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This paper describes a finite-difference computational method suitable for the simulation
of vapor–liquid (or gas–liquid) flows in which the dynamical effects of the vapor can be
approximated by a time-dependent, spatially uniform pressure acting on the interface. In
such flows it is not necessary to calculate the velocity and temperature fields in the vapor
(or gas). This feature simplifies the solution of the problem and permits the computational
effort to be focussed on the temperature field, upon which the interfacial mass flux is criti-
cally dependent. The interface is described by a level set method modified with a high-order
‘‘subcell fix’’ with excellent mass conservation properties. The use of irregular stencils is
avoided by suitably extrapolating the velocity and temperature fields in the vapor region.
Since the accurate computation of momentum effects does not require the same grid refine-
ment as that of the temperature field, the velocity field is interpolated on a finer grid used for
the temperature calculation. Several validation and grid refinement axi-symmetric tests are
described which demonstrate the intended first-order time, second-order space accuracy of
the method. As an illustration of the capabilities of the computational procedure, the growth
and subsequent collapse of a laser-generated vapor bubble in a microtube are described.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Fixed grids are an attractive choice for the computation of free-surface flows due to their flexibility and efficiency, but
they also give rise to very significant numerical problems which have generated a large literature.

In many of the proposed methods the interface is spread over a few computational cells (see e.g. [1,2]), or the density
difference between the two fluids is artificially limited for numerical expediency [3]. Both features are undesirable in the
case of flows in which vapor–liquid phase change processes are important as the accurate calculation of mass and heat fluxes
at the interface is then of paramount importance. For this and other reasons several ‘‘sharp interface’’ methods have been
devised such as the ghost-fluid method [4,5] and several variants of the volume of fluid (see e.g. [6–8]) and front tracking
(see e.g. [9]) methods. In view of the connections with the present work, a particular mention is deserved by level-set meth-
ods implemented both with sharp (see e.g. [5,7,10]) and diffuse (see e.g. [2]) interfaces sometimes, as in the last paper cited,
in combination with the volume-of-fluid method.

A central difficulty in the simulation of phase change processes stems from the small thermal diffusivity of liquids of com-
mon interest, in particular water, coupled with a large latent heat and a large difference between the liquid and vapor den-
sities. Heat fluxes at the liquid–vapor interface are therefore large and capturing them correctly requires a very fine grid. For
this reason, many of the available methods are illustrated with applications to fluids near the critical point, where the latent
. All rights reserved.

.
iences, P.O. Box 70000, 7500 AE Enschede, The Netherlands.

http://dx.doi.org/10.1016/j.jcp.2011.10.021
mailto:prosper@jhu.edu
http://dx.doi.org/10.1016/j.jcp.2011.10.021
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


1534 E. Can, A. Prosperetti / Journal of Computational Physics 231 (2012) 1533–1552
heat is smaller and the phase densities closer, or to model problems. Exceptions are Refs. [7,10,11] in which the actual prop-
erties of water at normal pressure are used. In its most recent work this group has returned to a moving mesh [12].

A feature common to all these methods is their insistence on solving the Navier–Stokes equations in both the liquid and
the vapor or gas phases. While this strategy endows them with a great generality and renders them able to deal with the
density differences that one may encounter at very high pressures or close to the critical point, it fails to take advantage
of the very significant simplification that is available in the much more common case in which the vapor density is several
orders of magnitude smaller than the liquid one. In these situations, when the extent of the vapor space is limited, such as in
the case of vapor bubbles, the most significant dynamical effect of the vapor is to provide a time-dependent, spatially uni-
form pressure on the liquid while its inertia and viscous stresses play a negligible role. Furthermore, the vapor temperature
can also be assumed spatially uniform due to the very fast time scales for phase change and acoustic propagation.

This paper presents a numerical method suitable for these situations. Other problems to which it is equally applicable are
encountered in the dynamics of gas bubbles and in other situations in which the pressure in the vapor or gas space can be
assumed to be uniform. While we limit ourselves to axi-symmetric problems here, the method is readily extendable to three
dimensions as well.

While abandoning the attempt to solve the vapor momentum equation limits the applicability of our method, the sim-
plification to which it leads permits us to devise a more accurate solution procedure than possible with other methods,
and in this aspect resides the usefulness of this work.

This study arose from an interest in the numerical solution of vapor–liquid flows encountered in microfluidic devices in
some of which one takes advantage of the rapid and violent dynamics provided by vapor bubbles created by the intense local
heating of small liquid masses in a confined environment. A well known example is the ink-jet printing process, in which the
fast expansion of a vapor bubble in a narrow flow channel results in the ejection of a droplet of ink [13–16]. Other potential
uses of vapor bubbles in small devices without mechanical moving parts include actuation [17,18], pumping [19,20], surface
cleaning [21] and others. The performance of such devices is critically dependent on the bubble behavior which therefore
needs to be understood from a fundamental viewpoint.

In the method described in this paper the liquid mass, momentum and energy equations are solved in cylindrical coor-
dinates by means of a standard projection method on a uniform staggered grid. The vapor is modeled as a region of spatially
uniform temperature, computed from an energy balance at the interface, and accompanying uniform saturation pressure
which serves as a boundary condition for the liquid. The phase boundary is captured implicitly by means of the level set
method. Discretization near the interface requires ghost values for the velocity in the vapor region. These values are gener-
ated by a procedure originally suggested in [22] modified according to the ideas of [23], which enforce the incompressibility
constraint and properly account for viscous stresses at the interface.

Another feature of the method is that the energy equation is solved on a much finer grid than the momentum equation.
This feature permits the accurate evaluation of temperature gradients at the interface, which are of paramount importance in
establishing phase-change mass fluxes, while at the same time limiting the overall computational cost. A more detailed
description of this and other features can be found in [24].
2. Mathematical formulation

We assume that velocities and temperature differences are sufficiently small that the liquid density and thermal proper-
ties can be treated as constants. The equations expressing the conservation of its mass, momentum and energy are therefore
r � u ¼ 0; ð1Þ
@u
@t
þ u � ru ¼ � 1

q
rpþ 1

q
r � s; ð2Þ

@T
@t
þ u � rT ¼ ar2T; ð3Þ
with u, p, s and T the liquid velocity, pressure, Newtonian viscous stress tensor and temperature fields, and q and a the liquid
density and thermal diffusivity. Here and in the following liquid quantities are not subscripted; vapor quantities carry the
subscript v, and quantities evaluated at the phase interface the subscript s.

