

 !1
b

: ð36Þ

Eq. (34) can be written in dimensionless form as:

na dn
ds
¼ nb � nb

f if wkf
i > wk

i ; ð37aÞ

with

s ¼ t � Fl0 ini

k1 � wk
i

��� ���aþ1

wkf
i

��� ���
wk

i

��� ���
0
B@

1
CA

b

if wkf
i > wk

i ; ð37bÞ

and with

n ¼ jwij
wk

i

��� ��� if wkf
i > wk

i ; ð37cÞ

or

na dn
ds
¼ nb � 1 if wkf

i < wk
i ð38aÞ

with

s ¼ t � Fl0 ini

k1 � wkf
i

��� ���aþ1 if wkf
i < wk

i ð38bÞ

and with

n ¼ jwij
wkf

i

��� ��� if wkf
i < wk

i ; ð38cÞ

where sub-index f in Eq. (37a) marks the asymptotic value nf ¼ wkf
i

��� ���. wk
i

��� ���. The qualitative solution of the two ODEs (37a) and
(38a) are represented in Figs. 5 and 6.

Analytical solutions of Eqs. (37a) and (38a) do not exist, due to the non-integer and negative values of the power expo-
nents a and b. A very computationally expensive implicit transhendent series solution is possible, but a good approximation
of Eqs. (37a) and (38a) can also be found with a smaller computational time by setting:

n ¼ 1þ ðnf � 1Þ expðc1sÞ þ c2

expðc1sÞ þ c3
if wkf

i > wk
i ; ð39Þ

n ¼ expðc1sÞ þ c2

expðc1sÞ þ c3
if wkf

i < wk
i ð40Þ

with a proper choice of the c1, c2 and c3 coefficients. Using any c3 value, it is possible to match the initial value n0 and its first
derivative n00 by setting:
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c2 ¼
ðn0 � 1Þð1þ c3Þ
ðnf � 1Þ � 1; c1 ¼ n00

ð1þ c3Þ2

ðc3 � c2Þ
1

ðnf � 1Þ if wkf
i > wk

i ; ð41Þ

c2 ¼ n0ð1þ c3Þ � 1; c1 ¼ n00
ð1þ c3Þ2

ðc3 � c2Þ
if wkf

i < wk
i : ð42Þ

The first derivative n00 can be computed as the r. h. s. of Eqs. (37a) or (38a), for n = n0. This choice guarantees a second order
reduction of the error around the s = 0 value. Because in the MAST approach the time step is not restricted by the CFL number
condition, it is also important to select a c3 coefficient that provides a small error for any possible s value.

The research of the optimal c3 coefficient values can be carried out, for given nf if wkf
i > wk

i or n0 if wkf
i < wk

i , according to an
iterative procedure.

Divide the interval 0.0 6 n 6 1.0 in np equal parts Dn. Call g the difference between the semi-analytical and a reference
solution and gmax a fixed maximum admissible value of g. The reference solution is numerically computed once for ever
using a very small time step.

The reference solution is computed for different parameters nq
f (if wkf

i > wk
i ), or nq

0 (if wkf
i < wk

i ), where q is an integer rang-
ing from 1 to np and nq

f ¼ 1�
P

j¼1;qDnj; nq
0 ¼

P
j¼1;q�1Dnj. For each q value the coefficient cq

3 which maximizes the sq
n interval,

measured from s = 0, where g 6 gmax, is found via numerical optimization. Compute also the dimensionless time value sq
x

such that g 6 gmax for any s P sq
x (see in Fig. 7 the case wkf

i > wk
i ).

Start from the initial value n0 at s = 0. According to Eqs. (37b) or (38b), compute sDt (the s value corresponding to Dt).

According to the asymptotic value nf (if wkf
i > wk

i ), or to the initial value n0 (if wkf
i < wk

i ), select the two curves with parameters

nq
f and nqþ1

f (or nq
0 and nqþ1

0 Þ, such that nqþ1
f 6 nf 6 nq

f (or nq
0 6 n0 6 nqþ1

0 ) (see Fig. 8(a) and (b)). Call �sn ¼min sq
n; sqþ1

n

� �
as well as

�sx ¼max sq
x ; sqþ1

x

� �
. Compute the c3 coefficient corresponding to the curve parameter nf(0), applying a cubic-spline interpo-

lation between cq
3 and cqþ1

3 . If sDt > �sn and sDt < �sx compute the solution n’ at s0 ¼ �sn by means of Eqs. (39)–(42). The corre-
sponding piezometric depth is the new initial conditions for the next iteration. At each iteration, compute jw0j according to n0,
set jw0j = jw0j, n0 = n0, s0 = 0, compute the new curve parameter nf(0) and sDt according to n0 as well as the new couples nq

f and

t

ψ

kfψ

(a) 

τ

ξ
ξ0 = 1

ξf

(b) 

kψ

Fig. 5. The case wkf
i > wk

i .

t

ψ

kψ

(a) 

τ

ξ

ξ0

ξf = 1

(b) 

kfψ

Fig. 6. The case wkf
i < wk

i .
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nqþ1
f (or nq

0 and nqþ1
0 Þ, and repeat the above procedure until sDt 6 D�s or sDt P �sx. After solution of the ODEs (37a) or (38a), the

mean in time value of the flux from cell i to any connected cell im with Hk
im < Hk

i is computed as in Eqs. (20) and (21).
The semi-analytical approach can be applied only if saturation is not reached during the time step. If the initial pressure is

lower than the saturation pressure and the final computed water content is greater than the saturation value, the ssat value
corresponding to nsat can be obtained by integrating Eq. (37a) written as:

ds ¼ na

nb � nb
f

dn; ð43Þ

in the s unknown, along the interval from n = n0 to n = nsat, with initial value s = 0.
Eq. (43) is numerically solved. Because only a limited number of cells is affected during each time step by the transition

from the unsaturated to the saturated condition, this has no significant effect on the total computational burden. In the inter-
val from ssat to sDt the storage capacity does not change any more, since cell i is saturated and the incoming flux is equal to
the leaving one. The leaving flux to any j cell is computed according to Eqs. (20) and (21), where Dt is replaced by the fraction
of time step corresponding to ssat.

4.4. Boundary conditions

4.4.1. Boundary conditions for the prediction problem
In the prediction step the Neumann flux is included in the term Flin

i representing the incoming flux in the cell. No bound-
ary conditions are assigned to the part of the boundary where first type (Dirichlet) conditions apply. Observe that first type
and second type (Neumann) boundary conditions are assigned at the beginning of the computation only in the part of the
boundary that is below the level of the open water (portion CD as described in Eq. (5)) or in the part of the boundary that is
impervious (portion CN as described in Eq. (5)). The boundary conditions in each cell of the remaining boundary, facing the
open air, are updated at the beginning of each time step according to the pressure value computed at end of the previous
time step. If the pressure value in the boundary cell is greater than the external atmospheric pressure, the storage term is
neglected and the average flux leaving the domain is given by the difference between the incoming flux and the average flux
going to the cells with lower potential. If the value of the pressure in the cell is lower than the external atmospheric value,
the boundary is assumed as impervious.

