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Optimal variable shape parameter for

multiquadric based RBF-FD method

Victor Bayona, Miguel Moscoso, and Manuel Kindelan ∗

Gregorio Millán Institute, Universidad Carlos III de Madrid, Avenida de la

Universidad 30, 28911 Leganés, Spain

Abstract

In this follow up paper to our previous study in [2], we present a new technique to
compute the solution of PDEs with the multiquadric based RBF �nite di�erence
method (RBF-FD) using an optimal node dependent variable value of the shape
parameter. This optimal value is chosen so that, to leading order, the local approxi-
mation error of the RBF-FD formulas is zero. In our previous paper [2] we considered
the case of an optimal (constant) value of the shape parameter for all the nodes.
Our new results show that, if one allows the shape parameter to be di�erent at each
grid point of the domain, one may obtain very signi�cant accuracy improvements
with a simple and inexpensive numerical technique. We analyze the same examples
studied in [2], both with structured and unstructured grids, and compare our new
results with those obtained previously. We also �nd that, if there are a signi�cant
number of nodes for which no optimal value of the shape parameter exists, then the
improvement in accuracy deteriorates signi�cantly. In those cases, we use general-
ized multiquadrics as RBFs and choose the exponent of the multiquadric at each
node to assure the existence of an optimal variable shape parameter.

Key words: Radial basis functions; multiquadric; mesh-free; shape parameter

1 Introduction

The global RBF (Radial Basis Function) method was �rst proposed by Edward
Kansa [13,14] as a truly meshless method for the solution of partial di�erential

∗ Corresponding author. Address: Universidad Carlos III de Madrid, Avenida de la
Universidad 30, 28911 Legan�es, Spain. Fax: +34 91 624 91 29

Email addresses: vbayona@ing.uc3m.es (Victor Bayona),
moscoso@math.uc3m.es (Miguel Moscoso), kinde@ing.uc3m.es (Manuel
Kindelan).

Preprint submitted to Elsevier 24 November 2011



equations (PDEs) on irregular domains. It is based on collocation of RBFs on
a set of scattered nodes.

To overcome some of the drawbacks of the global RBF method, a local RBF
method was independently proposed by several authors [24,26,28]. The method
works very much like the �nite di�erence (FD) method: di�erential operators
at a given node are approximated as a weighted sum of the values of the sought
function at some surrounding nodes. However, while in the FD method the
unknown weights are computed using polynomial interpolation, in the local
RBF method they are computed by �tting an RBF interpolant through a
stencil of neighboring nodes. Both, FD and local RBF formulas are identical
in form, and therefore we will refer to the local RBF method as the RBF
�nite di�erence (RBF-FD) method, as was named in [28]. In the last years the
RBF-FD method has been successfully applied to a great variety of problems
[3,5,6,8{10,17{20,23,25,27].

Most of the RBFs used in the literature for solving PDEs depend on a shape
parameter c, and there is much experimental evidence showing that the accu-
racy of the solution to a PDE strongly depends on the value of this parameter
c. In [2], we reviewed some of the main e�orts to compute its optimal value,
both in the case of using a constant shape parameter at all nodes of the do-
main, and in the case of using a node-dependent shape parameter. We also
described a new technique to compute e�ciently the optimal (constant) value
of the shape parameter that minimizes the RBF-FD error. The technique
was based on the analytical approximations to the local errors in powers of
the shape parameter c and nodal distance h derived in [1]. We analytically
showed that there was a range of values of the shape parameter c for which
the RBF-FD formulas were signi�cantly more accurate than the FD ones,
and we computed the optimal (constant) value that minimized the truncation
error.

This paper is a follow up to the work started in [2]. We present a new and
practical algorithm to exploit RBF-FD formulas using a node dependent vari-
able value of the shape parameter. We show that a simple and inexpensive
numerical strategy can give rise to several orders of magnitude increase in
accuracy if one allows the shape parameter c to be di�erent at each node of
the domain, instead of using a constant value as in [2]. We also show that,
if there are a signi�cant number of nodes for which no optimal value of the
shape parameter exists, then the improvement in accuracy deteriorates signif-
icantly. In those cases, we use generalized multiquadrics as RBFs and choose
the exponent of the multiquadric at each node to assure the existence of an
optimal variable shape parameter. In this way, we are able to obtain signi�-
cant accuracy improvements with respect to the optimal constant method for
all the example problems analyzed in this work.
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The paper is organized as follows. In Section 2, we describe the local RBF
method, and we explain how to compute the optimal variable shape param-
eters. In Section 3, we give the numerical algorithm to compute them. In
Section 4, we show examples in one and two dimensions using both structured
and unstructured grids. For comparison purposes we use the same examples
used in [2]. Finally, Section 7 contains our conclusions.

2 RBF-FD method formulation

Consider the Dirichlet problem in a bounded domain 
 ⊂ R
d











L[u(x)] = f(x) in 


u(x) = g(x) on ∂

(1)

where L[·] is a di�erential operator, and f and g are real functions. In the
RBF-FD method we approximate the operator L[·] at a node x = xj by a
linear combination of the values of the unknown function u at n scattered
nodes surrounding xj, which constitute its stencil. Thus,

L[u(xj)] ≈
n

X

i=1

αjiu(xi), (2)

where αji are the weighting coe�cients. In the standard FD formulation, these
coe�cients are computed using polynomial interpolation. In the RBF-FD for-
mulation, they are computed using interpolation with radial basis functions,
thus

u(x) =
n

X

i=1

λi φ(ri(x), c), (3)

where ri(x) = ||x − xi|| is the distance from the RBF center, and φ(ri(x), c)
is some radial function which depends on a free shape parameter c. In this
paper, we will use Hardy's multiquadric as RBFs [12], so

φ(ri(x), c) =
q

c2 + ri(x)2 . (4)

Substituting (3) into (2) we can determine the unknown weighting coe�cients
αji by solving the system of linear equations

L[φ(rk(xj), c)] =
n

X

i=1

αjiφ(rk(xi), c), k = 1, . . . , n. (5)

From these equations, we observe that the coe�cients αji depend on the dis-
tances from xj to the other nodes xi in the stencil, and on the shape parameter
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c. As we emphasized before, accuracy is highly dependent on the value of this
parameter c. Therefore, we allow c to be di�erent at each stencil centered at
xj . Thus, we solve

L[φ(rk(xj), cj)] =
n

X

i=1

αjiφ(rk(xi), cj), k = 1, . . . , n , (6)

to determine the weighting coe�cients αji. In the following, we will assume
that the set of interpolation nodes with the corresponding stencils are given.
Therefore, the coe�cients αji will be functions of the shape parameter cj only.