Local temperature differences along the interface would give rise to evaporative or condensing mass fluxes able to equil-
ibrate them on a smaller time scale than any other process under consideration. Furthermore, due to the very small vapor
inertia, pressure gradients cannot persist beyond the acoustic time scale. The vapor phase is therefore modeled as a region
with negligible inertia and spatially uniform pressure.

The balance of normal stresses at the interface is expressed by
pv ¼ ps þ rj� n � ss � n; ð4Þ
where pv is the vapor pressures, ps the liquid pressure at the interface, r the surface tension coefficient, j the local curvature
and n the unit normal directed into the liquid. Since the viscous stresses in the vapor are neglected, the liquid tangential
stress at the interface must vanish:
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t � ss � n ¼ 0; ð5Þ
where t is the unit tangent vector to the interface.
We consider problems in which the rate of phase change is moderate and the vapor velocity is much smaller than the

speed of sound so that we can assume thermodynamic equilibrium at the liquid–vapor interface. We therefore take pv to
be the saturation pressure at the interface temperature Ts. These two quantities are related by the Clausius–Clapeyron
equation
dpv

dTs
¼ Lqv

Ts
; ð6Þ
with Ts is the interface temperature, L the latent heat of evaporation and condensation and qv the vapor density. For simplic-
ity, in this paper we use the perfect gas law for the vapor and assume L constant integrating this relation to find
pv ¼ pv;0 exp � L
R

1
T0
� 1

Ts

� �� �
; ð7Þ
with pv,0 and T0 reference values for the vapor pressure and temperature and R the universal gas constant divided by the
molecular mass of the vapor.

We show in the Appendix that, with the neglect of pressure gradients in the vapor, conservation of mass at the interface
can be used to obtain the following relation for the surface temperature Ts:
cp þ
L2

RT2
s

� 2L
Ts

 !
dTs

dt
¼ 1

qvV

I
ðkrT � n� qvLu � nÞdS; ð8Þ
with cp the liquid heat capacity at constant pressure. Due to the smallness of the vapor density, the term
H

u � ndS represents
the rate of change of the vapor volume.

An even simpler situation to which the present method is applicable is that of liquid–gas problems with no phase change
in conditions under which the gas pressure can be considered spatially uniform. An example is a gas bubble for which the gas
pressure can often be adequately modelled by a polytropic pressure–volume relation (see Section 4).

3. Numerical method

The interface is described by a level set function /. The numerical method makes use of a finite-difference discretization
of the governing equations on a staggered MAC grid with equal spacings Dr = Dz in the radial and axial directions; the scalar
fields, namely pressure, temperature and level set function, are defined at cell centers, and the velocity components at the
appropriate cell edges. As mentioned in the Introduction, the energy equation is solved on a grid finer than that used for the
liquid velocity as described below.

The level set advection equation (see e.g. [25,26]) is updated in time by a second order Adams–Bashforth scheme
/nþ1 � /n

Dt
¼ �3

2
ðu � r/Þn þ 1

2
ðu � r/Þn�1

; ð9Þ
in which the superscripts denote time levels. The cell-center velocities are calculated by linear interpolation and the spatial
derivatives of / by a fifth-order WENO scheme [27–33]. The level set function is re-initialized at the end of the times step in
order to preserve its signed distance nature by solving, in the artificial time s [34],
@/
@s
þ Sð/0Þðjr/j � 1Þ ¼ 0; /ðx; 0Þ ¼ /0: ð10Þ
Here /0 is the level set function that results from the advection step (9) and S(/0) is a mollified sign function. This equation is
integrated by the third order Runge–Kutta scheme of [30].

It is well known that use of the level set method can lead to a severe loss of mass. There have been several remedies pro-
posed to ameliorate this problem (see e.g. [34–38]). We found the high-order version of [38] for the ‘‘subcell fix’’ proposed in
[36] adequate for our purposes and, in particular, for the calculation of the curvature.

Because of the assumed symmetry of the problem, the liquid continuity and momentum equations are written in terms of
rur in place of ur (where r is the distance from the symmetry axis and ur the radial velocity of the liquid) as suggested in [39].
The equations are integrated by a simple explicit first-order projection method (see e.g. [40–42]). The convection term is dis-
cretized by a second-order ENO method and the viscous terms are treated by central differencing. Although in an explicit
scheme there would be no particular difficulty in accounting for the temperature dependence of the viscosity, for simplicity
we do not include this effect in the representative results shown below.

Due to the explicit treatment of the convective and viscous terms the stability of the time integration requires a suitable
limitation on the time step Dt. We set
Dt
1

sconv
þ 1

svisc
þ 1

ssurf

� �
¼ �; ð11Þ
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with � = 0.25, where sconv, svisc, ssurf are the time scales for convection, diffusion and capillarity given by
Fig. 1.
from 0
1
sconv

¼ jurjmax

Dr
þ juzjmax

Dz
;

1
svisc

¼ 2l
q

1
Dr2 þ

1
Dz2

� �
;

1
ssurf

¼ r
qDr3

� �1=2

: ð12Þ
3.1. Pressure Poisson equation with Dirichlet condition

One difference between the present problem and other implementations of the projection method is that the pressure
Poisson equation needs to be solved subject to a specified pressure at the interface. The method developed in [43] is used
to avoid the need for irregular stencils near the interface.

Consider for example the situation depicted in Fig. 1 where the interface cuts between the node (i � 1,j) in the vapor and
(i, j) in the liquid. In order to impose the pressure condition p = ps at the interface, with ps given by (4), we introduce a ghost
pressure pghost at (i � 1,j) using linear extrapolation:
pghost
i�1;j ¼ pi;j �

pi;j � ps

hDr
Dr ¼

pi;jðh� 1Þ þ ps

h
; ð13Þ
where h is the fraction of grid spacing between the node (i, j) and the interface. Inserting this expression into the standard
discretization of the Poisson equation results in
ðr2pÞi;j ¼
1

ri;jDr2 riþ1=2;jðpiþ1;j � pi;jÞ � ri�1=2;j
pi;j � ps

h

� �
þ 1

Dz2 ðpi;jþ1 � pi;jÞ � ðpi;j � pi;j�1Þ
� �

: ð14Þ
The term containing the interface pressure, ps, is known and can therefore be taken to the right-hand side of the Poisson
equation. This procedure permits us to construct the system matrix by applying the standard discretization to all grid cells
irrespective of whether they are cut by the interface or not. The resulting matrix is symmetric and the linear system is solved
by the conjugate gradient method. When h is close to zero, the interface is very near a grid point. In this case the pressure at
that grid point can be considered known and taken equal to that at the interface with negligible error. After several numer-
ical tests we have found that taking this step when h 6 0.01 is satisfactory.