 τ

ξ
reference solution 
semi-analytical solution 

ηmax

q
nτ q

xτ

q
fξ

Fig. 7. Estimation of sq
n and sq

x in the case wkf
i > wk

i .

q
fξ

1q
f
+ξ

0
qξ

1
0
q+ξ

(a) 

  ξ’
 ξf

ξ0=1 

 0
 τ

ξ

τ

ξ
  ξ’

ξf =1

0

 ξ0

(b) 

q
nτ1q

n
+τ q

nτ 1q
n

+τ

Fig. 8. The iterative procedure in the case wkf
i > wk

i (a) and wkf
i < wk

i (b).
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4.4.2. Boundary conditions in the correction problem
Boundary conditions in the correction problem are zero corrective flux passing through the boundary cells where entering

fluxes are assigned in the prediction step. In the cell i where the piezometric head is assigned, the Dirichlet condition is:

Hkþ1
i ¼ HD or Hkþ1

i ¼ wD þ zi; ð44Þ

where HD (wD) is the Dirichlet value of the piezometric head (depth) (see also Eq. (5)). Diffusive boundary fluxes are com-
puted a posteriori by means of Eq. (30).

4.5. Similarities of numerical fluxes in LMHFE, linear (P1) nonconforming FEM and MAST correction problem

The linear (P1) nonconforming FEM is described in the Appendix A for a time-dependent diffusion problem, with piece-
wise constant in space storage coefficient term and space dependent symmetric positive definite tensor of the flux term. It is
easy to show, after simple algebraic manipulations, that the structure of the fluxes proportional to coefficients rcm

j;jm given in
Eqs. (24) and (25) is similar to the structure of the fluxes given in the P1 nonconforming FEM and this is equivalent to the
LMHFE flux discretization (as shown in the Appendix A). The difference is that, while in the P1 nonconforming FEM the flux
coefficient is assumed constant inside each triangle, and equal to its mean value inside the element, in the MAST procedure
the same coefficient is function of the parameters (namely the relative conductivity Kr) of the cell with higher potential in-
side the element. If the parameters of two neighbouring cells i and im in the same element are equal, in the case of unsat-
urated medium, the flux between cells i and im is null, since this implies that Hk

i ¼ Hk
im; in the case of saturated medium the

computed flux is exactly the same as the one given by the P1 nonconforming FEM.

5. Numerical tests

According to Celia et al. [12], the mass conservation capability of a model can be measured by the Mass Balance Ratio
(MBR), defined as:

MBR ¼ total additional mass in the domain
total net flux into the domain

; ð45Þ

where the ‘‘total additional mass in the domain’’ is the difference between the mass measured at any simulation time t and
the initial mass in the domain, the ‘‘total net flux into the domain’’ is the flux integrated in time up to time t. In a ‘‘perfect’’
model MBR is equal to 1. According to Celia et al. [12], MBR is function of the simulation time step Dt, and if a pressure based
formulation is adopted in the governing equations, it decreases for increasing Dt. Using a water content form or a mixed form
for the governing equations, MBR value is very close to 1 for all the investigated Dt range. Similar behaviour has been ob-
served by Manzini and Ferraris [30]. Celia et al. [12] ascribed the poor mass balance of the pressure-based form to the com-
putation of the local time derivative term of h: while @ h/@t and @h/@w � @w/@t are equivalent in the continuous PDE, their
discrete analogous are not. The difference between the discrete forms is exacerbated by the high non-linearity of the specific
capacity @h/@w term. This non-linearity leads to significant mass balance errors in the pressure based formulation because
the discrete value of @h/@t, approximating the change in mass per unit volume and unit time, is computed using a first order
Taylor series expansion of the product @h/@w � @w/@t.

Five numerical tests are presented in the following. The first three tests are aimed to evaluate the algorithm ability to
preserve the mass conservation and to cope with sharp soil heterogeneities. In the second test a mesh refinement has been
also carried out in order to investigate the stability of the proposed model with respect to the mesh size. In the third test the
properties of the computed velocity field are presented and analyzed.

In the fourth test, computational (CPU) times required by the different steps included in the model (cells ordering, man-
aging of the obtuse triangles, prediction and correction problems) are evaluated using three different structured and unstruc-
tured meshes. The CPU times are compared also to the ones obtained using the semi-analytical solution for the prediction
step, in order to estimate the computational cost abatement. Finally, the last test is presented in order to asses the order of
convergence of the proposed methodology.

The local CFL number is defined as:

CFL ¼ jqijDtffiffiffiffiffi
Ai
p ; ð46Þ

where qi is the velocity vector in cell i. The software Argus one [1] has been used as mesh generator.

5.1. Test 1. Perched water table problem

The problem was originally presented by Kirkland et al. [25] and then adapted by Forsyth et al. [16] and Diersch and Per-
rochet [14]. It is a 2D problem of a developing perched water table surrounded by very dry unsaturated conditions. The prob-
lem is described in Fig. 9. Water infiltrates with a very large rate into a dry soil at initial piezometric depth w0 = �500 m and
encounters a clay barrier which allows for the formation of a perched water table. All boundaries are impervious (no flow)
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except the portion of the upper side where the infiltration is imposed. The material properties of the problem are summa-
rized in Table 1 for the Van Genuchten parametric model. The residual saturation rate sr corresponds to the residual water
content hr.

An unstructured mesh with 3412 triangles, 1788 nodes and 5199 edges and a Dt = 100 s have been used for the simula-
tions of the present model (see Fig. 10). Mesh is not locally refined at material interfaces. In Figs. 11a and 11b the computed
piezometric depth and saturation contours are shown for the final simulation time of 1 day (864 time iterations). The max-
imum value of the CFL number attained during the simulation is 1.85. In Figs. 12a and 12b the piezometric depth contours
computed by Diersch and Perrochet [14] and Kirkland et al. [25] are shown, while in Figs. 13a and 13b the saturation con-
tours computed by Diersch and Perrochet [14] and by Forsyth et al. [16] are shown for the same simulation time. Kirkland
et al. [25] imposed the initial condition w0 = �4000 kPa. Diersch and Perrochet [14] proposed a variable switching procedure
for finite elements methods. The technique is incorporated in both an adaptive error-controlled predictor-corrector one-step
Newton (PCOSN) iteration strategy and a target-based full Newton (TBFN) iteration scheme. Forsyth et al. [16] presented
one-phase and two-phase (active air-phase) Finite Element variable switching model. Kirkland et al. [25] presented a Finite
Difference scheme allowing to change the unknown variables in saturated and unsaturated medium. In the reference liter-
ature models the authors discretize the half domain with 50 � 60 quadrilateral elements (3111 nodes). The number of time
iterations of the reference literature models ranges from 500 to 3000.