Suppose that the domain 
 is discretized using N scattered nodes (NI interior
nodes and N −NI boundary nodes). Using (2), Eq. (1) at an interior node xj

can be written as

n
X

i=1

αji(cj)u(xi) = f(xj) + ǫn(xj ; cj), 1 ≤ j ≤ NI , (7)

where ǫn(xj ; cj) is the local RBF-FD error resulting from approximating the
di�erential operator L[·] with the n node RBF-FD formula (2), and cj is the
shape parameter corresponding to the stencil centered at xj. In matrix form,
these equations can be written as

A(c)u = f + ǫ(c) , (8)

where u is the vector of exact solutions at the interior nodes, c is the vector of
shape parameters at the interior nodes, A(c) is a NI ×NI sparse matrix whose
entries are the weighting coe�cients αji(cj), and ǫ(c) is a vector formed by
the local RBF-FD approximation errors ǫn(xj ; cj) at the interior nodes.

The RBF-FD approximation û to the exact solution u is obtained by formally
solving the discretized linear system

û(c) = A−1(c) f , (9)

so the RBF-FD error is given by

E(c) ≡ u − û(c) . (10)

Therefore, we can state our problem as the problem of �nding the vector of
shape parameters c which minimizes (10) in a certain norm. We de�ne the
optimal shape parameter vector as the value c∗ such that

||E(c∗)|| = min
c

||E(c)|| ≡ min
c

||u − û(c)|| . (11)

It is apparent that in real problems the value c∗ can not be computed directly
from (11) because the exact solution u is not known. However, from (8) and
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(9) we can write

||E(c∗)|| = min
c

||A−1(c) ǫ(c)|| , (12)

and estimate the value c∗ using the analytical approximations to the local
error ǫ(c) derived in [1]. These formulas are written as series expansions in
powers of h (the average inter-nodal distance), which are valid for cj ≫ h.
The coe�cients of these formulas depend on the shape parameter cj , the dis-
tances to the other nodes in the stencil, and on the value of the exact solution
and its derivatives at each node xj. Moreover, these coe�cients can be easily
computed without losing accuracy using an approximate �nite di�erence so-
lution ~u instead of the exact solution u. Using these formulas, we seek for an
approximate value c∗e to the optimal shape parameter vector c∗ such that

||Ee(c
∗

e)|| = min
c

||A−1(c) ~ǫe(c)|| , (13)

where ~ǫe(c) is the estimated local error computed with the analytical approx-
imations to the local error derived in [1].

Problem (13) is the same type of minimization problem that was solved in
[2], but now one has to �nd Ni unknown shape parameters at the interior
nodes, instead of only one constant shape parameter c as was done in [2].
Furthermore, ||A−1(c) ~ǫe(c)|| is a scalar function of Ni dimensions with an
extremely high number of local minima, so minimization algorithms, such as
the routine fminsearch of Matlab, are of little use because they immediately
fall in one of these local minima.

To compute the global minimum it is necessary to use nonlinear optimization
algorithms such as simulated annealing [15]. We have used this technique to
solve the one dimensional boundary value problem considered as a �rst exam-
ple in [2] (see Eq. (13) in [2]) and we have obtained an error of ||E(c)||∞ =
2.947 10−4. This result is signi�cantly more accurate than the one obtained
with the optimal (constant) shape parameter (||E(c)||∞ = 1.178 10−3). How-
ever, this procedure is computationally very expensive and, in general, is not
capable of �nding the absolute minimum of the problem.

Thus, instead of solving problem (13) to �nd the vector c∗e that minimizes the
estimated error ||Ee(c)||∞, we compute the values c+

e that minimize the local
estimated approximation errors ~ǫe(c). Since the element j of ~ǫe(c), ~ǫn(xj ; cj),
only depends on the shape parameter cj, minimizing k ~ǫe(c) k involves NI min-
imization problems with one unknown each, which is a much more tractable
problem. In fact, we compute the optimal shape parameter at each interior
node xj by solving ~ǫn(xj ; c+

j ) = 0. This is a polynomial equation that can be
solved analytically using the explicit formulas for the local errors derived in
[1].

For an optimal shape parameter c+
j to be valid two conditions must be satis�ed:
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(i) the solution for ~ǫn(xj ; c+
j ) = 0 must be real, and (ii) c+

j ≫ h. If condition
(i) is not satis�ed there is not a value of the shape parameter for which the
local approximation error is zero. If condition (ii) is not satis�ed then the
optimal value computed is not valid since it is obtained using the local error
formulas outside their region of validity. In both cases, we use the standard
central �nite di�erence formula instead.

3 Numerical algorithm

For a given problem (1), and a given set of N scattered nodes, the method
described in the previous Section is implemented as follows:

(1) For each interior node xj determine a stencil of n surrounding nodes.
(2) Use �nite di�erences to compute an approximate solution ~u(xj).
(3) At each interior node xj , compute the estimated value of the optimal

shape parameter, c+
j , using the approximate formulas derived in [1]. These

formulas depend on the value of the function and its derivatives at the
node, which are estimated using the �nite di�erence solution ~u(xj).

(4) Use (6) to compute the RBF-FD coe�cients αji numerically and, there-
fore, matrix A(c+

e ). In nodes where there is not optimal shape parameter
use the standard �nite di�erence coe�cients.

(5) Compute the optimal RBF-FD approximate solution û(c+
e ) = A−1(c+

e ) f .

4 Example problems in one dimension

In this section, we will apply the numerical algorithm just described to the
solution of the same example problems in 1D and 2D that were solved in
our previous paper [2] with an optimal (constant) shape parameter. We will
use both structured and non structured nodes and we will show that using
the optimal node dependent value of the shape parameter leads to further
signi�cant improvements in accuracy.

