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Abstract

We develop a technique for generating a set of optimized local basis functions to solve
models in the Kohn-Sham density functional theory for both insulating and metallic systems.
The optimized local basis functions are obtained by solving a minimization problem in an
admissible set determined by a large number of primitive basis functions. Using the optimized
local basis set, the electron energy and the atomic force can be calculated accurately with
a small number of basis functions. The Pulay force is systematically controlled and is not
required to be calculated, which makes the optimized local basis set an ideal tool for ab initio
molecular dynamics and structure optimization. We also propose a preconditioned Newton-
GMRES method to obtain the optimized local basis functions in practice. The optimized
local basis set is able to achieve high accuracy with a small number of basis functions per
atom when applied to a one dimensional model problem.
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1. Introduction

In scientific computation of systems with large number of degrees of freedom, an efficient
choice of basis functions becomes desirable in order to reduce the computational cost. In
this paper, we focus on the choice of efficient basis sets for the Kohn-Sham density func-
tional theory (KSDFT) [1, 2], which is the most widely used electronic structure theory for
condensed matter systems. The methods and concepts illustrated here are also useful for
other applications.
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In KSDFT, the quantities of interest are the electron energy E(R) and the atomic force
F (R). Here we denote by R = (R1, R2, · · · , RNA

)T the atomic positions, where NA is the
number of atoms. The atomic force is expressed in terms of the derivatives of the electron
energy with respect to the atomic positions as F (R) = −∂E(R)

∂R
. This is an important quantity

in many applications including structure optimization and first principle molecular dynamics.
The electron energy is a functional of a set of Kohn-Sham orbitals {ψi}Ni=1 where N is the
number of electrons in the system. To illustrate the idea with minimal technicality, let us
consider for the moment a system of non-interacting electrons at zero temperature. The
energy functional for non-interacting electrons takes the form

E({ψi(x)}Ni=1;R) =
1

2

N∑

i=1

∫
|∇ψi(x)|2 dx+

∫
V (x;R)

N∑

i=1

|ψi(x)|2 dx. (1)

The first term and the second term in (1) are the kinetic energy and the potential energy of
the system, respectively. The energy E(R) as a function of atomic positions is given by the
following minimization problem

E(R) = min
{ψi(x)}Ni=1

E({ψi(x)}Ni=1;R),

s.t.

∫
ψ∗
i (x)ψj(x) dx = δij , i, j = 1, . . . , N.

(2)

We denote by {ψi(x;R)}Ni=1 the minimizer. It can be readily shown that {ψi(x;R)}Ni=1 are
the lowest N eigenfunctions of the Hamiltonian operator H(R), which takes the form

H(R) = −1

2
∆x + V (x;R). (3)

Using the Hamiltonian operator, the electron energy has an alternative expression without
the explicit dependence on the orbitals {ψi}Ni=1:

E(R) = Tr [H(R)χ(H(R)− µ(R))] ≡ Tr[g0(H(R))], (4)

where χ(·) is the Heaviside function: χ(x) = 1 if x < 0 and is 0 otherwise. Here µ(R) is the
chemical potential, which takes value between the N -th and (N + 1)-th eigenvalues of H to
control the number of electrons.

Since all the quantities depend on the atomic positions R, to simplify the notation we drop
the dependence of R unless otherwise specified. If we approximate the eigenfunctions {ψi}Ni=1

by linear combination of a set of basis functions Φ = (φ1, · · · , φNb
), the Hamiltonian operator

H is discretized into a finite dimensional matrix ΦTHΦ (here and in the following, we will
use the linear algebra notation: φT

i Hφj = 〈φi |H|φj〉). The number of basis functions Nb is
therefore called the discretization cost. The electron energy and the force can be expressed
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in terms of the discretized Hamiltonian operator as

EΦ = Tr
[
g0(Φ

THΦ)
]
,

FΦ,I = −∂EΦ

∂RI

= −Tr

[
g′0(Φ

THΦ)ΦT ∂H

∂RI

Φ

]
− 2Tr

[
g′0(Φ

THΦ)ΦTH
∂Φ

∂RI

]
.

(5)

FΦ,I is the I-th component of the force. In what follows the second equation in (5) is also
written in a compact form as

FΦ = −∂EΦ

∂R

= −Tr

[
g′0(Φ

THΦ)ΦT∂H

∂R
Φ

]
− 2Tr

[
g′0(Φ

THΦ)ΦTH
∂Φ

∂R

]
.

(6)

Choosing basis functions Φ adaptively with respect to the atomic positions R has obvious
computational advantages, as it allows the possibility to reduce the discretization cost by a
significant amount while maintaining the accuracy for the evaluation of the electron energy
and atomic forces. Since the electron energy is defined variationally as in (2), an accurate ba-
sis set should minimize the electron energy. However, choosing the basis functions adaptively
gives arise to some difficulties in the evaluation of the force (5) which requires the calculation
of ∂Φ

∂R
. In electronic structure theory, the contribution from ∂Φ

∂R
is referred to as the Pulay

force [3]. We will henceforth adopt this terminology. The Pulay force originates from the
incompleteness of the basis set, and has been found to be important to obtain the force
with reliable accuracy for structure optimization or first principle molecular dynamics [3, 4].
The calculation of the Pulay force can be quite expensive even if the basis functions Φ have
analytical expressions, and the calculation of the Pulay force becomes almost intractable if
the basis functions are defined implicitly such as in the adaptive mesh method [5, 6, 7, 8].
We would like to systematically reduce the Pulay force so that the approximation

∂EΦ

∂R
≈ Tr

[
g′0(Φ

THΦ)ΦT∂H

∂R
Φ

]
(7)

becomes adequate.
The key observation in this paper is that minimizing the electron energy and reducing

the Pulay force can be simultaneously achieved by the following optimization procedure

min
Φ⊂V ,ΦTΦ=I

EΦ = min
Φ⊂V ,ΦTΦ=I

Tr
[
g0(Φ

THΦ)
]

(8)

