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Abstract

A variety of problems in device and materials design require the rapid
forward modeling of Maxwell’s equations in complex micro-structured ma-
terials. By combining high-order accurate integral equation methods with
classical multiple scattering theory, we have created an effective simula-
tion tool for materials consisting of an isotropic background in which are
dispersed a large number of micro- or nano-scale metallic or dielectric in-
clusions.
Keywords: Maxwell equations, multiple scattering, meta-materials, fast
multipole method

1 Introduction

We describe in this paper a simulation method for Maxwell’s equations suitable
for microstructured materials consisting of separated inclusions which are em-
bedded in a homogeneous background (Fig. 1). In practice, it is often the case
that the shape and permittivity of the inclusions are fixed and that one seeks
to optimize their placement to create a specific electromagnetic response. Each
new configuration, however, requires the solution of the full Maxwell equations.
If there are thousands of inclusions in an electrically large region (many wave-
lengths in size), the calculation is generally too expensive to carry out within a
design loop.

In oder to accelerate such calculations, we have coupled complex geometry
Maxwell solvers with multiple scattering theory. Using the hybrid solver, cal-
culations such as the one depicted in Fig. 1 require only a few minutes on a
single CPU, despite the fact that there are a million degrees of freedom needed
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to describe the full geometry (and there would be orders of magnitude more
points needed in a finite difference or finite element discretization).

Our method, which we refer to as fast multi-particle scattering (FMPS), is
based on a two step procedure. First, we enclose a representative scatterer,
such as a single pair of gold nanorods, in a sphere S. We then build the scat-
tering matrix for this nano-structure (described below) using integral equation
techniques. The solution to the full Maxwell equations can then be obtained
in geometries with N inclusions (N = 200 in Fig. 1), by solving the multiple-
scattering problem where the inclusions have been replaced by their scattering
matrices. Not only does this reduce the number of degrees of freedom required,
but we have effectively precomputed the solution operator for each inclusion in
isolation, so that the linear system we solve by iteration on the multi-sphere
system is well-conditioned. Further, the fast multipole method (FMM) reduces
the cost of each iteration from O(N2) to O(N logN) and is particularly efficient
when applied to this problem.

The principal limitations of the method are (1) that some modest separation
distance between inclusions is required and (2) that some of the efficiency is
based on the fact that only a few distinct nanoparticle types are allowed. In
many experimental settings, both conditions are satisfied. We will return to a
discussion of these limitations in our concluding remarks.

2 Maxwell’s equations and the Debye-Lorenz-
Mie formalism

Working in the frequency domain and assuming a time dependence of e−iωt,
Maxwell’s equations in a linear, isotropic material take the form

∇×Htot = −iωεEtot, (1)

∇×Etot = iωµHtot,

where Etot and Htot are the total electric and magnetic fields. ε is the per-
mittivity of the medium and µ its permeability. We are mainly interested in
dielectric inclusions embedded in a background medium, but will consider per-
fect conductors briefly at the end of this section. The total fields (Etot,Htot)
can be written as the sums of the incident fields (Ein,Hin), defined only in the
exterior region, and scattered fields (E,H) defined in both the inclusions and
the exterior:

Etot = Ein + E,

Htot = Hin + H. (2)

It is well-known [17, 23] that at dielectric interfaces, the Maxwell equations (1)
are uniquely solvable when supplemented by the the continuity conditions:[

n×Etot
]

= 0 ⇒ [n×E] = −
[
n×Ein

][
n×Htot

]
= 0 ⇒ [n×H] = −

[
n×Hin

]
(3)

2



Figure 1: Two hundred gold ellipsoid pairs are randomly oriented in the region
[0, 100] × [0, 100] × [0, 20] and illuminated from above by a plane wave in TE
polarization. The transmitted z-component of the Poynting vector is plotted on
planes at z = −4 and z = −8. The wavelength is 2π so that the particles are
approximately one wavelength in size, and the region is about 15×15×3 wavelengths
is size.
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and the Silver-Müller radiation conditions on the scattered field. The expression
[n × F] is used to denote the jump in the tangential components of the vector
field F at a point on the interface.