4.1 One dimensional boundary value problem

We consider the following problem


















uxx = f(x), 0 < x < 1,

u(0) = 1, u(1) = 1 +

√
2

2

(14)
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Fig.1.Leftplot:Infinitenormoftheerrorsofproblem(14)asfunctionofc,using
N=41structurednodes.Solidline;RBF-FDerrorwithvariablec+j.Dashedline;
RBF-FDerrorwithconstantc.Dot-dashedline;FDerror.Rightplot:(·)optimal
shapeparameterdistributionc+e.Thenodeswherec

+
j doesnotexistaremarked

withacircle(◦).

wheref(x)iscomputedfromtheknownsolutionu(x)=1−sin
5π

4
x.

4.1.1 Structurednodes

Letusdiscretizethedomainin(14)usingN=41structurednodes,andletus
useathreenode(xj−h,xj,xj+h)centraldifferenceschemetoapproximate
thesecondderivative.TheresultinglocalRBF-FDapproximationerroris[1]

ǫ3(xj;cj)=
h2

12
u(IV)(xj)+

h2

c2j
u′′(xj)−

3h2

4c4j
u(xj)+O h

4P3(1/c
2
j).(15)

WeusethenotationO(hmPn(1/c
2))toindicatethatthetermsthathavebeen

neglectedareoforderhm n
i=0

ai
c2i
,whereaiareconstantswhichdependonthe

derivativesandvaluesoftheparticularfunctionatxj.

Toestimatethiserrorweuseasecondorderfinitedifferenceapproximation
ũ(xj)totheexactsolutionu(xj),soũ(xj)=u(xj)+O(h

2).In(15),u′′(xj)
andu(IV)(xj)arecomputedexactlyfromf(xj),so

ǫ̃3(xj;cj)=
h2

12
f′′(xj)+

h2

c2j
f(xj)−

3h2

4c4j
ũ(xj). (16)

Theaccuracyofthelocalerrorcomputedwiththefinite-differenceapproxima-
tionin(16)isofthesameorder(O(h4))astheonecomputedwiththeexact
solutionin(15).Theoptimalshapeparametersc+jarecomputedequating(16)
tozeroforeverynodexj.
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Table 1
RBF-FD results for problem (14): N is the number of nodes; min( c+

e ) and max( c+
e )

are the minimum and maximum values of the optimal shape parameters c+
j ; % N

and ||E(c+
e )||∞ are the percentage of nodes for which c+

j does not exist and the
corresponding in�nite norm of the error; c∗e and ||E(c∗e)||∞ are the optimal constant
shape parameter and the corresponding in�nite norm of the error; ||~E||∞ is the
in�nite norm of the conventional �nite di�erences.

Structured nodes

N min( c+
e ) max( c+

e ) % N ||E( c+
e )||∞ c∗e ||E(c∗e)||∞ ||~E||∞

21 0.6326 1.0039 4.8 3:698 · 10−5 0.8628 7:763 · 10−5 4:181 · 10−3

41 0.6333 1.0712 2.4 4:728 · 10−6 0.8626 1:735 · 10−5 1:044 · 10−3

61 0.6334 1.1789 1.6 1:959 · 10−6 0.8625 7:541 · 10−6 4:638 · 10−4

81 0.6334 1.3730 1.2 1:083 · 10−6 0.8625 4:216 · 10−6 2:609 · 10−4

Unstructured nodes

N min( c+
e ) max( c+

e ) % N ||E( c+
e )||∞ c∗e ||E(c∗e)||∞ ||~E||∞

21 0.2760 1.0596 0 2:211 · 10−4 0.7858 1:207 · 10−3 4:928 · 10−3

41 0.3962 1.3382 0 2:625 · 10−6 0.7959 1:981 · 10−4 1:327 · 10−3

61 0.3965 1.4689 0 2:516 · 10−6 1.0069 4:586 · 10−5 3:818 · 10−4

81 0.3715 1.7317 1.2 3:348 · 10−6 0.8071 2:595 · 10−5 3:377 · 10−4

In the left plot of Fig. 1 we show with a dashed line the in�nity norm of the
RBF-FD error, ||E(c)||∞ = ||u − û(c)||∞, using a constant shape parameter
c throughout the domain. Notice that in the limit of increasingly 
at basis
functions (c → ∞) the RBF-FD error approaches the standard �nite di�erence
one [29], shown with a dot-dashed line in the �gure. The in�nity norm of the
RBF-FD error using the algorithm described in Section 3 is shown with a
solid line. The length of the line represents the range of the optimal values of
the shape parameters c+

j . Notice that the accuracy is slightly higher with the
variable shape parameter than with the constant one.

The right plot of Fig. 1 shows the distribution of the optimal shape parameters.
These values are quite close to the value of the optimal (constant) shape
parameter c = 0.8626. Only near x = 0 and x = 0.8 the local optimal values
c+
j di�er signi�cantly from the constant value. This explains why, in this case,

there is not a very signi�cant improvement in accuracy using a variable shape
parameter. Also notice that for xj = 0.8 there is not a real value c+

j that
satis�es ~ǫ3(xj ; c

+
j ) = 0. These nodes are marked with the symbol '◦' in the

�gure.
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Fig.2.SameasFig.1butforunstructurednodes.

Table1showsresultsfordifferentvaluesofN.Thesecondandthirdcolumns
displaytheminimumandmaximumvaluesoftheoptimalshapeparameters
c+j,respectively,theforthcolumnthepercentageofnodesforwhichc

+
jdoes

notexist(%N),andthefifthcolumntheinfinitenormoftheerror||E(c+e)||∞.
Forcomparison,weshowinthesixthandseventhcolumnsthecorresponding
resultsfortheoptimal(constant)shapeparameter(c∗eand||E(c

∗
e)||∞,respec-

tively),andinthelastcolumntheresultsforconventionalfinitedifferences
(||̃E||∞).ForallvaluesofN,thereissomeimprovementinaccuracyusingthe
variableoptimalshapeparameterinsteadoftheconstantoptimalone.