It can be observed in the figures that the MAST computed results and the computed fully saturated volume are dramat-
ically different from the ones computed by the other two literature models. The number of unknowns in the MAST scheme
(number of edges) is close to those of the literature models (number of nodes of the quadrilateral elements) and the number
of total time iterations of the MAST simulation is close to that of the reference models, eventhough in the model by Diersch
and Perrochet [14] a control procedure of the iteration process with a variable time step size is activated in order to change
the time step during the simulation.

The MBR at time 1 day computed by the proposed model is about 1 + 1.5 � 10�16, with a total mass balance errors
O(10�16) of the same order of the machine truncation error. Diersch and Perrochet [14] listed a total mass balance errors
(TMBE) ranging from O(10�5) to O(10�4).

A much more fine mesh has also been used for MAST simulations, with 12,090 triangles, 6195 nodes and 18,284 edges
and a time step ranging from 0.864 s to 10 s. Results obtained with the different time steps are very similar and the corre-
sponding maximum CFL values range from 0.11 to 2.56. The MBR and the total mass balance error are very similar to the
ones obtained for the coarse mesh. Observe in Figs. 14a and 14b the computed piezometric depth and saturation contours
at 1 d using Dt = 2 s (43,200 time iterations). Results obtained with the coarse mesh (see Figs. 11a and 11b) can be considered
qualitatively very close to the ones computed with the fine mesh.

The difference between results of the proposed scheme and those obtained by the literature models probably relays in the
conservation property of the proposed mass scheme, that is very likely to result also in a more accurate estimation of the
piezometric depths. MAST computed piezometric depth contours show indeed sharp discontinuities at zone interfaces, while
the corresponding literature contours are surprisingly almost continuous throughout the sand – clay interface in the upper
part of the domain.

 1
 m
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 m

 

 1 m 

4 m 

5 m 

3 
m

 

qn =  0.5 m/d

 sand 

 sand 

 clay ψ0 = -500 m 

Fig. 9. Test 1 – computational domain, initial and boundary conditions.

Table 1
Test 1 – Van Genuchten parameters.

Material Ks [m/s] e [�] sr [�] l [1/m] k [�] wa [m]

Sand 6.262d�05 0.3658 0.07818 2.8 2.239 0
Clay 1.516d�06 0.4686 0.2262 1.04 1.3954 0
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5.2. Test 2. Infiltration in a large caisson

5.2.1. Test 2a: Forsyth et al.’s problem [16]
The infiltration process in a large caisson consisting of heterogeneous materials at dry initial conditions has been thor-

oughly studied by Forsyth et al. [16]. Fig. 15 presents a schematic view of the 2D cross-sectional problem. All boundaries
are impervious except the infiltration boundary section on the top side. Two initial piezometric depth conditions of
w0 = �7.34 m and w0 = �100 m are simulated. Table 2 lists the material properties for the different zones of the domain.
A mesh with 1148 triangles, 620 nodes and 1767 edges, with no local refinement at material interface, has been used
(see Fig. 16). Time step Dt is 3240 s. In Figs. 17a–17c the computed piezometric head, piezometric depth and saturation pro-
files are shown in the case w0 = �7.34 m, for the final simulation time 30 d (800 total time iterations). In Fig. 18, the MAST

Fig. 10. Test 1 – computational mesh.

Fig. 11a. Test 1 – MAST computed piezometric depth contours.
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computed saturation contours corresponding to the initial condition w0 = �100 m are shown for the same mesh, time step
size and simulation time. Maximum CFL value is 2.45 and 2.56, respectively for the case w0 = �7.34 m and w0 = �100 m. The
MBR after 30 d is 1 + 1.2 � 10�16, with a total mass balance error O(10�16).

Fig. 11b. Test 1 – MAST computed saturation contours.

Fig. 12a. Test 1 – computed piezometric depth contours by Diersch and Perrochet [14].

Fig. 12b. Test 1 – computed piezometric depth contours by Kirkland et al. [25] (measures in cm).
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The computed saturation contours are compared with the ones given by Diersch and Perrochet [14] and by Forsyth et al.
[16] in the two cases w0 = �7.34 m and w0 = �100 m, for the same simulation time, shown in Figs. 19a–20b respectively. In
both reference literature models, the authors used a quadrilateral mesh with 90 � 21 quadrilateral elements (1890 nodes).

Fig. 13a. Test 1 – computed saturation contours by Diersch and Perrochet [14].

Fig. 13b. Test 1 – computed saturation contours by Forsyth et al. [16] (measures in cm).

Fig. 14a. Test 1 – MAST computed piezometric depth contours (fine mesh).
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The initial time step used by Diersch and Perrochet [14] is 86.4 s and they carried out 200–300 time iterations. The number
of unknowns in the MAST scheme is close to the one in the literature models, while the number of time iterations of the
MAST scheme is higher, but Diersch and Perrochet [14] apply a control procedure at each time step to change the Dt size.
If the same number of time steps is used with the proposed model (Dt = 6480 s), a numerical diffusion effect can be observed.
The computed saturation profiles are much smoother than the previous ones (for simplicity are not shown here), but no
oscillations occur at material interfaces. The MBR and the total mass balance error are very similar to the previous ones ob-
tained with Dt = 3240 s.

Fig. 14b. Test 1 – MAST computed saturation contours (fine mesh).

4 m 
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zone 2 
 0.4 m 
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8 m 

6.
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2.25 m 
qn = 0.02 m/d 

1) ψ0 = - 7.34 m
2) ψ0 = -100 m

1 m 

Fig. 15. Test 2 – computational domain, initial and boundary conditions.

Table 2
Test 2 – Van Genuchten parameters.

Zone Ks [m/s] e [�] sr [�] l [1/m] k [�] wa [m]

1 9.153d�05 0.368 0.2771 3.34 1.982 0
2 5.445d�06 0.351 0.2806 3.63 1.632 0
3 4.805d�05 0.325 0.2643 3.45 1.573 0
4 4.805d�04 0.325 0.2643 3.45 1.573 0
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Fig. 16. Test 2 – computational mesh.