After solving for the pressure field, the pressure gradient is needed for the velocity correction step. Consider the left panel
of Fig. 1. To calculate the pressure gradient at the node Q = (i � 1/2, j) we use the one-sided formula
@p
@r

� �
i�1=2;j

’
pi;j � ps

hDr
: ð15Þ
The same formula can be used to calculate the pressure gradient at the node Q in the right panel which lies in the vapor. In
this way we can consistently apply the standard liquid velocity correction of the projection method at such nodes where the
intermediate velocity u�r is calculated from the extrapolated velocity field at the previous time step.

3.2. Velocity extrapolation

To avoid the use of irregular stencils for the velocity discretization in the neighborhood of the interface we extrapolate the
liquid velocity field into the vapor region. This extrapolation procedure is one of the significant features of our method.

There are several ways in which the velocity can be extrapolated on the other side of the interface (see e.g. [4]). As noted
by [44,23], however, a shortcoming of many methods is that they violate the incompressibility constraint, with a consequent
degradation of the reconstruction of the interface. Here we extend the method proposed for inviscid flows in [23] to the vis-
cous case and account for the zero-tangential-stress condition (5) by means of a Lagrange multiplier in the manner devel-
oped in [22].
i,ji-1,j i+1,j

liquidvapor

Interface

(1 − θ) θ

Q

i,ji-1,j i+1,j

liquidvapor

Interface

(1 − θ) θ

Q

Interface between nodes (i � 1, j) and (i, j); h denotes the distance from the liquid node (i, j) to the interface in terms of the grid spacing and ranges
to 1.
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The key idea put forward in [23] is to enforce the incompressibility of the extrapolated velocity in the same way in which
the provisional velocity uw of the projection method is rendered divergenceless. Thus, the extrapolation procedure consists
of three steps. First, the liquid velocity field is extrapolated linearly into the vapor by means of the least squares method.
Then, an auxiliary pressure in the extrapolated region is found by solving a Poisson equation with the divergence of the lin-
early extrapolated velocity as the source term. Finally, the gradient of this auxiliary pressure is used to correct the extrap-
olated velocity so that it is rendered divergenceless.

We explain these steps in succession with reference to Fig. 2. Suppose it is desired to extrapolate a velocity component to
the point marked by X. For this purpose we use valid velocities at neighboring liquid nodes, i.e. velocities at nodes where the
momentum equation was solved (including nodes such as Q in Fig. 1 right or Z in Fig. 2). To identify these nodes we first
estimate the coordinates of the interface point P closest to X from
Fig. 2.
radial v
liquid v
rP ¼ rX þ j/X j cos b zP ¼ zX þ j/X j sin b; ð16Þ
where the subscripts X and P identify the points in question and j/Xj is the distance between them in view of the signed dis-
tance property of the level set function and the fact that /P = 0 as it lies on the interface. The angle b is the angle between the
normal vector through X, estimated from r/X, and the radial direction. The radial liquid velocity component closest to P,
labeled by Y in the figure, is then found by searching in a small neighborhood around P. After this step, a search is performed
in a square region of size 5 � 5 cells centered at Y (dashed square in the figure). All the valid radial and axial velocity com-
ponents within this square are selected for the velocity extrapolation. We approximate the velocity field in this region as
uext ¼ A � xþ uP; ð17Þ
where
x ¼ ðr � rP ; z� zPÞ; uP ¼ ður;P ;uz;PÞ ð18Þ
and
A ¼
arr arz

azr azz

� �
: ð19Þ
The quantities aij would be the velocity derivatives at P if the linear approximation (17) were exact.
The problem therefore is to find the matrix A and vector uP that give the best approximation to the liquid velocity com-

ponents within the dashed region, after which (17) can be used to assign a (provisional) value to the velocity at X. This
amounts to minimizing
L0 ¼
XN

K¼1

arrðrK � rPÞ þ arzðzK � zPÞ þ ur;P � ur;K½ �2 þ
XM

K¼1

azrðrK � rPÞ þ azzðzK � zPÞ þ uz;P � uz;K½ �2; ð20Þ
where N and M are the number of valid radial and axial velocity components within the 5 � 5 region and ur,K and uz,K are the
valid radial and axial velocity components. The extrapolated velocity field should satisfy the zero tangential stress condition
(5) on the interface. This constraint can be written in terms of the approximate spatial derivatives of the velocity components
as
Selection of nodes for the extrapolation of the liquid velocity into the vapor region. The points marked X and X0 are those where an extrapolated
elocity is desired. The point P is found by drawing the normal to the interface from X. An area of 5 � 5 cells centered at P is searched for nodes with a
elocity obtained from the momentum equation. All these nodes are used in the least squares fit.
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Q ¼ 2nrtrarr þ ðnrtz þ nztrÞðarz þ azrÞ þ 2nztzazz ¼ 0; ð21Þ
where nr, tr and nz, tz are the radial and axial components of the normal and tangent unit vectors, respectively. Since the normal
at P has the same direction as at X, the tangent at P can be equally well calculated as the direction perpendicular to the line XP at
X. Furthermore, the velocity gradients aij are locally constant and therefore have the same value at P as at X. Thus, while in prin-
ciple (21) should be evaluated at P, its value at X is exactly the same. The constraint (21) can be added to (20) to find
L ¼ L0 þ kQ ; ð22Þ
where k is a Lagrange multiplier. Minimizing L gives 7 equations for the seven unknowns aij, ur,P, uz,P and k after which the
radial velocity at X is evaluated from (17). We use the same equation to calculate the axial velocity component carrying the
same indices, i.e., the velocity uz at the node marked X0 in Fig. 2. This procedure arbitrarily privileges the radial velocity com-
ponents, but we have found essentially the same results by centering the extrapolation at the axial velocity points such X0 in
Fig. 2. This extrapolation is carried out in vapor region satisfying �JDr < / < 0 with J typically taken equal to 5.