Here V is an admissible subset of the space spanned by a set of primitive basis functions

which are independent of R. Later V will be referred to as the admissible set. We select from
V a small number of R-dependent optimized basis functions Φ = (φ1, · · · , φNb

) which give
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rise to the lowest electron energy in V. The Euler-Lagrange equation for the minimization
problem (8) reads {

HΦg′0(Φ
THΦ) = ΦΛ

ΦTΦ = I
, (9)

where the matrix Λ is a Lagrangian multiplier and is symmetric. When the first optimality
condition (9) is satisfied, we find

2Tr

[
g′0(Φ

THΦ)ΦTH
∂Φ

∂R

]
= 2Tr

[
ΛΦT ∂Φ

∂R

]
= Tr

[
Λ
∂(ΦTΦ)

∂R

]
= 0. (10)

The last equality comes from the orthonormal constraint on the optimized basis functions Φ.
The reason why (10) holds can be understood from the variational structure of the original
problem (8), which is related to the Hellmann-Feynman theorem in quantum mechanics. As
a result, the Pulay force vanishes in the atomic force even if the optimized basis functions
are far from being a complete basis set.

The choice of the primitive basis functions is crucial. Although the optimized basis
functions are always incomplete due to the small number of basis functions used, the primitive
basis set should be systematically improvable towards a complete basis set. Each primitive
basis function should be local in order to be suitable for large scale parallel calculation. In
our previous work [9], the primitive basis set is constructed using a discontinuous Galerkin
(DG) framework. The DG primitive basis set allows the usage of basis functions that are
discontinuous across element surfaces. Each DG primitive basis function is local in the real
space, and thus gives full flexibility in the choice of the optimized basis functions. The
locality constraint in the real space can therefore be naturally applied to the optimized basis
functions, giving rise to the optimized local basis set.

We remark that a large primitive basis set also presents practical difficulties for the
optimization procedure. In this paper we propose a preconditioned Newton-GMRES method
to obtain the optimized local basis functions. Numerical results using a one dimensional
model problem validate the performance of the optimized local basis functions: the electron
energy and the force can be accurately calculated along the trajectory of the molecular
dynamics without systematic drift, using a very small number of basis functions per atom.

Improving the quality of the basis functions via variational optimization has been previ-
ously studied in the electronic structure theory. However, to the best of our knowledge all
the optimized basis functions presented so far use atom-centered primitive basis functions,
such as atomic orbitals or Gaussian-type orbitals. Since atomic orbitals or Gaussian-type
orbitals depend on the atomic positions and do not form a complete basis set, the Pulay
force never vanishes. The Pulay force of all the primitive basis functions should be com-
puted for each atomic configuration. Moreover, optimization for each atomic configuration
is generally considered to be an expensive procedure, and the optimized basis functions are
usually obtained for specific reference systems instead. For example, Junquera et al [10] pro-
posed to optimize the shape and cutoff radii of a set of numerical atomic orbitals; Ozaki [11]
proposed using the optimal linear combination of a set of numerical atomic orbitals; Blum
et al [12] used a greedy method to select basis functions from a large pool of numerical
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atomic orbitals. The drawback of this procedure is that the quality of the basis functions
depends heavily on the choice of the reference system. The transferability of these basis sets
obtained for specific reference systems should be tested carefully for a variety of systems.
Optimized basis functions without the choice of reference systems have also been studied
before. Talman [13] proposed to optimize a set of numerical atomic orbitals for all the atoms
simultaneously. Rayson and Briddon [14] tried to find the optimal linear combination of
Gaussian-type orbitals, where the optimization process loops over each atom in the system.
These methods share similar spirit as the present work, and can be regarded as approximate
strategies towards achieving optimality in practice.

Our current work avoids the subtle issue of transferability by means of an optimization
procedure for any given system, which could be advantageous for complex systems where
manually constructed transferable basis functions are difficult to be obtained. The DG
primitive basis set is a complete basis set, and the optimized local basis functions are local
by construction. The DG primitive basis set is independent of the atomic positions, and the
Pulay force vanishes when the optimality condition is reached.

The rest of the paper is organized as follows. In Section 2, we introduce the optimized
local basis set for KSDFT. Numerical examples are presented in Section 3, followed by
discussion and conclusion in Section 4. To make the paper self-contained, we briefly recall
the finite temperature Kohn-Sham density functional theory in Appendix A.

2. Optimized local basis function

As introduced in our previous work [9], using a discontinuous Galerkin method (the
interior penalty method [15, 16]), the effective energy functional in Kohn-Sham density
functional theory is given by

FDG({ψi}, {fi}) =
1

2

∑

i

fi 〈∇ψi,∇ψi〉T −
∑

i

fi
〈{{

∇ψi
}}
,
[[
ψi
]]〉

S
+ 〈Veff , ρ〉T

+ α
∑

i

fi
〈[[
ψi
]]
,
[[
ψi
]]〉

S
+
∑

ℓ

γℓ
∑

i

fi |〈bℓ, ψi〉T |
2

+ β−1
∑

i

(
fi ln fi + (1− fi) ln(1− fi)

)
.

(11)

This is a discretization method for the Helmholtz free energy (A.18) for a system at tem-
perature β−1, see Appendix A for details of formulation of Kohn-Sham density functional
theory in finite temperature. Here T is a collection of quasi-uniform rectangular partitions
of the computational domain:

T = {E1, E2, · · · , EM}, (12)

and S be the collection of surfaces that correspond to T . 〈·, ·〉T and 〈·, ·〉S are inner products
in the bulk and on the surface respectively. The notations

{{
·
}}

and
[[
·
]]
are used for the

standard average and jump operators across surfaces in the interior penalty method. We
refer to [9] for more details.
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Let Φ be a chosen set of basis functions Φ = {ϕk,j}Jkj=1, where each ϕk,j is supported in
Ek and Jk is the total number of basis functions in Ek. The corresponding approximation
space VΦ is given by

VΦ = span{ϕk,j, Ek ∈ T , j = 1, · · · , Jk}. (13)

The approximated Kohn-Sham orbitals are the solutions to the minimization problem

min
{ψi}⊂VΦ,{fi}

FDG({ψi}, {fi}),

s.t.