2.1 Debye Potentials

About a century ago, Debye, Lorenz, and Mie [6, 18, 20] independently solved
the problem of scattering from a single sphere by using separation of variables.
Without entering into the derivation, it is straightforward to verify that

E(x) = ∇×∇× (xv(x) + iωε∇× (xu(x))

H(x) = ∇×∇× (xu(x))− iωµ∇× (xv(x)) (4)

represent an electromagnetic field, where x denotes the position vector with
respect to the sphere center, so long as the Debye potentials u, v satisfy the
scalar Helmholtz equation

∆u+ k2u = 0, ∆v + k2v = 0 ,

with Helmholtz parameter (wave number) k2 = ω2εµ. In the exterior of a sphere,
the Debye potentials u, v can be represented by the multipole expansions

uext(r, θ, φ) =

∞∑
n=0

n∑
m=−n

bn,mhn(kr)Y mn (θ, φ)

vext(r, θ, φ) =

∞∑
n=0

n∑
m=−n

an,mhn(kr)Y mn (θ, φ) (5)

where (r, θ, φ) are the spherical coordinates of the point x with respect to the
sphere center, hn(r) is the spherical Hankel function of order n, and Y mn (θ, φ)
is the usual spherical harmonic of order n and degree m. The resulting electro-
magnetic field then also satisfies the appropriate radiation conditions at infinity.
In the interior of a sphere, u and v can be represented by the local expansions

uint(r, θ, φ) =

∞∑
n=0

n∑
m=−n

dn,mjn(kr)Y mn (θ, φ)

vint(r, θ, φ) =

∞∑
n=0

n∑
m=−n

cn,mjn(kr)Y mn (θ, φ) (6)

where jn(x) is the spherical Bessel function of order n.

Remark 2.1. To improve readability, we will abbreviate

∞∑
n=0

n∑
m=−n

as
∑
n,m
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and the truncated sum
p∑

n=0

n∑
m=−n

as

p∑
n,m

.

It is straightforward to verify that the total number of terms in the truncated
summation is (p+ 1)2.

2.2 Single sphere scattering

Suppose now that one is interested in scattering from a single dielectric sphere S
of radiusR with permittivity ε1, permeability µ1, and Helmholtz parameter k1 =√
ω2ε1µ1, in response to an incoming field (Ein,Hin). The external medium

is assume to have permittivity ε0, permeability µ0, and Helmholtz parameter
k0 =

√
ω2ε0µ0. Then the scattered field can be represented by (4) with k = k1

in (6) for (r, θ, φ) inside S and by (4) with k = k0 in (5) for (r, θ, φ) outside S.
Let us denote by E0,H0 the scattered field in the exterior domain and by

E1,H1 the scattered field inside S. Then

E0(x) =
∑
n,m

an,m∇×∇× (xφk0n,m) + iωµ0

∑
n,m

bn,m∇× (xφk0n,m)

H0(x) =
∑
n,m

bn,m∇×∇× (xφk0n,m) − iωε0
∑
n,m

an,m∇× (xφk0n,m)

where φkn,m(x) = φkn,m [r, θ, φ] = hn(kr)Y mn (θ, φ) and

E1(x) =
∑
n,m

cn,m∇×∇× (xψk1n,m) + iωµ1

∑
n,m

dn,m∇× (xψk1n,m)

H1(x) =
∑
n,m

dn,m∇×∇× (xψk1n,m) − iωε1
∑
n,m

cn,m∇× (xψk1n,m)

where ψkn,m(x) = ψkn,m [r, θ, φ] = jn(kr)Y mn (θ, φ).

We may also expand (Ein,Hin) in terms of spherical harmonics on the sur-
face of S:

Ein(x) =
∑
n,m

αn,m∇×∇× (xψk0n,m) + iωµ0

∑
n,m

βn,m∇× (xψk0n,m)

Hin(x) =
∑
n,m

βn,m∇×∇× (xψk0n,m) − iωε0
∑
n,m

αn,m∇× (xψk0n,m)

All of the spherical harmonic modes uncouple for fixed n,m, allowing for the
determination of (an,m, bn,m, cn,m, dn,m) from the data (αn,m, βn,m) by applying
the interface conditions (3). After some algebra (see, for example, [3, 21]), one
obtains two uncoupled linear systems of the form(

Hn(k0R) −Jn(k1R)
ε0hn(k0R) −ε1jn(k1R)

)(
an,m
cn,m

)
=

(
−Jn(k0R)αn,m
−ε0jn(k0R)αn,m

)
(7)(

Hn(k0R) −Jn(k1R)
µ0hn(k0R) −µ1jn(k1R)

)(
bn,m
dn,m

)
=

(
−Jn(k0R)βn,m
−µ0jn(k0R)βn,m

)
(8)
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where Hn(z) = [hn(z) + zh′n(z)], Jn(z) = [jn(z) + zj′n(z)].