To make the extrapolated velocity field divergence-free we use a projection step based on an auxiliary pressure field paux

in the extrapolated vapor region obtained by solving
r2paux ¼ r � uext; ð23Þ
where uext denotes the extrapolated velocity as determined by the previous procedure. The equation is solved only for the
nodes at which the velocity was extrapolated. The boundary of this region on the liquid side is constituted by cell edges with
velocity components determined from the momentum equation. These velocity components do not need to be corrected and
therefore homogeneous Neumann conditions on paux are imposed there. Following [23], homogeneous Dirichlet conditions
are imposed on paux at the boundary of the velocity extrapolation region on the vapor side.

3.3. Energy equation

In the situations of our primary concern the entire flow is critically dependent on the phase change taking place at the
vapor–liquid interface which, in turn, hinges on an accurate evaluation of the temperature gradient. With the rapid tran-
sients characteristic of many vapor bubble problems, thin thermal boundary layers develop the resolution of which requires
a very fine discretization. Viscous boundary layers, on the other hand, tend to be thicker as inertia limits the time scale for
liquid motion and, furthermore, viscous effects are less critical to the system’s dynamics. Additionally, phase change often
leads to large thermal gradients which, therefore, are mostly localized near the interface. These considerations suggest that,
while a relatively coarse grid is sufficient for the momentum equation, a fine grid is necessary for the energy equation near
the interface. Furthermore, since this fine grid need not extend over the entire domain, one can make an efficient use of com-
putational resources determining the temperature field and its gradients with great accuracy while enjoying, at the same
time, the simplifications stemming from the use of a uniform non-adaptive grid.

Thus, we use two computational domains, a larger one, the momentum domain, on which the mass and momentum
equations are solved, and a smaller energy domain, localized near the interface, on which the energy equation is solved.
The size of the thermal domain depends on the type of problem, the only requirement being that its outer boundary remain
in a liquid region where the temperature is substantially unaffected by the interfacial processes. A suitable position for this
outer boundary may be established a priori by physical arguments, or determined by running coarsely resolved exploratory
calculations. Since velocity gradients are much smaller than temperature gradients, and incompressibility is not a critical
issue for the solution of the energy equation, the velocity field available on the momentum grid can be simply interpolated
to the thermal grid. We use linear interpolation for both the velocity field and the level set function.

An illustration is given in Fig. 3 which shows the grids used in the spherical vapor bubble collapse described later in Sec-
tion 4. The momentum domain extends to 5 times the initial bubble radius. A thermal domain extending to only 1.5 times
the bubble radius however proves sufficient. The resolution of the thermal domain shown here is 4 times higher than that
used for the momentum domain. We have tested refinements of 2, 4, 8 and 16 times with respect to the momentum grid and
the results of these tests are described later.

For the sake of stability, and in order to avoid the need for excessively short time steps, it is desirable to use an implicit
discretization of the energy equation. In place of the usual Crank–Nicholson scheme, for reasons explained below, we use a
fully implicit discretization of the diffusion term:
Tnþ1 � Tn

Dt
þ ðu � rTÞn ¼ a r2Tnþ1

� 	
: ð24Þ
This equation is solved by the conjugate gradient method. We use the Dirichlet condition to assign ghost values to the vapor
nodes adjacent to the interface in the same way described before for the pressure. With these ghost values, a standard finite-
difference discretization of the diffusion term of (24) is possible. For the convective term a second order ENO scheme is used,
which requires fictitious temperatures in the vapor region at distances of up to two cells from the interface. To generate
these values, the temperature field at time level tn is extrapolated linearly in the normal direction. For this purpose, first
the liquid-side temperature gradient normal to the interface, n � rTn, is propagated as a constant using the method based
on a first-order PDE developed in [45]. The interfacial values are found from rTn in a dimension-by-dimension manner as
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illustrated in Fig. 4. Here the radial derivative is calculated by using nodes A and B and the axial derivative by using nodes A
and C, rather than D, as C is closer to the interface. Temperature values for grid points in the vapor phase close to the interface
may then be defined using the interface temperature, Ts, and the extrapolated normal gradients as Tn

i;j ¼ Tn
s þ /n

i;jðn � rTÞni;j in
view of the signed distance nature of the level set function /. This extrapolation step is also useful when a node transitions
from the vapor to the liquid between tn and tn+1 and a liquid value for Tn is needed for the discretization of the time deriv-
ative. We have not used the Crank–Nicholson temporal discretization of the diffusion term to avoid the need for temperature
information from one node layer farther into the vapor, which would be necessary when the interface traverses a grid line
between tn and tn+1.

As the thermal grid spacing is smaller than the momentum grid spacing, the convective time scale in (12) is computed
using the thermal grid size Drtherm.

In summary, the computational sequence proceeds along the following steps:

1. advance the liquid–vapor interface by integrating the level set equation;
2. re-initialize the level set function by driving the solution to (10) to steady state in the pseudo-time s;
3. compute the thermal gradient normal to the interface and extrapolate the liquid temperature into the vapor region;
4. compute the new surface temperature from (8) by a first-order explicit stepping and, from it, the new vapor pressure

from (7). The temperature so computed serves as boundary condition for the interface;
5. solve the energy Eq. (3);
Fig. 4. Illustration of the procedure for the calculation of the normal temperature gradient at the interface. The radial component is calculated from the
temperatures at A and B, the axial component from the temperatures at A and C.
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6. solve the momentum equation by means of the projection method;
7. extrapolate the new velocity field into the vapor region enforcing the interface stress condition and incompressibility;
8. go back to step 1.

4. Verification

For the verification of the numerical method described in Section 3 we performed simulations of the damped volume
oscillations of a gas bubble, of the growth of a vapor bubble in a superheated liquid and of the collapse of a vapor bubble
in a subcooled liquid.

