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Optimal variable shape parameter for
multiquadric based RBF-FD method

Victor Bayona, Miguel Moscoso, and Manuel Kindelan

Gregorio Milldn Institute, Universidad Carlos III de Madrid, Avenida de la
Universidad 30, 28911 Leganés, Spain

Abstract

In this follow up paper to our previous study in [2], we present a new technique to
compute the solution of PDEs with the multiquadric based RBF nite di erence
method (RBF-FD) using an optimal node dependent variable value of the shape
parameter. This optimal value is chosen so that, to leading order, the local approxi-
mation error of the RBF-FD formulas is zero. In our previous paper [2] we considered
the case of an optimal (constant) value of the shape parameter for all the nodes.
Our new results show that, if one allows the shape parameter to be di erent at each
grid point of the domain, one may obtain very signi cant accuracy improvements
with a simple and inexpensive numerical technique. We analyze the same examples
studied in [2], both with structured and unstructured grids, and compare our new
results with those obtained previously. We also nd that, if there are a signi cant
number of nodes for which no optimal value of the shape parameter exists, then the
improvement in accuracy deteriorates signi cantly. In those cases, we use general-
ized multiquadrics as RBFs and choose the exponent of the multiquadric at each
node to assure the existence of an optimal variable shape parameter.
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1 Introduction

The global RBF (Radial Basis Function) method was rst proposed by Edward
Kansa [13,14] as a truly meshless method for the solution of partial di erential

Corresponding author. Address: Universidad Carlos III de Madrid, Avenida de la
Universidad 30, 28911 Leganes, Spain. Fax: +34 91 624 91 29

Email addresses: vbayona@ing.uc3m.es (Victor Bayona),
moscoso@math.uc3m. es (Miguel Moscoso), kinde@ing.uc3m.es (Manuel
Kindelan).

Preprint submitted to Elsevier 24 November 2011



equations (PDEs) on irregular domains. It is based on collocation of RBF's on
a set of scattered nodes.

To overcome some of the drawbacks of the global RBF method, a local RBF
method was independently proposed by several authors [24,26,28|. The method
works very much like the nite di erence (FD) method: di erential operators
at a given node are approximated as a weighted sum of the values of the sought
function at some surrounding nodes. However, while in the FD method the
unknown weights are computed using polynomial interpolation, in the local
RBF method they are computed by tting an RBF interpolant through a
stencil of neighboring nodes. Both, FD and local RBF formulas are identical
in form, and therefore we will refer to the local RBF method as the RBF

nite di erence (RBF-FD) method, as was named in [28]. In the last years the
RBF-FD method has been successfully applied to a great variety of problems
[3,5,6,8 10,17 20,23,25,27].

Most of the RBF's used in the literature for solving PDEs depend on a shape
parameter ¢, and there is much experimental evidence showing that the accu-
racy of the solution to a PDE strongly depends on the value of this parameter
c. In [2], we reviewed some of the main e orts to compute its optimal value,
both in the case of using a constant shape parameter at all nodes of the do-
main, and in the case of using a node-dependent shape parameter. We also
described a new technique to compute e ciently the optimal (constant) value
of the shape parameter that minimizes the RBF-FD error. The technique
was based on the analytical approximations to the local errors in powers of
the shape parameter ¢ and nodal distance h derived in [1]. We analytically
showed that there was a range of values of the shape parameter ¢ for which
the RBF-FD formulas were signi cantly more accurate than the FD ones,
and we computed the optimal (constant) value that minimized the truncation
error.

This paper is a follow up to the work started in [2]. We present a new and
practical algorithm to exploit RBF-FD formulas using a node dependent vari-
able value of the shape parameter. We show that a simple and inexpensive
numerical strategy can give rise to several orders of magnitude increase in
accuracy if one allows the shape parameter ¢ to be di erent at each node of
the domain, instead of using a constant value as in [2]. We also show that,
if there are a signi cant number of nodes for which no optimal value of the
shape parameter exists, then the improvement in accuracy deteriorates signif-
icantly. In those cases, we use generalized multiquadrics as RBFs and choose
the exponent of the multiquadric at each node to assure the existence of an
optimal variable shape parameter. In this way, we are able to obtain signi -
cant accuracy improvements with respect to the optimal constant method for
all the example problems analyzed in this work.



The paper is organized as follows. In Section 2, we describe the local RBF
method, and we explain how to compute the optimal variable shape param-
eters. In Section 3, we give the numerical algorithm to compute them. In
Section 4, we show examples in one and two dimensions using both structured
and unstructured grids. For comparison purposes we use the same examples
used in [2]. Finally, Section 7 contains our conclusions.

2 RBF-FD method formulation

Consider the Dirichlet problem in a bounded domain R¢

Llu)] = f(x)  in

u(x) = g(x) on

(1)

where L[] is a di erential operator, and f and g are real functions. In the
RBF-FD method we approximate the operator L[] at a node x = x; by a
linear combination of the values of the unknown function u at n scattered
nodes surrounding x;, which constitute its stencil. Thus,

n

Llu(x;)] jiu(xi) (2)
i=1
where j; are the weighting coe cients. In the standard FD formulation, these
coe cients are computed using polynomial interpolation. In the RBF-FD for-
mulation, they are computed using interpolation with radial basis functions,
thus

n

ux)= i (r(x) ¢ (3)

i=1
where 7;(x) = x x; is the distance from the RBF center, and (r;(x) ¢)
is some radial function which depends on a free shape parameter c. In this
paper, we will use Hardy s multiquadric as RBFs [12], so