4.1.2 Unstructurednodes

Whenthedomainisdiscretizedwithunequallyspacednodes,thelocalRBF-
FDapproximationerrorusingathreenode(xj−h,xj,xj+λh)centraldiffer-
enceschemeisonlyoforderO(h)(see[1]),sowealsoincludetermsoforder
O(h2)intheformula.Therefore,thetruncationerrorisoforderO(h3),while
inthecaseofstructurednodesitwasoforderO(h4).Theestimatedlocalerror
is

ǫ̃3(xj;cj)=
λ−1

3
hf′(xj)+(λ−1)

h

c2j
ũ′(xj)

+[λ(λ−1)+1]
h2

12
f′′(xj)+λ

h2

c2j
f(xj)

+[λ(λ−5)+1]
h2

4c4j
ũ(xj), (17)

wherewehaveused(14)toreplaceu(k),k≥2,bythefunctionfandits
derivatives.Wehavealsoreplacedtheexactsolutionuanditsfirstderivativeu′

bythefirstorderfinitedifferenceapproximations̃uand̃u′,respectively.Inthis
case,ũ′iscomputedfrom̃uusingafirstorderfinitedifferenceapproximation.
Thisproceduredoesnotintroducehigherordererrors.
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Fig.3.SameasFig.1butforproblem(18).

InFig.2,weshowtheresultsfromproblem(14)usingN=41unstructured
nodes.TheleftplotshowstheinfinitynormsoftheRBF-FDerrorusinga
constantshapeparameter(dashedline),andusingthealgorithmdescribed
inSection3(solidline).Thelengthofthesolidlinerepresentstherange
oftheoptimalvariablevaluesc+j.Inthiscase,thereisanimprovementof
approximatelytwoordersofmagnitudebetweentheresultsforaconstant
shapeparameterandtheresultsforavariableone.Therightplotofthe
figureshowsthedistributionofoptimalshapeparameters,whichrangefrom
0.4to1.4.Theoptimalconstantshapeparameteris,inthiscase,c∗=0.7959
[1],whichisakindofaverageoftheoptimalvariablevaluesshowninthe
figure.

TheresultsfordifferentvaluesofNaresummarizedinthebottompartof
Table1.Foralltheresolutionsreportedhere,thereisanorderofmagnitude
ofimprovementwithrespecttotheresultsobtainedwithaconstantoptimal
shapeparameter.Thisimprovementisduetothefactthatanoptimalvalue
c+jexistsforallnodes(exceptforN=81).

4.2 Steadyconvection-diffusionproblem

Considertheproblem






ux−uxx=π
2sin(πx)+πcos(πx), 0<x<1,

u(0)=0, u(1)=1
(18)

whoseexactsolutionisu(x)=sin(πx)+
ex−1

e−1
.Thisproblemwasproposed

andsolvedin[4].
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Table 2
Same as Table 1 but for the steady convection-di�usion problem (18).

Structured nodes

N min( c+
e ) max( c+

e ) % N ||E( c+
e )||∞ c∗e ||E(c∗e)||∞ ||~E||∞

11 0.7963 2.8808 9.0 1:719 · 10−4 1.1139 9:245 · 10−4 8:337 · 10−3

21 0.6979 2.8796 9.5 5:643 · 10−5 1.1127 2:161 · 10−4 2:088 · 10−3

41 0.6224 2.8793 12.2 1:523 · 10−5 1.1123 5:282 · 10−5 5:220 · 10−4

81 0.5707 5.8510 11.1 3:834 · 10−6 1.1123 1:314 · 10−5 1:305 · 10−4

Unstructured nodes

N min( c+
e ) max( c+

e ) % N ||E( c+
e )||∞ c∗e ||E(c∗e)||∞ ||~E||∞

11 0.9933 3.3864 54.5 1:008 · 10−2 1.1409 5:060 · 10−3 1:105 · 10−2

21 0.8469 3.2638 57.1 1:525 · 10−3 0.9818 4:832 · 10−4 2:667 · 10−3

41 0.6074 2.2497 31.7 2:843 · 10−4 1.0536 5:979 · 10−5 6:788 · 10−4

81 0.4002 3.9330 25.9 1:026 · 10−4 1.0539 1:584 · 10−5 1:685 · 10−4

4.2.1 Structured nodes

The local estimated approximation error to the convection-di�usion di�eren-
tial operator with the RBF-FD formula using three structured nodes is

~ǫ3(xj ; cj) =
h2

12

�

2 ~u′′′(xj) − ~u(IV )(xj)
�

+
h2

2c2
j

(~u′(xj) − 2 ~u′′(xj) )

+
3 h2

4 c4
j

~u(xj). (19)

In this formula, ~u is a second order �nite di�erence approximation of u and
~u′ is approximated from ~u using the corresponding second order central dif-
ference scheme. Higher derivatives are approximated to second order through
the recursion ~u(k+1) = ~u(k) − f (k−1) for k ≥ 1.

In Fig. 3, we show the results from problem (18) using 41 nodes of the dis-
cretization. The left plot shows the in�nity norm of the RBF-FD error using
a constant shape parameter (dashed line) and the in�nity norm of the RBF-
FD error using the algorithm described in Section 3 (solid line). The length
of this line represents the range of the optimal values of the shape parame-
ters c+

j (between 0.6 and 3, approximately). The results for N = 41 and for
other values of N are summarized in Table 2. Notice that there is only a small
improvement with respect to the results obtained with the optimal constant
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Table 3
Same as Table 1 but for the steady convection-di�usion problem (20).

Structured nodes

N min( c+
e ) max( c+

e ) % N ||E( c+
e )||∞ c∗e ||E(c∗e)||∞ ||~E||∞

11 2.2171 2.4195 0 3:466 · 10−7 2.3065 1:463 · 10−6 1:007 · 10−4

21 2.2060 2.4343 0 2:175 · 10−8 2.3066 3:266 · 10−7 2:515 · 10−5

41 2.2006 2.4419 0 1:793 · 10−9 2.3065 7:786 · 10−8 6:292 · 10−6

61 2.1988 2.4444 0 1:230 · 10−9 2.3065 3:418 · 10−8 2:797 · 10−6

Unstructured nodes

N min( c+
e ) max( c+

e ) % N ||E( c+
e )||∞ c∗e ||E(c∗e)||∞ ||~E||∞

11 2.2125 2.3608 54.5 3:812 · 10−4 9:3362 · 101 3:8526 · 10−4 3:907 · 10−4

21 2.2101 2.4084 52.3 3:397 · 10−5 3.3788 4:093 · 10−5 4:722 · 10−5

41 2.2023 2.4297 46.3 5:099 · 10−6 2.4715 5:216 · 10−6 9:431 · 10−6

61 2.1988 2.4445 3.3 3:325 · 10−6 1.7107 4:107 · 10−6 5:723 · 10−6

value of the shape parameter (c∗ = 1.1123). The reason for these results can
be explained by looking at the optimal shape parameter distribution shown in
the right plot of this �gure. Observe that there are �ve nodes, in the vicinity
of x = 0.85, for which no optimal shape parameter exists. In these nodes,
standard �nite di�erence formulas are used to approximate the convection-
di�usion di�erential operator. This approximation deteriorates signi�cantly
the overall accuracy. Similar results are obtained for other values of N , as can
be seen in Table 2. In fact, we have observed that the accuracy obtained with
the algorithm described in Section 3 is highly dependent on the number of
nodes for which c+