4.1. Volume oscillations of a gas bubble

The radial dynamics of a bubble in an unbounded liquid are governed by the well-known Rayleigh–Plesset equation [46]
which is suitable for a spherical bubble surrounded by an infinite liquid expanse. A fair comparison of our numerical method
with the results of this equation would require the use of a very large computational domain. For this reason, we use a form
of the Rayleigh–Plesset equation modified so as to account for a finite amount of liquid surrounding the bubble; this equa-
tion is [47,48]
Fig. 5.
and by
S� R
S

R
d2R
dt2 þ 2� ðS

2 þ R2ÞðSþ RÞ
2S3

" #
dR
dt

� �2
( )

¼ 1
q

pg � p1 �
2r
R
� 4l

R
dR
dt

� �
; ð25Þ
in which R is the instantaneous bubble radius, pg the bubble internal pressure and S the radius of a concentric spherical sur-
face on which the ambient pressure p1 is imposed. For the present purposes it suffices to compute the gas pressure from a
simple model; we use the relation for an adiabatic perfect gas
pg ¼ peq
Req

R

� �3c

; ð26Þ
in which the subscripted quantities are the values at equilibrium and c = 1.4 is the gas adiabatic index. In our calculation we
take Req = 23.75 lm and S/Req ’ 11.45, which gives a total liquid volume close to that of our computational domain which,
because of symmetry, is one quarter of a meridian plane extending 10 bubble radii in the r- and z-directions (see Fig. 3). On
the outer boundary of the computational domain we prescribe p = p1 and zero normal gradients of the velocity. The bubble
is initialized with a radius R0 = 25 lm so that it is slightly over-expanded with respect to its equilibrium radius causing it to
execute volume oscillations damped by the liquid viscosity l. The liquid properties are those of water at 101 kPa pressure
and 20 �C: q = 103 kg/m3, l = 10�3 kg/m s and r = 0.073 N/m. In the presentation of results we use a dimensionless time de-
fined by tH ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
p1=q

p
t=Req.

In order to determine the temporal accuracy of the method we perform four simulations with varying constant time
steps. The computational grid for these computations comprised of 256 � 256 cells so that the grid spacing is
Dr/Req = 0.039. Fig. 5 shows the result of the direct integration of Eq. (25) together with the results of the simulations carried
out with the smallest and largest time steps, Dt⁄ = 10�3 and Dt⁄ = 2 � 10�2. We define error norms by
L1 ¼
P
jf r � f jP
jf r j ; L2 ¼

ð
P
jf r � f j2Þ1=2

ð
P
jf rj2Þ1=2 ; ð27Þ
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in which f is either the pressure or one of the velocity components and the superscript r denotes the reference value, for
which we take the results obtained with the smallest time step. The summation is carried out over all grid points that lie
in the liquid region, i.e. all points that satisfy / > 0. Table 1 shows the L1 and L2 norms for the pressure and both velocity
components as well as the rate of convergence. These values were calculated at a non-dimensional time t⁄ = 6. The temporal
convergence rate is slightly greater than 1.

The spatial convergence rate is determined by performing simulations with varying grid resolutions, keeping the time
step fixed at 0.0512Drmin/Req = 10�3, in which Drmin is the mesh length of the finest grid used. The norms are calculated
by means of bilinear interpolation between grids. Fig. 6 shows the error norm as a function of grid size on a bi-logarithmic
scale for the radial velocity component. As expected, the spatial accuracy is very close to second order.

In the present algorithm the interface velocity can be calculated in two ways, either by following the zero-level-set points
or by interpolating the liquid velocity between the value at the node closest to the interface and the extrapolated value in the
bubble. We have found that the two results agree very closely, which proves the accuracy of the velocity extrapolation pro-
cedure. Fig. 7 compares the two components of the numerical velocity at the bubble surface with the analytic values given by
ur ¼ _R cos h and uz ¼ _R sin h at the non-dimensional time t⁄ = 2.25, at which the radius and velocity are R/Req = 1.012 andffiffiffiffiffiffiffiffiffiffiffiffi

q=p1
p

_R ¼ 0:127. The comparison is excellent.

4.2. Vapor bubble growth

The previous example illustrates the accuracy of the coupling between the level-set formulation and the momentum
equation. We now describe an example to demonstrate the performance of the energy–momentum coupling. For this pur-
pose we consider a spherical bubble at rest in a liquid at temperature T1 = 105 �C, initially at the saturation pressure, which
becomes superheated by a gradual decrease of the ambient pressure according to
Table 1
L1 and L

Press
L1

L2

Radi
L1

L2

Axial
L1

L2
p1ðtÞ ¼ psatðT1Þ � ð1� e�t=sÞDp: ð28Þ
As a consequence, the bubble starts to grow in a gradually developing temperature distribution. We take Dp = 19.5 kPa, cor-
responding to a superheat of 5 �C, and s = 5tc, with tc a characteristic time given by (see e.g. [49,51])
tc ¼
pR2

0

4Ja2a
; ð29Þ
in which Ja = qcpDT/Lqv is the Jakob number; for this case tc = 51.19 ls so that s = 0.256 ms. The initial radius is R0 = 50 lm.
We compare the results of the present method with those obtained from the method described and extensively validated in
[50], whose original code was adapted for the present purposes.

The computational domain is a cylinder with radius and height equal to 16 times the initial bubble radius R0 discretized
with a mesh Dr = Dz = R0/32. The domain for the energy equation can be taken much smaller as the temperature varies only
in the close neighborhood of the bubble. We take it to extend to only twice the initial radius with cells 16 times smaller than
the momentum cells so that each momentum cell contains 256 thermal cells. The outer boundary of the computational do-
main is treated as in the previous example except that the pressure is given by (28) rather than being constant. The physical
properties of the liquid are those of water at 101 kPa and 373.15 K: q = 955.1 kg/m3, l = 2.67 � 10�4 kg/ms, k = 0.68 W/m,
a = 1.69 � 10�7 m2/s, L = 2257 � 103 J/kg and r = 0.059 N/m. The simulation is stopped when R becomes close to 2R0 as
the thermal grid does not extend farther.

Because of the surface tension over-pressure, the initial vapor pressure is insufficient for equilibrium and the bubble ini-
tially shrinks slightly, causing a temporary condensation and attendant pressure increase. This process causes it to rebound,
after which growth starts in response to the falling ambient pressure.

Fig. 8(a) and (b) compare the bubble radius and radial velocity given by the present method (solid lines) with those of the
method of Ref. [50]. The results for the radius are essentially superposed within the thickness of the lines. A close inspection
of the figure for the velocity shows a slight difference near the initial minimum, and a more noticeable difference toward the
2 norms for the pressure, radial and axial velocity components.