(ri(x) ) = &+ ri(x)? (4)

Substituting (3) into (2) we can determine the unknown weighting coe cients
;i by solving the system of linear equations

n

Ll (r(xg) o)) = ji (re(xi) ¢ k=1 mn (5)

i=1

From these equations, we observe that the coe cients ;; depend on the dis-
tances from x; to the other nodes x; in the stencil, and on the shape parameter



c. As we emphasized before, accuracy is highly dependent on the value of this
parameter c. Therefore, we allow ¢ to be di erent at each stencil centered at
x;. Thus, we solve

n

L[ (ri(x;) ¢)] = i (re(xi) ¢) k=1 n (6)

i=1

to determine the weighting coe cients ;. In the following, we will assume
that the set of interpolation nodes with the corresponding stencils are given.
Therefore, the coe cients j; will be functions of the shape parameter ¢; only.

Suppose that the domain  is discretized using N scattered nodes (N interior
nodes and N N; boundary nodes). Using (2), Eq. (1) at an interior node x;
can be written as

n

jz‘(Cj)U(Xz’) = f(Xj) + n(Xj ; Cj) 1 7 N (7)

i=1

where ,,(x;; ¢;) is the local RBF-FD error resulting from approximating the
di erential operator L[| with the n node RBF-FD formula (2), and ¢; is the
shape parameter corresponding to the stencil centered at x;. In matrix form,
these equations can be written as

A(c)u = f +€(c) (8)

where u is the vector of exact solutions at the interior nodes, c is the vector of
shape parameters at the interior nodes, A(c) is a Ny N; sparse matrix whose
entries are the weighting coe cients j;(¢;), and €(c) is a vector formed by
the local RBF-FD approximation errors ,(x;; ¢;) at the interior nodes.

The RBF-FD approximation u to the exact solution u is obtained by formally
solving the discretized linear system

u(c) = A c)f (9)
so the RBF-FD error is given by
E(c) u u(c) (10)

Therefore, we can state our problem as the problem of nding the vector of
shape parameters ¢ which minimizes (10) in a certain norm. We de ne the
optimal shape parameter vector as the value ¢ such that

E(c) = min E(c) min u u(c) (11)

It is apparent that in real problems the value ¢ can not be computed directly
from (11) because the exact solution u is not known. However, from (8) and



(9) we can write

E(c) =min A '(c)e(c) (12)

and estimate the value ¢ using the analytical approximations to the local
error €(c) derived in [1]. These formulas are written as series expansions in
powers of h (the average inter-nodal distance), which are valid for ¢;  h.
The coe cients of these formulas depend on the shape parameter c;, the dis-
tances to the other nodes in the stencil, and on the value of the exact solution
and its derivatives at each node x;. Moreover, these coe cients can be easily
computed without losing accuracy using an approximate nite di erence so-
lution u instead of the exact solution u. Using these formulas, we seek for an
approximate value c, to the optimal shape parameter vector ¢ such that

Ec(c,) =min A '(c) e.(c) (13)

e
where €.(c) is the estimated local error computed with the analytical approx-
imations to the local error derived in [1].

Problem (13) is the same type of minimization problem that was solved in
[2], but now one has to nd N; unknown shape parameters at the interior
nodes, instead of only one constant shape parameter ¢ as was done in [2].
Furthermore, A !(c)e.(c) 1is a scalar function of NN; dimensions with an
extremely high number of local minima, so minimization algorithms, such as
the routine fminsearch of Matlab, are of little use because they immediately
fall in one of these local minima.

To compute the global minimum it is necessary to use nonlinear optimization
algorithms such as simulated annealing [15]. We have used this technique to
solve the one dimensional boundary value problem considered as a rst exam-
ple in [2] (see Eq. (13) in [2]) and we have obtained an error of E(c) =
294710 *. This result is signi cantly more accurate than the one obtained
with the optimal (constant) shape parameter ( E(c) = 117810 3). How-
ever, this procedure is computationally very expensive and, in general, is not
capable of nding the absolute minimum of the problem.

Thus, instead of solving problem (13) to nd the vector c, that minimizes the
estimated error E.(c) , we compute the values ¢ that minimize the local
estimated approximation errors €.(c). Since the element j of €.(c), ,(x;; ¢;),
only depends on the shape parameter ¢;, minimizing €.(c) involves N; min-
imization problems with one unknown each, which is a much more tractable
problem. In fact, we compute the optimal shape parameter at each interior
node x; by solving ,(x;; ¢;) = 0. This is a polynomial equation that can be
solved analytically using the explicit formulas for the local errors derived in

1].

For an optimal shape parameter cj to be valid two conditions must be satis ed:



(i) the solution for ,(x;; ¢;) =0 must be real, and (ii) ¢;;  h. If condition
(i) is not satis ed there is not a value of the shape parameter for which the
local approximation error is zero. If condition (ii) is not satis ed then the
optimal value computed is not valid since it is obtained using the local error
formulas outside their region of validity. In both cases, we use the standard

central nite di erence formula instead.

3 Numerical algorithm

For a given problem (1), and a given set of N scattered nodes, the method
described in the previous Section is implemented as follows:

(1) For each interior node x; determine a stencil of n surrounding nodes.

(2) Use nite di erences to compute an approximate solution u(x;).

(3) At each interior node x;, compute the estimated value of the optimal
shape parameter, cj, using the approximate formulas derived in [1]. These
formulas depend on the value of the function and its derivatives at the
node, which are estimated using the nite di erence solution u(x;).