∫
ψ∗
i ψj dx = δij , i, j = 1, · · · , Ñ ,

(14)

where Ñ is chosen to be slightly larger than the number of electrons N in the system in
order to compensate for the finite temperature effect (see Appendix A for more detailed
explanation). We propose the optimized local basis functions which give rise to a specific
choice of Φ, in order to achieve accuracy for both the Helmholtz free energy and the force
while using a small number of basis functions. Following the spirit of (8) introduced for
the model problem in the introduction, the optimized local basis function set Φ solves the
following minimization problem

min
Φ⊂V ,ΦTΦ=I

min
{ψi}⊂VΦ,{fi}

FDG({ψi}, {fi}), (15)

where V is the admissible set. To define the admissible set, we take for each element Ek a
set of basis functions {uk,j, j = 1, · · · , Jk}. Each uk,j is compactly supported in Ek, and they
satisfy the orthonormality condition

〈uk′,j′, uk,j〉T = δkk′δjj′. (16)

For example, {uk,j} can be polynomials restricted to the set Ek up to a certain order. Other
forms of primitive basis functions can be chosen as well, without changing the discussion
that follows. The discretized Hamiltonian in the DG formulation takes the form

Hk′,j′;k,j =
1

2
〈∇uk′,j′,∇uk,j〉T − 1

2

〈[[
uk′,j′

]]
,
{{
∇uk,j

}}〉
S

− 1

2

〈{{
∇uk′,j′

}}
,
[[
uk,j

]]〉
S
+ α

〈[[
uk′,j′

]]
,
[[
uk,j

]]〉
S

+ 〈uk′,j′, Veffuk,j〉T +
∑

ℓ

γℓ 〈uk′,j′, bℓ〉T 〈bℓ, uk,j〉T .

(17)

The optimized local basis functions should be local in the real space in order to facilitate
large scale computation. Since {uk,j} are compactly supported in Ek, the locality constraint
on the optimized local basis functions is naturally imposed by requiring each function in the
admissible set to be linear combinations of {uk,j} for the same k, i.e.

V =
M⋃

k=1

span{uk,j, j = 1, · · · , Jk}, (18)

6



where M is the number of elements.
Inside each element Ek, we select Nk optimized local basis functions from the admis-

sible set. Nk is much smaller than Jk. The optimized local basis functions are denoted
by {φk,1, · · · , φk,Nk

}, and are represented by the linear combination of the primitive basis
functions

φk,l =

Jk∑

j=1

φ̃k,l,juk,j, l = 1, · · · , Nk.

With slight abuse of notation, we use φk,l also for the column vector of the coefficients in
the primitive basis functions:

φk,l =
(
φ̃k,l,1 φ̃k,l,2 · · · φ̃k,l,JK

)T

. (19)

If we write
Φk =

(
φk,1 φk,2 · · · φk,Nk

)
, (20)

the optimized local basis set Φ represented in the primitive basis set takes the form

Φ = diag(Φ1,Φ2, · · · ,ΦM). (21)

Because of the block diagonal structure, the orthonormality constraint ΦTΦ = I is equivalent
to the orthonormal constraint for each Φk, i.e. , Φ

T
kΦk = Ik, k = 1, · · · ,M . Here each block

Φi is a rectangular matrix of size Ng × Nk, where Ng is the number of grid points in the
element, and Nk is the number of basis functions. Ik is an Nk ×Nk identity matrix.

Under the basis set Φ, the discretized Hamiltonian becomes ΦTHΦ with H given by (17).
The Helmholtz free energy can be written without the explicit dependence on {ψi} and {fi}:

min
{ψi}⊂VΦ,{fi}

FDG({ψi}, {fi}) = Tr g(ΦTHΦ) + µN, (22)

where the function g, which is a finite temperature version of g0, is defined as

g(x) = −β−1 ln(1 + exp(β(µ− x))). (23)

Note that the derivative of g is the Fermi-Dirac function

g′(x) = (1 + exp(β(x− µ)))−1. (24)

Hence, the minimization problem (15) becomes

FDG = min
Φ⊂V

[
Tr g(ΦTHΦ) + µN

]
,

s.t. ΦTkΦk = Ik, k = 1, · · · ,M.
(25)

The atomic force is then given by

F = −∂FDG

∂R

= −Tr(ρΦΦ
T∂H

∂R
Φ)− 2Tr(ρΦΦ

TH
∂Φ

∂R
)

= −Tr(ρΦΦ
T∂H

∂R
Φ),

(26)
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where ρΦ = g′(ΦTHΦ) is the single particle density matrix associated to the discretized
Hamiltonian ΦTHΦ. ρΦ can be evaluated using standard diagonalization techniques by
computing the eigenvalues and eigenvectors of the reduced Hamiltonian ΦTHΦ. This is
asymptotically the most time consuming step which scales as O(N3) where N is the number
of electrons in the system. For the 1D system considered in this manuscript, ρΦ is solved by
the MATLAB diagonalization subroutine eig. For systems of large size, the diagonalization
routine can be replaced by the recently developed low order scaling selected inversion meth-
ods [17, 18] to reduce the computational cost. The Pulay force vanishes in the last equality
when the first order optimality of the optimization problem (25) is reached, following the
same reasoning as in (10).

