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Abstract

Grid refinement has been addressed by different authors in the lattice Boltzmann
method community. The information communication and reconstruction on grid
transitions is of crucial importance from the accuracy and numerical stability
point of view. While a decimation is performed when going from the fine to
the coarse grid, a reconstruction must performed when going form the coarse to
the fine grid. In this paper we analyze these two steps. We first show that for
the decimation operation, a simple copy of the information from the fine to the
coarse grid is not sufficient to guarantee the stability of the numerical scheme
at high Reynolds numbers, but that a filtering operation must be added. Then
we demonstrate that to reconstruct the information, a local cubic interpolation
scheme is mandatory in order to get a precision compatible with the order of
accuracy of the lattice Boltzmann method.

These two fundamental extra-steps are validated on two classical 2D bench-
marks, the 2D circular cylinder and the 2D dipole-wall collision. The latter is
especially challenging from the numerical point of view since we allow strong
gradients to cross the refinement interfaces at a relatively high Reynolds number
of 5000. A very good agreement is found between the single grid and the refined
grid cases.

The proposed grid refinement strategy has been implemented in the parallel
open-source library Palabos.

Keywords: Lattice Boltzmann method, grid refinement, Palabos

1. Introduction

The lattice Boltzmann method (LBM) is a clever discretization of the Boltz-
mann equation which has become a widely used numerical tool for the compu-
tational fluid dynamics.
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In order to simulate many of the flows of engineering interest, the compu-
tational power needed exceeds by far the available resources (even on the most
modern hardware) because of the wide range of scales involved in fluid dynam-
ics. Nevertheless the smallest scales are often localized in a relatively limited
computational area and therefore a great amount of computational power can
be spared by refining locally the mesh.

In methods like the LBM that use conformal meshes, the refinement op-
eration induces a strong discontinuity in the physical quantities at the grid
transition and can therefore be a very complicated process.

Unlike classical computational fluid dynamics solver, there exists a relatively
limited amount of papers treating grid refinement in the LBM community. One
can distinguish two major approaches, one of which is based on a volumetric
representation (cell-centered approach) of the flow variables [19, 10, 15, 4] while
the other uses of point-wise interpretation (cell-vertex approach) [23, 9, 24, 8, 5].

Independently of the approach used, the grid transition treatment is of cru-
cial importance as far as accuracy and stability are concerned. The two-way
coupling between a coarse and a fine grid involves two fundamental operations
that are the decimation and the reconstruction steps. When going from the
fine to the coarse grid the amount of information represented in the fine grid
must be reduced, while it must be “increased” when going from the coarse to
the fine grid. In this work we use the cell-vertex approach and show that for
the decimation process we cannot simply copy the information from the fine to
the coarse grid, but must add a filtering step in order to increase the numerical
stability of the scheme. Secondly, in the reconstruction operation we show that
a local cubic interpolation is mandatory to preserve the order of accuracy of the
LBM.

We propose two 2D benchmarks to show the consistency of our method and
show that one can use local refinement without loss of accuracy with respect to
a single grid approach. This implementation is also publicly available through
the open-source LBM library Palabos [16].

The paper is organized as follows. We first give a very brief introduction to
the LBM in Sec. 2. Then, in Sec. 3 the basic concepts of grid refinement are
first revisited, for reasons of self-consistency and then a novel coupling algorithm
between grid is proposed. Our approach is then validated in Sec. 4 and finally
a conclusion is given in Sec. 5.

2. Lattice Boltzmann Method

The lattice Boltzmann method (LBM) is now a widely used method for
computational fluid dynamics and only the basic concepts are given in this
section. For further details the reader is referred to [6, 22, 21, 1].

The LBM scheme for the BGK model (for Bhatnagar, Gross, Krook [2]) is
given by

fi(x+ ξiδt, t+ δt) = fi(x, t)− ω (fi(x, t)− feqi (x, t)) , (1)
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Figure 1: The D2Q9 lattice with the vectors representing the microscopic velocity set ξi. A
rest velocity ξ0 = (0, 0) is added to this set.

where fi is the is the discrete probability distribution to find a particle with
velocity ξi at position x at time t, feqi is the discrete Maxwell–Boltzmann equi-
librium distribution function, ω the relaxation frequency, and δt the discrete
time step. In this paper we are interested in the two dimensional weakly com-
pressible case only, therefore the discrete velocity set is given by the D2Q9 lattice
(see Fig. 1). This lattice is defined by

c2s = 1/3, w0 = 4/9, wj = 1/9, j = {2, 4, 6, 8}, wk = 1/36, k = {1, 3, 5, 7}
{ξi}8i=0 = {(0, 0), (−1, 1), (−1, 0), (−1,−1), (0,−1),

(1,−1), (1, 0), (1, 1), (0, 1)}. (2)

The equilibrium distribution is given by

feqi = wiρ

(
1 +

ξi · u
c2s

+
1

2c4s
Qi : uu

)
, (3)

where ρ is the density, u is the macroscopic velocity field, Qi = ξiξi−c2sI, cs and
wi the lattice speed of sound and the lattice weights respectively. The density
and the velocity fields are computed by the distribution function through the
relations

ρ =

q−1∑
i=0

fi =

q−1∑
i=0

feqi , (4)