(4) Use (6) to compute the RBF-FD coe cients j numerically and, there-
fore, matrix A(c)). In nodes where there is not optimal shape parameter
use the standard nite di erence coe cients.

(5) Compute the optimal RBF-FD approximate solution u(c) = A (c)f.

4 Example problems in one dimension

In this section, we will apply the numerical algorithm just described to the
solution of the same example problems in 1D and 2D that were solved in
our previous paper [2] with an optimal (constant) shape parameter. We will
use both structured and non structured nodes and we will show that using
the optimal node dependent value of the shape parameter leads to further
signi cant improvements in accuracy.

4.1 One dimensional boundary value problem

We consider the following problem

(14)
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Fig. 1. Left plot: Infinite norm of the errors of problem (14) as function of ¢, using
N = 41 structured nodes. Solid line; RBF-FD error with variable c}L. Dashed line;
RBF-FD error with constant c¢. Dot-dashed line; FD error. Right plot: (-) optimal
shape parameter distribution c¢}. The nodes where cj does not exist are marked
with a circle (o).

5
where f(z) is computed from the known solution u(z) = 1 — sin (Iﬂ.m)

4.1.1 Structured nodes

Let us discretize the domain in (14) using N = 41 structured nodes, and let us
use a three node (z; — h,z;,z; + h) central difference scheme to approximate
the second derivative. The resulting local RBF-FD approximation error is [1]

h? V) h? " 3h? 4 2
a5 ;) = 15 u"V(wy) + 5 u(wy) — oy ulz;) + O (h* P3(1/c3)i5)
7 7

We use the notation O (h™ P,(1/c?)) to indicate that the terms that have been
neglected are of order h™ Y 7" ; &7, where a; are constants which depend on the
derivatives and values of the particular function at z;.

To estimate this error we use a second order finite difference approximation
@(x;) to the exact solution u(zx;), so u(z;) = u(x;) + O(h?). In (15), u”(z;)
and u'V)(z;) are computed exactly from f(z;), so

cpe) = ey B 3R
€3(zj;¢5) = 12f (zj) + cff(xj) 403* u(zj) . (16)

The accuracy of the local error computed with the finite-difference approxima-
tion in (16) is of the same order (O(h*)) as the one computed with the exact
solution in (15). The optimal shape parameters c; are computed equating (16)

j
to zero for every node z;.



Table 1

RBF-FD results for problem (14): N is the number of nodes; min( ¢} ) and max(c/)
are the minimum and maximum values of the optimal shape parameters cj; % N
and E(cl) are the percentage of nodes for which cj does not exist and the
corresponding in nite norm of the error; ¢, and E(c,)  are the optimal constant
shape parameter and the corresponding in nite norm of the error; E is the
in nite norm of the conventional nite di erences.

Structured nodes

N min(c}) max(cl) %N E(cl) ¢ E(c,) E

21  0.6326 1.0039 48 3698 10 ° |0.8628 7763 10 ° | 4181 10
41  0.6333 1.0712 24 4728 10 61 0.8626 1735 10 ® | 1044 10
61  0.6334 1.1789 1.6 1959 10 6] 0.8625 7541 10 6| 4638 10

81  0.6334 1.3730 1.2 1083 10 6| 0.8625 4216 10 % | 2609 10

Unstructured nodes

N min(c}) max(cl) %N E(cl) c

e

E(c.) b

e

21 0.2760 1.0596 0 2211 10 4| 0.7858 1207 10 3 | 4928 10
41 0.3962 1.3382 0 2625 10 5 10.7959 1981 10 4| 1327 10
61  0.3965 1.4689 0 2516 10 6 | 1.0069 4586 10 ® | 3818 10

81  0.3715 1.7317 1.2 3348 10 6| 0.8071 2595 10 5 | 3377 10

In the left plot of Fig. 1 we show with a dashed line the in nity norm of the

RBF-FD error, E(¢) = u u(c¢) , using a constant shape parameter
¢ throughout the domain. Notice that in the limit of increasingly at basis
functions (¢ ) the RBF-FD error approaches the standard nite di erence

one [29], shown with a dot-dashed line in the gure. The in nity norm of the
RBF-FD error using the algorithm described in Section 3 is shown with a
solid line. The length of the line represents the range of the optimal values of
the shape parameters cj. Notice that the accuracy is slightly higher with the
variable shape parameter than with the constant one.

The right plot of Fig. 1 shows the distribution of the optimal shape parameters.
These values are quite close to the value of the optimal (constant) shape
parameter ¢ = 0 8626. Only near z = 0 and = = 0 8 the local optimal values
cj di er signi cantly from the constant value. This explains why, in this case,
there is not a very signi cant improvement in accuracy using a variable shape
parameter. Also notice that for x; = 08 there is not a real value cj that
satis es 3(x;;¢]) = 0. These nodes are marked with the symbol  in the
gure.
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Fig. 2. Same as Fig. 1 but for unstructured nodes.

Table 1 shows results for different values of N. The second and third columns
display the minimum and maximum values of the optimal shape parameters
cj respectively, the forth column the percentage of nodes for which cj does
not exist (% N), and the fifth column the infinite norm of the error ||E(c})|| .
For comparison, we show in the sixth and seventh columns the corresponding
results for the optimal (constant) shape parameter (¢} and ||E(c?)||s, respec-
tively), and in the last column the results for conventional finite differences
(||E||s). For all values of N, there is some improvement in accuracy using the
variable optimal shape parameter instead of the constant optimal one.