j exists. If there are very few nodes for which c+
j does not

exist, then the improvement of the accuracy compared to standard FD is very
high. However, if there are many nodes for which c+

j does not exist then the
accuracy is similar to that obtained with an optimal constant c∗ or even with
standard FD formulas.

Let us corroborate this behavior by considering the following steady convection-
di�usion problem















ux − uxx = 0, 0 < x < 1,

u(0) = 0, u(1) = 1 ,
(20)

whose exact solution is u(x) =
ex − 1

e − 1
. This problem was also proposed and

solved in [4].
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TheleftplotofFig.4showsthecorrespondingerrorsforthisproblem.Notice
that,inthiscase,thereisaverysignificantimprovementoftwoordersof
magnitudeinaccuracy.Thereasonforthisimprovementcanbeunderstood
byconsideringtheoptimalshapeparameterdistributionwhichisshowninthe
rightplotofFig.4.Forallthenodesthereisavaluec+joftheshapeparameter
forwhichthelocalapproximationerror(19)hasaminimum.Itisremarkable
thatalthoughthevaluesofc+j arerelativelyconstant(2.20≤ c

+
j ≤2.44,

forallj),thosesmallvariationssufficetoproduceaconsiderableincreasein
accuracy.SimilaraccuracyimprovementsareobtainedforothervaluesofN
(seeTable3)sinceinallcasesthereexitsanoptimalvaluec+j ineachnode
(%N=0).

4.2.2 Unstructurednodes

Inthecasethatthedomainisdiscretizedwithunequallyspacednodes,thelo-
calestimatedRBF-FDapproximationerrorusingathreenode(x−h,x,x+λh)
centraldifferenceschemefortheconvection-diffusionoperatoris

ǫ̃3(xj;cj)=
(1−λ)

3
h̃u′′′(xj)+(1−λ)

h

c2j
ũ′(xj)

+
h2

12
2λ̃u′′′(xj)−[λ(λ−1)+1]ũ

(IV)(xj)

+
λh2

2c2j
[̃u′(xj)−2̃u

′′(xj)]−[λ(λ−5)+1]
h2

4c4j
ũ(xj).(21)

Functionũanditsderivativesareapproximatedasdescribedintheprevious
section.

InFig.5,weshowtheresultsfromproblem(18)using41unstructuredHalton
nodes.TheleftplotshowstheinfinitynormoftheRBF-FDerrorusinga
constantshapeparameter(dashedline)andtheinfinitynormoftheRBF-FD
errorusingthealgorithmdescribedinSection3(solidline).Thelengthof
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thelineshowstherangeoftheoptimalvaluesoftheshapeparametersc+j
(betweenapproximately0.6and2.3).Therightplotshowstheoptimalshape
parameterdistribution.Noticethatthereisasignificantnumberofnodesfor
whichanoptimalvalueoftheshapeparameterc+jdoesnotexist(31.7%)and,
therefore,thestandardfinitedifferenceapproximationisusedatthosenodes.
Asaresult,theoverallaccuracyofthesolutionisdegradedincomparison
withtheoptimalconstantshapeparameter.Similarresultsareobtainedfor
othervaluesofN,ascanbeseeninthebottompartofTable2.

Figure6showsthecorrespondingresultsforproblem(20).Observeinthe
rightplotofthisfigurethatforapproximatelyhalfofthenodes(46.3%)an
optimalvaluec+j exists(2.2≤ c

∗
j ≤2.45),whilefortheotherhalfnoc

+
j

exists.Theresultingoverallaccuracyisverysimilartothatobtainedwiththe
optimalconstantshapeparametertechnique[2].Similarresultsareobtained
forothervaluesofNascanbeseeninthebottompartofTable3.

Itshouldbementionedthatinsomeofthenodesmarkedwiththesymbol
’◦’,therearevaluesoftheshapeparameterforwhichthelocalapproximation
errors(21)areminimum.However,theresultingshapeparametersaresmall,
anddonotsatisfytheassumptionc≫hforwhichtheformulasderivedin[1]
arevalid.Thus,forthosevaluesofc,Eq.(21)isnotagoodapproximationto
thelocalapproximationerrorand,therefore,itcannotbeusedtocomputea
validc+j.Accordingly,weonlyacceptthec

+
jvaluesthatsatisfythecondition

14



c+
j > cmin ≫ h, where cmin is a previously de�ned threshold. Hence, item 4 of

the numerical algorithm in Section 3 is substituted by

4. Use (6) to compute numerically the RBF-FD coe�cients αji and therefore
matrix A(c+

e ). In nodes where there is not an optimal shape parameter
or where c+

j < cmin, use standard �nite di�erence coe�cients.

In Figure 6 and Table 3 we have used cmin = 0.5. We will use this modi�ed
algorithm in the rest of the paper.