Fig. 17a. Test 2a – MAST computed piezometric head contours (w0 = �7.34 m).
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Diersch and Perrochet [14] obtained a total mass balance errors (TMBE) ranging from O(10�5) to O(10�4).
Observe that also in the present test the saturation zone computed by the MAST scheme is more extended than the ones

computed by the literature models.
As in the previous test, a much more fine mesh has been used to test the effect of mesh density on the results in Figs. 17a–

18. The fine mesh has 12,162 triangles, 6227 nodes and 18,388 sides. Time step Dt is 86.4 s (30,000 total time iterations).
Results are shown in Figs. 21a–21c (case w0 = �7.34 m) and in Fig. 22 (case w0 = �100 m). As for test 1, MAST results ob-
tained with the coarse mesh can be assumed qualitatively very close to the ones computed with the fine mesh. The MBR
and the total mass balance error computed using the fine mesh are very similar to the ones computed with the coarse mesh.

The differences between MAST results and those provided by the other literature models can be explained as for test 1.
In Fig. 23 the computed saturation contours obtained by Diersch and Perrochet for different meshes are shown in the case

of w0 = �100 m. The dense mesh has 56,960 quadrilateral elements. Mesh size effects are not negligible.

5.2.2. Test 2b: Forsyth and Kropinski’s problem [15]
Forsyth and Kropinski [15] modified the above infiltration problem shown in Fig. 15 by increasing the pore size distribu-

tion k index to 5 for the zones 3 and 4. The other parameters are the same as the ones in Table 2. This increment of k makes
the capillary pressure curve very flat at intermediate saturation values and spurious local maxima and minima result in the
simulations carried out by Diersch and Perrochet [14] for coarse meshes. For MAST numerical simulations, the same coarse
mesh as in test 2a (1148 triangles, 620 nodes and 1767 edges, here marked as mesh 0) and the same Dt = 3240 s have been
used. The present mesh has been refined by dividing each element in four equal triangles, connecting the midpoints of the
three sides of the triangle. In order to limit the growth of the CFL number value, the time step size has been halved at each
refinement. Three refinement levels have been considered (mesh 1, mesh 2 and mesh 3). In Figs. 24a–24d the computed sat-
uration contours are shown for the simulation time 30 d. The initial condition is w0 = �100 m. CFL ranges from 2.77 to 2.89.
Values of the MBR and the total mass balance error are very similar to the ones computed for test 2a.

No oscillations occur in the computed profiles, especially in the ones obtained using the coarsest mesh and mesh effects
can be considered modest on the computed results.

In Figs. 25a and 25b the saturation profiles computed by Diersch and Perrochet [14] using quadrilateral meshes, respec-
tively with 21 x 90 and 28,917 nodes, are shown. Similar results have been obtained by Forsyth and Kropinski [15] using a

Fig. 17b. Test 2a – MAST computed piezometric depth contours (w0 = �7.34 m).
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quadrilateral meshes with 159 � 51 nodes, not shown here for brevity. Literature results are in this case much close to the
ones computed by the proposed model.

5.3. Test 3. Computation of the velocity fields in strongly saturation conductivity contrast medium

The square domain 1 m � 1 m shown in Fig. 26(a) is used, with boundary conditions and permeability distribution graph-
ically shown. The domain is discretized with two structured triangular mesh with 200 rectangular isosceles triangles, 121
nodes and 320 sides; the two meshes have the triangle hypotenuses orthogonal to each other (see Fig. 26(a)). The time step
is Dt = 2 s. An initial piezometric depth w0 = �3 m has been assigned in the domain. Table 3 reports the van Genuchten
parameters. Observe the strong saturation conductivity contrast for the three zones. This test is similar to the one carried
out by Hoteit et al. [20], but to obtain physical and computational mesh symmetry, we rotated the computational domain
as shown in Fig. 26(b). For brevity, piezometric head and depth contours are not shown. Observe in Figs. 27a and 27b the
computed velocity vectors for mesh (a) and (b). In both cases results are perfectly symmetric. The x and z velocity compo-
nents have been calculated by computing the x and z piezometric head spatial gradient components in each triangle on the
base of the H values at the edge centres. In the computation of the vector modules, the relative conductivity has been as-
sumed equal to 1. Velocity values are very close to zero in the zones with the lowest conductivity value (vectors disappear
in the figures) and velocity vectors tend to become parallel to the boundary of these zones. Vector norms increase in the
highest conductivity zones, while the high values of velocity in the low-central area of the domain are due to the sharp gra-
dients of the piezometric head.

5.4. Test 4. Computational cost investigation

A unitary square domain 1 m � 1 m has been used for this test, shown in Fig. 28 along with the boundary conditions. The
domain is discretized using three different meshes. The first two are unstructured meshes, shown in Fig. 29 (cases (a) and
(b)) [24]. These two meshes have 128 triangular elements, 81 nodes and 208 sides. The first mesh is mildly unstructured
while the second one is highly unstructured and characterized by the presence of several obtuse triangles. The third mesh
is structured with 153 equilateral triangles, 95 nodes and 247 sides. In the three cases an initial piezometric head H0 = �10 m
has been assigned in the domain. The Dirichlet condition imposed on the right boundary of the domain is HD = �0.75 m and

Fig. 17c. Test 2a – MAST computed saturation contours (w0 = �7.34 m).
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the time step is Dt = 25 s for the three meshes. Table 4 shows the Brooks–Corey parameters, along with the assigned Neu-
mann fluxes per element along the top and left domain sides.

Starting from the three meshes before described, a mesh refinement has been carried out for each of them, as described
before. Three refinement levels have been obtained. CFL ranges from 0.86 to 1.59 from level 0 to level 3 for the mesh type A
and very close variation ranges have been observed for the other two meshes.

In Tables 5a–5c the mean computational time (CPU), per iteration and per single cell, for the different model phases –
managing of obtuse triangles, cells ordering, convective step and diffusive step – are reported. A single processor Intel T

Fig. 18. Test 2a – MAST computed saturation contours (w0 = �100 m).

Fig. 19a. Test 2a – computed saturation contours by Diersch and Perrochet [14] (w0 = �7.34 m).
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Fig. 19b. Test 2a – computed saturation contours by Forsyth et al. [16] (w0 = �7.34 m) (measures in cm).

Fig. 20a. Test 2a – computed saturation contours by Diersch and Perrochet [14] (w0 = �100 m).

Fig. 20b. Test 2a – computed saturation contours by Forsyth et al. [16] (w0 = �100 m).
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Fig. 21a. Test 2a – MAST computed piezometric head contours (fine mesh, w0 = �7.34 m).

Fig. 21b. Test 2a – MAST computed piezometric depth contours (fine mesh, w0 = �7.34 m).
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9400, 2.53 GHz has been used. The computation of the convective prediction step is the most demanding one, while the solu-
tion of the diffusive system needs computational time approximately one magnitude order less than the convective step.