4.1.2  Unstructured nodes

When the domain is discretized with unequally spaced nodes, the local RBF-
FD approximation error using a three node (z; — h, x;, z; + Ah) central differ-
ence scheme is only of order O(h) (see [1]), so we also include terms of order
O(h?) in the formula. Therefore, the truncation error is of order O(h?), while
in the case of structured nodes it was of order O(h*). The estimated local error
is

A — h
€3(zj;¢5) = Tlhf’(ﬂ?j) + (A -1 gﬁ’(%’)

h? h?
+ AN =1) +1] = f(z;) + A f(=))
12 c;
B2
j
where we have used (14) to replace u®), k > 2, by the function f and its
derivatives. We have also replaced the exact solution u and its first derivative u’
by the first order finite difference approximations # and @', respectively. In this
case, ' 18 computed from u using a first order finite difference approximation.

This procedure does not introduce higher order errors.
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Fig. 3. Same as Fig. 1 but for problem (18).

In Fig. 2, we show the results from problem (14) using N = 41 unstructured
nodes. The left plot shows the infinity norms of the RBF-FD error using a
constant shape parameter (dashed line), and using the algorithm described
in Section 3 (solid line). The length of the solid line represents the range
of the optimal variable values cj. In this case, there is an improvement of
approximately two orders of magnitude between the results for a constant
shape parameter and the results for a variable one. The right plot of the
figure shows the distribution of optimal shape parameters, which range from
0.4 to 1.4. The optimal constant shape parameter is, in this case, ¢* = 0.7959
[1], which is a kind of average of the optimal variable values shown in the
figure.

The results for different values of N are summarized in the bottom part of
Table 1. For all the resolutions reported here, there is an order of magnitude
of improvement with respect to the results obtained with a constant optimal
shape parameter. This improvement is due to the fact that an optimal value

¢ exists for all nodes (except for N = 81).

7

4.2 Steady convection-diffusion problem

Consider the problem

Uy — Uzy = T2 sin (T x) + 7 cos (7 ), 0<z<l,
(18)
u(0) =0, u(l) =1

M

—1
c T This problem was proposed
e J—

whose exact solution is u(z) = sin (7 z) +

and solved in [4].

10



Table 2
Same as Table 1 but for the steady convection-di usion problem (18).

Structured nodes

N min(c}) max(cl) %N E(cl) ¢ E(c,) E

e

11 0.7963 2.8808 9.0 1719 10 *|1.1139 9245 10 * | 8337 10
21 0.6979 2.8796 95 5643 10 5| 1.1127 2161 10 4| 2088 10

41 0.6224 2.8793 122 1523 10 5 | 1.1123 5282 10 5 [ 5220 10

81  0.5707 5.8510 11.1 3834 10 | 1.1123 1314 10 5 | 1305 10

Unstructured nodes

N min(c}) max(cl) %N E(cl) c

e

E(c.) b

e

11 0.9933 3.3864  54.5 1008 10 2 | 1.1409 5060 10 * | 1105 10
21 0.8469 3.2638  57.1 1525 10 3 | 0.9818 4832 10 * | 2667 10
41 0.6074 2.2497 317 2843 10 * | 1.0536 5979 10 ° | 6788 10

81  0.4002 3.9330 25.9 1026 10 4| 1.0539 1584 10 ® | 1685 10

4.2.1  Structured nodes

The local estimated approximation error to the convection-di usion di eren-
tial operator with the RBF-FD formula using three structured nodes is

3(255¢5) :% 2u (z;)  u"V(z;) + Qh—cz (w(z;)  2u ()
+ 2 u(ey) (19)

J

In this formula, u is a second order nite di erence approximation of v and
u is approximated from u using the corresponding second order central dif-
ference scheme. Higher derivatives are approximated to second order through
the recursion u*+Y =o® & D for 1.

In Fig. 3, we show the results from problem (18) using 41 nodes of the dis-
cretization. The left plot shows the in nity norm of the RBF-FD error using
a constant shape parameter (dashed line) and the in nity norm of the RBF-
FD error using the algorithm described in Section 3 (solid line). The length
of this line represents the range of the optimal values of the shape parame-
ters c;“ (between 0 6 and 3, approximately). The results for N = 41 and for
other values of N are summarized in Table 2. Notice that there is only a small
improvement with respect to the results obtained with the optimal constant

11



Table 3
Same as Table 1 but for the steady convection-di usion problem (20).

Structured nodes

N min(c}) max(cl) %N E(cl) C, E(c,) E

11 22171 2.4195 0 3466 10 7 2.3065 1463 10 ¢ | 1007 10
21 2.2060 2.4343 0 2175 10 8 2.3066 3266 10 7 | 2515 10
41 2.2006 2.4419 0 1793 10 ° 2.3065 7786 10 8 | 6292 10
61  2.1988 2.4444 0 1230 10 ° 2.3065 3418 10 8 | 2797 10

Unstructured nodes

N min(cl) max(cl) %N E(c}) c, E(c,) E

11 22125 2.3608  54.5 3812 10 4| 93362 10! 38526 10 4| 3907 10
21 22101 2.4084 523 3397 10 ° 3.3788 4093 10 5 | 4722 10
41 2.2023 2.4297  46.3 5099 10 6| 24715 5216 10 ¢ | 9431 10
61  2.1988 2.4445 3.3 3325 10 © 1.7107 4107 10 ¢ | 5723 10

value of the shape parameter (¢ = 11123). The reason for these results can
be explained by looking at the optimal shape parameter distribution shown in
the right plot of this gure. Observe that there are ve nodes, in the vicinity
of x = 085, for which no optimal shape parameter exists. In these nodes,
standard nite di erence formulas are used to approximate the convection-
di usion di erential operator. This approximation deteriorates signi cantly
the overall accuracy. Similar results are obtained for other values of N, as can
be seen in Table 2. In fact, we have observed that the accuracy obtained with
the algorithm described in Section 3 is highly dependent on the number of
nodes for which cj’ exists. If there are very few nodes for which cj does not
exist, then the improvement of the accuracy compared to standard FD is very
high. However, if there are many nodes for which cj does not exist then the
accuracy is similar to that obtained with an optimal constant ¢ or even with
standard FD formulas.

