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Filtering skill for turbulent signals for a suite of Nonlinear and

Linear Extended Kalman Filters

M. Branicki, B. Gershgorin, A. J. Majda

Department of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute of
Mathematical Sciences, New York University, NY 10012, United States

Abstract

The filtering skill for turbulent signals from nature is often limited by model errors cre-
ated by utilizing an imperfect model for filtering. Updating the parameters associated with
unresolved or unknown processes in the imperfect model “on the fly” through stochastic
parameter estimation is an efficient way to increase filtering skill and model performance.
Here, a suite of filters implementing stochastic parameter estimation is examined on a
nonlinear, exactly solvable, stochastic test model mimicking turbulent signals in regimes
ranging from configurations with strongly intermittent, transient instabilities to laminar
behavior. Stochastic Parameterization Extended Kalman Filter (SPEKF) systematically
corrects both multiplicative and additive biases in the observed dynamics and it involves
exact formulas for propagating the mean and covariance including the unresolved param-
eters in the test model. The remaining filters use the same nonlinear test model but
they introduce additional model error through different moment closure approximations
and/or linear tangent approximation used for computing the second-order statistics in the
stochastic forecast model. A comprehensive study of filter performance is carried out in
the presence of various sources of model error as the observation time and observation
noise levels are varied. In particular, regimes of filter divergence for the linear tangent fil-
ter are identified. The estimation skill of the unresolved stochastic parameters by various
filters is also discussed and it is shown that the linear tangent filter, despite its popularity,
is completely unreliable in many dynamical regimes. The results presented here provide
useful guidelines for filtering turbulent, high-dimensional, spatially extended systems with
significant model errors. They also provide unambiguous benchmarks for the capabilities
of linear and nonlinear extended Kalman filters on a stringent, exactly solvable test bed.
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filter, Extended Kalman Filter, data assimilation.
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1. Introduction

A central problem in many contemporary applications in science and engineering lies
in developing techniques for real-time statistical estimation of a state of a natural sys-
tem based on partial observations and an imperfect model. This process is referred to
as filtering and is crucial for making accurate predictions of the future state of the sys-
tem. Development of efficient, accurate and robust filtering algorithms obviously poses
a problem with significant practical impact in a number of strategic areas. Important
contemporary examples include tracking and positioning systems, real-time filtering of
multiscale turbulent signals for prediction of weather and climate, as well as the spread of
hazardous plumes or pollutants.

A major difficulty in accurate filtering of noisy turbulent signals with many degrees of
freedom is model error [46, 31]; the fact that the signal from nature is processed through
an imperfect model where important physical processes are parameterized due to inad-
equate numerical resolution or incomplete physical understanding. Virtually all atmo-
sphere, ocean, and climate models with sufficiently high resolution are turbulent dynamical
systems with multiple spatio-temporal scales. Similarly, many contemporary engineering
applications such as satellite orbit control [28, 7], distributed power generation systems
[48, 49] or modern optical devices [42, 39] require real-time filtering with nonlinear models.

Dealing with model error is often difficult since its exact properties are, by its very
nature, unknown in any realistic scenario. Various strategies for mitigating model error
in nonlinear filtering have been developed and they roughly fall into techniques based
on deterministic models, e.g., shadowing filters [24], and techniques combining stochastic
models and sequential Bayesian filters. Miscellaneous approaches have been developed
in the latter context; examples include particle filters [6, 37, 36, 4, 43], reduced order
filters [18, 45, 11] and a myriad of ensemble Kalman filters [10, 5, 1, 2, 44, 22] which
draw from the classical Kalman filter framework [25, 26]. Most of these techniques have
their own niches of applicability but they generally suffer from the so-called “curse of
dimension” (e.g., [4, 43]) and/or the “curse of ensemble size” (e.g., [19, 31]) when applied
to realistic systems; consequently, the unifying feature of these methods in the context of
filtering high-dimensional turbulent systems is often an unrealistically large computational
overhead necessary for a reliable operation.

Filters utilizing stochastic forecast models with ‘on the fly’ parameter estimation for re-
ducing model error offer a cheap and skillful alternative for filtering turbulent systems with
many spatio-temporal scales [13, 14, 21, 31, 17]. The real-time, adaptive parameterization
of the unresolved scales used in such filters requires augmentation of the forecast model
with the dynamics of hidden stochastic parameters and leads to a nonlinear system for
each mode of the signal in the turbulent spectrum. The Stochastic Parameter Estimation
Filter (SPEKF, [13]) uses exact nonlinear statistics and it has been successfully tested in
a hierarchy of complex models [13, 14, 21, 27, 17]. However, other filter implementations
based on the Extended Kalman Filter (EKF, [26]) and various moment closure approxi-
mations are possible within the same framework. These filters introduce additional model
error through the use of incorrect statistics but are often easier to derive. It is therefore
imperative to compare the skill of these filters with SPEKF using an unambiguous test
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model which allows for disentangling the following two sources of model error:

(i) Imperfect forecast model used for filtering. These errors arise when the signal from
nature is processed through a forecast model which parameterizes important physical
processes due to inadequate numerical resolution or incomplete physical understand-
ing.

(ii) Incorrect statistics used in the filtering algorithm due to a particular moment closure
approximation applied to the forecast model.

In this study we assess the performance of various linear and nonlinear filters employ-
ing the stochastic parameter estimation for filtering turbulent systems on a stringent test
bed mimicking various prototypical phenomena in an unambiguous mathematical frame-
work. Our test model is derived from the system developed in [13] for filtering multiscale
turbulent signals in the presence of significant model error associated with unknown pro-
cesses inducing transient instabilities. Here, we focus on understanding the consequences
of incorrect statistics introduced through various moment closures on the filtering skill.
An attractive feature of our nonlinear test model is that its path-wise solutions and its
non-Gaussian statistics, including the augmented stochastic parameters, can be obtained
analytically. Moreover, as the parameters in the test model are varied, it can be tuned
to mimic a wide range of realistic turbulent signals; the dynamical regimes we focus on
here, all with overall ensemble mean stability, include: (i) regimes with plentiful transient
instabilities, (ii) regimes with intermittent, large-amplitude bursts of transient instability
interleaved with quiescent phases and (iii) laminar behavior.

We will show below how combining the analytical tractability of the test model with
an appropriate choice of the “synthetic truth” signals can be used for disentangling the
effects of various errors on filter performance. Results discussed in the subsequent sections
include:

(i) A comprehensive understanding of the effects of model error on the filtering skill
for a suite of linear and nonlinear extended Kalman filters implementing stochastic
parameter estimation for different modes in the turbulent spectrum.

(ii) Identification of filters in our test suite which provide the best and the most robust
real-time estimation of hidden parameters in the forecast model for a range of modes
in the turbulent spectrum.

Besides benchmarking the performance of our suite of filters, these findings should be very
useful in developing cheap techniques for filtering spatially extended systems involving
multiple spatio-temporal scales and sparse observations [15, 16, 17, 21, 27].

The analysis presented here is structured as follows: The model and its different dy-
namical regimes mimicking turbulent signals are discussed in section 2. The suite of filters
utilizing “on the fly” stochastic parameter estimation and different moment closure ap-
proximations are discussed in section 3. The skill of the filtering algorithms, as well as the
effects of different sources of model error, are discussed in sections 5-9. Finally, section 10
contains the concluding discussion and describes future goals for research in this topic.
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2. The test model and its diverse regimes of mean-stable dynamics

The nonlinear test model which we use here for filtering turbulent signals is given by
the following stochastic system introduced in [13, 14]

(a) du(t) =
[
(−γ̂ − γ(t) + iω)u(t) + b(t) + f(t)

]
dt+ σudWu(t),

(b) db(t) =
[
(−γb + iωb)(b(t)− b̂)

]
dt+ σbdWb(t),

(c) dγ(t) = −dγγ(t)dt+ σγdWγ(t),

 (1)

where Wu,Wb are independent complex Wiener processes and Wγ is a real Wiener pro-
cess. There are nine parameters in the system (1): two damping parameters γb, dγ, two

oscillation frequencies ω and ωb, two stationary mean terms b̂ and γ̂ and noise amplitudes
σu, σb, σγ; f is a deterministic forcing.

Here, we regard u(t) as representing one of the resolved modes in a turbulent signal
where the nonlinear mode-interaction terms are replaced by a stochastic drag γ(t) and
an additive noise term b(t), as is often done in turbulence models [29, 30, 8]. The aug-
mented system (1) was introduced in [13] for filtering multiscale turbulent signals where
the stochastic parameters, γ(t) and b(t), are estimated adaptively ‘on the fly’ in order to
improve the filtering skill. The novel feature of this approach is that the augmented dy-
namics of the hidden bias correction terms (1b,c) is modelled via the Ornstein-Uhlenbeck
processes with finite decorrelation times.

The nonlinear system (1) has a number of attractive properties as a test model in our
analysis. Firstly, the system (1) has a surprisingly reach dynamics mimicking turbulent
signals in various regimes of the turbulent spectrum. Secondly, due to the particular
structure of the nonlinearity in (1), exact path-wise solutions and exact second order
statistics of this non-Gaussian system can be obtained analytically, as discussed in [15, 16,
13] and recapitulated in Appendix A. The mathematical tractability of this model and
its rich dynamical behavior provides a perfect test bed for analyzing effects of model error
in a suite of filters introduced in §3.

2.1. Regimes of mean stable dynamics

We focus here on describing the most interesting dynamical regimes of the system
(1). The analytical formulas for path-wise solutions of (1) and its exact second-order
statistics, derived previously in [15, 16, 13], are briefly recapitulated in Appendix A. All
of the dynamical regimes discussed here are characterized by the mean-stability of their
solutions in the sense defined below:

Definition 1.[Global mean stability] Given the solutions

xxx(t, t0) = (u(t, t0), b(t, t0), γ(t, t0))T

of the system (1) with initial condition xxx0 ≡ (u0, b0, γ0)T , the dynamics of (1) is said to be
globally mean stable if there exists a finite constant, C, depending on xxx0 and t0 such that

max
t∈[t0,∞)

∣∣xxx(t, t0)
∣∣ < C,
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for all times t0; the overbar here and below denotes ensemble average.

Proposition 1.[Mean stability of system (1)] The dynamics of the stochastic system (1)
is mean stable provided that

χ = −γ̂ +
σ2
γ

2d2
γ

< 0, (2)

where γ̂ is the mean damping in u(t), dγ is the damping in γ(t), and σγ is the noise variance
in (1c).

Remark. The mean stability of the system (1) is controlled by the mean damping, γ̂, in
u(t) and the dynamical properties of fluctuations about the mean damping represented by
γ(t). The additive noise term, b(t), has no effect on the mean stability.

A simple proof of Proposition 1 is given in Appendix A. The proof exploits the exact
formulas for the first moments of (1) and does not rely on the linearization of (1).

Definition 2.[Decorrelation time] Since we study only one Fourier mode here, we define
the decorrelation time of each component in (1) as the time it takes for that component to
decorrelate in the equilibrium statistical steady state. Mathematically, the decorrelation
time of a scalar solution x(t) is defined as the integral on the positive half-line (from 0 to
∞) of the absolute value of the correlation function

R(τ) ≡ (x(t)− x)(x(t+ τ)− x)∗,
where the overbar denotes equilibrium ensemble average and “ * ” is the complex conjugate.

Using Definition 2 and the path-wise solutions of the system (1) given in Appendix
A, it is straightforward to check that the decorrelation time of γ(t) is given by 1/dγ, and
the decorrelation time of b(t) is given by 1/γb. Computation of the decorrelation time of
u(t) is more involved and not necessary for our purposes; it is sufficient here to use the
approximate decorrelation time, 1/γ̂, based on the mean damping in u(t).

Based on the mean-stability criterion (2), it is possible to distinguish the following:

Regimes of mean-stable dynamics of the system (1)

(I) σγ, dγ � 1 , σγ/dγ ∼ O(1) and γ̂ > 0 sufficiently large so that χ < 0.

This is a regime of rapidly decorrelating γ(t). The dynamics of u(t) is dominated
by frequent, short-lasting transient instabilities (see figures 1, 2). Decorrelation
time of u(t) is approximately 1/γ̂ and can vary widely. This type of dynamics is
characteristic of the turbulent energy transfer range.

(II) σγ, dγ ∼ O(1) small, σγ/dγ ∼ O(1) and γ̂ > 0 sufficiently large so that χ < 0.

In this regime the decorrelation time of γ(t) is long. The dynamics of u(t) is charac-
terized by intermittent bursts of large-amplitude, transient instabilities followed by
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quiescent phases (see figure 10). This regime is characteristic of the turbulent modes
in the dissipative range. Similarly to (I), decorrelation time of u(t) can vary widely
in this regime.

(III) σ2
γ/2d

2
γ � 1, σγ ∼ O(1) and γ̂ � 1 sufficiently large so that χ < 0. This regime is

characteristic of the laminar modes in the turbulent spectrum (see figure 23). Here,
u(t) decorrelates rapidly compared to γ(t) and the transient instabilities occur very
rarely. In the extreme case when γ̂ � σ2

γ/2d
2
γ there are almost surely no transient

instabilities in the dynamics of u(t).

3. Suite of filters

We focus here on computationally cheap algorithms for filtering turbulent signals with
multiple spatio-temporal scales which employ stochastic turbulence models for the un-
resolved scales. As pointed out in §2, the augmented stochastic forecast model (1) for
filtering individual Fourier modes of the physical system is nonlinear. A standard tech-
nique for reconstructing the observed mode u(t) and estimation of the hidden stochastic
parameters, γ and b, involves the linear tangent approximation of the forecast model and
Kalman filtering. However, the use of the Extended Kalman Filter (EKF, [26]) is rarely
justified in practice and it often leads to divergent solutions on turbulent signals, as will
be shown in §7-9.