The Euler-Lagrange equation with respect to the minimization problem (25) reads

{
HΦρΦ − ΦΛ = 0

ΦTΦ− I = 0
, (27)

where the Λ is a block diagonal matrix

Λ = diag(Λ1,Λ2, · · · ,ΛM),

which is the Lagrange multiplier for the orthonormal constraints. Due to the block diagonal
structure of Φ, we can write the first order optimality condition (27) as

∑

j

HijΦjρΦ,ji − ΦiΛi = 0, i = 1, · · · ,M. (28)

Define the remainder for the i-th element as

Ri(Φ,Λ) =

(∑
j HijΦjρΦ,ji − ΦiΛi

I − ΦT
i Φi

)
. (29)

We solve Ri(Φ,Λ) = 0 for i = 1, 2, · · · ,M .
In order to solve the nonlinear system (27), we propose a preconditioned Newton-GMRES

method as follows. Denote by J the Jacobian matrix. At the l-th iteration, the Newton step
solves the following linear system for the correction term

J (l)

(
∆Φ(l)

∆Λ(l)

)
= −

(
HΦg′(ΦTHΦ)− ΦΛ

I − ΦTΦ

)
. (30)

To make the optimization feasible in practice, we take the following approximation. We
neglect the derivative of ρΦ = g′(ΦTHΦ) with respect to Φ in the Jacobian. The most
important reason for this approximation is that the numerical evaluation of such derivative is
quite expensive. In practice we find that the residue of the Euler-Lagrange equation decays
fast in the first few Newton iterations, and slows down when the residue becomes small,
suggesting that the derivative of ρΦ with respect to the basis functions can be important
especially for the small residue case. Numerical results indicate that the accuracy of the
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Helmholtz free energy and the force can already be improved by one order of magnitude
after a few Newton iterations. Further improvement that includes the approximate form of
the derivative of ρΦ will be considered in the future work. Using this approximation, the
correction equation (30) can be written explicitly as

(∑
j Hij(∆Φ)jρΦ,ji − (∆Φ)iΛi − Φi(∆Λ)i

−ΦT
i (∆Φ)i − (∆Φ)Ti Φi

)
= −Ri, (31)

for i = 1, 2, · · · ,M .
We solve the linear system (31) using a preconditioned GMRES method. The GMRES

method [19] is a robust way for solving ill-conditioned linear equations. The preconditioner
should give an approximate solution efficiently for the following equation

(∑
j Hij(∆Φ)jρΦ,ji − (∆Φ)iΛi − Φi(∆Λ)i

−ΦT
i (∆Φ)i − (∆Φ)Ti Φi

)
= −

(
Bi

Ci

)
(32)

for any right hand side {Bi}, {Ci}. To this end we first neglect the interaction between
different elements:

(
Hii(∆Φ)iρΦ,ii − (∆Φ)iΛi − Φi(∆Λ)i

−ΦT
i (∆Φ)i − (∆Φ)Ti Φi

)
= −

(
Bi

Ci

)
. (33)

The equations of (∆Φ)i for different elements become decoupled. (33) can be therefore solved
independently in each element. Second, we note that there are degeneracy issues solving (33).
This is because in the subspace spanned by the basis VΦ, only the low-lying eigenfunctions
of the discrete Hamiltonian affect the free energy much, while the eigenfunctions with large
eigenvalues do not contribute much due to small occupation number. Therefore, if we change
the subspace VΦ in the direction of these high energy eigenfunctions, it does not change much
the energy, which causes degeneracy.

We propose the following pruning method to solve the degeneracy problem. Instead of
solving (33), we restrict to the basis functions contributed to the low-lying eigenfunctions by
the following procedure. Given density matrix ρΦ, for each element Ei, we take a singular
value decomposition of the diagonal block of ρΦ,ii:

ρΦ,ii = UiSiU
T
i , (34)

with the singular values sorted in descending order. Then according to magnitude of the
singular values, we write Ui = (Uh

i , U
l
i ), where the singular vectors in Uh

i correspond to high
singular values above a certain threshold, and the ones in U l

i correspond to low singular
values below the threshold. The basis functions in the element can be separated into two
accordingly:

Φhi = ΦiU
h
i , Φli = ΦiU

l
i . (35)

We now only update the correction term corresponding to the high singular values by solving
(
Hii(∆Φ)hi ρ

h
Φ,ii − (∆Φ)hi Λ

h
i − Φhi (∆Λ)hi

−(Φhi )
T(∆Φh)i − (∆Φh)Ti Φ

h
i

)
= −

(
BiU

h
i

(Uh
i )

TCiU
h
i

)
, (36)
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where
ρhΦ,ij = (Uh

i )
TρΦ,ijU

h
j .

The approximate solution of the preconditioning equation (32) is therefore given by

∆Φi = ∆Φhi (U
h
i )

T ,∆Λi = Uh
i ∆Λhi (U

h
i )

T . (37)

As will be seen in the numerical examples in Section 3, the preconditioned Newton-
GMRES method is able to obtain the optimized local basis functions efficiently with a small
number of iterations.

3. Numerical result

3.1. Setup

The accuracy and efficiency of the optimized local basis functions is illustrated using
a one-dimensional model problem as follows. The number of atoms in the one-dimensional
model problem is denoted by NA, the positions of electrons by x, and the positions of ions by
R = (R1, R2, · · · , RNA

)T . The electronic and ionic degrees of freedom are separated by the
Born-Oppenheimer approximation. The effective Kohn-Sham Hamiltonian of the electrons
for a given atomic configuration R is

H(R) = −1

2
∆ + V (x;R). (38)

The effective electron-ion interaction and electron-electron interaction is modeled by the
summation of a series of Gaussian functions

V (x;R) = − A√
2πσ2

NA∑

I=1

e−
(x−RI )

2

2σ2 . (39)

A and σ characterize the height and the width of the potential well around each atom, re-
spectively. For simplicity, the effective Hamiltonian does not depend on the electron density,
and hence self-consistency iteration is not involved. The self-consistent iteration will be
added in the future work. The ion-ion interaction is modeled by a harmonic potential with
periodized nearest-neighbor interaction

VII(R) =
1

2

NA−1∑

I=1

ω(RI − RI+1)
2 +

1

2
ω(RNA

− R1 − L)2, (40)

with L being the length of the computational domain. The force on atom I is

FI = −∂FDG(R)

∂RI

− ∂VII(R)

∂RI

. (41)

The finite temperature KSDFT is used here and the Helmholtz free energy for the electrons
FDG(R) is given by (25). The finite temperature effect is usually negligible in insulating
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systems with large band gap, but becomes important for the stability in metallic systems
with small or vanishing band gap.