Let us corroborate this behavior by considering the following steady convection-
di usion problem

(20)
w(0)=0  w(l)=1
. et 1 :
whose exact solution is u(x) = T This problem was also proposed and
e

solved in [4].

12
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Fig. 4. Same as Fig. 1 but for problem (20).

The left plot of Fig. 4 shows the corresponding errors for this problem. Notice
that, in this case, there is a very significant improvement of two orders of
magnitude in accuracy. The reason for this improvement can be understood
by considering the optimal shape parameter distribution which is shown in the
right plot of Fig. 4. For all the nodes there is a value c;-" of the shape parameter
for which the local approximation error (19) has a minimum. It is remarkable
that although the values of cj are relatively constant (2.20 < c} < 2.44,
for all j), those small variations suffice to produce a considerable increase in
accuracy. Similar accuracy improvements are obtained for other values of N

(see Table 3) since in all cases there exits an optimal value ¢/ in each node

(% N = 0). ’

4.2.2  Unstructured nodes

In the case that the domain is discretized with unequally spaced nodes, the lo-
cal estimated RBF-FD approximation error using a three node (z — h, z, z + Ah)
central difference scheme for the convection-diffusion operator is

€3(zj5¢5) = %hﬁm(%) + (1 —A) %ﬁ'(%)
+% [2X@"(z;) = A (A = 1) + 1] @ (zy)]
A 2 h?
_|_

[@(z;) — 2a"(z;)] = A (A = 5) + 1] 7 a(z;). (21)

2
QCj

Function % and its derivatives are approximated as described in the previous
section.

In Fig. 5, we show the results from problem (18) using 41 unstructured Halton
nodes. The left plot shows the infinity norm of the RBF-FD error using a
constant shape parameter (dashed line) and the infinity norm of the RBF-FD
error using the algorithm described in Section 3 (solid line). The length of

13
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Fig. 6. Same as Fig. 4 but for 41 unstructured Halton nodes.

the line shows the range of the optimal values of the shape parameters c}L
(between approximately 0.6 and 2.3). The right plot shows the optimal shape
parameter distribution. Notice that there is a significant number of nodes for
which an optimal value of the shape parameter c} does not exist (31.7 %) and,
therefore, the standard finite difference approximation is used at those nodes.
As a result, the overall accuracy of the solution is degraded in comparison
with the optimal constant shape parameter. Similar results are obtained for
other values of N, as can be seen in the bottom part of Table 2.

Figure 6 shows the corresponding results for problem (20). Observe in the
right plot of this figure that for approximately half of the nodes (46.3 %) an
optimal value cj exists (2.2 < c; < 2.45), while for the other half no c}L
exists. The resulting overall accuracy is very similar to that obtained with the
optimal constant shape parameter technique [2]. Similar results are obtained
for other values of N as can be seen in the bottom part of Table 3.

It should be mentioned that in some of the nodes marked with the symbol
'o’, there are values of the shape parameter for which the local approximation
errors (21) are minimum. However, the resulting shape parameters are small,
and do not satisfy the assumption ¢ > h for which the formulas derived in [1]
are valid. Thus, for those values of ¢, Eq. (21) is not a good approximation to
the local approximation error and, therefore, it can not be used to compute a
valid cj. Accordingly, we only accept the cj values that satisfy the condition
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cj > Cpin h, where ¢,,;,, is a previously de ned threshold. Hence, item 4 of
the numerical algorithm in Section 3 is substituted by

4. Use (6) to compute numerically the RBF-FD coe cients j; and therefore
matrix A(cl). In nodes where there is not an optimal shape parameter
or where c;“ < Cpmin, use standard nite di erence coe cients.

In Figure 6 and Table 3 we have used ¢,,;,, = 0 5. We will use this modi ed
algorithm in the rest of the paper.

5 Generalized multiquadrics.

From the previous results, it is apparent that the use of a variable shape
parameter can give rise to several orders more accurate solutions if a valid cj
exists at almost all nodes of the computational domain. However, very often,
there are nodes for which no c;-" h exists for which the leading order of the
local RBF-FD multiquadric based approximation (Egs. (19) and (21) in this
Section) is zero. Hence, we propose the use of another RBF that ensures that
the RBF-FD local approximation error is zero to leading order at all nodes.
To this end, one possibility that we have successfully used is the generalized

multiquadric

(ri(x) ¢ ) = (¢ + ni(x)?) ? (22)
where the new (node-dependent) parameter is chosen so that an optimal
value cj h exists at every node. For the steady convection-di usion problem