One alternative approach to this problem, besides deriving exact model statistics as in
SPEKF below, is to avoid the linearization in propagating the prior statistics in the filter
through a moment closure approximation applied to the nonlinear forecast model. Despite
the relative simplicity of filters obtained in this way, they are not uniquely optimal in the
same sense as Kalman filtering for linear systems. One potential deficiency, common to all
nonlinear extensions of the Kalman filter, is that the filter update rules only involve the
second-order statistics. Clearly, the gaussianity of the signal can be lost due to the nonlin-
earity and such filters may not be optimal anymore. Moreover, if the moment closures are
used in derivation of the second order-statistics in the nonlinear filters, additional model
error is introduced to the problem.

In this section we first outline the properties of basic Kalman filtering with a linear
tangent approximation, leading to the Tangent Extended Kalman Filter (TEKF). We then
develop a general framework for filtering with quadratic models and introduce four non-
linear filters based on different moment closures. Stochastic Parameterization Extended
Kalman Filter (SPEKF), which we use as a benchmark here, exploits the particular struc-
ture of the forecast model (1) and uses exact formulas for the second-order statistics with-
out any moment closures. Performance of these filters and the effects of various model
errors will be tested and discussed in the subsequent sections 7-9.

3.1. Basic filtering for linear models

The classical discrete Kalman filter [25] is a two-step, predictor-corrector method which
incorporates noisy observations of a physical system at a discrete sequence of times, TM =
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{t1, t2, ..., tM}, in order to adjust the model prediction for the state of the system at the
same times TM . In its original formulation the model dynamics is described by a linear
stochastic process, all uncertainties and initial conditions have Gaussian distributions,
and the filtering process can be described uniquely in terms of the mean state and the
covariance matrix. In such a case the model forecast, {xxxm}m=1,...,M , and the observations,
{vvvm}m=1,...,M , both recorded at the same sequence of times TM can be written as:

model forecast : xxxm+1 = Fm+1xxxm + Φm+1 + σσσm+1, (3)

observation : vvvm+1 = Gxxxm+1 + σσσom+1, (4)

where xxxm+1 represents the n-dimensional state of the system at time tm+1, Fm+1 is a linear
deterministic operator that maps xxxm forward in time, Φm+1 is the deterministic forcing at
tm+1, and σσσm+1 is an n-dimensional white Gaussian vector at time tm+1. For simplicity in
exposition the observations {vvvm}m=1,...,M of the true state are modelled here by a linear
transformation with the observation operator G and additive white Gaussian noise σσσo.

The Kalman solution to filtering the linear system (3), (4) at the discrete sequence of
times TM produces an optimal estimate (see [25]) of the posterior mean and covariance of
the system state at tm+1 based on the observation vvvm+1 and the model prediction prior to
incorporating the observation. The prior mean and covariance at time tm+1 are denoted
by x̄xxm+1|m and Rm+1|m, while the posterior mean and covariance are denoted by x̄xxm+1|m+1

and Rm+1|m+1.

The second order statistics in the Kalman filter is updated iteratively as follows:

Initialization:
x̄xx0|0 = E[xxx0], R0|0 = V ar[xxx0], (5)

Prior update (model forecast):

x̄xxm+1|m = Fm+1x̄xxm|m + Φm+1, (6)

Rm+1|m = Fm+1Rm|mF
∗
m+1 + σσσm+1σσσ

T
m+1. (7)

Posterior update (observation incorporated):

x̄xxm+1|m+1 = x̄xxm+1|m +Km+1(vvvm+1 −Gx̄xxm+1|m), (8)

Rm+1|m+1 = (I −Km+1G)Rm+1|m, (9)

Km+1 = Rm+1|mG
∗ (GRm+1|mG

∗ + σσσom+1σσσ
o T
m+1

)−1
. (10)

The operator Km+1 is referred to as the Kalman gain at tm+1 and the asterisk, “ ∗ ” in
(7) and (10) denotes the complex conjugate.
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3.1.1. Tangent EKF

The procedure described below is the simplest and historically the earliest extension
of the Kalman filter to deal with nonlinear stochastic forecast models (see [26]). We will
refer to such a procedure as the Tangent Extended Kalman Filter (TEKF) in order to
differentiate it from other extensions of the Kalman filter to nonlinear models discussed
in the next section.

Assume that the continuous-time, imperfect forecast model for the dynamics of a phys-
ical system is given by the following nonlinear (Ito) stochastic differential equation (see,
e.g., [12, 23])

dxxx = fff(xxx, t)dt+ dW(t), W(t) ∼ Nn(0,Σ(t)), (11)

where xxx is the n-dimensional state vector, fff denotes the deterministic part of the model,
and W(t) is an n-dimensional Wiener process with covariance Σ. The stochastic noise
accounts for the unresolved processes in the forecast model. The sequence of observations,
{vvvm}m=1,...,M , where each vvvm is a k-dimensional vector (k 6 n), is modelled here for
simplicity by a linear transformation

vvvm = Gxxxm + V(tm), V(t) ∼ Nk
(
0, Q(t)

)
, (12)

where V(t) a k-dimensional white Gaussian vector with covarianceQ(t). (The observations
can be modelled by some nonlinear, time-dependent function but this complication is
unnecessary here.)

The model forecast step in TEKF algorithm is obtained by linearizing the model fff(xxx, t)
about the posterior mean x̄xxm|m at tm and integrating the resulting tangent model between
the successive observations, generating the prior x̄xxm+1|m at tm+1 = tm + ∆tobs. Conse-
quently, the forecast step in TEKF follows the general steps (6)-(10) with

Fm+1 = eAm|m∆tobs , (13)

Rm+1|m = eAm|m∆tobs
(
Rm|m +

∫ tm+1

tm

e−Am|m sQ(s) e−A
T
m|m s ds

)
eA

T
m|m∆tobs , (14)

where Am|m = ∇fff(x̄xxm|m) is the the Jacobian of fff at tm evaluated at the posterior mean
xxxm|m. Details of implementation of TEKF for the forecast model (1) are discussed in
Appendix B.1.

3.2. Nonlinear filters for quadratic models

We introduce here general equations for the evolution of the first two moments of
the stochastic system (11) which provide a setting for deriving extensions of the Kalman
filter for nonlinear forecast models through various moment closure approximations. The
discussion is restricted here to quadratic models, such as the system (1), but this framework
readily generalizes to any finite dimension.
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The moment closure approximations discussed here introduce additional errors into
the filtering algorithms through incorrect statistics. It is important to understand when
these errors are large enough to compete with errors introduced by incorrectly modelled
dynamics or inadequate parameterization. We will show later that the effects of these two
sources of model error can be disentangled by using the same system for both generating
the synthetic “truth” signal and for filtering.

To this end, consider an imperfect quadratic forecast model (11) with the deterministic
part, fff , in the form

fff(xxx, t) = L̂(t)xxx+ B(xxx,xxx, t) + F̄(t), (15)

where xxx is an n-dimensional state vector, L̂ is a linear operator, B is a bilinear function,
and F̄ is a deterministic forcing. In what follows we will skip the explicit dependence on
time in fff in order to simplify the notation.

It can be easily shown (e.g., [23]) that by adopting an analogue of the average Reynolds
decomposition of the state vector, xxx = x̄xx+xxx′, such that xxx′ = 0 and x̄ix′j = 0, the evolution

of the mean x̄xx and covariance R ≡ xxx′xxx′T of the process xxx satisfying (11) is given by a) ˙̄xxx = fff(x̄xx) + B(xxx′,xxx′),

b) Ṙ = RAT (x̄xx) + A(x̄xx)R + Σ + xxx′BT (xxx′,xxx′) + B(xxx′,xxx′)xxx′T ,
(16)

where A is the Jacobian of fff evaluated at x̄xx, i.e., A(x̄xx) ≡ ∇fff(x̄xx) and the overbar denotes
an ensemble average.

For a general quadratic forecast model, solving the equations (16) requires the knowl-
edge of the probability density p(xxx, t) associated with the process xxx satisfying (11). If
p(xxx, t) is unknown, some type of moment closure is usually required. In our framework
this is equivalent to making certain assumptions in (16) about the terms

B(xxx′,xxx′) and xxx′BT (xxx′,xxx′) + B(xxx′,xxx′)xxx′T ,

which include the second and third moments, respectively. It is important to understand
when errors associated with these approximations are important enough to compete with
errors due to an imperfect model. A very attractive feature of the test model (1) is that
its mean and covariance can be derived exactly due to the particular form of nonlinearity.
In sections 6-9 we will argue that this property allows for unambiguous analysis of the
effects of incorrect statistics and imperfect models on filter performance.

We focus here on four nonlinear filters which will be compared with TEKF in the
subsequent sections. All of these filters, except for SPEKF discussed first, introduce
additional model error due to various moment closure approximations applied to (16).

3.2.1. Stochastic Parameterization Kalman Filter (SPEKF)

This filter was extensively discussed in [13, 14, 21]. SPEKF uses the exact second-
order statistics including the augmented stochastic parameters with no moment closure
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approximations. The exact analytical formulas for the mean and covariance in SPEKF
were derived in [13]; they can be found due to the particular structure of the quadratic
nonlinearity in the forecast model (1). The iteration of the SPEKF algorithm is analogous
to the steps discussed for the Kalman filter except that an equivalent of the full system
(16) is used for propagating the prior statistics.

3.2.2. Gaussian Closure Filter (GCF)

The quasi-Gaussian closure approximation implies neglecting the third and higher mo-
ments of the probability density p(xxx, t) associated with the process xxx satisfying (11). For
quadratic models only the third moments have to be neglected in (16b), i.e., GCF assumes

xxx′BT (xxx′,xxx′) + B(xxx′,xxx′)xxx′T = 0. (17)

The closure (17) results in a fully coupled dynamical system for the second order statistics
given by 

˙̄xxx = fff(x̄xx) + B(xxx′,xxx′),

Ṙ = RAT (x̄xx) + A(x̄xx)R + Σ, A(x̄xx) = ∇fff(x̄xx).
(18)

The system (18) represents the exact evolution of the second order statistics for any
Gaussian process where (17) is satisfied identically. Otherwise, the closure introduces
additional error into the filtering procedure.

In GCF the prior mean and covariance, x̄xxm+1|m, Rm+1|m, are given by the solution of
(18) evaluated at tm+1 with the initial condition: x̄xxtm = xxxm|m, Rtm = Rm|m. The posterior
analysis at each observation time tm is carried out in the same way as for the Kalman
filter using equations (8)-(10). Details of implementation of GCF on the quadratic test
model (1) are discussed in Appendix B.4.

3.2.3. Deterministic Mean Filter (DMF)

In the engineering literature this algorithm and the tangent approximation leading to
TEKF (see §3.1.1) are referred to, rather confusingly, as the Extended Kalman Filter (e.g.,
[47, 39, 41, 9]). We refer to the algorithm below as DMF in order to avoid the confusion
with TEKF.

In DMF the prior mean and covariance, x̄xxm+1|m, Rm+1|m, are updated by solving a) ˙̄xxx = fff(x̄xx),

b) Ṙ = RAT (x̄xx) + A(x̄xx)R + Σ, A(x̄xx) ≡ ∇fff(x̄xx),
(19)

on the time interval [tm, tm+1] with initial conditions xxx(tm) = xxxm|m, R(tm) = Rm|m.

Similarly to GCF, DMF neglects the third and higher moments in the evolution of the
covariance. However, DMF uses only the deterministic part of the forecast model (11)
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to propagate the mean, effectively neglecting correlations between variables by assuming
that

fff(xxx) = fff(xxx).

Within the general framework for quadratic models (16) this ad-hoc closure corresponds
to imposing

xxx′BT (xxx′,xxx′) + B(xxx′,xxx′)xxx′T = 0, and B(xxx′,xxx′) = 0, (20)

in the equations for the evolution of the prior mean and covariance x̄xxm+1|m and covariance
Rm+1|m

Remark. (i) The ad-hoc moment closure in (19), assuming that the second moments in
the equation for the mean (19a) vanish, is inconsistent with the nontrivial evolution of the
covariance in (19b). (ii) The covariance in DMF and GCF satisfies the same evolution
equation. However, in GCF the equations for the mean and covariance are coupled through
the second moments and the Jacobian, A(x̄xx), in GCF is evaluated at a different mean.

The posterior update in DMF, incorporating observations at tm+1, is carried out in the
same fashion as in the Kalman filter (cf. (8)-(10)). Details of the implementation of DMF
on the test model (1) are discussed in Appendix B.2.

3.2.4. Split Deterministic Mean Filter (SDMF)

This filter uses the same moment closures as DMF but the propagation of the prior
mean and covariance are fully decoupled here. Similarly to DMF, the prior mean, x̄xxm+1|m,
in SDMF is updated through the deterministic part of the forecast model by solving

˙̄xxx = fff(x̄xx), (21)

on a time interval [tm, tm+1] with initial condition xxx(tm) = x̄xxm|m.
The prior estimate of the covariance matrix, Rm+1|m, at tm+1 is computed, as in TEKF,

by integrating (19b) between successive observations with the Jacobian A(x̄xx) evaluated at
x̄xxm|m, i.e.,

Rm+1|m = eAm|m∆tobs
(
Rm|m +

∫ tm+1

tm

e−Am|msQ̂(s)e−A
T
m|msds

)
eA

T
m|m∆tobs , (22)

where
Am|m = ∇fff(x̄xxm|m), ∆tobs = tm+1 − tm. (23)

The posterior update is carried out as in the Kalman filter through (8)-(10). Details of
implementation of SDMF on the test model (1) are discussed in Appendix B.3.

4. Generation of the synthetic “truth” signal

As already mentioned earlier, our main focus here is to understand the effects of incor-
rect statistics used in the filters employing stochastic parameter estimation on the filter
performance (cf. §3). We thus use same system (1) for both generating the synthetic truth
and for filtering the observed signal. This approach avoids overshadowing the effects of
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model error by incorrect dynamics used in the filters. The system parameters used for
filtering the observed signal, i.e.,

ΛM = {ωM , σMu , γ̂M , dMγ , σMγ , b̂M , γMb , ω
M
b , σ

M
b }, (24)

are, in principle, independent of the ones used for generating the truth,

Λ = {ω, σu, γ̂, dγ , σγ, b̂, γb, ωb, σb}. (25)

The numerical realizations of the truth signal are obtained by integrating the exact solu-
tions (A.1-A.3) of (1) which are derived in Appendix A.