The CPU time relative to the convective step is almost independent on the mesh elements number, since this represents
the ‘‘explicit’’ component of the method. The small decrement of the average CPU time of the convective component can be
related to the increasing CFL numbers obtained by partitioning and to the best aptitude of the algorithm to work with CFL
numbers greater than one [3–6]. The CPU time per single cell required for the solution of the diffusive linear system increases
with the element number. In fact, this step, representing the ‘‘non explicit’’ component of the algorithm, requires the solution
of a large linear system of the order of the edges number.

As expected, the cost of managing obtuse triangulation (equal to zero for the mesh with equilateral triangles) per single
cell is independent on the number of elements, while the ordering step requires a CPU time per single cell that grows with
the cell number much less than linearly and is two magnitude order less than the CPU time required by the diffusive step.

The growth rate b, measured as the exponent of the relationship:

CP ¼ Lb ) logðCPÞ ¼ logðLÞ � bþ c; ð47Þ

where L is the number of edges, CP is the mean CPU time per iteration and c is an arbitrary constant, has been investigated for
the four components of the algorithm, see in Figs. 30a–30c that b ranges from 1.047 to 1.16 for the diffusive step and from
1.14 to 1.46 for the cells ordering step, while it is almost one for the convective and the cost of managing obtuse triangles
steps.

In Tables 6a–6c the mean CPU time per single cell and per iteration are shown for the same previous tests; the only dif-
ference is that the prediction step is computed by applying the semi-analytical procedure described in Section 4.3.2. For this
set of simulations the interval 0 6 n 6 1 (see Section 4.3.2) has been divided in 20 parts. The maximum admissible error gmax

(see Section 4.3.2) is 1.d�05. Observe that the CPU times for the solution of the convective step are approximately halved
with respect to the previous ones obtained using the numerical solution. The ranges of the growth rates b are almost the
same as the ones shown in Figs. 30a–30c, and for simplicity not reported here. Very similar values have been obtained using
gmax = 1.d�04 and gmax = 1.d�06.

5.5. Test 5. Estimation of the order of convergence

An analytical solution is compared to its numerical approximation on a sequence of refined meshes in order to evaluate
the rate of convergence. The analytical solution is arbitrarily given for Eq. (13a), where the sink term on its r.h.s. is computed

Fig. 21c. Test 2a – MAST computed saturation contours (fine mesh, w0 = �7.34 m).
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by time and space differentiation of the same solution on the l.h.s. of the same Eq. (13a). The assigned analytical solution is
[30]:

wðx; z; tÞ ¼ �1
2
� x2ð2� xÞexð2�xÞ � zð1� zÞez � ð1� e�t=TÞ; ð48Þ

where T is the characteristic time of the process, equal to 1 day. In Fig. 31(a) the analytical solution for t/T ?1 is shown.

Fig. 22. Test 2a – MAST computed saturation contours (fine mesh, w0 = �100 m).

Fig. 23. Test 2a – computed saturation contours by Diersch and Perrochet [14] (w0 = �100 m).
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Fig. 24a. Test 2b – MAST computed saturation contours (mesh 0, w0 = �100 m).

Fig. 24b. Test 2b – MAST computed saturation contours (mesh 1, w0 = �100 m).
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Fig. 24c. Test 2b – MAST computed saturation contours (mesh 2, w0 = �100 m).

Fig. 24d. Test 2b – MAST computed saturation contours (mesh 3, w0 = �100 m).
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Fig. 25a. Test 2b – computed saturation contours by Diersch and Perrochet [14] (w0 = �100 m, 21 � 90 nodes).

Fig. 25b. Test 2b – computed saturation contours by Diersch and Perrochet [14] (w0 = �100 m, 28,917 nodes).
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Fig. 26. Test 3 – (a) computational domain with permeability zones and mesh types; (b) rotation of the domain.
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The 2D sink term simulates the roots uptake. Because of the symmetry of the analytical solution along x direction, only
half domain 1 m � 1 m has been solved. Table 7 shows the van Genuchten soil parameters; the hydraulic conductivity is gi-
ven by Manzini and Ferraris [30]:

KðwÞ ¼ KsðzÞKrðwÞ; ð49Þ
Ks ¼ K 00s þ K 0s � K 00s

	 

ð1� e�ð1�z=LzÞÞ and KrðwÞ ¼ ew=w0 ; ð50Þ

where constants Lz = 1 m and w0 = 0.0333 m. Values of K 0s and K 00s are listed in Table 7. The two scalars provide different het-
erogeneity degrees between the top and bottom hydraulic conductivity [30]. A basic coarse mesh (refinement level l = 0) with

Table 3
Test 3 – Van Genuchten parameters.

Zone Ks [m/s] hs [�] hr [�] l [1/m] k [�] wa [m]

1 1.889d�09 0.47 0.08 3.35 2 0
2 1.889d�05 0.47 0.08 3.35 2 0
3 1.889d�01 0.47 0.08 3.35 2 0

Fig. 27a. Test 3 – MAST computed velocity vectors (mesh a).

Fig. 27b. Test 3 – MAST computed velocity vectors (mesh b).
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Dirichlet condition
HD = -0.75 m

1 m 

1 m 

qn =  1.d-06 m/s 
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Fig. 28. Test 4 – computational domain and boundary conditions.

Fig. 29. Test 4 – (a) computational mesh A (level 0), (b) computational mesh B (level 0).

Table 4
Test 4 – Brooks-Corey parameters and incoming Neumann fluxes.

Ks [m/s] hs [�] hr [�] k [�] wb [m] qn (mesh A) [m2/s] qn (mesh B) [m2/s] qn (mesh equil.) [m2/s]

1.889d�06 0.47 0.08 0.2857 �0.3 1.25d�07 1.25d�07 1.111d�07

Table 5a
Test 4 – mean CPU time for equilateral mesh (numerical solution of the convective step).

Refinement level NT L CPU_obt [s] CPU_ord [s] CPU_conv [s] CPU_diff [s]

0 153 247 0.00E+00 0.00E+00 1.38E�05 3.28E�06
1 612 953 0.00E+00 5.46E�09 1.46E�05 2.77E�06
2 2448 3742 0.00E+00 1.39E�08 1.46E�05 3.31E�06
3 9792 14,828 0.00E+00 1.96E�08 1.42E�05 3.84E�06

Table 5b
Test 4 – mean CPU time for mesh A (numerical solution of the convective step).