The accuracy is measured in terms of the error of the Helmholtz free energy per atom and
the error of the force. For a given atomic configuration, the Helmholtz free energy per atom
and the force are calculated independently using the optimized local basis functions and the
benchmark plane wave basis functions. Except for the unit of temperature which is Kelvin,
atomic units are used throughout this section unless otherwise specified. In particular, the
unit of energy is Hartree, the unit of force is Hartree/Bohr, and the electron massm, electron
charge e and the Planck constant ~ are set to be unity. The detailed choices of the parameters
in the simulation are as follows. Except in the last example where we test for different system
sizes, the number of atom is taken to be NA = 8. The average distance between adjacent
atoms is 10 au, and the size of each element is also set to be 10 au. The initial guess
of the optimized local basis functions uses the adaptive local basis functions proposed in
our previous work [9]. The adaptive local basis functions use a small buffer region outside
each element. The buffer size is 5 au in the present calculation. We compare the electron
energy and the forces produced by the optimized local basis functions with those obtained
from a planewave calculation with kinetic energy cutoff at Ecut = 40 Ry, or 20 planewaves
per atom. The change of the Helmholtz free energy and the force is less than 10−8 au if
the kinetic energy cutoff for the planewave calculation is further increased. 21 Legendre-
Gauss-Lobatto (LGL) grid points per element are used to discretize the optimized local
basis functions as well as the adaptive local basis functions. The change of the Helmholtz
free energy and the force is less than 10−8 au if the number of LGL integration points is
further increased. Therefore the numerical integration error is negligible, and the error in
the calculated Helmholtz free energy and the force faithfully represents the error due to
the usage of adaptive local basis functions or optimized local basis functions. The electron
temperature is 2000 K. The penalty parameter α in the DG Hamiltonian is 40. The choice
of parameters for the potential energy surface is ω = 0.03, A = 5.0, σ = 4.0.

If one electron is assigned to each atom (spin degeneracy is neglected), then the band gap
at the equidistant configuration is around 14000 K, which is much larger than the electron
temperature (2000 K). In what follows this system is referred to as the insulating system.
If four electrons are assigned to each atom, the band gap is is essentially zero (0.5 K). The
energy levels around the Fermi surface are fractionally occupied due to the thermal effect.
This system is referred to as the metallic system.

In the optimization of the local basis functions, the maximum number of Newton itera-
tions is set to be 4, and the maximum number of iterations for the preconditioned GMRES
solver for the Newton’s equation is set to be 30. We find that the error for solving the linear
system (31) using 30 preconditioned GMRES iterations is less than 10−4. The threshold
value for the significant part of the basis functions is set to be 10−7 to avoid degeneracy. The
preconditioning step is solved by direct LU decomposition method inside each element.

3.2. Static case

We first illustrate the performance of the optimized local basis set in the static case.
20 atomic configurations are generated from equidistant configuration with small random
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perturbations. The accuracy of using the optimized local basis set is measured by the mean
absolute value of the error (mean error) of the Helmholtz free energy per atom and the mean
error of the force of a fixed atom. Besides the optimized local basis functions, the error of
using the adaptive local basis functions [9] is presented as well to illustrate the effectiveness
of the optimization procedure.

For the insulating system, the relative error of the force is already 0.5% with as small as 4
basis functions per atom using the optimized local basis functions (Table 1). When compared
to the adaptive local basis functions with the same number of basis functions per atom, the
error of the Helmholtz free energy per atom is reduced by 51 times, and the error of the
force is reduced by 14 times after the optimization procedure. It is illuminating to see the
difference between the adaptive local basis functions and the optimized local basis functions.
Since any unitary transformation of the basis functions in each element does not change the
total energy of the system, the basis functions should first be rotated according a certain
criterion. Here we rotate the basis functions in an element according to the Ritz values of
the Hamiltonian in the same element. Take the first element for example, the Hamiltonian
operator is denoted by H11, and the basis functions in the first element is denoted by Φ1.
We solve the following eigenvalue problem

(ΦT1H11Φ1)C1 = C1Λ1, (42)

where Λ1 is a diagonal matrix with values sorted in ascending order. Then we compare the
rotated basis functions

Φ1C ≡ [ϕ1, · · · , ϕJ ] (43)

for adaptive and optimized local basis functions in Fig. 1. It is found that the optimized
local basis functions are very close to the adaptive local basis functions, indicating that the
adaptive local basis functions is already very accurate in computing the total energy of the
system. The agreement between the adaptive local basis functions and the optimized local
basis functions is very well for basis functions of low energy (Fig. 1 (a)), and the difference
enlarges for basis functions or higher energy. This can be understood as that the adaptive
local basis functions include contributions from unoccupied states with relatively high energy
level, while the optimized local basis functions reduce the contribution from such unoccupied
states by the optimization procedure.

Similar results are found for metallic systems (Table 2). More basis functions are needed
in this case since there are more electrons in the metallic system than those in the insulating
system studied here. The relative error of the force is 0.2% with 8 basis functions per
atom using the optimized local basis functions. When compared to the adaptive local basis
functions using the same number of basis functions, the error of the Helmholtz free energy
per atom is reduced by 10 times and the error of the force is reduced by 60 times using
the optimized local basis functions. The optimized local basis functions therefore greatly
improve the accuracy with the same number of basis functions.

On the other hand, the accuracy of using the adaptive local basis functions can be
systematically improved by increasing the number of basis functions per atom. For example,
if the number of basis functions per atom is increased from 8 to 12 for the metallic system,
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Method ∆FDG / atom Absolute ∆F Relative ∆F
Adaptive 5.7× 10−5 6.8× 10−5 4.5× 10−3

Optimized 1.1× 10−6 4.9× 10−6 3.3× 10−4

Table 1: Mean error of the Helmholtz free energy per atom, the absolute error of the force
of the first atom, and the relative error of the force of the first atom. This system is an
insulating system with 1 electron per atom (spin neglected). 4 basis functions per atom are
used for both the adaptive local basis functions and the optimized local basis functions.