We assume that only the ‘resolved’ variable u(t) is directly observed. Updates of
the augmented dynamics of the hidden variables, γ and b, in (1) have to be estimated
adaptively during the filtering from the observations of u(t) and from the forecast model.
Consequently, the observation operator G used in the posterior update (8)-(10) in all filters
has the form

Ĝ =

(
1 0 0 0 0
0 1 0 0 0

)
. (26)

The filtering is carried out for forced systems with the deterministic forcing given by

f(t) = Afe
iωf t, (27)

where the amplitude is Af = 1 and the frequency is ωf = 0.15. The number of assimi-
lation cycles is chosen so that in each case the model is run for about 20 periods of the
deterministic forcing. A number of tests of the filter performance for both correct and
incorrect parameter values are discussed in §7-9.

5. Filtering with perfect model

The performance of a perfect filter, i.e., a filter which is not affected by model error,
provides a benchmark for the subsequent analysis of skill of imperfect filters. As discussed
in §4, we use the same system for generating the synthetic truth and for filtering the
observed signal. Thus, the perfect filter here is given by SPEKF (cf. §3.2.1) which uses the
nonlinear model (1) with exact second-order statistics and correctly specified parameters,
i.e., ΛM = Λ (see (24), (25)).

5.1. Measure of filter skill and parameter estimation

We measure how well the perfect filter reproduces the truth signal (we refer to this
property as skill) by means of the root mean square difference (RMS) between the true sig-
nal, {xm}m=1,...,M , and the filtered solution, {x̄m|m}m=1,...,M , recorded at the same sequence
of times of length M .

We start by introducing some notions used for quantifying filter the performance:
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Definition [RMS error] The RMS difference (or RMS error) between the truth sequence
{xm}m=1,...,M and the filtered solution {x̄m|m}m=1,...,M is defined as

RMS(x) =

√√√√ 1

M

M∑
m=1

|x̄m|m − xm|2. (28)

The RMS error is computed independently for each component of the filtered signal after
discarding the initial transient onto the attractor.

Definition[Filter skill ] Consider filtering a turbulent signal at a single spatial location
based on a sequence of observations {vvvm}m=1,...,M at times {t1, ..., tM} and assume the
truth {xm}m=1,...,M at the same time sequence is known. We say that the filter has a skill
for filtering the observed component u(t) in (1) when the RMS error between the truth
and the filtered solution is smaller than the observation error.

The accuracy with which the dynamics of the unobserved components is estimated is
judged by comparing the RMS errors between the estimated components and the synthetic
truth.

Definition[Filter divergence ] We define filter divergence as the outcome of the filtering
procedure when the average RMS error in estimated signal exceeds the observation error.

Remark. Note that in our special case for a single Fourier mode u(t) in (1) filter divergence
means that simply trusting the observations provides a better estimate of the true signal
than when running a divergent filter. When filtering a spatially extended turbulent system
with sparse observations in the spatial domain the above definitions do not apply. Even if
the RMS error of the filtered solution is large, there are not enough points on the physical
grid for reconstructing the signal everywhere in the domain solely from the observations;
in such a case filters can have significant skill while exceeding (pointwise) the observation
error [15, 16, 31].

5.2. Performance of the perfect filter in various dynamical regimes

The filtering skill of the perfect model and parameter estimation in each dynamical
regime outlined in §2.1 depends on the observation time ∆tobs, the observation noise
variance ro, and the characteristics of the dynamics of γ(t). We distinguish four general
cases characterized by different performance of the perfect filter. Each case is associated
with different ratio between the decorrelation times of u(t) and γ(t). (The decorrelation
time of u(t) is given approximately by 1/γ̂, and the decorrelation time of γ(t) is 1/dγ, as
discussed in §2.1).

Case 1: 1/dγ < ∆tobs � 1/γ̂1/dγ < ∆tobs � 1/γ̂1/dγ < ∆tobs � 1/γ̂ (Regimes I, II). Observation time small compared to the decor-
relation time of u(t) but longer than that for γ(t).

– Good skill in filtering the observed signal u(t).

– Mean values of γ(t) and b(t) recovered. Extrema of instability (i.e., dominant
minima of γ(t)) detected.
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In this case filtering with perfect model has a high skill. The observation time here is
too long to resolve the dynamics of γ(t). However, the mean values of the parameters
are recovered correctly. Accurate estimation of γ is not essential for skillful filtering
of u as long as the extrema of instability are recovered (see figures 1, 3).

For extremely small observation noise the filter trusts the observations and the im-
provement of the filtering skill due to a good model is negligible. For sufficiently
large observation noise levels the filter trusts the model and fails to detect many
unstable events but it still outperforms the observations (see figure 2).

Case 2: ∆tobs < 1/dγ < 1/γ̂∆tobs < 1/dγ < 1/γ̂∆tobs < 1/dγ < 1/γ̂ or ∆tobs < 1/γ̂ < 1/dγ∆tobs < 1/γ̂ < 1/dγ∆tobs < 1/γ̂ < 1/dγ (Regimes I-III). Observation time step
shorter than decorrelation times of both γ(t) and u(t).

– Good skill in filtering the observed signal u(t).

– Mean value of γ(t) and its dominant minima recovered well. b(t) estimated well
if its decorrelation time is sufficiently long (i.e., when ∆tobs � 1/γb).

This is similar to Case 1, but here the signal is sampled sufficiently frequently so
that the filter learns enough about γ(t) to capture its most important features (see
figures 10-12).

Case 3: 1/γ̂ < ∆tobs � 1/dγ1/γ̂ < ∆tobs � 1/dγ1/γ̂ < ∆tobs � 1/dγ (Regime II-III). Observation time step small compared to the
decorrelation time of γ(t) but longer than that of u(t).

– Only low frequency modulation recovered in u(t).

– Mean value of γ(t) and b(t) recovered.

In this case the observed signal decorrelates between the successive observations and
filtering does not provide substantial improvement over the observations.

Case 4: ∆tobs � 1/γ̂ > 1/dγ∆tobs � 1/γ̂ > 1/dγ∆tobs � 1/γ̂ > 1/dγ or ∆tobs � 1/dγ > 1/γ̂∆tobs � 1/dγ > 1/γ̂∆tobs � 1/dγ > 1/γ̂ (Regimes I-III). Observation time
step long compared to decorrelation times of both γ(t) and u(t).

– Only low frequency modulation due to periodic forcing is recovered in u(t).

– The estimation of γ(t) and b(t) is completely unreliable.

In this case the observed signal decorrelates between the subsequent observations
and the filter dampens whatever information is acquired from the observations by
the next analysis time. Consequently, only the low frequency modulation due to
the deterministic forcing is recovered in the filtered solution. The flow of informa-
tion from the observations to the dynamics of γ and b is weak and the parameter
estimation is poor.

6. Filtering with model error

An unambiguous assessment of the effects of model error on the filtering skill is often
difficult since its properties are unknown almost by definition. In the case of Bayesian
filters using stochastic parameter estimation, such as the filters discussed here, the sources
of model error in imperfect filters arise from:
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• Imperfect forecast models used for filtering. These errors arise when the signal from
nature is processed through a forecast model where important physical processes
are parameterized due to inadequate numerical resolution or incomplete physical
understanding. These model errors affect, in principle, all of the filters discussed
here (i.e., SPEKF, GCF, DMF, SDMF, TEKF).

• Incorrect statistics used in the filters due to particular moment closure approxima-
tions. These model errors affect GCF, DMF, SDMF and TEKF in our filter suite
(see §3).

The two sources of model error listed above are, in general, interdependent. In this
study, however, we use the system (1) with exactly solvable statistics for both generating
the synthetic truth and as the forecast model in all filters. This approach allows us to
disentangle the effects of the two sources of model error by:

• Filtering with correctly specified parameters in the model. In this case the effects of
model error on filtering which arise solely from the use of incorrect statistics can be
examined.

• Filtering with incorrectly specified filter parameters. This configuration can be used
to study the effects of model error due to inadequate parameterization of unresolved
physical processes in the model by comparing solutions filtered with correct and
incorrect parameters.

The above procedure for analyzing the filter skill is carried out next in the three
regimes discussed in §2.1, mimicking different modes in the turbulent spectrum. This
comprehensive study also provides insight into the robustness of different filters in a wide
range of physical conditions; filter robustness is a critical feature in more complex cases
when filtering high-dimensional, spatially-extended turbulent systems.

7. Filter performance and parameter estimation in regime with plentiful short-
lasting, transient instabilities (Regime I)

In this and the subsequent two sections we study in detail the skill of the filters derived
in §3 for reconstructing the observed signal u(t) and estimating the stochastic parame-
ters γ(t) and b(t). All tests are carried out for signals generated in different regimes of
mean-stable dynamics discussed in §2.1. Detailed tests and discussion of filtering skill as
a function of the observation time step, observation noise variance, and incorrect filter
parameters are preceded by a summary of the most important findings.

7.1. Characteristics of the filtered signal

This configuration corresponds to regime I (cf. §2.1) of the mean-stable dynamics of
the system (1) and it is characterized by very frequent but short and intermittent phases
of transient instability in the dynamics of u(t). The ability of the filters to detect these
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intermittent instabilities will largely determine the filter skill. The decorrelation time of
γ(t), given by 1/dγ, is here very small. The decorrelation time of u(t), given approximately
by 1/γ̂, is controlled by the mean damping γ̂ which can vary widely in this regime; this
is because the mean-stability condition (2) does not impose an upper bound on γ̂ in
this regime. Both the the mean damping strength of u(t) and the separation between
decorrelation times of u(t) and γ(t) have important consequences on the filtering skill.

We distinguish the following three subcategories of dynamical behavior in this regime:

• Strongly damped dynamics of u(t) with small-amplitude fluctuations around low-
frequency deterministic mean: In this case γ̂ � 1, the mean-stability parameter
χ� −1, and the decorellation times of both γ(t) and of u(t) are very short.

• Weakly damped dynamics of u(t) with very large fluctuations: In this case γ̂ is
small and 0 < χ � 1 so that the system evolves near the boundary of mean-stable
dynamics. The decorrelation time of u(t) is long compared to the decorrelation time
of γ(t).

• Moderately damped dynamics of u(t) with large-amplitude, intermittent fluctuations:
Here γ̂ ∼ O(1) and the mean-stability parameter, −χ ∼ O(1). The decorrelation
time of u(t) is well separated from the very short decorrelation time of γ(t).

In the numerical tests we have chosen the truth signals generated from (1) with moderately
damped dynamics so that the low frequency modulation is significantly affected, but not
completely dominated, by the transient instabilities. The truth signal in the simulations
was generated with

γ̂ = 1.2, dγ = 20, σγ = 20, ωu = 1.78, σu = 0.5, γb = 0.5, ωb = 1, σb = 0.5; (29)

(see Figure 1 for an example of a path-wise solution in this configuration). For parameters
(29) the decorrelation time of u is approximately 1/γ̂ ≈ 0.833, decorrelation time of γ is
1/dγ = 0.05 and the mean stability parameter is χ = −0.7. In this configuration the decor-
relation times of u and γ are well separated and the interplay between the low-frequency
modulation and the intermittent instabilities provides a good test bed for analyzing the
effects of various sources of model error on the filtering skill.

7.2. Filtering with imperfect models

Here we summarize the most important facts about filtering in regime I. Properties of
filtering with a perfect filter in regime I, which is used as a benchmark here, were discussed
in §5 (see Cases 1, 2, 4). A more detailed discussion of the filter skill as a function of the
observation time step, noise variance and filter parameters, as well as a description of the
figures referred to below, are presented in §7.2.1.

Filter performance in regime I:
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• For {dMγ > dγ, σ
M
γ 6 σγ, σ

M
u 6 σu}, i.e., possibly underestimated decorrelation time

of γ and possibly underestimated noise levels in the dynamics of u and γ, the skill
of the analyzed filters satisfies

SPEKF > GCF > DMF > SDMF > TEKF

The differences in the filter skill increase monotonically with ∆tobs and ro but the
ordering in this hierarchy remains unchanged. For other parameters the skill of
SPEKF is somewhat worse than that of GCF and DMF and in extreme cases it may
become comparable with TEKF (figures 7-9 and 5); however, in such cases all filters
tend to have a good skill.

• Effects of model error due to various moment closures are more pronounced here
than in other regimes (compare especially figures 7-9 and 16-18).

• TEKF and SDMF diverge for large observation times ∆tobs ∼ 1/γ̂ and small ob-
servation noise levels (figure 5); they are also sensitive to errors in filter parameters
(figures 7-9).

• SPEKF in regime I has the closest skill to the perfect filter and it is far superior to
other filters for significantly underestimated decorrelation time, i.e., when dMγ � dγ
(see figure 8). SPEKF is the best at capturing the extrema of instability (i.e.,
dominant minima of γ) which improves its skill (see, e.g., figure 4). Its performance
deteriorates for overestimated decorrelation time, i.e., when dMγ < dγ.

• GCF is the least sensitive filter to parameter errors in regime I but it has lower skill
than SPEKF for {dMγ > dγ, σ

M
γ 6 σγ, σ

M
u 6 σu} (figures 7-9).

• DMF has a similar skill to GCF except for largely overestimated decorrelation times
of γ, i.e., when dMγ � dγ (figure 8).

• TEKF is consistently the worst performer in regime I. The largest errors occur for
∆tobs ∼ 1/γ̂. This behavior is to be expected since this linearized filter fails to resolve
the short, large-amplitude unstable events in the dynamics of u(t) (figures 3, 4). For
noise dominated signal and ∆tobs � 1/γ̂, TEKF struggles even with recovering the
low frequency mean (not shown).

• SDMF performs well only for small observation times, i.e., when ∆tobs � 1/γ̂ (figures
5, 7-9). For small noise levels its skill is comparable with SPEKF, GCF and DMF.
For increasing observation noise variance and incorrect filter parameters its skill
quickly deteriorates and becomes comparable with TEKF (figures 7-9).