Dt1 Dt2 Dt3 Dt4 Order

ure
1.402e�4 3.847e�4 8.648e�4 1.794e�3 1.23
2.523e�4 6.919e�4 1.555e�3 3.224e�3 1.23

al velocity component
9.566e�3 2.644e�2 5.937e�2 1.206e�1 1.22
1.147e�3 3.162e�3 7.092e�3 1.441e�2 1.21

velocity component
9.629e�3 2.653e�2 5.947e�2 1.208e�1 1.21
1.151e�3 3.166e�3 7.103e�3 1.443e�2 1.21
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end of the simulation. The former is due to the smaller liquid inertia caused by the finite size of the computational domain, as
opposed to the infinite one implied by the use of the Rayleigh–Plesset equation. To prove this statement we have carried out
the same simulation on a computational domain only 8 times larger than the initial radius. On this latter domain the min-
imum dimensionless velocity was �0.2380, while it was �0.2300 on the larger domain. Linear extrapolation to an infinite
domain size predicts a minimum velocity of �0.2220, to be compared with the value �0.2234 given by the Rayleigh–Plesset
simulation. At later times, this inertial effect compounds with the gradual approach of the bubble surface to the edge of the
energy domain (equal to twice the initial radius R0), which decreases the accuracy of the temperature calculation. These ef-
fects cause the more noticeable differences appearing for t/s > 3.

Fig. 9 compares the vapor pressure as given by the two models. We do not show a comparison of the temperatures as the
two lines are indistinguishable. As a consequence of the initial shrinkage of the bubble and consequent vapor condensation,
the surface temperatures rises slightly and, with it, the internal pressure. Both quantities start to decline as the ambient pres-
sure decreases and the growth proceeds.
4.3. Collapsing vapor bubble in a subcooled liquid

We now consider the converse process of the collapse of a spherical vapor bubble in an unbounded subcooled liquid. Far
away from the bubble the pressure is 101 kPa. If the bubble is to collapse, the liquid should be subcooled. This requirement
poses a delicate numerical challenge as vapor starts to condense as soon as the bubble wall begins its inward motion causing
the immediate formation of an unresolvably thin thermal boundary layer. In this situation it is impossible to produce grid-
independent results. This difficulty can be circumvented by using a gradually increasing ambient pressure, similarly to the
procedure used in the previous example, or by starting with an initial, non-uniform liquid temperature distribution. Here we
follow the latter route and take
Fig. 9.
solution
Tðr; z;0Þ ¼ T1 þ DT exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p

� R0

d

 !
; ð30Þ
with DT = 3.35 K the initial subcooling, R0 = 1 mm and d = 0.001R0 the thickness of the initial boundary layer. The physical
properties of the liquid are those of water at 101 kPa and 373.15 K. The computational domain on which the momentum
equation is solved extends to 5 times the initial bubble radius, with a grid spacing Dr/R0 = 0.013. Since the bubble radius
decreases in this process, the domain for the energy equation is taken to extend to only 1.5 times the initial bubble radius.
The grid spacing for the energy equation is varied by taking 1/2, 1/4, 1/8 and 1/16 of Dr/R0.

The bubble volume and vapor temperature during the early stages of collapse are shown in Fig. 10(a) and (b). This volume
is normalized by the initial volume V0 ¼ 4

3 pR3
0 and the time by tc defined in (29), which is the estimate of the collapse time of

a stationary spherical vapor bubble given by Florschuetz and Chao [49]; in the present case tc ’ 46.46 ms. Both the volume
and the surface temperature exhibit some oscillations in the early stages of the collapse, due to the competing effects of
phase change and inertia, as already found in [50,51].

For the coarsest grid there is only one node in the initial boundary layer. As the grid is refined this number increases until,
as can be seen from Fig. 10, the results for thermal grid spacings of Dr/8 and Dr/16 become nearly coincident, which proves
convergence with grid refinement. This convergence is seen more clearly in panel (c) where the bubble volume data from the
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Vapor pressure inside the growing bubble of the previous figure. The solid line is the result of the present method and the dashed line the benchmark
of [50].
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three coarser thermal grid resolutions are normalized with the results of the finest resolution. The difference between the
two finest resolutions is less than 3%.

During the collapse the bubble remains substantially spherical as shown by the thick black lines in Fig. 11. The other lines
in these panels show isotherms at four instants during the collapse, t/tc = 0.06, 0.13, 0.20 and 0.27. These lines are very close
to concentric circles as they should.
5. Application: laser-generated vapor bubble in a tube

We now briefly describe the application of the previous method to the vapor bubble generated by a laser pulse focused on
the mid-plane of a liquid-filled microtube. After the laser flash, the bubble undergoes a period of fast growth followed by a
relatively slow collapse. The results of experiments and a simple model for this problem were described in [52] and a more
detailed numerical investigation can be found in [24].
5.1. Simulation setup

We consider a cylindrical tube of diameter D, open at the two ends, containing a liquid column with length 2H. We take
advantage of symmetry to consider only one half of the physical problem; a schematic of the computational domain is shown
in Fig. 12, which also shows the velocity boundary conditions. Since we need a few nodes to remain in the liquid for the pur-
pose of velocity extrapolation, as already done in [53], we set to zero the radial velocity of the bubble interface when it gets
very close to the tube wall. As the radial velocity field in this region is already extremely small, this procedure has a
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negligible influence on the results. On the computational boundary corresponding to the end of the liquid column the pres-
sure is kept at the reference value and the velocity gradients normal to the computational boundary are set to zero.

During the whole growth and collapse process, the temperature only varies in the close neighborhood of the bubble. The
size of the energy domain needed was estimated by a preliminary low-resolution simulation as mentioned before. The tem-
perature at the top boundary of the energy domain is kept at the reference value T1. The tube wall is assumed to be
adiabatic.