Definition 2.1. The mapping from incoming coefficients (αn,m, βn,m) to the
outgoing coefficients (an,m, bn,m) is referred to as the scattering matrix and
denoted by S.

2.3 Perfect conductors

If the sphere S is a perfect conductor, the corresponding boundary conditions
are that the tangential components of the total electric field are zero [17, 23]:

n×Etot = 0 ⇒ n×E = −n×Ein . (9)

In that case, the interior field is identically zero and the scattered matrix is
given by

an,m = −(Jn(k0R)/Hn(k0R))αn,m

bn,m = −(jn(k0R)/hn(k0R))βn,m (10)

3 Scattering from multiple spheres

Suppose now that one is interested in scattering from M disjoint dielectric
spheres, where each sphere Sl has radius Rl and kl =

√
ω2εlµl. The external

medium and incoming field are as above. Then, the incoming field can be
represented on the surface of Sl by the expansion

Ein
l =

∑
n,m

αln,m∇×∇× (xlψ
k0
n,m(xl)) + iωµ0

∑
n,m

βln,m∇× (xlψ
k0
n,m(xl))

Hin
l =

∑
n,m

βln,m∇×∇× (xlψ
k0
n,m(xl)) − iωε0

∑
n,m

αln,m∇× (xlψ
k0
n,m(xl)),

while the scattered field in the interior of Sl can be represented by the expansion

El =
∑
n,m

cln,m∇×∇× (xlψ
kl
n,m(xl)) + iωµl

∑
n,m

dln,m∇× (xlψ
kl
n,m(xl)) (11)

Hl =
∑
n,m

dln,m∇×∇× (xlψ
kl
n,m(xl)) − iωεl

∑
n,m

cln,m∇× (xlψ
kl
n,m(xl)). (12)

Here, ψkn,m(xl) = jn(krl)Y
m
n (θl, φl) is computed in terms of the spherical coor-

dinates (rl, θl, φl) of a point xl with respect to the center of Sl.
The scattered field in the exterior of all the spheres can be represented by a

sum of outgoing expansions, one centered on each sphere.

E0 =

M∑
l=1

∑
n,m

aln,m∇×∇× (xlφ
k0
n,m(xl)) + iωµ0

M∑
l=1

∑
n,m

bln,m∇× (xlφ
k0
n,m(xl))

H0 =

M∑
l=1

∑
n,m

bln,m∇×∇× (xlφ
k0
n,m(xl)) − iωε0

M∑
l=1

∑
n,m

aln,m∇× (xlφ
k0
n,m(xl)).
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For a point x exterior to all spheres, the function φk0n,m(xl) ≡ hn(k0rl)Y
m
n (θl, φl),

where xl = (rl, θl, φl), the latter being the spherical coordinates of x with respect
to the center of Sl. The coefficients (aln,m, b

l
n,m, c

l
n,m, d

l
n,m) are all unknowns.

They are determined by a linear system that imposes the dielectric interface
condition (3) on each sphere boundary. Unlike the case of a single sphere,
however, it is no longer trivial to solve for these unknowns, since the incoming
field experienced on each sphere is due, not only to the known incoming field
(Ein,Hin), but to the field scattered by all the other spheres. This results in a
dense linear system involving all of the unknowns, whose solution accounts for
all of these multiple scattering interactions.

3.1 Translation operators for multiple scattering

Fortunately, the outgoing Debye expansion on sphere Sj can be analytically
converted to an incoming expansion on sphere Sl for l 6= j.

Lemma 1. Let the outgoing expansion from sphere Sj be given by

Ej
0 =

∑
n,m

ajn,m∇×∇× (xjφ
k0
n,m(xj)) + iωµ0

∑
n,m

bjn,m∇× (xjφ
k0
n,m(xj))

Hj
0 =

∑
n,m

bjn,m∇×∇× (xjφ
k0
n,m(xj)) − iωε0

∑
n,m

ajn,m∇× (xjφ
k0
n,m(xj)).