Parameter estimation in regime I:

• As expected, the parameter estimation in this regime is generally poor but the mean
of γ(t) and b(t) are recovered well by SPEKF, GCF and DMF (figures 1-4).
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• SPEKF, GCF and DMF have a similar skill for estimating γ(t). For sufficiently
small observation times they detect the extrema of instability (figure 4). In regions
of transient instability the signal-to-noise ratio is large and these filters trust the ob-
servations, learning sufficiently quickly about the onset of instability. The estimation
of γ(t) in other regions is unreliable.

• The estimation of γ(t) by TEKF and SDMF is similar to the other filters when
filtering with correct parameters and small observation times (figure 3). For incor-
rect filter parameters, these filters are completely unreliable at estimating γ(t) (see
figure 4).

• For sufficiently short observation times, i.e., ∆tobs < 1/γb, the estimation of b(t) is
similar for all filters and characterized by a lag of the minima in the filtered signal
with respect to the true dynamics (figure 3, 4).

7.2.1. Specific examples

We discuss here the results of specific tests where we examine the filter skill of our suite
of filters in regime I as a function of the observation time step, observation noise variance,
and incorrect filter parameters.

Path-wise examples of filtering in regime I

In figures 1, 2 we show two examples of filtering with the perfect filter which, as dis-
cussed earlier, is given by SPEKF with correct parameter values. In both examples the
observed signal is filtered with the observation time step much shorter than the decor-
relation time of u(t). Figure 1 shows results of filtering and parameter estimation for
the observation noise variance ro = 0.1 which corresponds to a moderate signal-to-noise
ratio for the system parameters (29). The observation time here is too long to resolve the
dynamics of γ(t) but its mean value is recovered correctly. Accurate estimation of γ is
not essential for skillful filtering of u as long as the extrema of instability are recovered.
In figure 2 the observed signal is dominated by noise and the filter trusts the model, fail-
ing to detect many unstable events; however, it still outperforms the observations. The
estimation of γ(t) is unsurprisingly poor but some extrema of instability are still recovered.

Figures 3 and 4 show path-wise examples of filtering with imperfect filters. Figure 3
shows examples of filtering with correct parameters for three different observation time
steps. Figure 4 shows three examples of filtering with incorrect noise amplitude in the
dynamics of u(t) and a relatively large observation time (∆tobs = 0.6, decorrelation time
1/γ̂ = 0.83). Similarly, to the perfect filter scenario, accurate estimation of γ is not essen-
tial for skillful filtering of u as long as the extrema of instability are recovered. SPEKF,
GCF and DMF clearly outperform TEKF and SDMF here. When filtering with correct
parameters and large observation time steps (figure 3) the effects of particular sampling of
the signal during the short-lasting unstable bursts affect all filters but SPEKF, GCF and
DMF remain more skillful than SDMF and TEKF. When filtering with incorrect noise am-
plitudes σMu , SPEKF has the best skill for recovering the extrema of instability, especially
for σMu < σu, but it is somewhat worse than GCF and DMF in other intervals.
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Filtering skill in regime I as a function of observation time step

In figure 5 we show the average RMS errors of the filtered solutions u(t) which are
obtained by sampling the same truth signal with different observation time steps, ∆tobs,
for fixed values of the observation noise variance ro. The particular values of ro we have
chosen are such that the smallest considered value, ro = 0.05, corresponds to high overall
signal-to-noise ratio, while for the largest considered value, ro = 1, the signal is dominated
by noise. The first column in figure 5 shows the RMS errors for filtering with correct
parameters. In such a case SPEKF is the perfect filter and the other filters are affected
only by model errors due to incorrect statistics (see §6). Columns 2 and 3 in figure 5 show
the RMS errors of the estimated solution u(t) when filtering with incorrect parameters.
The use of incorrect parameter values in the filters introduces additional model error,
mimicking the effects of inadequate parameterization of unresolved processes. In column
2 of figure 5 all filters (except for the perfect filter) overestimate the decorrelation time
of γ in the truth signal (dMγ < dγ); in column 3 of figure 5 all filters underestimate the
decorrelation time of γ in the truth signal (dMγ < dγ).

Based on extensive numerical simulations summarized in figure 5, we draw the following
conclusions:

• TEKF and SDMF diverge for sufficiently large observation times and sufficiently
small observation noise levels. The skill of these filters improves for strongly damped
dynamics of u(t) (i.e., when γ̂ � 1, not shown).

• The effects of model error become increasingly important with increasing observation
time step ∆tobs; the RMS error differences between filters increase with ∆tobs (see
figure 3).

• In extreme cases the skill of SPEKF can become worse than TEKF when filtering
with significantly overestimated decorrelation time of γ(t), i.e., dMγ < dγ, and for
large observation time step (column 2 of figure 5).

• For small observation time steps (∆tobs � 1/γ̂) the skill of all filters is good and
comparable.

• For all filters the RMS errors of the filtered signal increase monotonically with in-
creasing observation time step ∆tobs. (The oscillations seen in figure 5 for ∆tobs ∼ 1/γ̂
are due to the particular sampling of the truth signal during large-amplitude unstable
phases; see figures 3 and 4 for path-wise examples.)

• The RMS errors approach some finite value as ∆tobs increases for a fixed value of ro.
For weakly damped dynamics of u, long observation times ∆tobs ∼ 1/γ̂ and small
enough ro, the skill of all filters is comparable with the observation error.

• For noise dominated signals all filters have comparable skill. This is to be expected
since in such a case all filters trust the models and the model errors due to different
closures are negligible compared to the observation error.
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Filtering skill in regime I as a function of observation noise variance

Here we study how the filter performance depends on the observation noise levels for
fixed values of the observation time step ∆tobs. We summarize this analysis in figure 6
which shows the average RMS errors of the filtered signal u(t) as a function of the obser-
vation variance ro for fixed values of the observation time step and various combinations
of the filter parameters. We chose four different observation time steps to illustrate the
dependence of the RMS errors on the observation noise variance. The same truth signal
as in the previous tests (see figure 1) was used here. Column 1 of figure 6 shows results of
filtering with correct parameters in all filters; columns 2 and 3 show results of analogous
computations with, respectively, overestimated and underestimated decorrelation time of
γ(t).

Based on our analysis summarized in figure 6, we make the following conclusions:

• The effects model error due to the Gaussian closure are small but become noticeable
at large observation times (∆tobs ∼ 1/γ̂) for increasing observation noise variance ro.

• TEKF and SDMF diverge for small noise levels and sufficiently large observation
times.

• The RMS errors grow monotonically with ro for all filters. They all beat observations
for sufficiently large observation noise levels.

• The effects of model error grow with increasing ro; this can be inferred from the
increasing differences in the RMS errors between different filters for increasing ro.

Filtering skill in regime I as a function of filter parameters

Here we study the performance of imperfect filters when the noise amplitudes σγ, σu
in the dynamics of γ and u are varied. We also analyze the filtering skill as a function of
incorrect decorrelation time of γ assumed by the filters. Departures of these parameters
from their true values have the most interesting effects on the filter skill. Each test is carried
out for four different pairs of fixed values of the observation time and observation noise
variance. The decorrelation time of the truth signal u(t) used in the tests is approximately
1/γ̂ = 0.8. Here we have chosen two different observation time steps: ∆tobs = 0.1 which is
much shorter than the decorrelation time of u and ∆tobs = 0.6 which is comparable with
the decorrelation time of u. The two values of the observation noise variance are chosen
such that the smaller one, ro = 0.05, corresponds to small overall signal-to-noise levels
and ro = 0.5 corresponds to moderate noise values. The four pairs of the observation time
and observation noise variance are listed in table 1.

Figure 7 shows the average RMS errors for the filtered signal u(t) as a function of the
noise amplitude, σMγ , assumed in the filter for the dynamics of γ(t). Figure 8 shows the
RMS error for the filtered signal u(t) for varying decorrelation time of γ(t), i.e., the filter
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(∆tobs, ro)=(0.1, 0.05) (∆tobs, ro)=(0.1, 0.5)
(∆tobs, ro)=(0.6, 0.05) (∆tobs, ro)=(0.6, 0.5)

Table 1: Pairs of observation times ∆tobs and observation noise variance ro used in figures 7-9.

parameter dMγ is varied. Finally, figure 9 shows the RMS errors of u(t) as a function of
the noise amplitude, σMu , assumed in the filter for the dynamics of u(t).

Based on the results illustrated in figures 7-9 and also figure 5 discussed earlier, we
make the following points:

• For {dMγ > dγ, σ
M
γ 6 σγ, σ

M
u 6 σu}, i.e., possibly underestimated decorrelation

time of γ(t) and possibly underestimated noise levels in the dynamics of u(t) and
γ(t), the skill of the filters satisfies

SPEKF > GCF > DMF > SDMF > TEKF

For other parameter values the filter skill hierarchy is

GCF ∼ DMF > SDMF ∼ TEKF

and the skill of SPEKF is somewhat worse than that of GCF and DMF and it may
become comparable with TEKF (figures 7-9); however, in such cases all filters have
a good skill.

• The skill of SPEKF is most dramatically reduced by underestimating the decorrela-
tion time of γ(t) in the filter (i.e., dMγ � dγ) at sufficiently large observation noise
levels (figure 8).

• TEKF and SDMF are the most sensitive filters to parameter variations. These filters
diverge for observation times comparable with the decorrelation time of u(t) when
filtering with overestimated decorrelation time of γ(t), i.e., when ∆tobs ∼ 1/γ̂ and
dMγ � dγ (figure 8), or when filtering with underestimated noise variances σMu , σ

M
γ

(figures 7 and 9).

• GCF is less sensitive to variations of dMγ and σMγ than SPEKF. However, SPEKF
has significantly better skill than GCF for {dMγ > dγ, σ

M
γ 6 σγ, σ

M
u 6 σu} and large

observation times.

8. Filter performance and parameter estimation skill in regime of intermittent
large bursts of instability (Regime II)

8.1. Characteristics of the filtered signal

This configuration corresponds to regime II of mean-stable dynamics of the system (1)
discussed in §2.1. Here, the damping dγ in the dynamics of γ(t) is much weaker than in
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regime I. Consequently, the intermittent phases of transient instabilities are less frequent
here but they are, on average, longer lasting than in regime I. Path-wise solutions in this
regime are characterized by intermittent, large amplitude bursts of instability separated
by quiescent periods dominated by a low-frequency modulation due to the deterministic
forcing (see figure 10).

In this regime the decorrelation time of γ(t), given by 1/dγ, is much longer than in
regime I. However, similarly to regime I, the mean damping, γ̂, and decorrelation time,
1/γ̂, of u(t) can vary widely, as long as χ < 0. Consequently, the dynamics in this regime
can be roughly divided into three subcategories according to the strength of the mean
damping γ̂:

• Strongly damped dynamics and short decorrelation times of u(t), i.e., γ̂ � 1,

• Weakly damped dynamics of and long decorrelation times of u(t), i.e., 0 < γ̂ < 1,

• Moderately damped dynamics and moderate decorrelation times of u(t), i.e., γ̂ ∼ 1.

In the filtering tests carried out in this section we have chosen true signals obtained from
(1) with weakly damped dynamics so that the low frequency modulation is interleaved with
intermittent, large-amplitude unstable bursts in u(t). For moderate and strong damping
strengths in u(t) the signals are too similar to those discussed in regime I.

In all simulations carried out in this section the true signal is generated from (1) with
parameters

γ̂ = 0.55, dγ = 0.5, σγ = 0.5, ωu = 1.78, σu = 0.4, γb = 0.4, ωb = 1, σb = 0.4, (30)

so that the mean stability parameter is χ = −0.05.

Path-wise solutions of (1) in regime II are characterized by drastically different dynam-
ical phases. Consequently, the RMS errors averaged over the whole observation interval
do not provide a sufficiently detailed diagnostics of filter performance. Therefore, we focus
here on three distinct intervals of our truth signal (see figure 10):

Interval 1 Phase of a large-amplitude transient instability in u(t) which dominates the
low frequency modulation due to the deterministic forcing.

Interval 2 Phase of two successive instabilities in u(t). Here, the two intervals where
γ(t) < 0 occur in a short succession so that the first unstable burst is not completely
damped before the next one occurs. This is a tough test for any filter since there is not
enough observations between the two events to predict the next transient instability in the
signal.

Interval 3 Quiescent phase. The low frequency modulation of the signal is accompanied
by short, isolated, small-amplitude instabilities.
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8.2. Filtering with imperfect models

Here we summarize the most important facts about filtering in regime II (cf. §2.1).
Properties of filtering with the perfect filter in this regime, which is used as a benchmark
here, were discussed in §5 (see Cases 1-4). A more detailed discussion of the filter skill
as a function of the observation time, noise variance and filter parameters, as well as a
description of the figures referred to below, are presented in §8.2.1.

Filtering skill in regime II:

• In regime II the skill of the analyzed filters satisfies

SPEKF ∼ GCF ∼ DMF � SDMF ∼ TEKF

The differences in filter skill increase monotonically with the observation time, ∆tobs,
and observation noise variance, ro, but this hierarchy remains unchanged (figures 13-
15). The above hierarchy is also largely insensitive to errors in the filter parameters.

• TEKF and SDMF experience a catastrophic divergence which is absent only for
sufficiently small observation time step (figure 13). The main cause of divergence of
these two filters stems from their failure to predict the intermittent, large-amplitude
unstable events in the dynamics of u(t) (figures 11, 14).

• The skill of SPEKF, GCF and DMF remains good for overestimated decorrelation
time of γ (i.e., when dMγ 6 dγ) and it somewhat deteriorates for underestimated
decorrelation time of γ; however, even in extreme cases these filters outperform
TEKF and SDMF (figure 17).

• The largest skill differences between the examined filters occur when filtering with
large observation times (∆tobs ∼ 1/γ̂) within intervals associated with large-amplitude
intermittent instabilities (figure 14).