Refinement level NT L CPU_obt [s] CPU_ord [s] CPU_conv [s] CPU_diff [s]

0 128 208 2.00E�07 0.00E+00 1.45E�05 1.90E�06
1 512 800 1.95E�07 1.30E�08 1.53E�05 2.31E�06
2 2048 3136 2.06E�07 1.24E�08 1.47E�05 3.04E�06
3 8192 12,416 2.05E�07 2.38E�08 1.47E�05 3.61E�06
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164 triangles, 99 nodes and 262 edges has been used for the numerical simulations (see Fig. 31(b)) and 3 mesh refinements
have been carried out (refinements levels l = 1,2,3). In Tables 8a–8d the relative errors for the potential values and the x and z
velocity components are reported for K 00s ¼ 0:1 cm h�1. Very similar results have been obtained using the other K 00s values and
for simplicity are not reported here. Relative errors corresponding to refinement mesh level lth are computed at edges mid-
points for piezometric heads and at centres of mass of the triangles for velocity components and are defined as [9]:

Table 5c
Test 4 – mean CPU time for mesh B (numerical solution of the convective step).

Refinement level NT L CPU_obt [s] CPU_ord [s] CPU_conv [s] CPU_diff [s]

0 128 208 4.00E�07 0.00E+00 1.45E�05 2.70E�06
1 512 800 3.90E�07 1.30E�08 1.46E�05 2.83E�06
2 2048 3136 2.98E�07 1.58E�08 1.46E�05 3.06E�06
3 8192 12,416 3.24E�07 1.91E�08 1.45E�05 3.64E�06

Fig. 30a. Test 4 – mean CPU times per iteration for the different steps of the MAST algorithm (mesh A – numerical solution of the convective step).

Fig. 30b. Test 4 – mean CPU times per iteration for the different steps of the MAST algorithm (mesh B – numerical solution of the convective step).

Fig. 30c. Test 4 – mean CPU times per iteration for the different steps of the MAST algorithm (equilateral triangles mesh – numerical solution of the
convective step).
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Table 6a
Test 4 – mean CPU time for equilateral mesh (semi-analytical solution of the convective step).

Refinement level NT L CPU_obt [s] CPU_ord [s] CPU_conv [s] CPU_diff [s]

0 153 247 0.00E+00 0.00E+00 7.88E�06 3.55E�06
1 612 953 0.00E+00 2.60E�08 7.53E�06 3.48E�06
2 2448 3742 0.00E+00 3.41E�08 7.08E�06 4.11E�06
3 9792 14,828 0.00E+00 8.00E�08 6.97E�06 4.93E�06

Table 6b
Test 4 – mean CPU time for mesh A (semi-analytical solution of the convective step).

Refinement level NT L CPU_obt [s] CPU_ord [s] CPU_conv [s] CPU_diff [s]

0 128 208 2.00E�07 0.00E+00 6.35E�06 2.70E�06
1 512 800 2.66E�07 0.00E+00 6.55E�06 2.86E�06
2 2048 3136 2.76E�07 2.90E�08 6.38E�06 3.15E�06
3 8192 12,416 2.53E�07 6.84E�08 6.42E�06 3.74E�06

Table 6c
Test 4 – mean CPU time for mesh B (semi-analytical solution of the convective step).

Refinement level NT L CPU_obt [s] CPU_ord [s] CPU_conv [s] CPU_diff [s]

0 128 208 3.50E�07 0.00E+00 7.07E�06 2.25E�06
1 512 800 3.58E�07 2.60E�08 6.59E�06 3.00E�06
2 2048 3136 3.67E�07 3.15E�08 6.41E�06 3.32E�06
3 8192 12,416 4.11E�07 6.62E�08 6.41E�06 3.81E�06

Fig. 31. Test 5 – (a) exact steady state solution (from [30]), (b) – the coarse mesh.

Table 7
Test 5 – Van Genuchten parameters.

K 0s ½cm=h� K 00s ½cm=h� hs [�] hr [�] l [1/m] k [�]

10.d�00 {1., 0.1, 1.d�01, 1.d�02} 0.368 0.102 3.35 2

Table 8a
Test 5 – errors and convergence orders for piezometric heads and velocity components – t/T = 1 and K 00s ¼ 0:1 cm=h.

Refinement level NT L errl
H

rc,H errl
qx

rc;qx errl
qz

rc;qz

0 164 262 9.16E�08 2.55E�02 2.52E�02
1 656 1016 2.24E�08 2.03E+00 1.22E�02 1.06E+00 1.20E�02 1.07E+00
2 2624 4000 5.55E�09 2.01E+00 6.03E�03 1.02E+00 5.90E�03 1.02E+00
3 10,496 15,872 1.37E�09 2.02E+00 3.01E�03 1.00E+00 2.90E�03 1.02E+00
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errl
H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i¼1;L Hi �Hex

i

	 
2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i¼1;L Hex

i

	 
2
q ; errl

qxðzÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i¼1;NT

qxðzÞ;i � qex
xðzÞ;i

� �2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i¼1;NT

qex
xðzÞ;i

� �2
r ; ð51Þ

where Hi and Hex
i are respectively the numerical and the exact solution at midpoint of side i, qx(z), i and qex

xðzÞ;i are the numerical
and the exact x(z) velocity components in the centre of triangle i. Numerical velocity components have been computed as
described in Section 5.3, while the exact ones have been obtained by analytically computing in the centre of mass of each
triangle the gradients of H according to the exact solution given by Eq. (48). The relative hydraulic conductivity is assumed
equal to one in the computation of errl

qxðzÞ
.

The rate of convergence is defined by comparing the relative errors of two consecutive mesh levels. Assuming the relative
error obtained for mesh level l proportional to a power of the linear size of the area of the mean triangle in the mesh,

errl ¼
ffiffiffiffiffi
Al

p� �rc

; ð52Þ
where Al is the area of the mean triangle in the mesh refinement level l and

ffiffiffiffiffi
Al

p
represents a measure of its linear size, the

rate of convergence rc is computed by comparing the relative errors of two successive refinement levels l and l + 1:

rc ¼
log errl

errlþ1

� �
logð2Þ : ð53Þ

According to the values reported in Tables 8a–8d, the convergence rate (5th, 7th and 9th column) is quadratic for H, as for the
standard formulation of the MHFE schemes, while it is linear for velocity components, as expected, since the velocity is not
an unknown of the problem.

Table 8b
Test 5 – errors and convergence orders for piezometric heads and velocity components – t/T = 2 and K 00s ¼ 0:1 cm=h.

Refinement level NT L errl
H

rc,H errl
qx

rc;qx errl
qz

rc;qz

0 164 262 5.46E�08 2.39E�02 2.36E�02
1 656 1016 1.32E�08 2.05E+00 1.20E�02 9.94E�01 1.14E�02 1.05E+00
2 2624 4000 3.25E�09 2.02E+00 6.02E�03 9.95E�01 5.80E�03 9.75E�01
3 10,496 15,872 8.07E�10 2.01E+00 3.00E�03 1.01E+00 2.77E�03 1.07E+00

Table 8c
Test 5 – errors and convergence orders for piezometric heads and velocity components – t/T = 5 and K 00s ¼ 0:1 cm=h.