Then, the corresponding field induced on the surface of sphere Sl can be repre-
sented in the form

El
0 =

∑
n,m

γj,ln,m∇×∇× (xlψ
k0
n,m(xl)) + iωµ0

∑
n,m

δj,ln,m∇× (xlψ
k0
n,m(xl))

Hl
0 =

∑
n,m

δj,ln,m∇×∇× (xlψ
k0
n,m(xl)) − iωε0

∑
n,m

γj,ln,m∇× (xlψ
k0
n,m(xl)).

We denote the mappings from the {ajn,m} and {bjn,m} coefficients to the {γj,ln,m}
and {δj,ln,m} coefficients by T a,γj,l , T b,γj,l , T a,δj,l , and T b,δj,l , respectively. Each of these
mappings depends on the vector from the center of sphere Sj to sphere Sl and
the parameters (µ0, ε0, ω).

For convenience, we will sometimes denote vectors of coefficients such as

{ajn,m} by ~aj . The individual components of a translated vector such as T a,δj,l
~δj

will be denoted by [T a,δj,l
~δj ]n,m.

Remark 3.1. The formulae for the translation operators T a,γj,l , T b,γj,l , T a,δj,l , and

T b,δj,l are rather involved [8, 12, 21]. If the expansions are truncated at n = p

terms, there are 2(p+ 1)2 nonzero coefficients in both the outgoing (ajn,m, b
j
n,m)

and incoming (γj,ln,m, δ
j,l
n,m) representations. Each translation operator is dense

and, therefore requires O(p4) operations to apply. More efficient schemes [9, 12]
reduces the cost to O(p3), while the diagonal-form of the FMM [5, 24] reduces
the cost to O(p2 log p) for well-separated spheres in the high-frequency regime.
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Let us now assume that all outgoing and incoming expansion are truncated
at n = p terms. The choice of p is determined by accuracy considerations. It
must be sufficiently large to resolve the E and H fields on each sphere surface
to the desired precision.

Using the preceding lemma, the total field immediately exterior to sphere Sl
can be written in the form

El
0 = Ein

l +

M∑
j=1
j 6=l

[T a,γj,l
~aj + T b,γj,l

~bj ]n,m∇×∇× (xlψ
k0
n,m(xl))

+ iωµ0

M∑
j=1
j 6=l

[T a,δj,l
~aj + T b,δj,l

~bj ]n,m∇× (xlψ
k0
n,m(xl)) (13)

+

p∑
n,m

aln,m∇×∇× (xlφ
k0
n,m(xl)) + iωµ0

p∑
n,m

bln,m∇× (xlφ
k0
n,m(xl))

Hl
0 = Hin

l +

M∑
j=1
j 6=l

[T a,δj,l
~aj + T b,δj,l

~bj ]n,m∇×∇× (xlψ
k0
n,m(xl))

− iωε0
M∑
j=1
j 6=l

[T a,γj,l
~aj + T b,γj,l

~bj ]n,m∇× (xlψ
k0
n,m(xl)) (14)

+

p∑
n,m

bln,m∇×∇× (xlφ
k0
n,m(xl)) − iωε0

p∑
n,m

aln,m∇× (xlφ
k0
n,m(xl)) .

The first terms in the preceding expressions for El
0,H

l
0 account for the incoming

field, while the next two terms account for the scattered field coming from all
other spheres. The last two terms in each expression account for the fields being
scattered by Sl itself.

It is now clear how to apply the interface conditions (3). We simply equate
the tangential components of El

0,H
l
0 defined in (13),(14) with the tangen-

tial components of the interior representations (El,Hl) defined in (11),(12).
This yields a dense linear system of dimension 4M(p + 1)2 for the coefficients
(aln,m, b

l
n,m, c

l
n,m, d

l
n,m). We will refer to this system as the multiple scattering

equations. Writing the equations out explicitly is not especially informative,
and we omit it.

Remark 3.2. The scattering matrix S (Definition 2.1) allows for the elimina-
tion of the interior variables (cln,m, d

l
n,m), so that the one can solve a modified

system of dimension 2M(p+ 1)2 for the coefficients (aln,m, b
l
n,m) describing the

exterior field alone.
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 aln,m

bln,m

 = S



αln,m +

M∑
j=1
j 6=l

[T a,γj,l
~aj + T b,γj,l

~bj ]n,m

βln,m +

M∑
j=1
j 6=l

[T a,δj,l
~aj + T b,δj,l

~bj ]n,m


(15)

It is worth emphasizing that the multiple scattering equations are hardly
new. There is a vast literature on the subject, which we do not seek to review
here. We refer the reader to the textbooks [2, 3, 14, 19, 21] and the papers
[12, 27].