• Effects of model error due to incorrect statistics are insignificant in this regime
(compare figures 16-18 and 7-9).

• The dominant source of model error stems here from incorrect filter parameters. The
RMS errors can also be significantly affected by the particular sampling of the truth
signal (figure 11).

Parameter estimation in regime II:

• The estimation of the damping, γ(t), from SPEKF, GCF and DMF is similar and is
the best in regions of intermittent instabilities when the signal-to-noise ratio is high
and the filters trust the observations (figures 19, 20 and 11,12). This allows SPEKF,
GCF and DMF to recover the extrema of instability (i.e., dominant minima of γ(t)),
resulting in a good overall skill of these filters in this regime. In quiescent intervals
the estimation skill of γ deteriorates.
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• The estimation of γ and b by TEKF and SDMF is completely unreliable during the
large-amplitude, intermittent instabilities. For sufficiently large observation times
(∆tobs ∼ 1/γ̂) these filters predict erroneous phases of strongly stable dynamics (i.e.,
γM(t)� 1) during unstable phases in the truth signal γ(t) < 0 (figure 11)

• The estimation of b(t) by SPEKF, GCF and DMF is comparable in all intervals
(figures 21, 22 and 11, 12) and it is good provided that the observation time is
shorter that the decorrelation time of b(t).

• The estimation of b(t) by TEKF and SDMF is completely unreliable within intervals
associated with large-amplitude instabilities (figures 11, 12 and 21, 22).

8.2.1. Specific examples

Here we analyze the performance of different filters as a function of the observation
time step, the observation noise variance and incorrect parameter values used in the filters
from our suite (cf. §3). Properties of filtering with the perfect filter in this regime, which
is used as a benchmark here, were discussed in §5 (see Cases 1-4).

Path-wise examples of filtering in regime II

In figures 10-12 we show three path-wise examples of filtering in this regime; all of them
for correct filter parameters. Figure 10 illustrates filtering and parameter estimation using
the perfect filter which is given by SPEKF with correct parameter values. The observed
signal is filtered for moderate observation noise variance, ro, and the observation time
step, ∆tobs, much shorter than the decorrelation times of u, γ and b in (1). The outcome
of the filtering in the three intervals discussed in §8.1 is shown in separate insets. The
filtering skill of the observed component, u(t), is good in all three intervals. The dynamics
of γ(t) is estimated much better in the intervals 1 and 2 than in the quiescent interval 3.
In particular, the extrema of instability, corresponding to the dominant minima of γ(t),
are well detected in interval 1; this fact is important for a skillful filtering of u(t).

Figures 11 and 12 show path-wise examples of filtering with imperfect filters in intervals
1 and 3 (cf. §8.1). Figure 3 shows examples of filtering with correct parameters for three
different observation time steps. SPEKF, GCF and DMF clearly outperform TEKF and
SDMF in interval 1 which contains a large-amplitude burst of transient instability. The
dominant minima of γ are well detected by SPEKF, GCF and DMF. When filtering with
correct parameters and large observation time steps, the effects of specific sampling of
the truth signal during the bursts of instability affect all filters but SPEKF, GCF and
DMF remain more skillful than SDMF and TEKF; in fact, TEKF and SDMF erroneously
predict phases of strong stability in regions of transient instability in the truth signal. The
skill differences in quiescent regions are much less pronounced, as illustrated in figure 12.

Filtering skill in regime II as a function of the observation time step
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In figures 13-14 we show the average RMS errors of the filtered solutions u(t) as a
function of the observation time step, ∆tobs, for different, fixed values of the observation
variance, ro, and various combinations of the filter parameters. The filtering procedure is
performed by sampling the same truth signal, generated from (1) with parameters (30),
with different observation times. The particular values of the observation noise variance,
ro, we have chosen are such that the smallest considered value, ro = 0.01, corresponds to
high overall signal-to-noise ratio, while for the largest considered value, ro = 2, the signal is
dominated by observation noise. In the first column of figure 13 correct parameter values
are used in all filters so that the model errors arise only from the incorrect statistics.
Columns 2 and 3 show results of analogous computations but with incorrect parameter
values used in the filters, introducing an additional model error. In column 2 the of figure
13 all filters overestimate the decorrelation time of γ (i.e., dMγ < dγ); in column 3 of
figure 13 all filters underestimate the decorrelation time of γ (i.e., dMγ > dγ).

Based on the results summarized in figures 13-14, we make the following points:

• For increasing observation time step, ∆tobs, the skill of the analyzed filters satisfies

SPEKF > GCF > DMF � SDMF ∼ TEKF

The RMS errors grow monotonically with ∆tobs for all filters and the RMS error
differences between the filters increase with ∆tobs and with the noise variance ro.

• The largest RMS errors between the filtered solution and the truth occur within
intervals associated with large amplitude instabilities (see intervals 1 and 2 in figure
14). However, for SPEKF, GCF and DMF these errors are small relative to the
signal amplitude.

• The smallest RMS errors between the filtered solution and the truth, and the smallest
differences between various filters, occur within the quiescent intervals with no large-
amplitude transient instabilities (see interval 3 in figure 14)

• TEKF and SDMF diverge for sufficiently large observation times (i.e., ∆tobs ∼ 1/γ̂).
These filters fail to detect the large amplitude instabilities in the dynamics of u and
even produce erroneous super stability (γM(t)� 1) in regions of transient instability
in the true signal (figure 11). SDMF and TEKF perform well only in the quiescent
intervals in which all filters have a good and comparable skill (see figures 14 and 12).

• The skill of SPEKF is generally good and it is somewhat better than GCF and DMF,
except for small observation times and small ro. The skill of all filters deteriorates for
underestimated noise amplitude σMγ in γ (figure 16), or for severely underestimated
decorrelation time of γ (see figure 17 for dMγ � dγ). Note that this trend is opposite
to that observed in regime I (figure 8).

• Differences in skill between GCF and DMF due to different moment closures are
negligible in this regime.
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Filtering skill in regime II as a function of the observation noise variance

Here we study how the filter performance depends on the observation noise levels for
fixed values of the observation time ∆tobs. We summarize this analysis in figure 15 which
shows the average RMS errors of the filtered signal, u(t), as a function of the observation
noise variance, ro, for fixed values of the observation time step and various combinations
of the filter parameters. We chose four different observation time steps to illustrate the
dependence of the RMS errors on ro. The same truth signal as in the previous tests was
used here. Column 1 of figure 15 shows results of filtering with correct parameters in
all filters; columns 2 and 3 show results of analogous computations with, respectively,
overestimated and underestimated decorrelation time of γ.

We make the following points based on inspection of figure 15:

• The RMS errors of all filters increase with the observation noise variance ro. Both
TEKF and SDMF diverge for sufficiently large ∆tobs and ro. These filters can also
diverge for small ∆tobs and small ro (e.g., figure 15 with ∆tobs = 0.2).

• The differences between SPEKF, GCF and DMF are negligible for increasing ro.

Filtering skill in regime II as a function of filter parameters

Here we study the performance of imperfect filters as a function of the filter parameters
which are different than those used for generating the truth.

We test the filter performance for varying noise amplitudes σMγ , σMu assumed by the
filters for the dynamics of γ and u. We also analyze the filtering skill as a function
of incorrect decorrelation time of, γ assumed by the filters. Each test is carried out
for four different pairs of fixed values of the observation time step and observation noise
variance. The decorrelation time of the truth signal u(t) used in the tests is approximately
1/γ̂ ≈ 1.8. Here, we chose two values of the observation times: ∆tobs = 0.1 which is much
shorter than the decorrelation time of u and ∆tobs = 1 which is comparable with the
decorrelation time of u. The two values of the observation noise variance are chosen such
that ro = 0.05 corresponds to small signal-to-noise levels in the quiescent interval 3 and
ro = 0.7 corresponds to moderate signal-to-noise values. The four pairs of the observation
time steps and observation noise variance are listed in the table 2.

(∆tobs, ro)=(0.1, 0.05) (∆tobs, ro)=(0.1, 0.7)
(∆tobs, ro)=(1, 0.05) (∆tobs, ro)=(1, 0.7)

Table 2: Pairs of observation times ∆tobs and observation noise variance ro used in figures 16-18.

Figure 16 shows the average RMS errors for the filtered signal u(t) as a function of the
noise amplitude, σMγ , assumed in the filters for the dynamics of γ(t). The truth signal is
the same in all simulations and the true value of σγ remains unchanged. Figure 17 shows
the average RMS errors for the filtered signal u(t) for different values of decorrelation time
of γ(t) assumed in the filters, i.e., the filter parameter dMγ is varied. Finally, figure 18
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shows the RMS errors of u(t) as a function of the noise amplitude, σMu , assumed in the
filters for the the dynamics of u(t).

Based on the results of numerical tests summarized in figures 16-18, we make the
following points:

• According to the RMS errors of the filtered signal u(t) the skill of different filters
satisfies

SPEKF ∼ GCF ∼ DMF � SDMF ∼ TEKF

The skill of SPEKF is somewhat worse than that of GCF and DMF for small observa-
tion times and overestimated decorrelation times (i.e., dMγ < dγ) or for overestimated
noise amplitudes σMu , σ

M
γ in the dynamics of u and γ. However, in such cases all filters

are significantly better than the observation error.

• TEKF and SDMF are completely unreliable in this regime. They diverge even for
correct parameter values.

• The effects of model error due to moment closures in GCF and DMF are negligible
here compared to model errors introduced by incorrect parameters in the filters.

Estimation of γ(t) and b(t) in regime II

We discuss here the estimation of the stochastic parameters γ and b whose augmented
dynamics in the test model (1) is hidden from observations.

Figure 19 shows the RMS errors of γ(t) within the three distinct intervals discussed
earlier (see figure 10) as a function of the observation time step ∆tobs and for different
fixed values of the observation noise variance ro; the range of the noise variances examined
was chosen such that the smallest value, ro = 0.05, corresponds to large signal-to-noise
ratio in the quiescent interval 3 and for largest value, ro = 1, the signal was dominated
by noise in interval 3. It is important to note here that due to the large-amplitude of the
unstable burst in interval 1, the signal-to-noise ratio in this interval remains large for both
noise levels. Figure 20 shows the RMS errors of γ(t) within three distinct intervals as a
function of incorrect noise amplitude, σMγ , assumed in the filters for the dynamics of γ(t).

Figure 21 shows the RMS errors of b(t) within the three distinct intervals discussed
earlier (see figure 10) as a function of the observation time step and for different fixed
values of the observation noise variance ro. Figure 22 shows the RMS errors of b(t) within
the three distinct intervals as a function of incorrect noise amplitude σMγ in the dynamics
of γ.

We make the following points based on the results illustrated in figures 19-22:

• The estimation of γ(t) from SPEKF, GCF and DMF is similar and is the best in
intervals containing bursts of transient instabilities when the signal-to-noise ratio is
high and the filters trust the observations.
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• Parameter estimation by SPEKF is the least sensitive to errors in filter parameters.

• The estimation of γ and b from TEKF and SDMF is completely unreliable during
the large-amplitude transient instabilities. For ∆tobs ∼ 1/γ̂, these filters predict
erroneous phases of strongly stable dynamics γM(t)� 1.

• The estimation of b(t) by SPEKF, GCF and DMF is comparable in all intervals
provided that the decorrelation time of b(t) is longer that the observation time step.

9. Parameter estimation in the laminar regime (Regime III)

Here, we mostly focus on the estimation of the stochastic parameters γ and b whose
augmented dynamics in the test model (1) is hidden from observations.

9.1. Characteristics of the filtered signal

This configuration corresponds to regime III of mean-stable dynamics of the system (1)
which was identified in §2.1. Signals in this regime are characterized by long decorrelation
times of γ (in the sense that dγ � σγ, σγ ∼ O(1)) and a rapidly decorrelating observed
component u(t) (i.e., 1/γ̂ � 1). Thus, the path-wise solutions of (1) in this regime are
dominated by low frequency modulation due to deterministic forcing with superimposed
small-amplitude fluctuations. Transient instabilities are very rare in this configuration but
they can have very large amplitudes.

In the numerical tests we have chosen the truth signals generated from (1) with pa-
rameters

γ̂ = 8.1, dγ = 0.25, σγ = 1, ωu = 1.78, σu = 0.25, γb = 0.5, ωb = 1, σb = 0.5; (31)

see figure 23 for a path-wise example of solution generated with these parameters. In
this configuration the observed component u(t) decorrelates much faster than γ(t). For
parameters (31) the decorrelation time of u is approximately 1/γ̂ ≈ 0.12, the decorrelation
time of γ is 1/dγ = 4 and the mean stability parameter is χ = −0.1.

9.2. Filtering with imperfect models

Here, we summarize the most important facts about filtering and parameter estimation
in regime III. Properties of filtering with a perfect filter in regime III, which is used as
a benchmark here, were discussed in §5 (see Cases 2-4). A more detailed discussion of
filter performance as a function of the observation time, and filter parameters, as well as
a description of the figures referred to below, are presented in §9.2.1.

Filter performance in regime III:

• The filtering skill for all filters is comparable and good except for large observation
times, ∆tobs ∼ 1/γ̂, and small observation noise levels (figure 24).

• The effects of model error due to different moment closure approximations are in-
significant in this regime.
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Parameter estimation in regime III: (figures 25-27)

• The estimation of γ(t) from SPEKF, GCF, DMF and SDMF is similar. The mean
value of γ(t) and its dominant minima are recovered well, except for large observation
times, ∆tobs ∼ 1/γ̂.

• TEKF is completely unreliable at estimating γ and b.

• The parameter estimation by SPEKF, GCF, DMF and SDMF is largely insensitive
to variations in filter parameters.

• b(t) is recovered well by SPEKF, GCF, DMF and SDMF provided that it decorrelates
sufficiently slowly, i.e., 1/γb > ∆tobs.

9.2.1. Specific examples

We only briefly discuss the results of specific tests where we examine the filter skill
as a function of the observation time step, observation noise variance, and incorrect filter
parameters.