The tube diameter D is taken as the characteristic length scale of the problem. The liquid column has length 2H and
A ¼ H=D is the aspect ratio of the liquid mass. Following [53], a scale for the velocity is defined by means of a simple con-
sideration in which the bubble pushes a liquid column of length H. Taking the initial vapor pressure above p1, Dp, as the
force per unit area that pushes the liquid, an acceleration can be defined as Dp/qH, on the basis of which we define a velocity
scale by multiplying by the length scale, D, and taking the square root:



Fig. 12. (a) Schematic of the computational domain used in the simulation of the growth and collapse of a laser-generated vapor bubble. A few lines of the
momentum (black) and thermal (red) grids are shown. The initial bubble is also indicated by the black curve. (b) The actual momentum and thermal grid
lines near the bubble. The thermal grid has a resolution 8 times higher than the momentum grid. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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V ¼
ffiffiffiffiffiffiffiffiffiffi
DpD
qH

s
¼

ffiffiffiffiffiffiffi
Dp
qA

s
: ð31Þ
A time scale ts is defined from the length and velocity scales:
ts ¼
D
V
¼ D

ffiffiffiffiffiffiffi
qA
Dp

s
: ð32Þ
Using these scales Reynolds, Weber and Péclet numbers are defined in the usual way as
Re ¼ qVD
l

; We ¼ qV2D
r

; Pe ¼ VD
a
: ð33Þ
Additionally, the aspect ratio A ¼ H=D is a relevant nondimensional parameter. The overpressure Dp is taken as the differ-
ence between the saturation pressure corresponding to the initial surface temperature and the ambient pressure p1.

The simulations presented below have been carried out for a tube with a diameter of 50 lm and an aspect ratio A ¼ 20 so
that the liquid column half-length is 1 mm. In order to limit the computational effort, this value for the aspect ratio is smaller
than those used in the experiments presented in [52], which were of the order of 500. Thus, we will only attempt a quali-
tative comparison with experiment.

Due to the small aspect ratio, the actual physical properties of water would result in fairly large Re and Pe numbers which
would, in turn, require a fine discretization to resolve the associated thin thermal boundary layers. We therefore selected the
liquid viscosity and thermal diffusivity so that the non-dimensional numbers are roughly the same as those in the
experiments. The properties for the liquid were chosen as q = 103 kg/m3, l = 1.4 � 10�3 kg/m s, r = 0.073 N/m,
a = 8.5 � 10�7 m2/s, L = 2257 kJ/kg and Pr = l/qa = 1.64. The reference pressure at the tube end is p1 = 101 kPa and the ref-
erence temperature at the top boundary of the energy domain is T1 = 25 �C.

The bubble nucleation process depends on non-deterministic thermodynamic fluctuations and cannot be included in the
numerical simulation. The computations are started from a spherical bubble with a diameter 2R0 equal to 20 lm, namely
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40% of the tube diameter, centered on the cylinder axis at the mid-point of the column. For the same reason described earlier,
an initial liquid temperature distribution is assumed given by the Gaussian function
Fig. 13.
line, Dr
Tðr; z;0Þ ¼ T1 þ DT exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p

� R0

d

 !2
2
4

3
5; ð34Þ
where DT is the difference between the initial vapor temperature and T1 and d is the thermal boundary layer thickness. The
effects of different choices for DT and d are studied in [24]. Here, for purposes of illustration, we only consider one case with
d/R0 = 0.75; the momentum grid spacing is Dr/D = Dz/D = 0.0156. For the initial superheat, as suggested by experiment [52],
we take DT = 145 �C with a corresponding vapor pressure pv(0) = 7.97 � 105 Pa. The velocity scale is V = 5.9 m/s and the time
scale ts = 8.48 ls. The resulting non-dimensional numbers are Re = 212, We = 24.2 and Pe = 349.7.
5.2. Thermal grid refinement

Fig. 13 shows the results of the simulation for the bubble length, interface velocity, vapor temperature and pressure as
functions of time. The bubble length is defined as the distance from the center of the initial bubble to the intersection of
the bubble surface with the tube axis of symmetry and the interface velocity as the velocity of this point. The lines in the
figure correspond to four different thermal grid spacings, Drtherm/Dr = 1/2 (dash-and-dots), 1/4 (dotted), 1/8 (dashed) and
1/16 (solid). It can be seen that, for these quantities, grid independence does not require a very large refinement due to
the moderate Re and Pe numbers.

The effect of the thermal grid refinement is seen more clearly in the calculation of the total heat flow out of the liquid
given by
I

krT � ndS; ð35Þ
where S is the bubble surface. This quantity is positive when heat flows prevalently out of the liquid and negative otherwise.
Fig. 14 shows the sensitivity of this heat flow to the thermal grid resolution upon the refinement of which the oscillations
strongly decrease.
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5.3. Qualitative comparison with experimental data

For the reasons explained before, we can only carry out a qualitative comparison with experimental data from [52], which
are shown in Fig. 15. Qualitatively, all aspects of the data are reproduced by the numerical simulation. The initial bubble
growth proceeds violently due to the large initial vapor pressure. The duration of this fast growth is short, however, as
the vapor temperature and, with it, the pressure decrease quickly due to the work of expansion and vapor condensation.
After this initial phase the motion proceeds largely by inertia. The slowness of the collapse relative to the growth and the
high level of the vapor temperature at the end of the collapse found in the experiments and also in the one-dimensional
model of [52] are reproduced.

In [54] the bubble was approximated as a cylinder occupying the entire tube cross section. The growth of the bubble was
initiated by applying a constant over-pressure Dp for a certain amount of time spulse, after which the bubble pressure was set
to the very small value corresponding to the vapor pressure at the undisturbed temperature. In [53] this model was further
100 200 300 400 500
0

20

40

60

80

40

60

80

100

120

140

160

180

          0

          2

         8

10

12
x105

0 100 200 300 400 500

V
 (

m
/s
)

-0.8

-0.4

0.0

0.4

0.8

1.2

4

6

t (μs)

( 
X

μm
)

0

T
v
(°

C
)

t (μs)
0 100 200 300 400 500

t (μs)

t (μs)

P v (
P

a)

0 100 200 300 400 500

(a) (b)

(c) (d)
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simplified by neglecting viscosity and assuming the bubble surface to remain sufficiently far from the tube ends. In this way
expressions could be derived for the maximum bubble volume Vmax and bubble lifetime:
Fig. 16.
grown
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4 pD2L
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; tB ’
2Dpspulse

p1 � p0
; ð36Þ
where V is the previous velocity scale. To use these relations we equate Dpspulse to the time integral of pv � p1 up to the time
of maximum bubble expansion finding, for our conditions, a normalized volume of 0.056 and a lifetime of 19 ls. Our com-
putational results give 0.07 and 45 ls, respectively, for these quantities. The difference in lifetimes is quite significant and is
due to the much slower collapse found both experimentally, in the model of [52] and in our own computations, a feature
which is not present in the simplified argument leading to (36). The maximum volume, on the other hand, is closer to
the simple estimate (36) as it depends on the expansion phase which is dominated by inertia and the bubble internal pres-
sure, with viscosity playing a relatively minor role.