5 Generalized multiquadrics.

From the previous results, it is apparent that the use of a variable shape
parameter can give rise to several orders more accurate solutions if a valid c+

j

exists at almost all nodes of the computational domain. However, very often,
there are nodes for which no c+

j ≫ h exists for which the leading order of the
local RBF-FD multiquadric based approximation (Eqs. (19) and (21) in this
Section) is zero. Hence, we propose the use of another RBF that ensures that
the RBF-FD local approximation error is zero to leading order at all nodes.
To this end, one possibility that we have successfully used is the generalized
multiquadric

φ(ri(x), c, β) = (c2 + ri(x)2)�=2 , (22)

where the new (node-dependent) parameter β is chosen so that an optimal
value c+

j ≫ h exists at every node. For the steady convection-di�usion problem
(18), the local RBF-FD error formula analogous to (21) is

ǫ3(xj ; cj, βj) =
(1 − λ)

3
h u′′′(xj) +

h

c2
j

(βj − 2) (λ − 1) u′(xj)

+
h2

12

h

2 λ u′′′(xj) − [λ (λ − 1) + 1] u(IV )(xj)
i

+
h2

c2
j

"

(2 − βj)

2
λu′(xj) +

(βj − 2)

6(βj − 3)

�

βj

�

λ2 + λ + 1
�

− λ(λ + 13) − 1
�

u′′(xj)

#

+
h2

c4
j

(βj − 7)(βj − 2)

12 (βj − 3)
βj [λ(λ − 5) + 1] u(xj) + O

�

h3 P2(1/c
2
j)

�

. (23)

The error is now a function of h, λ, cj and βj. The objective is to �nd at
each node xj a valid combination of values (c+

j , β+
j ) for which the leading

order of the local RBF-FD error is zero. For a given βj equating to zero
the leading order equation for the local error (23) results in a polynomial
equation of second degree in the variable 1/c2

j that we solve analytically. This
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quadric(22).

guarantees,ingeneral,twobranchesofsolutionsc+j=c
+
j(β

+
j).Hence,there

areaninfinitenumberofpossiblecombinations(c+j,β
+
j)thatmaketheleading

orderofthelocalRBF-FDerrorzero.However,onlythoseforwhichc+jisreal
andc+j≫harevalid.Betweenallthesepossiblecombinations,weonlyaccept

theminimumintegervalueβ+j whichsatisfiesc
+
jrealandc

+
j>cmin.Other

strategies,asforinstanceallowingβ+j tobeacontinuousrealvariable,are
alsopossibleandgivethesamedegreeofaccuracy.

TheleftplotofFig.7showstheerrorofthesolutionofproblem(18)with41
unstructuredHaltonnodes,using(22)insteadof(4)andcmin=0.5.Theleft
plotofFig.8showsthecorrespondingoptimalshapeparameterdistribution
c+β j

andtherightsideofFig.8theoptimalβ+j distribution.Theseresults

shouldbecomparedtothoseobtainedwiththestandardmultiquadricRBF
whichareshownintheleftplotofFig.5.Usingthegeneralizedmultiquadric
(22),avalidvalueofc+β j

existsforallnodesandthisleadstoasignificant
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Table 4
RBF-FD results for the steady convection-di�usion problem (18) with the gener-
alized multiquadric: N is the number of nodes; % N� and ||E( c+

� )||∞ are the per-

centage of nodes for which (c+
� )j does not exist and the corresponding in�nite norm

of the error; % N� and ||E(c+
e )||∞ are the percentage of nodes for which c+

j does
not exist and the corresponding in�nite norm of the error; ||E(c∗e)||∞ is the in�nite
norm of the error using an optimal constant shape parameter c∗e.

Unstructured nodes (beta variable)

N % N� ||E( c+
� )||∞ % N ||E( c+

e )||∞ ||E(c∗e)||∞

11 0 8:860 · 10−4 54.5 1:008 · 10−2 5:060 · 10−3

21 0 1:443 · 10−4 57.1 1:525 · 10−3 4:832 · 10−4

41 0 1:001 · 10−5 31.7 2:843 · 10−4 5:979 · 10−5

81 0 4:623 · 10−7 25.9 1:026 · 10−4 1:584 · 10−5

increase in accuracy with respect to the optimal constant shape parameter
result. In fact, using (22) the resulting error is ||E( c+

� )||∞ = 1.001·10−5, while
using the standard multiquadric (4) the error is ||E( c+

e )||∞ = 2.843 · 10−4.
Table 4 shows the corresponding results for other values of N .

The right plot of Fig. 7 shows the error in the solution of problem (20) with 41
unstructured Halton nodes, using (22) instead of (4) and cmin = 0.5. Again, a
valid value of c+

j exists for all nodes and this leads to an even larger improve-
ment in accuracy with respect to the results obtained with standard multi-
quadrics: ||E( c+

� )||∞ = 6.930 ·10−10 instead of ||E( c+
e )||∞ = 5.099 ·10−6. This

represents four orders of magnitude increase in accuracy.

6 Example problems in two dimensions

Consider now the two dimensional Poisson problem















�u = f(x, y), in 
 = (0, 1) × (0, 1)

u = u(x, y), on ∂

(24)

where f(x, y) is obtained from the exact solution

u = exp

"

−
�

x − 1

4

�2

−
�

y − 1

2

�2
#

cos(2 π y) sin(π x) . (25)
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Thisproblemhasbeenusedby WrightandFornberg[29]totesttheperfor-
manceofthelocalRBF-FDandlocalRBF-HFD(HermiteRBF)methods.
Wehavealsouseditasanexampleproblemtotesttheperformanceofthe
RBF-FDmethodusinganoptimalconstantshapeparameter[2].

6.1 Structurednodes

SupposethedomainisdiscretizedusinganN×Nstructurednodes.Usinga
fivenode{(x,y),(x−h,y),(x+h,y),(x,y−h),(x,y+h)}scheme,thelocal
estimatedRBF-FDerroris

ǫ̃5(xj,cj)=
h2

12
ũ(4,0)(xj)+̃u

(0,4)(xj)+
5h2

6c2j
f(xj)−

7h2

6c4j
ũ(xj).(26)
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Table 5
Same as Table 1 but for the laplacian problem (24)-(25).

Structured nodes

N min( c+
e ) max( c+

e ) % N ||E( c+
e )||∞ c∗e ||E(c∗e)||∞ ||~E||∞

11 × 11 0.4127 0.7979 1.7 2:422 · 10−3 0.5779 6:581 · 10−3 3:847 · 10−2

21 × 21 0.3317 0.8835 0.5 1:498 · 10−4 0.5816 1:352 · 10−3 9:516 · 10−3

31 × 31 0.2146 6.1387 0.2 1:171 · 10−4 0.5816 5:641 · 10−4 4:220 · 10−3

41 × 41 0.1680 2.0905 4.3 2:810 · 10−5 0.5818 3:121 · 10−4 2:370 · 10−3

Unstructured nodes

N min( c+
e ) max( c+

e ) % N ||E( c+
e )||∞ c∗e ||E(c∗e)||∞ ||~E||∞

121 (120) 0.1220 3.1054 41.3 1:415 · 10−2 0.4869 1:519 · 10−2 6:153 · 10−2

441 (438) 0.1141 3.2097 30.6 7:616 · 10−3 0.7783 1:079 · 10−2 1:668 · 10−2

961 (955) 0.1041 9.0912 26.5 5:796 · 10−3 0.5058 1:911 · 10−3 7:454 · 10−3

1521 (1513) 0.1001 2.9971 29.3 5:239 · 10−3 0.5094 1:630 · 10−3 3:983 · 10−3

In this equation ~u is a second order approximation of u and ~u(4;0) + ~u(0;4) =
�f − 2~u(2;2), where ~u(2;2) is approximated from ~u using the corresponding
second order central di�erence scheme.