Refinement level NT L errl
H

rc,H errl
qx

rc;qx errl
qz

rc;qz

0 164 262 2.36E�08 2.29E�02 2.28E�02
1 656 1016 5.69E�09 2.05E+00 1.08E�02 1.08E+00 1.06E�02 1.10E+00
2 2624 4000 1.39E�09 2.03E+00 5.10E�03 1.09E+00 5.08E�03 1.06E+00
3 10,496 15,872 3.46E�10 2.01E+00 2.55E�03 9.99E�01 2.39E�03 1.09E+00

Table 8d
Test 5 – errors and convergence orders for piezometric heads and velocity components – t/T =1 and K 00s ¼ 0:1 cm=h.

Refinement level NT L errl
H

rc,H errl
qx

rc;qx errl
qz

rc;qz

0 164 262 4.45E�09 2.10E�02 2.08E�02
1 656 1016 1.07E�09 2.06E+00 1.05E�02 9.99E�01 1.03E�02 1.01E+00
2 2624 4000 2.62E�10 2.03E+00 4.93E�03 1.09E+00 4.88E�03 1.08E+00
3 10,496 15,872 6.51E�11 2.01E+00 2.35E�03 1.07E+00 2.28E�03 1.10E+00
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Fig. 32. The nodal basis function ki and the basis function of the Yh space xih with its support in the P1 nonconforming FEM.
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6. Conclusions

A novel methodology has been presented for the solution of the flow equation in a variably saturated heterogeneous por-
ous medium. The methodology is based on the use of an unstructured triangular mesh and a MArching in Space and Time
(MAST) approach. Hysteretic phenomena have not been considered in the present version of the model, but they can be eas-
ily included applying literature approaches [21,26]. The methodology can be extended to 3D case, adopting a similar flux
discretization and by using the triangular tetrahedral faces (four per each element) instead of the edges. The flux correction
procedure should be applied in this case to all the elements that have one or more obtuse angles between their faces.

One of the main advantage of the methodology is that its prediction step is inherently locally mass conservative, even if
strong nonlinearities exist between the pressure and the equation parameters. A very small mass balance error can be found
in the correction step, due to the non linearity existing between the pressure and the storage parameters. In the tested exam-
ples this error is very small, sometimes many order of magnitude smaller with respect to the error shown by other algo-
rithms in literature tests. Despite other literature models, mesh size effects can be assumed negligible and similar results
for the same tests have been computed with in a wide range of mesh and time step size.

A special treatment is applied to the obtuse triangles in order to avoid flux loops, that are inconsistent with the irrota-
tionality of the velocity field and hamper the sequential solution of the ordinary differential equations in each cells. This pro-
cedure guarantees the positive definite property and M-property of the matrix system in the correction step also in the case
of obtuse triangles.

The computational burden has been estimated for each different component of the proposed algorithm: cell ordering,
treatment of the obtuse triangles, prediction step and correction step. The mean CPU time per cell required for the solution
of the prediction step is one magnitude order higher than the one required by the correction step and is almost independent
on the mesh elements number, while the CPU time required for the solution of the correction system increases with the ele-
ment number only a bit more than linearly. A dramatic cost abatement of the prediction step is obtained if a semi-analytical
solution is applied.

The order of convergence has been estimated using an exact reference solution and it is quadratic for the piezometric
head and linear for the velocity components.

Appendix A. The LMHFE and the linear (P1) nonconforming FEMs

A.1. Preliminaries and notations

Let X � R2 be a bounded domain, C its boundary and Th an unstructured Delaunay-type triangulation over X (as reported
in Section 4). The meaning of the symbols used in this Appendix A is the same as specified in the previous sections.

Let H1(X) be the Sobolev space of square-integrable functions with square-integrable first order derivatives and assume

H1
0ðXÞ ¼ fv 2 H1ðXÞ; v jCD

¼ 0g: ðA:1Þ

Given the following diffusive time-dependent problem with variable coefficients:

f @u
@t �r � bru ¼ f in X� ½0; T�

u ¼ uD in CD

uðx;0Þ ¼ u0ðxÞ in X at t ¼ 0; x 2 X

8><
>: ; ðA:2Þ

where u(x, t) is the scalar dependent variable, f is a non-negative piecewise constant function, b(x) is a symmetric positive
definite matrix function, uD is a fixed Dirichlet value on the portion CD of C, u0 is the initial state and f 2 L2(X) is a source
term. Since for the solution of non linear problems, like the Richards equation, numerical methods (e.g Newton or Picard
techniques) are applied to linearized governing equations, in problem (A.2) coefficient f and tensor b are assumed to be
non-dependent on variable u.

Let a(u,v) be a bilinear form on H1(X) � H1(X), defined as:

aðu;vÞ ¼
Z

X
brurvdxþ

Z
X

f
@u
@t

v dx: ðA:3Þ

The variational formulation of problem (A.2) is:

find u 2 H1ðXÞ such that :

aðu;vÞ ¼ ðf ;vÞ; v 2 H1
0ðXÞ

u ¼ uD on CD

ðuðx;0Þ;vÞ ¼ ðu0ðxÞ;vÞ

8>>>><
>>>>:

; ðA:4Þ
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where (�, �) denotes the L2(X) inner product.

A.2. The linear (P1) nonconforming FEM

Call L the total number of sides and N the number of the internal sides plus the boundary sides where Dirichlet conditions
do not hold. Let Yh be the P1 nonconforming finite element approximate space of H1(X):

Yh ¼ fvhjTj
2 P1ðTjÞ : vh continuous at midpoints Bi; 1 6 i 6 Lg; ðA:5Þ

where Tj is the generic triangle of Th, j = 1, . . . ,NT. We define

Yh0 ¼ fvh 2 Yh : vh ¼ 0 at Bi; N þ 1 6 i 6 Lg: ðA:6Þ

Observe that Yh å H1(X) and Yh0 å H1
0ðXÞ.

Let kS be the nodal linear basis function associated with vertex Si opposite to side ei
Tj

(i = 1,2,3) of Tj. kS is equal to one at
node Si and zero at the other two nodes (see the red function in Fig. 32). xih(x), 1 6 i 6 L, are piecewise linear basis functions
of Yh, defined by the values of the midpoints of the triangle sides, so that:

xihðBjÞ ¼ dij i; j ¼ 1; . . . ; L; ðA:7Þ

where i and j are indexes of sides and dij is the Kronecker delta. Then the set of functions

xihðBjÞ ¼ dij; i; j ¼ 1; . . . ;N; ðA:8Þ

forms the basis of Yh0. Locally, in the triangle Tj, xih(x) is (see the green function in Fig. 32):

xihðxÞ ¼ 1� 2kSðxÞ 8x 2 Tj: ðA:9Þ

According to the definitions given in Eqs. (A.7)–(A.9), functions xih(x) are orthogonal and the following relation holds [27]:

Z
X
xihðxÞxjhðxÞdX ¼ ri

3
dij; ðA:10Þ

where ri is the area of the local support of function xih(x) (the blue quadrilateral in Fig. 32 represents ri/3). It can be easily
shown that function xi has the following constant gradient over Tj (see also [13]):

rxihðxÞ ¼
jei

Tj
j

jTjj
ni; ðA:11Þ

where ei
Tj

��� ��� is the length of side ei
Tj

and ni the unitary outward normal vector with respect to the same side.