3.2 Iterative solution of the multiple scattering problem
for a system of spheres

We will solve the multiple scattering equations iteratively, using GMRES [26]
with a block diagonal preconditioner, each block corresponding to the unknowns
on a single sphere. In applying the preconditioner, we simply invert each of the
M diagonal blocks, which corresponds to solving the single sphere scattering
problem described in section 2.2. Since all M spheres interact, however, the
system matrix is dense. Each matrix-vector multiply in the iterative solution
process, if carried out naively, would require O(M2 p3) work.

In order to accelerate the solution procedure, the wideband fast multipole
method (FMM) [5] can easily be modified to reduce the cost to O(Mp3) work
per iteration. This is discussed in the context of acoustic scattering in [13, 15].
Since the literature on FMMs is substantial, we omit a detailed discussion of
the technique, but present results in section 6.

4 Scattering from an arbitrary inclusion

Suppose now that instead of a sphere, we are given a smooth inclusion (or set of
inclusions) D1 with permittivity ε1 and permeability µ1 embedded in the same
infinite medium as above. We will suppose further that D1 can be enclosed
in a sphere S1 (Fig. 2). As before, at the material interface, the conditions
to be satisfied are (3). The Debye-Lorenz-Mie formalism cannot be applied in
this case, and attempts to do so (called the T-matrix method) suffer from ill-
conditioning when D1 is sufficiently non-spherical. We, therefore, turn to the
standard representation of electromagnetic fields in general geometries, based
on the vector and scalar potentials and anti-potentials [22, 23].

The vector potential in domain l (l = 0, 1) is defined by

Al(x) = µl

∫
∂D1

gl(x− y) Jl(y) dsy

9



Figure 2: A pair of triangulated ellipsoids define a bounded domain D1 that lies
with an enclosing sphere S1. The scattering matrix for D1 will be created on S1

and used to represent the exterior field.

and gl(x) = eikl‖x‖/‖x‖ with kl =
√
w2εjµj . When the argument of the square

root is complex, kl is taken to lie in the upper half-plane. We define the vector
anti-potential in domain l by

Ãl(x) = εl

∫
∂D1

gl(x− y) Kl ds.

From these, we may write

El = −∇φl + iωAl −
1

εl
∇× Ãl

Hl =
1

µl
∇×Al −∇ψl + iωÃl.

where

φl =
1

iωεlµl
∇ ·Al

ψl =
1

iωεlµl
∇ · Ãl.

As written above, we have twelve degrees of freedom at each point P ∈
∂D1, namely the three Cartesian components of J0,J1,K0,K1, but only four
boundary conditions (the continuity of the tangential components of E and H).
We will assume, however, that the functions J0,J1,K0,K1 are surface currents
and that the following linear relations hold

J0 =
ε0
ε1

J1 K0 =
µ0

µ1
K1 .

This leaves four degrees of freedom. Imposing the conditions (3) on J1,K1

results in Müller’s integral equation [22], a resonance-free Fredholm equation of
the second kind.

10



t2

1t

Figure 3: In the simplest geometric model, the surface of the scatterer ∂D1 is
approximated by a collection of flat triangles, defined by the locations of its three
vertices in R3. On each triangle, there are two two linearly independent tangent
directions t1 and t2. The unknown electric and magnetic currents J and K on each
triangle are defined by j1t1+j2t2 and k1t1+k2t2, respectively, and the electromag-
netic fields are evaluated at the triangle centroids. For higher order accuracy, each
quadratic surface patch is specified by six nodes: the three triangle vertices and
three additional points, one on each curved triangle side. Three “support nodes”
x1,x2,x3 are then selected in the interior of each patch. Our representation for
J and K at each support node xi is of the form ji1t

i
1 + ji2t

i
2 and ki1t

i
1 + ki2t

i
2,

where ti1, t
i
2 are linearly independent tangent vectors at xi. The support nodes are

also the points where we evaluate the electromagnetic fields and impose interface
conditions.