Method ∆FDG / atom Absolute ∆F Relative ∆F
Adaptive 1.4× 10−3 3.8× 10−4 9.6× 10−2

Optimized 1.7× 10−4 4.5× 10−6 1.6× 10−3

Table 2: Mean error of the Helmholtz free energy per atom, the absolute error of the force of
the first atom, and the relative error of the force of the first atom. This system is a metallic
system with 4 electrons per atom (spin neglected). 8 basis functions per atom are used for
both the adaptive local basis functions and the optimized local basis functions.

the accuracy of using the adaptive local basis functions is comparable to that of using the
optimized local basis functions (Table 3). This finding is fully consistent with the previous
work [9] that the adaptive local basis functions also form an accurate and efficient local
basis set for the electronic structure calculation. The mild increase of the number of basis
functions indicates that the adaptive local basis functions are already very efficient at least
for 1D or quasi-1D systems. It is also found in the previous work that the number of adaptive
local basis functions increases considerably from quasi-1D systems to 3D bulk systems [9].
We expect that the number of basis functions can be reduced by a significant amount using
optimized local basis functions in 3D bulk systems.

Method ∆FDG / atom Absolute ∆F Relative ∆F
Adaptive 3.4× 10−5 1.9× 10−7 1.1× 10−4

Optimized 3.4× 10−5 1.7× 10−7 1.0× 10−4

Table 3: Mean error of the Helmholtz free energy per atom, the absolute error of the force of
the first atom, and the relative error of the force of the first atom. This system is a metallic
system with 4 electrons per atom (spin neglected). 12 basis functions per atom are used for
both the adaptive local basis functions and the optimized local basis functions.

We also test the optimized local basis functions on a system with local defects. The
defect system is obtained by choosing the parameter a at one atom in the potential (39) to
be different from the parameters a of the rest of the atoms. The system contains 8 atoms
with 4 electrons and 8 basis functions per atom. The parameter a is set to be 5.0 for all
atoms except for the first atom which is set to be 3.0. The error of the Helmholtz free energy
per atom and the error in the force of the defect atom are comparable to those in the periodic
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case (Table 4).

Method ∆FDG / atom Absolute ∆F Relative ∆F
Adaptive 1.3× 10−3 1.1× 10−4 6.3× 10−2

Optimized 1.8× 10−4 5.3× 10−6 3.3× 10−3

Table 4: Mean error of the Helmholtz free energy per atom, the absolute error of the force of
the first atom, and the relative error of the force of the first atom for a metallic system with
a defect. 8 basis functions per atom are used for both the adaptive local basis functions and
the optimized local basis functions.

Finally, we compare the performance of the adaptive local basis functions and the op-
timized local basis functions for systems of increasing size with 8, 16, 32, 128, 256 atoms,
respectively. The system is randomly perturbed by 0.2 au from the crystalline configuration,
with a defect introduced at one atom of the potential. The computational time for con-
structing the adaptive local basis functions (red dashed line with star) and for constructing
the optimized local basis functions (blue solid line with triangle) are compared in Fig. 2 (a)
plotted in logarithmic scale. 5 Newton steps and 30 GMRES iterations are used for the
outer iteration and the inner iteration respectively in the optimization procedure. Since the
optimized local basis functions use the adaptive local basis functions as an initial guess, the
computational time for the optimized local basis functions also includes that for the adaptive
local basis functions. The computational time for constructing both the adaptive local basis
functions and the optimized local basis functions are linear thanks to the locality of the
basis functions. The construction of the optimized local basis functions is 6 ∼ 9 times more
expensive than the construction of the adaptive local basis functions, indicating that the op-
timization procedure should be further improved in order to generate a practically efficient
optimized local basis set. The error of the Helmholtz free energy per atom and the error of
the force on the first atom are shown in Fig. 2 (b) and (c), respectively. It is found that
the Helmholtz free energy obtained by the optimized local basis functions is stably 8 ∼ 9
times more accurate than that obtained by the adaptive local basis functions. The ratio
of improvement of the force has a much larger dependence on the realization of the atomic
configuration which ranges from 5 ∼ 170 times, with the average ratio of improvement being
around one order of magnitude.

3.3. Dynamic case

The optimized local basis set is able to accurately compute the electron energy and the
force using a small number of basis functions. Now we show that the optimized local basis
functions can also be used in molecular dynamics. We illustrate the performance of the
optimized local basis functions for molecular dynamics using the same metallic system as in
Section 3.2 with 4 electrons and 8 basis functions per atom.

In the Born-Oppenheimer approximation, the equations of motion for atom I are given
by

MIR̈I = FI , I = 1, · · · , NA, (44)
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The mass of the ions MI is set to be 42000 which is close the mass of sodium in the atomic
unit. FI is the Hellman-Feynman force in (41) for atom I. The equations of motion (44)
conserve the total energy given by

EIC =

NA∑

I=1

MIṘ
2
I

2
+ FDG(R) + VII(R). (45)

The numerical conservation of the total energy is quantified by the drift of EIC , which is
defined as the relative difference of EIC along the trajectory, i.e.

Drift(t) =
|EIC(t)−EIC(0)|

|EIC(0)|
. (46)

Velocity-Verlet scheme [20] is used to propagate the equations of motion for the atoms
with the time step ∆t = 1.21 femtoseconds (fs). The simulation length is 10000 steps and the
total length of the simulation is 12.1 picoseconds (ps). To ensure the time-reversibility of the
numerical scheme, the optimized local basis functions use the adaptive local basis functions
as the initial guess at every time step. However, this is not a necessary requirement and
can be improved by other time-reversible schemes such as the extended Lagrangian Born-
Oppenheimer method [21]. The initial configurations of the atoms are perturbed by 0.2 au
away from the equilibrium equidistant configuration, and the initial kinetic energy of the
atoms is 1000 K with the mean velocity of all atoms (i.e. the velocity of the centroid) being
zero. The error of the force and the error of the Helmholtz free energy per atom are well
within 2.5 × 10−6 and 1.4 × 10−4, respectively (see Fig. 3 (a) and (b)), which is consistent
with the behavior of errors in the static calculation. The Helmholtz free energy obtained
from the optimized local basis functions is systematically higher than that in the benchmark
planewave simulation. The sources of the systematic shift are the penalty parameter α in the
DG formulation, and that the minimization procedure is restricted to an admissible set of
the space spanned by the primitive functions. Nonetheless, the mean deviation of the force
is unbiased, indicating that the structure of the trajectory obtained using the optimized
local basis functions is well preserved. The drift of the conserved quantity (46) is also well
controlled within 5× 10−7 (Fig. 3 (c)).