The local representation over triangle Tj of any function ph(x) 2 Yh is:

phðxÞjTj
¼
X
i¼1;3

pixihðxÞ: ðA:12Þ

Define the lowest order continuous in normal components Raviart–Thomas space [39] as:

Vh ¼ fgh 2 Hðdiv ; XÞ : ghjTj
2 RT0ðTjÞ 8Tj 2 Thg; ðA:13Þ

where the spaces H(div;X) = {w :w 2 (L2(X))2,r �w 2 L2(X)} and RT0ðTjÞ ¼ fg ¼ ðg1; g2Þ
T : g1 ¼ aþ bx1; g2 ¼ c þ bx2jTj

g, with
a, b and c real coefficients. Let w

Tj

i be the basis functions of RT0(Tj) [39]:

w
Tj

i ðxÞ ¼
1

2jTjj
ðx� xTj

i Þ; i ¼ 1;2;3; 8x 2 Tj; ðA:14Þ

where xTj

i

� �
are the coordinates of the Tj nodes. According to Eq. (A.14), the following relations hold:

1
2jTjj

x� xTj
G

� �
¼ 1

3

X
i¼1;3

1
2jTjj

x� xTj

i

� �
ðA:15aÞ

and

w
Tj

i ðxÞ � ni ¼
1 ei

Tj

��� ���.
8x 2 ei

Tj
;

0 otherwise;

(
ðA:15bÞ

where xTj
G

� �
are the coordinates of the centre of mass of Tj.
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Assume a linear variation of the unknown variable u inside each triangle according to the values in the midpoints of each
side. An approximate solution uh is sought for in the form of a linear combination of finite elements:

uhðx; tÞ ¼
X
i¼1;L

uiðtÞxihðxÞ; ðA:16Þ

where ui(t) are the weight factors to be computed. In determining the approximate solution of the original problem (A.2),
integral equalities have to be satisfied 8v 2 H1

0ðXÞ, but the basis functions xih(x) have discontinuities at their support bound-
aries, so the P1 nonconforming FE discretization of problem (A.2) is:

find uh 2 Yh such that :

ahðuh;vhÞ ¼ ðf ; vhÞ 8vh 2 Yh0;

uhðBiÞ ¼ uhD; N þ 1 6 i 6 L;

uhðBiÞ ¼ uh0ðBiÞ; 1 6 i 6 L;

8>>><
>>>: ðA:17Þ

where uhD 2 Yh is chosen so that uhD(Bi) = uD(Bi), i = N + 1 6 i 6 L. In Eq. (A.17) the bilinear form ah(uh,vh) on Yh � Yh is defined as:

ahðuh;vhÞ ¼
X

Tj

Z
Tj

ðb
_

ruh � rvhÞdTj þ
X

Tj

Z
Tj

f
_ @uh

@t
vhdTj; ðA:18Þ

where the ð �_Þ symbol in Eq. (A.18) marks the mean spatial value in the triangle Tj, f
_

¼ 1
jTj j
R

Tj
fdx and b

_

¼ 1
jTj j
R

Tj
bdx [13].

A.3. Flux construction in the P1 nonconforming FEM

Assume now TR and TL the two triangles sharing side ei
Tj

, call m the midpoint of ei
Tj

and let xmh 2 Yh be its global basis
function, as defined in Eq. (A.7). By setting in Eqs. (A.17) and (A.18) vh = xmh, one gets [13]:

ðb
_

ruh;rxmhÞTL
� ðb

_

ruh;rxmhÞTR
þ
Z

TL[TR

f
_ @uhðmÞ

@t
xmh dx ¼

Z
TL[TR

fxmh dx: ðA:19Þ

Using the Green’s formula and the property of xmh to vanish at midpoints of the boundary of TL [ TR, according to Eqs. (A.11)
and (A.12), one gets:

jeij½ðb
_

ruh � nLÞTL
þ ðb

_

ruh � nRÞTR
� þ jTLjf

_

kL
þ jTRjf

_

kR

3
@uhðmÞ
@t

¼
Z

TL[TR

fxmh dx; ðA:20Þ

with nL and nR the unitary vectors orthogonal to side ei
Tj

, respectively outward from TL and TR.
Call qT 2 Vh (Vh defined in Eq. (A.13)) the approximation of Darcy flux q over element Tj. In the case of stationary problem

and without sink/source term, it can be easily shown (see for example [13]) that ~qTðxÞ ¼ � b
_

ruhjTj
, where the ð~�Þ sign marks

the flux in the stationary problem without sink/source term. Finally, Eq. (A.20) can be written at midpoint m as:

�jeijð~qTL ðmÞ � nL þ ~qTR ðmÞ � nRÞ þ
jTLjf

_

TL þ jTRjf
_

TR

3
@uhðmÞ
@t

¼
Z

TL[TR

fxmh dx: ðA:21Þ

According to Eqs. (A.15b) and (A.21) can be written as:

qTL
ðmÞ � nL þ qTR

ðmÞ � nR ¼ 0; ðA:22aÞ

where [13,44]

qTLðRÞ
ðmÞ ¼ ~qTLðRÞ ðmÞ þ

f
_

TLðRÞ

3

X
i¼1;3

1
2

x� x
TLðRÞ
i

� �
�

f
_

TLðRÞ

3

X
i¼1;3

1
2

x� x
TLðRÞ
i

� � @uhðmÞ
@t

� �
; ðA:22bÞ

where f
_

TLðTÞ is the mean value of f over element TL(R). Formulations (A.22) represent a balance law related to a control volume
stored in the midpoint of ei

Tj
, which area (jTLj + jTRj)/3 is given by the sum of 1/3 of the area of each triangle sharing ei

Tj
. Eqs.

(A.22) guarantee the continuity of the flux q at midpoint of ei
Tj

. Area (jTLj + jTRj)/3 is equal to ri/3 (see Eq. (A.10)) and plays the
role of the lumping region in the standard conforming FE schemes [33]. This implies that Eqs. (A.22) are equivalent to a
lumped MHFE scheme [44].
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