Filtering skill in regime III as a function of observation time step

In figure 24 we show the average RMS errors of the filtered solutions u(t) which are sampled
with different observation time steps ∆tobs with correct filter parameters. In such a case
SPEKF represents the perfect model (see 5) and other filters are affected only by model
errors due to incorrect statistics (see §6). We show results of filtering of the same truth
signal for different fixed values of the observation noise variance ro. The particular values
of ro we have chosen are such that the smallest considered value, ro = 5×10−5, corresponds
to high overall signal-to-noise ratio, while for the largest considered value, ro = 0.5, the
signal is dominated by noise. Analogous tests for incorrect parameter values do not reveal
new phenomena except for uniform changes in RMS errors for all filters.

Based on numerical tests summarized in figure 24, we make the following points:

• The RMS errors of the filtered solution u(t) increase with increasing observation
time step ∆tobs.

• All filters behave similarly in this regime for a range of observation times and obser-
vation noise variances.

• All filters can diverge for very small observation noise levels and large observation
times (i.e., when ∆tobs ∼ 1/γ̂.)

Parameter estimation in regime III
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Here, we test the skill of various filters for estimating the stochastic parameters as a
function of incorrect noise amplitudes σMγ , σMu assumed by the filters for the dynamics of
γ and u. We also analyze the filtering skill as a function of incorrect decorrelation time of
γ controlled by dMγ . Incorrect values of these parameters have the most pronounced effects
on the filter performance.

Each test is carried out for four different pairs of fixed values of the observation time and
observation noise variance. The decorrelation time of the truth signal u(t) used in the tests
is approximately 1/γ̂ = 0.12. We chose two values of observation time: ∆tobs = 0.02 which
is much shorter than the decorrelation time of u and ∆tobs = 0.08 which is comparable with
the decorrelation time of u. The two values of the observation noise variance are chosen
such that ro = 8×10−5 corresponds to small noise levels and ro = 8×10−4 corresponds to
moderate noise values. The four pairs of the observation time steps and observation noise
variance are listed in the table 3 below.

(∆tobs, ro) = (0.02, 8 · 10−5) (∆tobs, ro) = (0.02, 8 · 10−4)
(∆tobs, ro) = (0.08, 8 · 10−5) (∆tobs, ro) = (0.08, 8 · 10−4)

Table 3: Pairs of observation times ∆tobs and observation noise variance ro used in figures 25-27.

Figure 25 shows the average RMS errors for γ and b estimated from the forecast model
(1) and the observations of u(t) as a function of the noise amplitude σMγ assumed in the
filters for the dynamics of γ. The truth signal is the same in all simulations and the true
value of σγ remains unchanged. Figure 26 shows the average RMS errors for γ and b as a
function of the decorrelation time of γ(t) assumed by the filters, i.e., the filter parameter
dMγ is varied. Finally, figure 27 shows the RMS errors for γ and b as a function of the filter
noise amplitude σMu in the dynamics of u.

Based on the results of numerical tests summarized in figures 25-27, we make the
following points:

• SPEKF, GCF and DMF and SDMF recover the mean value of γ and its dominant
minima. There are essentially no transient instabilities in this regime and a good
estimate of the mean leads to a high skill of the filtered solution u(t).

• TEKF is completely unreliable at estimating γ(t) and b(t). TEKF is also very
sensitive to incorrect filter parameters.

• The parameter estimation by SPEKF, GCF and DMF and SDMF is largely insensi-
tive to variations in the filter parameters.

• The model error due to various moment closure approximations has no effect on
parameter estimation in this regime. All filters, except for TEKF, are comparable
with the perfect filter when filtering with correct parameters. For incorrect filter
parameters the estimation skill deteriorates with SPEKF, GCF, DMF and SDMF
shadowing each other.
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• The additive stochastic parameter, b(t), is estimated well by SPEKF, GCF and DMF
and SDMF provided that its decorrelation time is sufficiently long ∆tobs < 1/γb.

10. Concluding discussion and future directions

We have tested the performance of a suite of nonlinear algorithms employing stochastic
parameter estimation for filtering multiscale turbulent signals. Updating the parameters
associated with unresolved or unknown processes in the imperfect forecast model through
stochastic parameter estimation is an efficient way to increase filtering skill and model per-
formance. The examined filtering algorithms were based on the same test model but they
implemented different moment closure approximations when propagating the second-order
statistics in the filtering procedure. We used as a benchmark the Stochastic Parameteri-
zation Extended Kalman Filter (SPEKF) which involves exact formulas for updating the
mean and covariance of the augmented system and it systematically corrects both multi-
plicative and additive biases in the observed dynamics. The remaining filters introduced
additional model error through the use of incorrect statistics. A comprehensive study
was presented of the filter performance in the presence of model error for various combi-
nations of the observation time step and observation noise levels. For filters employing
the stochastic parameter estimation we identified the following two main sources of model
error:

1) Imperfect forecast models used for filtering. These errors arise when the signal from
nature is processed through a forecast model where important physical processes
are parameterized due to inadequate numerical resolution or incomplete physical
understanding.

2) Incorrect statistics used in the filters due to particular moment closure approxima-
tions.

These two sources of model error are, in general, interdependent. Moreover, it is not
immediately obvious when the use of incorrect statistics introduces a nonnegligible error
compared to the model error due to the imperfect forecast model. In order to disentangle
these two effects, the synthetic “truth” signal was generated using the same test model
as the one used for filtering but with different parameters. We showed that the exactly
solvable test model used here can mimic various modes in the turbulent spectrum, ranging
from signals with intermittent bursts of instability to laminar behavior, and its mathemat-
ical tractability allows for an unambiguous analysis of the effects of various model errors
on the filtering skill. Moreover, this approach allowed for analyzing the filter skill in the
presence of different model errors by:

1) Filtering with correctly specified parameters in the model. In this case the effects
of model error on filtering which arise solely from the incorrect statistics could be
examined.

2) Filtering with incorrectly specified filter parameters. This configuration was used to
study the effects of model error due to inadequate parameterization of unresolved
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physical processes in the model by comparing solutions filtered with correct and
incorrect parameters.

The true dynamics of the stochastic parameters, γ(t) and b(t), in the test model was known
but hidden from observations. Consequently, the skill of different filters for estimating the
hidden stochastic parameters from the observations of the resolved component u(t) was
studied by comparing the estimated solutions with the synthetic truth.

The analysis carried out here enabled a comprehensive understanding of the filtering
skill and parameter estimation for various filters implementing stochastic parameter es-
timation for turbulent modes in different regimes of the turbulent spectrum. The main
findings of this study are:

Filtering skill:

1) For the three examined regimes characteristic of turbulent modes in the energy trans-
fer range (regime I), dissipation range (regime II) and the laminar modes (regime
III), the hierarchy of filters (from best to worst) is

SPEKF & GCF & DMF � SDMF & TEKF

2) The effects of model error due to the moment closure approximations are most pro-
nounced in regime I where they can be comparable to errors due to imperfect model;
this occurs for moderate and large observation noise levels and large observation
times. In regimes II and III the effects of incorrect statistics used in the filters are
insignificant.

3) The effects of model error due to imperfect forecast model are dominant in regimes
II and III; in these regimes SPEKF, GCF and DFM shadow each other.

4) TEKF and SDMF are generally unreliable. They diverge in regimes I and II for a
wide range of filter parameters and observation time steps. This is mainly due to
the failure of these filters to detect the intermittent, large-amplitude instabilities in
the signal.

5) SPEKF is the best at capturing the extrema of instability (associated with dominant
minima of γ(t)) which improves its skill. The performance of SPEKF is most sensitive
to overestimated decorrelation time (i.e., dMγ � dγ) in regime I. In regime II, SPEKF,
GCF and DMF shadow each other.

6) GCF is generally comparable to DMF but it performs slightly better in regime I.
GCF is also the most robust filter in regime I. It is the least sensitive to incorrect
parameters, although SPEKF can have a better skill this regime.

Parameter estimation:
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1) SPEKF is generally the best at predicting the extrema of instability of γ(t) (i.e., the
dominant minima of γ) even in cases where the unresolved processes γ(t) and b(t)
decorrelate too quickly compared to the observation time step. This feature helps
SPEKF improve the overall filtering skill. GCF and DMF are generally comparable
to SPEKF but they are somewhat less skillful at large observation time steps.

2) TEKF and SDMF are completely unreliable at estimating the stochastic parameters
in signals containing intermittent bursts of transient instability. They often pre-
dict phases of strong stability in the filtered signal u(t) during phases of transient
instability in the truth, i.e., when γ(t) < 0.

The results presented here should provide useful guidelines for developing cheap, skill-
ful and robust techniques for filtering spatially extended systems with multiple spatio-
temporal scales in the presence of significant model errors and sparse observations. The
robustness of SPEKF and GCF for real-time stochastic parameterization of the unresolved
scales across multiple modes in the turbulent spectrum might prove valuable, for example,
for developing more skillful eddy parameterization schemes for ocean climate models [27].
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Appendix A. Derivation of the exact criterion for mean-stable dynamics of
the test model

We recapitulate here some exact analytical formulas for the path-wise solutions and
the first moments of the system (1) which are necessary in deriving the mean-stability
criterion (see (2) in Proposition 1). The complete set of analytical formulas for the second
order statistics of (1) can be found in [13]. The proof of Proposition 1 is outlined at the
end.

Path-wise solutions of the nonlinear model (1) are given by

b(t) = b̂+ (b0 − b̂)e−λb(t−t0) + σb

∫ t

t0

e−λb(t−s)dWb(s), (A.1)

γ(t) = γ̂ + (γ0 − γ̂)e−dγ(t−t0) + σγ

∫ t

t0

e−dγ(t−s)dWγ(s), (A.2)

u(t) = e−J(t0,t)+λ̂(t−t0)u0 +

∫ t

t0

(b(s) + f(s))e−J(s,t)+λ̂(t−s)ds+ σu

∫ t

t0

e−J(s,t)+λ̂(t−s)dW (s),

(A.3)
where b0, γ0, u0 are the initial conditions at t0 and

λb = −γb + iωb, λ̂ = −γ̂ + iω, J(s, t) =

∫ t

s

(γ(s)− γ̂)ds. (A.4)

The mean of u(t) is

〈u(t)〉 =
(〈u0〉 − Cov(u0, J(t0, t))

)
eλ̂(t−t0)−〈J(t0,t)〉+ 1

2
V ar(J(t0,t)) (A.5)

+

∫ t

t0

(
b̂+ eλb(s−t0)(〈b0〉 − b̂− Cov(b0, J(s, t)))

)
eλ̂(t−s)−〈J(s,t)〉+ 1

2
V ar(J(s,t))ds

+

∫ t

t0

f(s)eλ̂(t−s)−〈J(s,t)〉+ 1
2
V ar(J(s,t))ds,

where

〈J(s, t)〉 =
1

d2
γ

(
e−dγ(s−t0) − e−dγ(t−t0)

)
(〈γ0〉 − γ̂), (A.6)

V ar(J(s, t)) =
1

d2
γ

(
e−dγ(s−t0) − e−dγ(t−t0)

)
V ar(γ0)

− σ2
γ

d3
γ

[
1 + dγ(s− t) + e−dγ(s+t−2t0)

(
cosh(dγ(s− t))− 1− e2dγ(s−t0)

)]
,

(A.7)
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and

Cov(u0, J(s, t)) =
1

dγ

(
e−dγ(s−t0) − e−dγ(t−t0)

)
Cov(u0, γ0), (A.8)

Cov(b0, J(s, t)) =
1

dγ

(
e−dγ(s−t0) − e−dγ(t−t0)

)
Cov(b0, γ0). (A.9)

The variance of u(t) and all components of the covariance matrix are given in [13]. It
is important to note that, due to the nonlinearity of (1), solutions with Gaussian initial
statistics at t = t0 will not remain Gaussian for t > t0.

Proof of Proposition 1
We prove here Proposition 1 (cf. §2), which determines a condition for the mean-

stability of the dynamics of the system (1). We first show that (2) is a necessary condition
for the mean stability of the system (1). We then show that it is also sufficient.

Consider the first term in A.5) given by(〈u0〉 − Cov(u0, J(t0, t))
)
eλ̂(t−t0)−〈J(t0,t)〉+ 1

2
V ar(J(t0,t)). (A.10)

Assuming that the statistics at t0 is bounded and dγ > 0, the terms in the bracket in
(A.10) are bounded on [t0,∞) since 〈u0〉 <∞ and, using (A.8), we have

max
t06t<∞

Cov(u0, J(t0, t)) =
1

dγ
Cov(u0, γ0) <∞. (A.11)

It can be easily seen from (A.6) and (A.7) that the exponential term in (A.10) is bounded
for any finite t > t0 and it is also bounded on [t0,∞) provided that

lim
t→∞

<e
[
λ̂(t− t0)− 〈J(t0, t)〉+

1

2
V ar(J(t0, t))

]
< 0. (A.12)

The condition (A.12) can be rewritten, using (A.6) and (A.7), as

lim
t→∞

{
− γ̂(t− t0)− 1

d2
γ

(
1− e−dγ(t−t0)

)(〈γ0〉 − γ̂ +
1

2
V ar(γ0)

)
(A.13)

− σ2
γ

2d3
γ

[
1− dγ(t− t0) + e−dγ(t−t0) (cosh(dγ(t− t0))− 2)

]}
< 0.

For t� 1, the terms in the brackets can be approximated as

<e[λ̂(t− t0)− 〈J(t0, t)〉+
1

2
V ar(J(t0, t))] =

(
−γ̂ +

σ2
γ

2d2
γ

)
t+O(1). (A.14)

Clearly, the condition (A.12) is satisfied when

−γ̂ +
σ2
γ

2d2
γ

< 0, (A.15)
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as claimed. Note that this condition cannot be satisfied when γ̂ < 0.