In more detail, using the facts that

∇x × (gl(x− y) K(y)) = ∇xgl ×K(y) ,

a× b× c = b(a · c)− c(a · b) ,

and, for y0 ∈ ∂D1,

lim
x→y0
x∈D0

∫
∂D1

∂gl
∂ny0

(x− y)σ(y)dsy =
1

2
σ(y0) +

∮
∂D1

∂gl
∂ny0

(y0 − y)σ(y)dsy

lim
x→y0
x∈D1

∫
∂D1

∂gl
∂ny0

(x− y)σ(y)dsy = −1

2
σ(y0) +

∮
∂D1

∂gl
∂ny0

(y0 − y)σ(y)dsy,

we obtain the following coupled set of equations.

− n×Ein =
iω

ε1

∫
∂D1

[ε0µ0 g0 − ε1µ1 g1] (n× J1) dsy

+
i

ωε1
n×

∫
∂D1

[∇∇g0 −∇∇g1] J1 dsy (16)

−µ0

∫
∂D1

(
∇g0
µ1ε0

− ∇g1
µ0ε1

)
(n ·K1) dsy

+

(
1

2ε0
+

1

2ε1

)
K1 + µ0

∮
∂D1

(
1

µ1ε0

∂g0
∂n
− 1

µ0ε1

∂g1
∂n

)
K1 dsy

11



− n×Hin =
iω

µ1

∫
∂D1

[µ0ε0 g0 − ε1µ1 g1] (n×K1) dsy

+
i

ωµ1
n×

∫
∂D1

[∇∇g0 −∇∇g1] K1 dsy (17)

−ε0
∫
∂D1

(
∇g0
ε1µ0

− ∇g1
ε0µ1

)
(n · J1) dsy

+

(
1

2µ0
+

1

2µ1

)
J1 + ε0

∮
∂D1

(
1

ε1µ0

∂g0
∂n
− 1

ε0µ1

∂g1
∂n

)
J1 dsy.

Because the Müller equation is a second kind Fredholm equation, the order
of accuracy of the solution is that of the underlying quadrature rule. For first
order accuracy, we assume J1 and K1 are piecewise constant current densities
on a flat triangulated surface. For second order accuracy, we assume J1 and K1

are piecewise linear current densities on a piecewise quadratic surface with each
curved triangle defined by six points (Fig. 3).

For each discretization node, we evaluate the relevant electromagnetic field
component using a mixture of analytic and numerical quadratures on each tri-
angle. More precisely, we use the method of singularity subtraction - computing
integrals analytically for the kernel 1/r and its derivatives and using numerical
quadrature for the difference kernel [eikr−1]/r, which is smoother. This results
in a complex linear system of dimension 4N×4N for first order accuracy and of
dimension 12N × 12N for second order accuracy, where N denotes the number
of triangles. For small N , say N < 1000, one can use direct LU-factorization to
solve the linear system. For larger values of N , iterative solution with FMM-
acceleration becomes much more practical [5, 9].

4.1 The scattering matrix for D1

Suppose now that we are interested in scattering from the two ellipsoids D1

shown in Fig. 2 due to an incoming field which is regular in the enclosing
sphere S1. Such an incoming field can be expanded within S1 in the form

Ein(x) =
∑
n,m

αn,m∇×∇× (xψk0n,m) + iωµ0

∑
n,m

βn,m∇× (xψk0n,m)

Hin(x) =
∑
n,m

βn,m∇×∇× (xψk0n,m) − iωε0
∑
n,m

αn,m∇× (xψk0n,m) ,

as in Section 2.2. Each (vector) spherical harmonic modes, corresponding to a
single αn,m or βn,m, defines a particular incoming field on D1. More precisely,
we can solve the Müller equation for a right-hand side obtained by setting the
incoming field to be

Ein
1,n,m(x) = ∇×∇× (xψk0n,m), Hin

1,n,m(x) = − iωε0∇× (xψk0n,m) , (18)
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corresponding to setting a fixed αn,m = 1 and all other coefficients to zero.
Similarly, we can set the incoming field to be

Ein
2,n,m(x) = + iωµ0∇× (xψk0n,m), Hin

2,n,m(x) = ∇×∇× (xψk0n,m) (19)

corresponding to setting a fixed βn,m = 1 and all other coefficients to zero.