(18), the local RBF-FD error formula analogous to (21) is

e )= @)+ L 20 D)
h2 1V
@) O D)
g St gty L e el (4w

The error is now a function of h ¢; and ;. The objective is to nd at
each node z; a valid combination of values (¢ ;) for which the leading
order of the local RBF-FD error is zero. For a given ; equating to zero
the leading order equation for the local error (23) results in a polynomial

equation of second degree in the variable 1 cjz that we solve analytically. This
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Fig. 7. Results for the convection-diffusion problems using the generalized multi-
quadric (22). Left: same as Fig. 5 (problem (18)). Right: same as Fig. 6 (problem

(20)).
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Fig. 8. Optimal shape parameter distribution c:{ (left) and 3+ parameter distribu-
tion (right) for the convection-diffusion problem (18) using the generalized multi-
quadric (22).

guarantees, in general, two branches of solutions cj = c}L (ﬁ;r ). Hence, there
are an infinite number of possible combinations (cj, ﬁj) that make the leading
order of the local RBF-FD error zero. However, only those for which cj is real
and cj > h are valid. Between all these possible combinations, we only accept

J
strategies, as for instance allowing ﬁ;r to be a continuous real variable, are
also possible and give the same degree of accuracy.

the minimum integer value ‘ﬁj | which satisfies ¢f real and cj > Cpin. Other

The left plot of Fig. 7 shows the error of the solution of problem (18) with 41
unstructured Halton nodes, using (22) instead of (4) and ¢y, = 0.5. The left
plot of Fig. 8 shows the corresponding optimal shape parameter distribution
(c})j and the right side of Fig. 8 the optimal /5’3+ distribution. These results
should be compared to those obtained with the standard multiquadric RBF
which are shown in the left plot of Fig. 5. Using the generalized multiquadric
(22), a valid value of (Cf;)j exists for all nodes and this leads to a significant
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Table 4

RBF-FD results for the steady convection-di usion problem (18) with the gener-
alized multiquadric: N is the number of nodes; % N and E(c™)  are the per-
centage of nodes for which (¢*); does not exist and the corresponding in nite norm
of the error; % N and E(c!)  are the percentage of nodes for which c;' does
not exist and the corresponding in nite norm of the error; E(c.)  is the in nite
norm of the error using an optimal constant shape parameter c,.

Unstructured nodes (beta variable)

N |%N  E(ch) %N  E(c) E(c,)

11 0 8860 10 *| 54.5 1008 10 2| 5060 10 3
21 0 1443 10 4| 57.1 1525 10 3 {4832 10 ¢
41 0 1001 10 | 31.7 2843 10 4 |5979 10 °

81 0 4623 10 7| 259 1026 10 * | 1584 10 5

increase in accuracy with respect to the optimal constant shape parameter
result. In fact, using (22) the resulting erroris E(c¢t) =1001 10 5, while
using the standard multiquadric (4) the error is E(cf) = 2843 10 *
Table 4 shows the corresponding results for other values of N.

The right plot of Fig. 7 shows the error in the solution of problem (20) with 41
unstructured Halton nodes, using (22) instead of (4) and ¢,,;, = 05 Again, a
valid value of c;“ exists for all nodes and this leads to an even larger improve-
ment in accuracy with respect to the results obtained with standard multi-
quadrics: E(c¢t) =6930 10 “instead of E(cf) =5099 10 °. This

represents four orders of magnitude increase in accuracy.

6 Example problems in two dimensions

Consider now the two dimensional Poisson problem

u=f(ry) i =01 (01

(24)
u=u(r y) on
where f(x y) is obtained from the exact solution
12 12
u = exp T Vo5 cos(2 y) sin( x) (25)
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Fig. 9. Left: infinite norm of the errors of problem (24) with exact solution (25) as
function of ¢, using N = 41 x 41 structured nodes. Solid line; RBF-FD error with
optimal variable c¢. Dashed line; RBF-FD error with constant c¢. Dot-dashed line;
FD error. Right: optimal shape parameter distribution c;.
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Fig. 10. Absolute RBF-FD global error of problem (24) computed with the optimal
shape parameter distribution cJ.

This problem has been used by Wright and Fornberg [29] to test the perfor-
mance of the local RBF-FD and local RBF-HFD (Hermite RBF) methods.
We have also used it as an example problem to test the performance of the
RBF-FD method using an optimal constant shape parameter [2].

6.1 Structured nodes

Suppose the domain is discretized using an N x N structured nodes. Using a
five node {(z,y), (z — h,y), (z + h,y), (z,y — h), (z,y + h)} scheme, the local
estimated RBF-FD error is

~ 2 ~ ~ 5 h? 2 ~
€(%,¢) = 15 (U(4’0)(Xj) + a0 (x;)) + a2 f) — gailxg). (26)
J 7
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Table 5
Same as Table 1 but for the laplacian problem (24)-(25).

Structured nodes

N min(cl) max(cf) %N E(cl) C, E(c,) E
11 11 0.4127 0.7979 1.7 2422 10 0.5779 6581 10 3847 10
21 21 0.3317 0.8835 0.5 1498 10 0.5816 1352 10 9516 10
31 31 0.2146 6.1387 0.2 1171 10 0.5816 5641 10 4220 10
41 41 0.1680 2.0905 4.3 2810 10 0.5818 3121 10 2370 10

Unstructured nodes

N min(c) max(cf) %N E(cl) c, E(c,) E
121 (120) 0.1220 3.1054 41.3 1415 10 0.4869 1519 10 6 153 10
441 (438) 0.1141 3.2097 30.6 7616 10 0.7783 1079 10 1668 10
961 (955) 0.1041 9.0912 26.5 5796 10 0.5058 1911 10 7454 10
1521 (1513) 0.1001 2.9971 29.3 5239 10 0.5094 1630 10 3983 10

In this equation u is a second order approximation of u and u*? + 0% =

f 2u®?, where u?? is approximated from u using the corresponding
second order central di erence scheme.