We now show that the condition (A.15) is also sufficient for mean stability of the system
(1). Consider the second part of (A.5) given by the integral∫ t

t0

(
b̂+ eλb(s−t0)(〈b0〉 − b̂− Cov(b0, J(s, t)))

)
eλ̂(t−s)−〈J(s,t)〉+ 1

2
V ar(J(s,t))ds, (A.16)

and two functions A1(t, t0), A2(t, t0) which are bounded on [t0, ∞) and given by

A1(t, t0) = max
s∈[t0,t]

∣∣ b̂+ eλb(s−t0)(〈b0〉 − b̂− Cov(b0, J(s, t)))
∣∣, (A.17)

and

A2(t, t0) = max
s∈[t0,t]

<e
[
−〈J(s, t)〉+

1

2
V ar(J(s, t))− σ2

2d2
γ

(t− s)
]
. (A.18)

Boundedness of these functions can be easily deduced from (A.6)-(A.9). In particular, we
can use the following estimates (for dγ > 0)

A1(t, t0) 6
1

d2
γ

∣∣V ar(γ0)/2− 〈γ0〉+ γ̂
∣∣+

σ2
γ

2d3
γ

, (A.19)

and

A2(t, t0) 6 |b̂|+ |〈b0〉|+ 1

dγ
|Cov(b0, γ0)|. (A.20)

Using the functions A1,A2 and assuming that (A.15) holds, we obtain the following esti-
mate

max
t∈[t0,∞)

∣∣∣∣ ∫ t

t0

(
b̂+ eλb(s−t0)(〈b0〉 − b̂− Cov(b0, J(s, t)))

)
eλ̂(t−s)−〈J(s,t)〉+ 1

2
V ar(J(s,t))ds

∣∣∣∣ 6
max
t∈[t0,∞)

(
A1(t, t0) eA2(t,t0)

∫ t

t0

e

„
−γ̂+

σ2
γ

2d2γ

«
(t−s)

ds

)
<∞,

(A.21)

where we use the fact that | ∫ h(t, s)ds| 6 ∫ |h(t, s)|ds. Analogous argument holds for the
second integral in (A.5) as long as the (scalar) forcing remains bounded, i.e., there exists
a constant C such that max

t∈[t0,∞)
|f(t)| < C. This completes the proof.

Appendix B. Details of filter implementations

Appendix B.1. Tangent EKF (TEKF)

This is the classical procedure of deriving the EKF in which the system (1) is linearized
about the posterior mean at the previous observation time (um|m, bm|m, γm|m)T , leading to
a system for the expected value UT = (ū, b̄, γ̄)T in the form

dU

dt
= Lm|mU + Φ(t), (B.1)
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where

Lm|m =

 λm|m 1 −um|m
0 λb 0

0 0 −dMγ

 , λm|m = −γm|m + i ωMu , λb = −γMb + i ωMb , (B.2)

and the inhomogeneity Φ(t) = (f(t), 0, 0)T represents the deterministic forcing.

The prior mean at the next time step (um+1|m, bm+1|m, γm+1|m)T is obtained by integrating
(B.1) between successive observation times with initial condition

(ū(tm), b̄(tm), γ̄(tm))T = (ūm|m, b̄m|m, γ̄m|m)T ,

which leads to
ūm+1|m

b̄m+1|m

γ̄m+1|m

 =


eλm|m∆t eλb∆t−eλ∆t

λb−λm|m
−um|meλ∆t−e−dγ∆t

dγ−λm|m

0 eλb∆t 0

0 0 e−dγ∆t




ūm|m

b̄m|m

γ̄m|m

+


f̃

0

0

 (B.3)

where

f̃ =

∫ tm+1

tm

f(s) eλm|m(tm+1−s)ds. (B.4)

The covariance is updated in the same way as in SDMF using the linear equation
(B.1) with the Jacobian Lm|m rewritten in real variables and integrated between successive
observation times, leading to

Rm+1|m = eAm|m∆tRm|me
AT
m|m∆t +

∫ tm+1

tm

eAm|m(tm+1−s)QeA
T
m|m(tm+1−s)ds. (B.5)

Appendix B.2. Deterministic Mean Filter (DMF)

Following the derivation in §3, the mean (ū, b̄, γ̄) and covariance matrix

R(t) =

 u′

b′

γ′

 · (u′, b′, γ′) (B.6)

in DMF is propagated using

(a) ˙̄u(t) = (−γ̄(t) + i ωMu )ū(t) + b̄(t) + f(t),

(b) ˙̄b(t) = (−γMb + iωMb )(b̄(t)− b̂M),

(c) ˙̄γ(t) = −dMγ (γ̄(t)− γ̂M),

(d) Ṙ(t) = AR(t) +R(t)AT +Q,
(B.7)
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where A is the Jacobian of (B.7) evaluated at the current mean (ū, b̄, γ̄)T , which is given
by

A
(
ū(t), b̄(t), γ̄(t)

)
=



−γ̄(t) −ωM 1 0 −<e[ū(t)]

ωM −γ̄(t) 0 1 −=m[ū(t)]

0 0 −γMb −ωMb 0

0 0 ωMb −γMb 0

0 0 0 0 −dMγ


, (B.8)

and Q = diag
[
(1

2
((σMu )2, 1

2
(σMu )2, 1

2
(σMb )2, 1

2
(σMb )2, (σMγ )2)

]
is the covariance matrix.

Appendix B.3. Split Deterministic Mean Filter (SDMF)

In this filter the prior mean and covariance are updated separately. Here the mean is
updated first by solving (B.7a-c) on a time interval [tm, tm+1] with initial condition given

by the posterior mean at tm, i.e.,
(
ū(tm), b̄(tm), γ̄(tm)

)T
=
(
ūm|m, b̄m|m, γ̄m|m

)T
.

The covariance is updated using the linear equation (B.7) with the Jacobian A evalu-
ated at the posterior mean, i.e., A(tm) = Am|m, and integrated between successive obser-
vation times, leading to

Rm+1|m = eAm|m∆tRm|me
AT
m|m∆t +

∫ tm+1

tm

eAm|m(tm+1−s)QeA
T
m|m(tm+1−s)ds. (B.9)

Appendix B.4. Gaussian Closure Filter (GCF)

In a Gaussian Closure Filter the prior statistics is propagated using a nonlinear dynam-
ical system which is obtained by neglecting third and higher moments in the probability
distribution associated with the system (1). The posterior update is carried out using
the steps (8)-(10) as in the other filters. The second-order statistics can be obtained di-
rectly from the system (16) by substituting (1) for fff(xxx, t). Here, we sketch an alternative
derivation specific to the system (1).

Given the system (1), we use the average Reynolds decomposition to represent all
variables in (1) as the sum of a mean and fluctuations around the mean, i.e.,

u = ū+ u′, b = b̄+ b′, γ = γ̄ + γ′, (B.10)

〈u〉 = ū, 〈b〉 = b̄, 〈γ〉 = γ̄, 〈u′〉 = 0, 〈b′〉 = 0, 〈γ′〉 = 0. (B.11)

The equations for the mean and fluctuations can be easily obtained from (1) and (B.10)-
(B.11) in the form

dū =
[
(−γ̄ + iω)ū− u′γ′ + b̄+ f

]
dt, (B.12)

du′ =
[
(−γ̄ + iω)u′ + b′ − ūγ′ − u′γ′ + u′γ′

]
dt+ σudWu, (B.13)

38



db̄ = (−γb + iωb)
(
b̄− b̂

)
dt , (B.14)

db′ = (−γb + iωb) b
′dt+ σbdWb, (B.15)

dγ̄ = −dγ (γ̄ − γ̂) dt, (B.16)

dγ′ = −dγγ′dt+ σγdWγ. (B.17)

A closed twelve-dimensional dynamical system for the first and second moments,

ū, b̄, γ̄, |u′|2, u′2, |b′|2, b′2, γ′2, u′b′, u′b′∗, u′γ′, b′γ′, (B.18)

which are needed in the Kalman filter can be found using (B.12)-(B.17) and the multivari-
ate Ito formula (e.g., [12]) and assuming the Gaussian closure (i.e., E[(X − E(X))p] = 0,
where p odd).

As an example, consider the evolution of |u′|2 which can be derived using the Ito
formula and (B.13) as

d|u′|2 =

[
− 2 γ̄|u′|2 + u′b′∗ + u′∗b′ − ū u′∗γ′ − ū∗ u′γ′ − 2|u′|2γ′ + σ2

u

]
dt. (B.19)

Following the Gaussian closure approximation, we assume that the third moment, |u′|2γ′,
in (B.19) vanishes. Consequently, the resulting approximation leads to

d|u′|2 ≈
[
− 2 γ̄|u′|2 + u′b′∗ + u′∗b′ − ū u′∗γ′ − ū∗ u′γ′ + σ2

u

]
dt. (B.20)

Similar procedure leads to dynamical equations for all the variables (B.18).
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Regime I. Filtering with perfect model

The mean stability parameter: χ = −0.7χ = −0.7χ = −0.7.

Observation time: ∆tobs = 0.2

Decorrelation time of u: 1/γ̂ ≈ 0.833

True signal parameters: γ̂ = 1.2, dγ = 20, σγ = 20, ωu = 1.78, σu = 0.5, γb = 0.5, ωb = 1, σb = 0.5.

Observation error:
√
ro = 0.316
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Figure 1: (Regime I) Path-wise example of filtering with perfect model for small observation noise. The
perfect filter is given here by SPEKF with correct system parameters (see §5).
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Regime I. Filtering with perfect model.

The mean stability parameter: χ = −0.7χ = −0.7χ = −0.7.

Observation time: ∆tobs = 0.2

Decorrelation time of u: 1/γ̂ ≈ 0.833

True signal parameters: γ̂ = 1.2, dγ = 20, σγ = 20, ωu = 1.78, σu = 0.5, γb = 0.5, ωb = 1, σb = 0.5.

Observation error:
√
ro = 1.41
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Figure 2: (Regime I) Path-wise example of filtering with perfect model when the signal is dominated by
noise but the observation time is much shorter than the decorrelation time of u(t). The perfect filter is
given here by SPEKF with correct system parameters (see §5).
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Regime I. Filtering with correct parameter values.

The mean stability parameter: χ = −0.7χ = −0.7χ = −0.7.

Decorrelation time of u: 1/γ̂ ≈ 0.833

Observation time: ∆tobs = 0.6

True signal parameters: γ̂ = 1.2, dγ = 20, σγ = 20, ωu = 1.78, σu = 0.5, γb = 0.5, ωb = 1, σb = 0.5.

Observation error:
√
ro = 0.316.
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Figure 3: (Regime I) Path-wise example of filtering with correct system parameters for three different
values of the observation time ∆tobs. The suite of filters used here is described in §3.



Regime I. Filtering with incorrect parameter values.

The mean stability parameter: χ = −0.7χ = −0.7χ = −0.7.

Decorrelation time of u: 1/γ̂ ≈ 0.833

Observation time: ∆tobs = 0.6

True signal parameters: γ̂ = 1.2, dγ = 20, σγ = 20, ωu = 1.78, σu = 0.5, γb = 0.5, ωb = 1, σb = 0.5.

Observation error:
√
ro = 0.316.
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Figure 4: (Regime I) Example of path-wise filtering with incorrect parameter values for three different
values of the noise amplitude σMu assumed in the filters for the dynamics of u(t). The suite of filters used
here is described in §3.



Regime I. Filtering skill as a function of observation time step.

The mean stability parameter: χ = −0.7χ = −0.7χ = −0.7.

Decorrelation time of u: 1/γ̂ ≈ 0.833

True signal parameters: γ̂ = 1.2, dγ = 20, σγ = 20, ωu = 1.78, σu = 0.5, γb = 0.5, ωb = 1, σb = 0.5.

Incorrect filter parameters: (Column 2) dMγ = 15, σMγ = 23, (Column 3) dMγ = 23, σMγ = 21.
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Figure 5: (Regime I) Average RMS errors of the filtered solution u(t) as a function of the observation
time ∆tobs for fixed values of the observation noise variance ro and different filter parameters. For ro & 1
the signal is dominated by noise. The filters used here are described in §3.



Regime I. Filtering skill as a function of observation noise variance.

The mean stability parameter: χ = −0.7χ = −0.7χ = −0.7.

Decorrelation time of u: 1/γ̂ ≈ 0.833

True signal parameters: γ̂ = 1.2, dγ = 20, σγ = 20, ωu = 1.78, σu = 0.5, γb = 0.5, ωb = 1, σb = 0.5.

Incorrect filter parameters: (Column 2) dMγ = 15, σMγ = 23, (Column 3) dMγ = 23, σMγ = 21.
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ro & 1 the signal is dominated by noise. The filters used here are described in §3.



Regime I. Filtering with incorrect parameter values.

The mean stability parameter: χ = −0.7χ = −0.7χ = −0.7.

Decorrelation time of u: 1/γ̂ ≈ 0.833

True signal parameters: γ̂ = 1.2, dγ = 20, σγ = 20, ωu = 1.78, σu = 0.5, γb = 0.5, ωb = 1, σb = 0.5.

Incorrect filter parameters: σMγ varied.
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Figure 7: (Regime I) Filtering with imperfect models (see §6). Average RMS errors of the filtered solution
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of observation time ∆tobs and fixed observation noise variance ro. The filter suite is described in §3.
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Regime I. Filtering with incorrect parameter values.

The mean stability parameter: χ = −0.7χ = −0.7χ = −0.7.

Decorrelation time of u: 1/γ̂ ≈ 0.833

True signal parameters: γ̂ = 1.2, dγ = 20, σγ = 20, ωu = 1.78, σu = 0.5, γb = 0.5, ωb = 1, σb = 0.5.

Incorrect filter parameters: dMγ varied.
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Regime I. Filtering with incorrect parameter values.

The mean stability parameter: χ = −0.7χ = −0.7χ = −0.7.

Decorrelation time of u: 1/γ̂ ≈ 0.833

True signal parameters: γ̂ = 1.2, dγ = 20, σγ = 20, ωu = 1.78, σu = 0.5, γb = 0.5, ωb = 1, σb = 0.5.

Incorrect filter parameters: σMu varied.
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Regime II. Filtering with correct parameters within distinct intervals.

The mean stability parameter: χ = −0.05χ = −0.05χ = −0.05.