5.4. Bubble shape and temperature field

Figs. 16 and 17 show the bubble shape, temperature field and velocity vectors at several instants during the growth and
collapse, respectively. The velocity vectors are plotted for every other grid cell. The initial configuration is shown in Fig. 16(a).
At t = 0.7ts = 5.9 ls (panel (b)) the bubble has grown to a size comparable to the tube diameter and it starts to acquire a cylin-
drical shape with a rounded cap. As shown by the different temperature color bars, already at this early stage the vapor tem-
perature has dropped by approximately 60 �C due to the work necessary to push the liquid and the fast vapor condensation.
The vapor pressure has dropped to almost atmospheric and the maximum velocity has already been reached. The rest of the
motion is governed by inertia. The flow field is primarily directed in the axial direction and, apart from the thin viscous
boundary layer at the tube wall, it is nearly uniform over the tube cross-section. In the early growth stages the thermal
boundary layer is squeezed toward the wall and compressed.

Panel (c) shows the bubble at its maximum size at t = 2.4ts = 20.2 ls. The surface of the bubble adjacent to the tube wall is
not completely flat, but slightly convex toward the axis of symmetry. This feature was also found in the isothermal calcu-
lations of [53,55] and is due to a small pressure gradient along the wall. Due to the boundary layer nature of the wall region,
the velocity near the wall has already reversed while the liquid near the axis is still moving outward. A small mass of liquid
near the bubble cap hotter than the bubble by about 8 �C can also be noted in this figure. This is in part a residue of the ther-
mal energy associated with the initial Gaussian temperature distribution and in part due to the heat released by the early
Snapshots of the simulation of a laser-generated vapor bubble growing in a microtube. (a) Initial configuration; at t = 5.9 ls (b) the bubble has
to a size comparable to the tube diameter, the vapor pressure has dropped to almost atmospheric and the liquid temperature has decreased
antly. The rest of the motion proceeds essentially by inertia. At t = 20.2 ls (c) the bubble has reached its maximum size and the fluid flow is starting
rse.



Fig. 17. Snapshots of the simulation of the collapse of the laser-generated vapor bubble of the previous figure. At t = 24.4 ls (a) the velocity field is almost
completely reversed. At t = 32.8 ls (b) a tongue of cold liquid starts to separate from the hotter fluid above the bubble and the tube wall. At t = 43.7 ls (c)
the cold liquid has nearly reached the plane of symmetry.
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vapor condensation. At the time of this image, the vapor temperature has already decreased substantially and, therefore, the
bubble is colder than this liquid spot. It may also be noted that, due to the cylindrical geometry, the amount of liquid con-
stituting this hot spot is actually smaller than it appears in the image.

The collapse of the bubble is shown in Fig. 17 at times t = 2.9ts = 24.4 ls, t = 3.9ts = 32.8 ls and t = 5.3ts = 43.7 ls. The bub-
ble shape remains similar until the very late stages. The slight convexity toward the axis near the tube wall persists for most
of the collapse. As shown in panel (c) of Fig. 13, the vapor temperature and pressure are close to their final values throughout
the collapse. In panel (b) one notes the beginning of a tongue of relatively cold liquid, which is more evident in panel (c), that
separates the warmer liquid near the axis noted before from the liquid near the wall in which the latent heat deposited has
been trapped by the adiabatic wall condition.
6. Conclusions

We have described a computational method suitable for the simulation of vapor–liquid (or gas–liquid) flows in which the
dynamical effects of the vapor can be approximated by imposing a time-dependent, spatially uniform pressure on the inter-
face. The simplification rendered possible by this approximation enables us to develop a very accurate numerical procedure
while maintaining the numerical method reasonably simple. We have also shown how the use of a finer grid for the energy
equation limits the computational effort needed for an accurate computation of momentum effects while, at the same time,
permitting a precise estimate of the crucial interfacial evaporation and condensation mass fluxes which drive the flow. Ver-
ification and grid refinement tests show that our method is first-order accurate in time and second-order accurate in space,
as intended.

As an illustration of the capabilities of the computational procedure we have simulated the growth and subsequent col-
lapse of the vapor bubble generated by a laser pulse focused on the mid-point of a liquid-filled microtube. The results pro-
vide an illuminating insight into the time evolution of the liquid temperature and of the bubble shape. Further results on this
problem will be found in [24].
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Appendix A. Bubble internal pressure

Conservation of energy at the liquid–vapor interface can be expressed as
ðq� qvÞ � n ¼ Lqvðuv � vÞ � n � L _m; ðA:1Þ
where uv is the vapor velocity at the interface, v the interface velocity, _m the local mass flux due to phase change and
q = � kn � rT is the heat flux with k the thermal conductivity. We assume that the vapor volume V is a closed and finite re-
gion in space. Integration over the surface S of this volume gives
L
I

_mdS ¼ L
d
dt
ðqvVÞ ¼

I
ðq� qvÞ � ndS; ðA:2Þ
where, in the first step, we have assumed the vapor density to be spatially uniform. Using the estimate of the heat flux on the
vapor side derived in [51] this equation can be written as
L
d
dt
ðqvVÞ þ qvVcs

dTs

dt
¼
I

kðrT � nÞdS; ðA:3Þ
where cs = cpv � L/Ts is the vapor specific heat along the saturation line. The vapor specific heat at constant pressure, cpv, is
treated as a constant as are the other thermal properties. The first term in the left hand side of (A.3) represents the latent
heat associated with phase change, the second term represents the change of the vapor enthalpy along the saturation line
and the right hand side represents the heat flux on the liquid side.

Conservation of mass at the interface is expressed by
_m ¼ qvðuv � vÞ � n ¼ qðu� vÞ � n ðA:4Þ
from which
u � n ¼ v � nþ qv
q
ðuv � vÞ � n ’ v � n; ðA:5Þ
in view of the smallness of qv/q. Upon using this approximation, the equation of state for the vapor and the Clausius–
Clapeyron relation, (A.3) can be written as (8) in the text.
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