In Fig. 9, we show the results from problem (24)-(25) using 41 41 structured
nodes and the standard multiquadrics (4). The left plot shows, with a dashed
line, the in nity norm of the RBF-FD error using a constant shape parameter
throughout the domain. The in nity norm of the RBF-FD error using the
algorithm described in Section 3 is shown with a solid line. The length of this
line represents the range of the values of the shape parameters c;“. Although
for most nodes, the values of the cj are close to the optimal constant shape
parameter ¢ = 0 5818 (see Table 5), the accuracy with the variable shape
parameter is signi cantly higher than with the optimal constant one.

The right plot of the gure shows the distribution of the optimal shape pa-
rameters cj. In this gure, there are two small intervals in the vicinities of
x =025 and z = 075 for which c;“ does not exist. In Fig. 10, we represent
the corresponding absolute RBF-FD global error distribution for this example.
The maximum error is located at these nodes.
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6.2  Unstructured nodes

Consider now the case in which the domain is discretized using N unstructured
nodes. The local RBF-FD error for six unequally spaced nodes {(z,y), (z +
h,y+Ah), (z+72h, y+Ash), (z+73h, y+Ash), (x+7sh, y+Ash), (z+7sh, y +
Ash)} central difference scheme is given by (see reference [1])

€s(xj,¢;) = h [AU,O u®9(x;) + Ags ul®(x;)

+ Ao uD(x5) + Aoz u® (x)]

h
+ g [Al,ﬂ,u(l’o)(xj) + Al,l u(ﬂ,l)(xj)]
J

+ h2 [Bﬂ,o u(4’0)(xj) + BO,I ’U,(S’l)(Xj) + Bﬂ,Q U(2’2)(Xj)

+ Bos ul™ ) (x;) + Boau®(x;)]

h?
+ 75 [Bio,u®(x5) + Buau®™(xy) + Biau® (x))]
J

+ i—j Bopu(x;) + O (h3 P3(1/C§)) ) (27)

J

where the coefficients A, ; and B;; depend on the surrounding nodes layout
{7} and {A;}, and their exact values can be computed numerically for each
node. In this example, we have not estimated the derivatives of u(x) that ap-
pear in (27) from the numerical solution computed with standard FD. Instead,
we have used the exact values of the function and its derivatives in order to
analyze the convergence of the error and to estimate the optimal shape pa-
rameter.
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We use an unstructured node layout of N? nodes: N* 4(N 1) Halton
nodes in the interior of the domain [11], and 4(N 1) structured nodes on
the boundary. For the local support, we use stencils with n = 6 nodes. For
standard nite di erences, 6 nodes stencils allow, in principle, a consistent
approximation to the laplacian operator (i.e. the approximation is at least

rst order accurate) since there are six constraints that have to be satis ed.
However, there are special con gurations of the nodes in the stencil for which
there is no solution to the constraints [21] and, therefore, the coe cients of the

nite di erence formula can not be computed. The problem of stencil support
selection for unstructured nodes is a very crucial topic in nite di erences
which has been addressed by several authors. In a recent paper, Davydov and
Oanh [6] reviewed di erent support selection methods and proposed a new
algorithm based on minimizing the sum of the squares of the angles between
two consecutive lines from the central node to the other nodes in the stencil.

In this paper, we use a modi ed version of the algorithm recently proposed by
Seibold [22]. It is based on a linear programming approach that guarantees the
positivity of the stencil. Applying this algorithm, results in a 6 node stencil
selection for almost all the interior nodes. Nevertheless, there are a few nodes,
usually very close to the boundary, for which this algorithm does not yield a
solution. Those nodes are removed from the set, and the algorithm is applied
again until a valid nite di erence 6 node stencil is assigned to each node. In
the rst column of Table 5 it is shown the number of nodes in the grid, and
in parenthesis the number of nodes remaining after applying the algorithm
in [22]. Starting from valid nite di erence stencils insures the validity of the
corresponding RBF-FD stencils.

Figure 11 shows the in nite norms of the RBF-FD errors of problem (24)-
(25) using a constant shape parameter (dashed line), and using the algorithm
described is Section 3 (bar). The gray scale in the bar is proportional to
the number of nodes with that optimal shape parameter cj. In this case, we
have used 21 21 unstructured Halton nodes. Notice that there is a slight
improvement of accuracy with respect to the optimal (constant) RBF-FD
solution. For more points the accuracy does not improve (see Table 5).

6.3  Additional Poisson equation examples

In this section, we address the solution of several problems de ned by the
Poisson equation which have been proposed in the past. In all problems, we
consider Eq. (24) with the function f computed, in each case, from the fol-
lowing exact solutions:
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Fig. 12. Infinite norm of the errors of problem (24) with exact solutions (28) to (31),
using N = 31 x 31 structured nodes. Dashed line; RBF-FD error with constant c.
Dot-dashed line; finite difference error. Bar: RBF-FD error with optimal variable ¢
(the gray scale in the bar is proportional to the number of nodes with a particular
shape parameter).

uy =sin(7z) sin(7y) , (28)
__arctan [2(z + 3y — 1)]
 arctan [2(@ + 1)} ’

(9z — 2)* + (9y — 2)?) 9z+1)2 9y+1
uz =0.75 exp [— 1 l + 0.75 exp l— 19 Ty l +
0.5 exp [— (92 —7)° : Oy — 3)2] — 0.2 exp [~(9z — 4) — (92 — 7)?] ,(30)
25

= _ 31
T 95 1 (v — 0.2) + 242 (31)

These problems have been used by several authors to analyze the performance
of various RBF type methods [6,7,16,29]. We have also used these problems to
analyze the accuracy of the RBF-FD method with a constant optimal shape
parameter [2].