In Fig. 9, we show the results from problem (24)-(25) using 41×41 structured
nodes and the standard multiquadrics (4). The left plot shows, with a dashed
line, the in�nity norm of the RBF-FD error using a constant shape parameter
throughout the domain. The in�nity norm of the RBF-FD error using the
algorithm described in Section 3 is shown with a solid line. The length of this
line represents the range of the values of the shape parameters c+

j . Although
for most nodes, the values of the c+

j are close to the optimal constant shape
parameter c∗ = 0.5818 (see Table 5), the accuracy with the variable shape
parameter is signi�cantly higher than with the optimal constant one.

The right plot of the �gure shows the distribution of the optimal shape pa-
rameters c+

j . In this �gure, there are two small intervals in the vicinities of
x = 0.25 and x = 0.75 for which c+

j does not exist. In Fig. 10, we represent
the corresponding absolute RBF-FD global error distribution for this example.
The maximum error is located at these nodes.
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6.2 Unstructurednodes

ConsidernowthecaseinwhichthedomainisdiscretizedusingNunstructured
nodes.ThelocalRBF-FDerrorforsixunequallyspacednodes{(x,y),(x+
h,y+λ1h),(x+γ2h,y+λ2h),(x+γ3h,y+λ3h),(x+γ4h,y+λ4h),(x+γ5h,y+
λ5h)}centraldifferenceschemeisgivenby(seereference[1])

ǫ6(xj,cj)=hA0,0u
(3,0)(xj)+A0,1u

(2,1)(xj)

+A0,2u
(1,2)(xj)+A0,3u

(0,3)(xj)

+
h

c2j
A1,0,u

(1,0)(xj)+A1,1u
(0,1)(xj)

+h2 B0,0u
(4,0)(xj)+B0,1u

(3,1)(xj)+B0,2u
(2,2)(xj)

+B0,3u
(1,3)(xj)+B0,4u

(0,4)(xj)

+
h2

c2j
B1,0,u

(2,0)(xj)+B1,1u
(1,1)(xj)+B1,2u

(0,2)(xj)

+
h2

c4j
B2,0u(xj)+O h

3P3(1/c
2
j), (27)

wherethecoefficientsAi,jandBi,jdependonthesurroundingnodeslayout
{γk}and{λk},andtheirexactvaluescanbecomputednumericallyforeach
node.Inthisexample,wehavenotestimatedthederivativesofu(x)thatap-
pearin(27)fromthenumericalsolutioncomputedwithstandardFD.Instead,
wehaveusedtheexactvaluesofthefunctionanditsderivativesinorderto
analyzetheconvergenceoftheerrorandtoestimatetheoptimalshapepa-
rameter.
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We use an unstructured node layout of N2 nodes: N2 − 4(N − 1) Halton
nodes in the interior of the domain [11], and 4(N − 1) structured nodes on
the boundary. For the local support, we use stencils with n = 6 nodes. For
standard �nite di�erences, 6 nodes stencils allow, in principle, a consistent
approximation to the laplacian operator (i.e. the approximation is at least
�rst order accurate) since there are six constraints that have to be satis�ed.
However, there are special con�gurations of the nodes in the stencil for which
there is no solution to the constraints [21] and, therefore, the coe�cients of the
�nite di�erence formula can not be computed. The problem of stencil support
selection for unstructured nodes is a very crucial topic in �nite di�erences
which has been addressed by several authors. In a recent paper, Davydov and
Oanh [6] reviewed di�erent support selection methods and proposed a new
algorithm based on minimizing the sum of the squares of the angles between
two consecutive lines from the central node to the other nodes in the stencil.

In this paper, we use a modi�ed version of the algorithm recently proposed by
Seibold [22]. It is based on a linear programming approach that guarantees the
positivity of the stencil. Applying this algorithm, results in a 6 node stencil
selection for almost all the interior nodes. Nevertheless, there are a few nodes,
usually very close to the boundary, for which this algorithm does not yield a
solution. Those nodes are removed from the set, and the algorithm is applied
again until a valid �nite di�erence 6 node stencil is assigned to each node. In
the �rst column of Table 5 it is shown the number of nodes in the grid, and
in parenthesis the number of nodes remaining after applying the algorithm
in [22]. Starting from valid �nite di�erence stencils insures the validity of the
corresponding RBF-FD stencils.

Figure 11 shows the in�nite norms of the RBF-FD errors of problem (24)-
(25) using a constant shape parameter (dashed line), and using the algorithm
described is Section 3 (bar). The gray scale in the bar is proportional to
the number of nodes with that optimal shape parameter c+

j . In this case, we
have used 21 × 21 unstructured Halton nodes. Notice that there is a slight
improvement of accuracy with respect to the optimal (constant) RBF-FD
solution. For more points the accuracy does not improve (see Table 5).

6.3 Additional Poisson equation examples

In this section, we address the solution of several problems de�ned by the
Poisson equation which have been proposed in the past. In all problems, we
consider Eq. (24) with the function f computed, in each case, from the fol-
lowing exact solutions:
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Fig.12.Infinitenormoftheerrorsofproblem(24)withexactsolutions(28)to(31),
usingN=31×31structurednodes.Dashedline;RBF-FDerrorwithconstantc.
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(thegrayscaleinthebarisproportionaltothenumberofnodeswithaparticular
shapeparameter).

u1=sin(πx)sin(πy), (28)

u2=
arctan[2(x+3y−1)]

arctan2(
√
10+1)

, (29)

u3=0.75exp−
(9x−2)2+(9y−2)2)

4
+0.75exp−

(9x+1)2

49
−
9y+1

10
+

0.5exp−
(9x−7)2+(9y−3)2

4
−0.2exp−(9x−4)2−(9x−7)2 ,(30)

u4=
25

25+(x−0.2)2+2y2
. (31)

Theseproblemshavebeenusedbyseveralauthorstoanalyzetheperformance
ofvariousRBFtypemethods[6,7,16,29].Wehavealsousedtheseproblemsto
analyzetheaccuracyoftheRBF-FDmethodwithaconstantoptimalshape
parameter[2].