4. Conclusion

We have developed the optimized local basis set to solve models in the Kohn-Sham
density functional theory for both insulating and metallic systems. The optimized local
basis functions form an accurate basis set for computing the electron energy as well as
the atomic force with a small number of basis functions per atom. When the optimality
condition is achieved, the optimized local basis functions give the lowest energy among all
the basis functions in an admissible set determined by the primitive basis functions. The
force is accurately described by the Hellmann-Feynman force, and the contribution of the
derivative of the basis functions (i.e. the Pulay force) vanishes automatically. The concept of
the optimized local basis functions is quite general, and the methods developed in this paper
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are useful for other problems such as selecting basis functions and evaluating parameter-
dependent functions as well .

To obtain the optimized local basis functions in practice, we proposed a preconditioned
Newton-GMRES method. The resulting optimized local basis functions are tested using a
one-dimensional model problem. We find that the optimized local basis functions accurately
compute the Helmholtz free energy and the force using a very small number of basis functions
per atom for both insulating and metallic systems. When applied to the molecular dynamics
simulation, the optimized local basis functions do not exhibit any systematic drift in terms of
the force or the total energy for the ionic degrees of freedom. Therefore the optimized local
basis functions are able to give the correct statistical and dynamical properties along the
molecular dynamics trajectory, and can be used for long time molecular dynamics simulation.

The optimized local basis set provides an implementable criterion to eliminate the artifi-
cial effect in the force due to the change of the basis functions and to maintain a small set of
basis functions, which makes the optimized local basis set an ideal tool in the molecular dy-
namics simulation. However, the construction of the optimized local basis functions is found
to be already more expensive than other choices such as adaptive local basis functions, indi-
cating that the optimization procedure should be further improved especially when applied
to Kohn-Sham density functional theory in 3D. The more efficient scheme may be achieved
by including a feasible approximation of the derivative of the density matrix with respect to
the basis function, a more efficient preconditioner for the GMRES iteration, or even a more
efficient gradient method instead of a Newton-type method. These will be our future work.
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Appendix A. Finite temperature Kohn-Sham density functional theory

In this appendix, we briefly described the basic formulation of the Kohn-Sham density
functional theory [1, 2] and its finite temperature generalization. In the Kohn-Sham density
functional theory, the ground state electron energy is written as

Etot = Etot({ψi}) =
1

2

N∑

i=1

∫
|∇ψi|2 dx+

∫
Vextρ dx+

∑

ℓ

γℓ

N∑

i=1

∣∣∣∣
∫
b∗ℓψi dx

∣∣∣∣
2

+
1

2

∫∫
ρ(x)ρ(y)

|x− y| dx dy +

∫
ǫxc[ρ(x)] dx, (A.1)

where the Kohn-Sham orbitals are the solutions to the minimization problem

min
{ψi}Ni=1

Etot({ψi}),

s.t.

∫
ψ∗
i ψj dx = δij , i, j = 1, · · · , N.

(A.2)
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With slight abuse of the notation, we denote by {ψi} both the arguments in the minimization
problem (A.2), and the solutions to the minimization problem, i.e. the Kohn-Sham orbitals.
The electron density is ρ(x) =

∑N

i=1 |ψi(x)|
2. We have neglected the spin degeneracy. The

first term of (A.1) is the kinetic energy. The second and third terms come from pseudo-
potential, which we have taken the Kleinman-Bylander form [22]. The pseudopotential is
given by

VPS = Vext +
∑

ℓ

γℓ|bℓ〉〈bℓ|.

For each ℓ, bℓ is a function supported locally in the real space around the position of one
of the atoms, γℓ = +1 or −1, and we have used the Dirac bra-ket notation. The fourth
term is the Coulomb interaction between electrons, and the fifth term is the exchange-
correlation functional, for which the local density approximation (LDA) [23, 24] is adopted.
The proposed method can also be used for more complicated exchange-correlation functionals
such as the generalized gradient approximation (GGA) functionals [25].

The ground state electron energy defined in (A.1) is applicable to insulating systems
with large band gap, but is difficult to evaluate for zero-gap metallic systems. For metallic
system, finite temperature KSDFT becomes the standard tool [26], in which the Helmholtz
free energy is considered instead. For given finite temperature T > 0, the Helmholtz free
energy is given by

Ftot = Ftot({ψi}, {fi}) =
1

2

∑

i

fi

∫
|∇ψi|2 dx+

∫
Vextρ dx

+
∑

ℓ

γℓ
∑

i

fi

∣∣∣∣
∫
b∗ℓψi dx

∣∣∣∣
2

+
1

2

∫∫
ρ(x)ρ(y)

|x− y| dx dy

+

∫
ǫxc[ρ(x)] dx+ β−1

∑

i

(
fi ln fi + (1− fi) ln(1− fi)

)
. (A.3)

Correspondingly {ψi} and {fi} are the solutions to the minimization problem

min
{ψi},{fi}

Ftot({ψi}, {fi}),

s.t.

∫
ψ∗
i ψj dx = δij , i, j = 1, · · · , Ñ .