Figure 12 shows with bars the infinite norms of the errors using the optimal
variable shape parameters ¢, for the four problems (28)-(31). In these prob-
lems, we have used a regular mesh of 31 x 31 nodes. Also shown with dashed
lines are the infinite norms of the errors with constant values of the shape
parameter c.
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Table 6
Same as Table 1 but for the Laplacian problem with solutions (28)-(31). In every
case, N is equal to 31 31 structured nodes.

Structured nodes

f min(cf) max(cf) %N  E(cl) c

€ €

E(c,) E

e

uy  1.0387 1.0387 0 1394 10 © | 1.0387 1345 10 © [ 9144 10
up  0.2566 51882 741 8000 10 * | 0.5978 1043 10 ® | 1868 10
us  0.2500 7.8858  17.5 3032 10 ® | 04935 1758 10 ® | 4604 10

ug  4.1053 6.2108 0 9405 10 10| 44957 7440 10 8 | 9727 10

In the top left image of Fig. 12 we show the results from problem (28). This
is a very peculiar problem because an optimal value of the shape parameter
¢ exists for all nodes, and the value of ¢ is the same for all of them (notice
that the bar for the optimal ¢ is just one point). This is because the solution
of this problem is an eigenfunction of the Laplacian. Since cj is independent
of the node location z;, the resulting error can be made as small as needed
by just computing the value of cj = ¢ with su cient accuracy. These results

are also summarized in Table 6.

The top right image of Fig. 12 shows the results from problem (29). In this
case, there is a very small improvement in accuracy. The reason for this can
be explained by considering the results in Table 6. Notice that there is a high
percentage of nodes (%N = 74 1%) for which c;“ does not exist and, therefore,
in which the conventional FD approximation is used with the corresponding
deterioration of the overall accuracy.

A similar behavior is observed for problem (30), where the accuracy is worse
with the optimal variable shape parameter cj than with the optimal constant
one ¢ (see the bottom left image of Fig. 12).

On the contrary, problem (31) is an example where the use of a variable
shape parameter leads to a very signi cant improvement of the accuracy (see
the bottom right image of Fig. 12). In fact, the in nite norm of the error
with the optimal variable ¢ is 9405 10 '°, nearly two orders of magnitude
improvement with respect to the constant optimal value ¢ for which the error
is 7440 10 8. Again, the reason for this high accuracy is that, in this case,
there is an optimal shape parameter cj for all nodes (%N = 0 in the last row
of Table 6).

To overcome the problem of the existence of optimal shape parameters c;“ for
problems (29) and (30), we have solved them using the RBF (22) in a way
analogous to that described in Subsection 5 for convection-di usion problems.
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Fig. 13. Infinite norms of the errors from problem (24) with exact solutions (29) and
(30) using the generalized multiquadrics (22). As in Fig. 12, we use N = 31 x 31
structured nodes.

The corresponding local RBF-FD error is

h?

es(x4, ¢j, B5) = 12 (u(4,ﬂ) (x5) + ul® (Xj)) B % = 2_(21) (_@4)_ :
h? (B; — 8)(B; —2)6; 3 2
ta ag g )T O (h* Pa(1/c)))

The new (node-dependent) parameter 3 in (22) is chosen so that there exists
a valid optimal shape parameter c} > h at each node of the grid, as explained
in Section 5. Figure 13 shows the results corresponding to problems (29) and
(30) using the generalized multiquadric RBF (22) with ¢4, = 0.2. In both
cases, there is an improvement of two orders of magnitude in the accuracy of
the computed solutions.

7 Conclusions

In this follow up paper to our previous work in [2], we present a novel technique
to compute the solution of PDEs with the multiquadric based local RBF
finite difference method (RBF-FD) using an optimal variable shape parameter
c; at each node of the computational domain. We show that a simple and
inexpensive numerical strategy can give rise to several orders more accurate
solutions if there exists an optimal value of the shape parameter for most of
the grid points of the domain. However, if there are many nodes for which an
optimal value of ¢ does not exist, the accuracy was similar to that obtained
with an optimal constant ¢ or even with standard FD formulas. For those
cases we notice that using generalized multiquadrics as RBF and choosing the
exponent [ and the shape parameter ¢ appropriately, guarantees the existence
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of optimal shape parameter for all the nodes. In this way, we are able to obtain
very signi cant improvements in accuracy for all the examples analyzed both
with structured and unstructured grids.

We emphasize that to compute the optimal local shape parameter to order
O(Rh?) it is only necessary to approximate the solution u(x) and certain deriva-
tives to order O(h?). In practice, this can be achieved by rst computing the
standard nite di erence solution, then use this solution to estimate the op-
timal local shape parameters cj, and mnally use these values to compute the
optimal RBF-FD solution. For unstructured grids in 2D it is not advisable to
estimate derivatives through nite di erence formulas, since this will require
the selection of appropriate stencils for each derivative. Instead, one can use
the RBF global method on a coarse grid and use this solution to approximate
u(x) and the needed derivatives on the unstructured grid.
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