Figure12showswithbarstheinfinitenormsoftheerrorsusingtheoptimal
variableshapeparametersc+jforthefourproblems(28)-(31).Intheseprob-
lems,wehaveusedaregularmeshof31×31nodes.Alsoshownwithdashed
linesaretheinfinitenormsoftheerrorswithconstantvaluesoftheshape
parameterc.
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Table 6
Same as Table 1 but for the Laplacian problem with solutions (28)-(31). In every
case, N is equal to 31 × 31 structured nodes.

Structured nodes

f min( c+
e ) max( c+

e ) % N ||E( c+
e )||∞ c∗e ||E(c∗e)||∞ ||~E||∞

u1 1.0387 1.0387 0 1:394 · 10−6 1.0387 1:345 · 10−6 9:144 · 10−4

u2 0.2566 5.1882 74.1 8:000 · 10−4 0.5978 1:043 · 10−3 1:868 · 10−3

u3 0.2500 7.8858 17.5 3:032 · 10−3 0.4935 1:758 · 10−3 4:604 · 10−3

u4 4.1053 6.2108 0 9:405 · 10−10 4.4957 7:440 · 10−8 9:727 · 10−7

In the top left image of Fig. 12 we show the results from problem (28). This
is a very peculiar problem because an optimal value of the shape parameter
c+
j exists for all nodes, and the value of c+

j is the same for all of them (notice
that the bar for the optimal c+

e is just one point). This is because the solution
of this problem is an eigenfunction of the Laplacian. Since c+

j is independent
of the node location xj , the resulting error can be made as small as needed
by just computing the value of c+

j = c∗ with su�cient accuracy. These results
are also summarized in Table 6.

The top right image of Fig. 12 shows the results from problem (29). In this
case, there is a very small improvement in accuracy. The reason for this can
be explained by considering the results in Table 6. Notice that there is a high
percentage of nodes (%N = 74.1%) for which c+

j does not exist and, therefore,
in which the conventional FD approximation is used with the corresponding
deterioration of the overall accuracy.

A similar behavior is observed for problem (30), where the accuracy is worse
with the optimal variable shape parameter c+

j than with the optimal constant
one c∗ (see the bottom left image of Fig. 12).

On the contrary, problem (31) is an example where the use of a variable
shape parameter leads to a very signi�cant improvement of the accuracy (see
the bottom right image of Fig. 12). In fact, the in�nite norm of the error
with the optimal variable c+

e is 9.405 · 10−10, nearly two orders of magnitude
improvement with respect to the constant optimal value c∗ for which the error
is 7.440 · 10−8. Again, the reason for this high accuracy is that, in this case,
there is an optimal shape parameter c+

j for all nodes (%N = 0 in the last row
of Table 6).

To overcome the problem of the existence of optimal shape parameters c+
j for

problems (29) and (30), we have solved them using the RBF (22) in a way
analogous to that described in Subsection 5 for convection-di�usion problems.
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Fig.13.Infinitenormsoftheerrorsfromproblem(24)withexactsolutions(29)and
(30)usingthegeneralizedmultiquadrics(22).AsinFig.12,weuseN=31×31
structurednodes.

ThecorrespondinglocalRBF-FDerroris

ǫ5(xj,cj,βj)=
h2

12
u(4,0)(xj)+u

(0,4)(xj)−
h2

c2j

(βj−6)(βj−2)

2(βj−4)
u(2,0)(xj)+u

(0,2)(xj)

+
h2

c4j

(βj−8)(βj−2)βj
2(βj−4)

u(xj)+O h
3P2(1/c

2
j). (32)

Thenew(node-dependent)parameterβ+jin(22)ischosensothatthereexists
avalidoptimalshapeparameterc+j≫hateachnodeofthegrid,asexplained
inSection5.Figure13showstheresultscorrespondingtoproblems(29)and
(30)usingthegeneralizedmultiquadricRBF(22)withcmin =0.2.Inboth
cases,thereisanimprovementoftwoordersofmagnitudeintheaccuracyof
thecomputedsolutions.

7 Conclusions

Inthisfollowuppapertoourpreviousworkin[2],wepresentanoveltechnique
tocomputethesolutionofPDEswiththe multiquadricbasedlocalRBF
finitedifferencemethod(RBF-FD)usinganoptimalvariableshapeparameter
cjateachnodeofthecomputationaldomain. Weshowthatasimpleand
inexpensivenumericalstrategycangiverisetoseveralordersmoreaccurate
solutionsifthereexistsanoptimalvalueoftheshapeparameterformostof
thegridpointsofthedomain.However,iftherearemanynodesforwhichan
optimalvalueofcdoesnotexist,theaccuracywassimilartothatobtained
withanoptimalconstantcorevenwithstandardFDformulas.Forthose
caseswenoticethatusinggeneralizedmultiquadricsasRBFandchoosingthe
exponentβandtheshapeparametercappropriately,guaranteestheexistence
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of optimal shape parameter for all the nodes. In this way, we are able to obtain
very signi�cant improvements in accuracy for all the examples analyzed both
with structured and unstructured grids.

We emphasize that to compute the optimal local shape parameter to order
O(h2) it is only necessary to approximate the solution u(x) and certain deriva-
tives to order O(h2). In practice, this can be achieved by �rst computing the
standard �nite di�erence solution, then use this solution to estimate the op-
timal local shape parameters c+

j , and �nally use these values to compute the
optimal RBF-FD solution. For unstructured grids in 2D it is not advisable to
estimate derivatives through �nite di�erence formulas, since this will require
the selection of appropriate stencils for each derivative. Instead, one can use
the RBF global method on a coarse grid and use this solution to approximate
u(x) and the needed derivatives on the unstructured grid.
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