We can then store either the electric and magnetic currents J1,n,m
1 ,K1,n,m

1 or
J2,n,m
1 ,K2,n,m

1 induced by these (unit) incoming fields or just convert these
currents to the coefficients of the outgoing (scattered) fields:

Esc
1,n,m(x) =

∑
n′,m′

a1,n,mn′,m′∇×∇× (xφk0n′,m′) + iωµ0

∑
n′,m′

b1,n,mn′,m′∇× (xφk0n′,m′)

Hsc
1,n,m(x) =

∑
n′,m′

b1,n,mn′,m′∇×∇× (xφk0n′,m′) − iωε0
∑
n′,m′

a1,n,mn′,m′∇× (xφk0n′,m′)

and

Esc
2,n,m(x) =

∑
n′,m′

a2,n,mn′,m′∇×∇× (xφk0n′,m′) + iωµ0

∑
n′,m′

b2,n,mn′,m′∇× (xφk0n′,m′)

Hsc
2,n,m(x) =

∑
n′,m′

b2,n,mn′,m′∇×∇× (xφk0n′,m′) − iωε0
∑
n′,m′

a2,n,mn′,m′∇× (xφk0n′,m′).

The formula for converting the currents J1,n,m
1 ,K1,n,m

1 to the coefficients can be
obtained by orthogonal projection of the induced field on the enclosing sphere
[23].

By superposition, an incoming field defined by the vector of incoming coef-
ficients {αn,m, βn,m} results in a scattered field of the form

Esc(x) =
∑
n′,m′

an′,m′∇×∇× (xφk0n′,m′) + iωµ0

∑
n′,m′

bn′,m′∇× (xφk0n′,m′)

Hsc(x) =
∑
n′,m′

bn′,m′∇×∇× (xφk0n′,m′) − iωε0
∑
n′,m′

an′,m′∇× (xφk0n′,m′) ,

with the coefficients of the scattered field given by

an′,m′ =
∑
n,m

αn,ma
1,n,m
n′,m′ + βn,ma

2,n,m
n′,m′

bn′,m′ =
∑
n,m

αn,mb
1,n,m
n′,m′ + βn,mb

2,n,m
n′,m′ .

The matrix mapping the incoming to the scattered coefficients is referred to as
the scattering matrix for the structure D1.

Fixing the order of the expansions above at p, there are 4p2 possible basis
functions that span the space of all possible incoming fields. We must, there-
fore solve 4p2 Müller integral equations on the detailed geometry defining D1.
To store the currents induced by each incoming field requires O(Np2) memory,
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where N denotes the number of degrees of freedom used in the discretization
of the integral equation. The scattering matrix itself requires storing O(16p4)
complex numbers. While somewhat expensive, this is a pre-computation step,
in anticipation of simulating microstructures with thousands or millions of inclu-
sions of the same identical shape, but well enough separated that the scattering
matrices are accurate.

5 Multiple scattering from well-separated non-
spherical inclusions

Once the scattering matrix is known, the solution to the full Maxwell equations
for geometries with N inclusions (N = 200 in Fig. 1) can be turned into
a multiple-scattering problem based only on the enclosing spheres. That is,
the inclusions can be replaced by their scattering matrices and the multiple
scattering method of section 3 can be used with trivial modifications.

There are two distinct advantages to be gained here. First, we have re-
duced the number of degrees of freedom from, say, 5,000 or 10,000 unknown
current density values per inclusion to, say, 400 expansion coefficients. Just
as important, however, is that we have precomputed the solution operator for
each inclusion in isolation, so that the linear system we solve by iteration on
the multi-sphere system is much more well-conditioned. Further, the FMM re-
duces the cost of each iteration from O(N2) to O(N logN) and is particularly
efficient here, since the complicated quadratures on triangulated surfaces have
been subsumed into the precomputation step.

The principal limitations of the method are 1) that some modest separation
distance between inclusions is required and 2) that the bookkeeping becomes
a bit awkward if more than a few distinct nanoparticle types are allowed. In
many experimental settings, both conditions are satisfied.

It is worth noting that the method of this paper can be viewed as a reduced
order model for the scattering problem. In broad terms, the idea is not new and
there is substantial activity in this area in both electromagnetics and other fields
(see, for example, [4]). It is also worth noting that the method is “rigorous”
in the sense that the error is determined in a straightforward manner by the
accuracy of the Müller integral equation solver and the order of expansion of
the scattering matrix. It fails (or needs local modification) if and only if two
enclosing spheres intersect.