Decorrelation time of u: 1/γ̂ ≈ 1.81

Observation time: ∆tobs = 0.2

True signal parameters: γ̂ = 0.55, dγ = 0.5, σγ = 0.5, ωu = 1.78, σu = 0.1, γb = 0.4, ωb = 1, σb = 0.4.

Observation error:
√
ro = 0.316.
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Figure 10: (Regime II) Filtering with the perfect model within three dynamically distinct intervals:
Interval 1Interval 1Interval 1: large-amplitude transient instability in u(t); Interval 2Interval 2Interval 2: two subsequent instabilities domi-
nating the low-frequency modulation; Interval 3Interval 3Interval 3: quiescent phase with one short unstable episode. The
perfect filter is given here by SPEKF with correct parameters (see §5)



Regime II. Filtering with correct parameter values in INTERVAL 1.

The mean stability parameter: χ = −0.05χ = −0.05χ = −0.05 (weakly damped dynamics of u).

Decorrelation time of u: 1/γ̂ ≈ 1.81

Observation time: ∆tobs varied

True signal parameters: γ̂ = 0.55, dγ = 0.5, σγ = 0.5, ωu = 1.78, σu = 0.1, γb = 0.4, ωb = 1, σb = 0.4.

Observation error:
√
ro = 0.44.
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Figure 11: (Regime II). Path-wise example of filtering within interval 1 (see Figure 10) for three different
observation times, ∆tobs, and a fixed value of the observation noise variance ro. The filter parameters are
here the same as those used for generating the truth signal; the filter suite is described in §3.



Regime II. Filtering with correct parameter values in INTERVAL 3.

The mean stability parameter: χ = −0.05χ = −0.05χ = −0.05 (weakly damped dynamics of u).

Decorrelation time of u: 1/γ̂ ≈ 1.81

Observation time: ∆tobs varied

True signal parameters: γ̂ = 0.55, dγ = 0.5, σγ = 0.5, ωu = 1.78, σu = 0.1, γb = 0.4, ωb = 1, σb = 0.4.

Observation error:
√
ro = 0.44.
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Figure 12: (Regime II). Path-wise example of filtering within interval 2 (see Figure 10) for three different
observation times, ∆tobs, and a fixed value of the observation noise variance ro. The filter parameters are
here the same as those used for generating the truth signal; the filter suite is described in §3.



Regime I. Filtering skill as a function of the observation noise variance.

The mean stability parameter: χ = −0.05χ = −0.05χ = −0.05.

Decorrelation time of u: 1/γ̂ ≈ 1.81

True signal parameters: γ̂ = 0.55, dγ = 0.5, σγ = 0.5, ωu = 1.78, σu = 0.1, γb = 0.4, ωb = 1, σb = 0.4.

Incorrect filter parameters: σMu = 0.2 and (Column 2) dMγ = 0.35, σMγ = 0.55, (Column 3) dMγ = 0.6, σMγ = 0.4,
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Figure 13: (Regime II) Average RMS errors of the filtered solution u(t) as a function of the observation
time step ∆tobs for fixed values of the observation noise variance ro and different filter parameters. For
ro & 1 the signal is dominated by noise. The filter suite is described in §3.



Regime II. Filtering with correct parameter values within different intervals.

The mean stability parameter: χ = −0.05χ = −0.05χ = −0.05 (weakly damped dynamics of u).

Decorrelation time of u: 1/γ̂ ≈ 1.81

Observation time: ∆tobs varied

True signal parameters: γ̂ = 0.55, dγ = 0.5, σγ = 0.5, ωu = 1.78, σu = 0.1, γb = 0.4, ωb = 1, σb = 0.1.

Observation error:
√
ro varied.
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Figure 14: (Regime II) Filtering with correct parameter values. Average RMS errors of u(t) as a function
of the observation time ∆tobs for fixed true signal and fixed values of the observation noise variance ro.
Columns show the RMS errors in the three intervals shown in Figure 10. The filter suite is described in
§3.



Regime I. Filtering skill as a function of observation noise variance.

The mean stability parameter: χ = −0.05χ = −0.05χ = −0.05.

Decorrelation time of u: 1/γ̂ ≈ 1.81

True signal parameters: γ̂ = 0.55, dγ = 0.5, σγ = 0.5, ωu = 1.78, σu = 0.1, γb = 0.4, ωb = 1, σb = 0.4.

Incorrect filter parameters: σMu = 0.2, (Column 2) dMγ = 0.35, σMγ = 0.55, (Column 3) dMγ = 0.6, σMγ = 0.4,
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Figure 15: (Regime II) Average RMS errors of the filtered solution u(t) as a function of the observation
noise variance ro for fixed values of the observation time step ∆tobs and different filter parameters. For
ro & 1 the signal is dominated by noise. The filter suite is described in §3.



Regime II. Filtering with imperfect models.

The mean stability parameter: χ = −0.05χ = −0.05χ = −0.05.

Decorrelation time of u: 1/γ̂ ≈ 1.81

True signal parameters: γ̂ = 0.55, dγ = 0.5, σγ = 0.5, ωu = 1.78, σu = 0.1, γb = 0.4, ωb = 1, σb = 0.4.

Incorrect filter parameters: σMγ varied.
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Figure 16: (Regime II) Filtering with imperfect models (cf §6). Average RMS errors of the filtered signal
u(t) as a function of the filter parameter σMγ (incorrect noise amplitude assumed for γ(t)) for fixed values
of the observation time ∆tobs and fixed observation noise variance ro. The filter suite is described in §3.
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Regime II. Filtering with imperfect models.

The mean stability parameter: χ = −0.05χ = −0.05χ = −0.05.

Decorrelation time of u: 1/γ̂ ≈ 1.81

True signal parameters: γ̂ = 0.55, dγ = 0.5, σγ = 0.5, ωu = 1.78, σu = 0.1, γb = 0.4, ωb = 1, σb = 0.4.

Incorrect filter parameters: dMγ varied.
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Figure 17: (Regime II) filtering with imperfect models (cf. §6). Average RMS errors of the filtered signal
u(t) as a function of the filter parameter dFγ (incorrect decorrelation time assumed for γ(t)) for fixed values
of the observation time ∆tobs and fixed observation noise variance ro. The filter suite is described in §3.
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Regime II. Filtering with imperfect models.

The mean stability parameter: χ = −0.05χ = −0.05χ = −0.05.

Decorrelation time of u: 1/γ̂ ≈ 1.81

True signal parameters: γ̂ = 0.55, dγ = 0.5, σγ = 0.5, ωu = 1.78, σu = 0.1, γb = 0.4, ωb = 1, σb = 0.4.

Incorrect filter parameters: σMu varied.
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Regime II. Parameter estimation.

The mean stability parameter: χ = −0.05χ = −0.05χ = −0.05 (weakly damped dynamics of u).

Decorrelation time of u: 1/γ̂ ≈ 1.81

Observation time: ∆tobs varied

True signal parameters: γ̂ = 0.55, dγ = 0.5, σγ = 0.5, ωu = 1.78, σu = 0.1, γb = 0.4, ωb = 1, σb = 0.1.

Filter parameters: all correct

Observation error:
√
ro varied.
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Figure 19: (Regime II) Parameter estimation. Average RMS errors of γ(t) as a function of the observation
time ∆tobs for fixed true signal and fixed values of the observation noise variance ro. Columns show the
RMS errors in the three intervals shown in Figure 10. The filter suite is described in §3.



Regime II. Parameter estimation with imperfect models within distinct intervals.

The mean stability parameter: χ = −0.05χ = −0.05χ = −0.05 (weakly damped dynamics of u).

Decorrelation time of u: 1/γ̂ ≈ 1.81

Observation time: ∆tobs varied

Observation error:
√
ro varied.

True signal parameters: γ̂ = 0.55, dγ = 0.5, σγ = 0.5, ωu = 1.78, σu = 0.1, γb = 0.4, ωb = 1, σb = 0.1.

Incorrect filter parameters: σMγ varied.
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Figure 20: (Regime II) Parameter estimation. Average RMS errors of γ(t) as a function of the filter
parameter σMγ (incorrect noise amplitude assumed in γ(t)) for fixed values of the observation noise variance
ro and the observation time ∆tobs. The filter suite is described in §3.
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Regime II. Filtering with correct parameter values.

The mean stability parameter: χ = −0.05χ = −0.05χ = −0.05 (weakly damped dynamics of u).

Decorrelation time of u: 1/γ̂ ≈ 1.81

Observation time: ∆tobs varied

True signal parameters: γ̂ = 0.55, dγ = 0.5, σγ = 0.5, ωu = 1.78, σu = 0.1, γb = 0.4, ωb = 1, σb = 0.1.

Filter parameters: all correct

Observation error:
√
ro varied.
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Figure 21: (Regime II) Parameter estimation. Average RMS errors of b(t) as a function of the observation
time ∆tobs for fixed true signal and fixed values of the observation noise variance ro. Columns show the
RMS errors in the three intervals shown in Figure 10. The filter suite is described in §3.



Regime II. Parameter estimation with imperfect models within distinct intervals.

The mean stability parameter: χ = −0.05χ = −0.05χ = −0.05 (weakly damped dynamics of u).

Decorrelation time of u: 1/γ̂ ≈ 1.81

Observation time: ∆tobs varied

Observation error:
√
ro varied.

True signal parameters: γ̂ = 0.55, dγ = 0.5, σγ = 0.5, ωu = 1.78, σu = 0.1, γb = 0.4, ωb = 1, σb = 0.1.

Incorrect filter parameters: σMγ varied.
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Figure 22: (Regime II) Parameter estimation. Average RMS errors of γ(t) as a function of the filter
parameter σMγ (incorrect noise amplitude assumed for γ(t)) for fixed values of observation noise variance
ro and observation time ∆tobs. The filter suite is described in §3.
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Regime III. Filtering and parameter estimation.

The mean stability parameter: χ = −0.1χ = −0.1χ = −0.1.

Decorrelation time of u: 1/γ̂ ≈ 0.12

True signal parameters: γ̂ = 8.1, dγ = 0.25, σγ = 1, ωu = 1.78, σu = 0.25, γb = 0.5, ωb = 1, σb = 0.5.

Incorrect filter parameters: dMγ = 0.3.
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Figure 23: (Regime III) Path-wise filtering with incorrect parameters (cf. §6) when the decorrelation time
of γ(t) assumed in the filters is underestimated (i.e., dMγ > dγ). The filter suite is described in §3.
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Regime III. Filtering with correct parameter values.

The mean stability parameter: χ = −0.1χ = −0.1χ = −0.1.

Observation time: ∆tobs varied

Decorrelation time of u: 1/γ̂ ≈ 0.12

True signal parameters: γ̂ = 8.1, dγ = 0.25, σγ = 1, ωu = 1.78, σu = 0.25, γb = 0.5, ωb = 0.3, σb = 0.5.

0 0.02 0.04 0.06 0.08 0.1 0.12
6.6

6.8

7

7.2
x 10−3

 

 

R
M

S
(u

)

perfect
DMF
SDMF
TEKF
GCF

0 0.02 0.04 0.06 0.08 0.1 0.12
9

9.2

9.4

9.6

9.8

10

x 10−3

 

 

R
M

S
(u

)

0 0.02 0.04 0.06 0.08 0.1 0.12
0.02

0.025

0.03

 

 

R
M

S
(u

)
0 0.02 0.04 0.06 0.08 0.1 0.12

0.05

0.1

0.15

0.2

0.25

 

 

R
M

S
(u

)

∆tobs

r o = 5 × 10−5

r o = 10−4

∆tobs
∆tobs

r o = 0.05

r o = 10−3

Figure 24: (Regime III) Filtering with correct parameter values. Average RMS errors of the filtered signal
u(t) as a function of the observation time ∆tobs for fixed values of the observation noise variance ro. For
ro & 0.03 the signal is dominated by observation noise. The filter suite is described in §3.



Regime III. Parameter estimation with imperfect models.

The mean stability parameter: χ = −0.1χ = −0.1χ = −0.1.

Decorrelation time of u: 1/γ̂ ≈ 0.12

True signal parameters: γ̂ = 8.1, dγ = 0.25, σγ = 1, ωu = 1.78, σu = 0.25, γb = 0.5, ωb = 1, σb = 0.5.

Incorrect filter parameters: σMγ varied.
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Figure 25: (Regime III) Parameter estimation with imperfect models. Average RMS errors of the filtered
signal u(t) as a function of the filter parameter σMγ (incorrect noise amplitude in the dynamics of γ) for
fixed values of observation time ∆tobs and fixed observation noise variance ro. The filter suite is described
in §3.
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Regime III. Parameter estimation with imperfect models.

The mean stability parameter: χ = −0.1χ = −0.1χ = −0.1.

Decorrelation time of u: 1/γ̂ ≈ 0.12

True signal parameters: γ̂ = 8.1, dγ = 0.25, σγ = 1, ωu = 1.78, σu = 0.25, γb = 0.5, ωb = 1, σb = 0.5.

Incorrect filter parameters: dMγ varied.
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Figure 26: (Regime III) Parameter estimation with imperfect models. Average RMS errors of the filtered
signal u(t) as a function of the filter parameter dMγ (incorrect damping assumed for γ) for fixed values of
observation time ∆tobs and fixed observation noise variance ro. The filter suite is described in §3.
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Regime III. Parameter estimation with imperfect models.

The mean stability parameter: χ = −0.1χ = −0.1χ = −0.1.

Decorrelation time of u: 1/γ̂ ≈ 0.12

True signal parameters: γ̂ = 8.1, dγ = 0.25, σγ = 1, ωu = 1.78, σu = 0.25, γb = 0.5, ωb = 1, σb = 0.5.

Incorrect filter parameters: σMu varied.
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Figure 27: (Regime III) Parameter estimation with imperfect models. Average RMS errors of the filtered
signal u(t) as a function of the filter parameter σMu (incorrect noise amplitude assumed in u) for fixed
values of observation time ∆tobs and fixed observation noise variance ro. The filter suite is described in
§3.
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