(A.4)

Here β is the inverse temperature β = 1/kBT . The number of eigenstates Ñ is chosen
to be slightly larger than the number of electrons N in order to compensate for the finite
temperature effect, following the criterion that the occupation number f

Ñ
is sufficiently small

(less than 10−8). {fi} ∈ [0, 1] are the occupation numbers which add up to the total number

of electrons N =
∑Ñ

i=1 fi, and the electron density ρ =
∑Ñ

i=1 fi |ψi|
2. Compared to (A.1),

the only extra term is the last term, which characterizes the entropic contribution.
The Kohn-Sham equation, or the Euler-Lagrange equation associated with (A.4) reads

H [ρ]ψi =
(
−1

2
∆+ Veff [ρ] +

∑

ℓ

γℓ|bℓ〉〈bℓ|
)
ψi = λiψi, (A.5)
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where the effective one-body potential Veff is given by

Veff [ρ](x) = Vext(x) +

∫
ρ(y)

|x− y| dy + ǫ′xc[ρ(x)]. (A.6)

The occupation numbers are given by

fi =
1

1 + exp(β(λi − µ))
, (A.7)

which is the Fermi-Dirac distribution evaluated at λi. Here µ is the chemical potential, which
is chosen so that fi satisfies ∑

i

fi = N. (A.8)

Note that (A.5) is a nonlinear eigenvalue problem, as Veff depends on ρ, which is in turn
determined by {ψi}. The electron density is self-consistent if both (A.5) and (A.6) are
satisfied. After obtaining the self-consistent electron density, the Helmholtz free energy can
be expressed as

Ftot = Ftot(ρ, µ) =
∑

i

fiλi + β−1
∑

i

(
fi ln fi + (1− fi) ln(1− fi)

)

− 1

2

∫∫
ρ(x)ρ(y)

|x− y| dx dy +

∫
ǫxc[ρ(x)] dx−

∫
ǫ′xc[ρ(x)]ρ(x) dx. (A.9)

The goal of finite temperature Kohn-Sham density functional theory is to calculate the free
energy Ftot, the self-consistent electron density ρ and also the chemical potential µ given
the number of electrons, the temperature and the atomic configuration. The Helmholtz
free energy Ftot(R) plays the role of the electron energy E(R) in Section 1, and the force

is defined as the negative gradient of the Helmholtz free energy F (R) = −∂Ftot(R)
∂R

. The
Helmholtz free energy is applicable to both the insulating and the metallic systems. As
T → 0, the Helmholtz free energy Ftot reduces to the ground state electron energy Etot.
Therefore (A.1) is also called the zero temperature KSDFT.

As fi is given by the Fermi-Dirac distribution, we have

∑

i

fiλi = Tr
H

1 + exp(β(H − µ))
; (A.10)

∑

i

fi ln fi = Tr
1

1 + exp(β(H − µ))
ln

1

1 + exp(β(H − µ))
; (A.11)

∑

i

(1− fi) ln(1− fi) = Tr
exp(β(H − µ))

1 + exp(β(H − µ))
ln

exp(β(H − µ))

1 + exp(β(H − µ))
. (A.12)

Using these, we can rewrite (A.9) as (see e.g. [27])

Ftot(ρ, µ) = −β−1Tr ln(1 + exp(β(µ−H [ρ]))) + µN

− 1

2

∫∫
ρ(x)ρ(y)

|x− y| dx dy +

∫
ǫxc[ρ(x)] dx −

∫
ǫ′xc[ρ(x)]ρ(x) dx. (A.13)
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One can verify by straightforward calculations that

δFtot(ρ, µ)

δρ
= 0 (A.14)

if ρ and µ are the self-consistent solution of the Kohn-Sham equation (A.5). Taking derivative
of (A.13) with respect to µ, we have

∂Ftot(ρ, µ)

∂µ
= −Tr

exp(β(µ−H))

1 + exp(β(µ−H))
+N = 0. (A.15)

Therefore, the atomic force takes the form

F = − dFtot(ρ, µ, R)

dR
= −∂Ftot(ρ, µ, R)

∂R

= −Tr

[
1

1 + exp(β(H − µ))

∂H

∂R

]
.

(A.16)

This is known as the Hellman-Feynman theorem at finite temperature.
The Kohn-Sham density functional theory is usually solved by using the self-consistent it-

eration, where at each iteration, the electron density ρ̃ is obtained from effective Hamiltonian
Heff . Given an effective potential Veff , and hence the effective Hamiltonian

Heff = −1
2
∆+ Veff +

∑

ℓ

γℓ|bℓ〉〈bℓ|, (A.17)

we find ρ̃ from ρ̃(x) =
∑

i fi |ψi(x)|
2 where {ψi}’s are eigenfunctions ofHeff , and the definition

of {fi} follows (A.7) and (A.8). Note that the {ψi} and {fi}’s minimize the variational
problem

Feff({ψi}, {fi}) =
1

2

∑

i

∫
fi |∇ψi(x)|2 dx+

∫
Veff(x)ρ(x) dx

+
∑

ℓ

γℓ
∑

i

fi |〈bℓ, ψi〉|2 + β−1
∑

i

(
fi ln fi + (1− fi) ln(1− fi)

)
, (A.18)

with the orthonormality constraints 〈ψi|ψj〉 = δij .
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Figure 1: Comparison of the adaptive and optimized local basis functions for an insulating
system with 1 electron per atom (spin neglected). The adaptive local basis functions (red
dashed line) and optimized local basis functions (blue solid line) are sorted according to the
Ritz value of the local Hamiltonian in ascending order.
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Figure 2: (a) The computational time for solving systems of various sizes using adaptive
local basis functions (red dashed line) and optimized local basis functions (blue solid line).
(b) The error of the Helmholtz free energy per atom using adaptive local basis functions
(red dashed line) and optimized local basis functions (blue solid line). (c) The absolute error
of the force for the first atom using adaptive local basis functions (red dashed line) and
optimized local basis functions (blue solid line).
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Figure 3: The error of the force of the first atom (a), the error of the Helmholtz free energy per
atom (b) and the drift of the conserved quantity (c) along the trajectory of the MD simulation
plotted every 0.12 ps. The system is metallic with 4 electrons and 8 basis functions per atom.
The mean deviation of the force is unbiased.
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