6 Numerical Examples

As discussed in section 4, the Müller integral equation is an effective method for
determining the scattering matrix from a dielectric inclusion of arbitrary shape.
To illustrate its performance, we consider the geometry in Fig. 2, consisting of
a pair of ellipsoids triangulated with piecewise quadratic triangles on which we
allow piecewise linear current densities. Each triangle has three nodes with two
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degrees of freedom for each current (electric and magnetic) at each point, result-
ing in a complex linear system of dimension 2160× 2160. (All calculations and
timings reported in this section have been carried out using a 12-core 2.93GHz
Intel Xeon workstation.) LU factorization requires 3.5 seconds, and the subse-
quent solution requires 0.1 seconds for each possible incoming mode. With 720
triangles, the linear system has dimension 8640 and with 2880 triangles, there
are 34,560 degrees of freedom. These require 106 and 2,620 seconds to factor, re-
spectively. The solution times for each incoming mode are 3.52 and 87 seconds,
respectively. We could accelerate these solution times using fast multipole-based
codes (or any of a variety of other “fast” algorithms), but we view this cost as
an initialization step and the CPU times are acceptable. The errors are of the
order 10−3, 10−4, and 10−5 for the successively finer discretizations, somewhat
better than the expected second order convergence.

To illustrate the performance of the FMPS algorithm, we consider a 21 ×
21× 2 array of scatterers, each consisting of an ellipsoid pair with a scattering
matrix derived from the Müller integral equation of order p = 3. Using the
same 12-core 2.93GHz Intel Xeon workstation, the time required was about 2
seconds per iteration, with six iterations required for GMRES to converge to 3
digits. The “slow” multiple scattering (SMPS) approach, without fast multipole
acceleration, required about 7 seconds per iteration. For a 21 × 21 × 4 array,
the cost was about 6 seconds per iteration (28 seconds for SMPS) and for a
21× 21× 8 array, the cost was about 23 seconds per iteration (108 seconds for
SMPS). For a 21× 21× 16 array (14,112 ellipsoid pairs), the cost was about 59
seconds per iteration (440 seconds for SMPS).

The reason for the modest speedup of the FMPS over the SMPS approach is
that the number of spheres is still rather small. For one million scatterers, the
speedup factor would be about 1000. Careful readers may note that the FMPS
scaling appears worse than O(N log N) in successively doubling the simulation
from a 21×21×4 array to a 21×21×8 array to a 21×21×16 array. For those
familiar with the FMM, the short explanation is that the “near neighbor” cost
is not yet in the asymptotic regime in the first two cases. Timings extrapolated
from the last case are accurate for any volume-filling distribution.

Finally, we illustrate the use of the FMPS algorithm in carrying out fre-
quency scans for (a) one ellipsoid pair with the long axis oriented parallel to the
(linearly polarized) incoming electric field, (b)one ellipsoid pair with the long
axis oriented parallel to the (linearly polarized) incoming magnetic field, or (c)
four pairs of randomly oriented ellipsoid pairs (Fig. 4).

7 Conclusions

The method introduced in this paper (fast multi-particle scattering) combines a
highly accurate integral equation solver with multiple scattering theory, in order
to permit the solution to the full Maxwell equations in configurations typical of
engineered composites (metamaterials). We assume that the geometry consists
of a large number of inclusions embedded in a homogeneous background. While
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Figure 4: The top row shows a frequency scan of the real and imaginary parts
of electric polarization vector (left), the real and imaginary parts of magnetic po-
larization vector (middle), and the scattering (right, upper curve) and absorption
(right, lower curve) for one ellipsoid pair with the long axis oriented parallel to
the (linearly polarized) incoming electric field. The second row shows the same
computed quantities for one ellipsoid pair with the long axis oriented parallel to
the (linearly polarized) incoming magnetic field. The third row shows the same
computed quantities for four pairs of randomly oriented ellipsoid pairs.
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we have only included a single type of inclusion geometry in our examples above,
it is clear that the method can easily be applied to permit several such types, so
long as there is a modest separation between inclusions. FMPS is enormously
faster than a full FMM-based solver using the full discretization of the geometry.
With 14,112 ellipsoid pairs (the largest example in the preceding section), this
would require about 30 million degrees of freedom, many minutes per iteration,
and many more iterations.

In its present form, the method cannot be used for tightly packed configu-
rations, which will require more elaborate compression schemes [11]. It does,
however, permit workstation-based simulation with millions of inclusions. We
are currently working on extending the method so that it can handle inclusions
embedded in a layered medium.
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