ρu =

q−1∑
i=0

ξifi =

q−1∑
i=0

ξif
eq
i , (5)

where q is the number of discrete velocities. Doing a multi-scale Chapman–
Enskog (CE) expansion (see [3, 6] for more details) one can show that the LBM
BGK scheme is asymptotically equivalent to the weakly compressible Navier–
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Stokes equations

∂tρ+ ∇ · (ρu) = 0, (6)

∂tu+ (u ·∇)u = −1

ρ
∇p+ ν∇ · (2S), (7)

with p being the pressure, S the strain tensor and ν the kinematic viscosity
defined by

p = c2sρ (8)

S =
1

2

(
∇u+ (∇u)T

)
, (9)

ν = c2s(1/ω − 1/2). (10)

The CE expansion is done under the assumption that fi is given by a small
perturbation of the equilibrium distribution

fi = feqi + εf
(1)
i +O(ε2), (11)

where ε� 1 can be identified with the Knudsen number (see [12]).
One can also show that f (1) is given by

εf
(1)
i =

wi

2c4s
Qi : Π(1), (12)

where the tensor Π(1) ≡
∑

i ξiξiεf
(1)
i is related to the strain rate tensor S

through the relation

Π(1) = −2c2sρ

ω
S. (13)

Therefore the fi can be approximated by

fi = wiρ

(
1 +

ξi · u
c2s

+
1

2c4s
Qi : uu

)
− wiρ

c2sω
Qi : S. (14)

For implementation purposes all the above quantities are expressed in “lat-
tice units”, δx = δt = 1, and a time-step is decomposed into two parts that
are applied successively on the whole computational domain. The two-steps are
called the “collide-and-stream” operation.

1. The collision, which modifies locally the value of the populations according
to

fouti (x, t) = fi(x, t)− ω (fi(x, t)− feqi (x, t)) . (15)

2. The streaming, which moves the populations to their neighbors according
to their microscopic velocity

fi(x+ ξi, t+ 1) = fouti (x, t). (16)
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3. The grid refinement algorithm

In this section, we first present the basic concepts of grid refinement in
the LBM framework in Subsecs. 3.1 and 3.2. Then we propose to analyze
more deeply the coupling between the grids in Subsecs. 3.3 and 3.4. Finally
we summarize the algorithm in Subsec. 3.5.

3.1. Basic concepts of grid refinement

In this section we go through the basic concepts of grid refinement. The
discussion hereafter follows closely the one presented in reference [20], while
Subsec. 3.2 is inspired by [8, 5]. To keep the discussion simple the approach is
demonstrated for a two dimensional case, but can be straightforwardly general-
ized in three dimensions.

There exists two grid refinement techniques, the multi-grid and multi-domain.
In the first case, the coarse grid is present all over the simulation domain, even
in the places where there exist refined patches (see Fig 2). On the other hand,
when defining a multi-domain refinement, the regions where refined patches are
inserted are taken off the coarse grid (see Fig. 3).

Figure 2: A schematic view the multi-grid approach.

Figure 3: A sketch of the multi-domain approach.
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Each of these techniques has its advantages and disadvantages. In our case
we chose the multi–domain approach in order to have better CPU performances
and higher memory savings. However the actual implementation and the cou-
pling between grids for this approach is more complex.

When using multi-resolution approaches, a communication between the grids
is needed. In the case of multi-domain methods the communication is done on
the boundaries connecting the grids. The coupling is made in two directions:
from coarse to fine and from fine to coarse grids.

On the boundaries of each refinement level, after a “collide-and-stream”
operation (see Sec. 2) there will be some missing information (some populations
fi are unknown on the coarse and on the fine grids) that one needs to reconstruct.
The algorithm applied is discussed in Subsec. 3.3 and 3.4.

For the sake of clarity, let us call C the ensemble of coarse sites and F
the ensemble of all fine sites. Let us now define xf→c the fine sites that are
contained in F and C where the coupling from fine to coarse is performed and
xc→f all the sites contained in F and C where the coupling goes from coarse
to fine (see Fig. 4). Let us also define xc

f→c = {x|x ∈ xf→c and x /∈ F},
xc
c→f = {x|x ∈ xc→f and x /∈ F} and xf

c→f = {x|x ∈ xc→f and x /∈ xc
c→f}.

The coupling proposed in this work requires the grids to overlap themselves
by a domain of at least one coarse cell width, as shown in the one-dimensional
example in Fig. 5. Let us now analyze what is happening on Fig. 5. After a

Figure 4: Complete sketch of the places where the copies are performed.

coarse grid collide-and-stream operation, all the sites have the necessary infor-
mation, except for the last site of the grid (labeled “unknown value on Fig. 5),
where the are missing populations. It is therefore impossible to perform the
coupling on this coarse site to the fine grid site. However, all the other sites
have all the needed information, thus becoming good candidates to provide the
information to the fine grid. If we apply the same reasoning to the fine grid, it
becomes clear that it is necessary to implement a redundant area between the
grids, so that the copies are performed over complete sites. The complete two
dimensional example is found in Fig. 4
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Figure 5: Overlapping zone between coarse and fine grids

We have chosen to make this overlapping area as small as possible, namely
one coarse site, or equivalently, two fine sites. However, when dealing with
turbulent flows, it might be desirable to have a more important area between
the grids, in order to allow a gentler transition of the information.

3.2. Rescaling of physical quantities

In the LBM a regular conformal grid is used. Therefore an abrupt transition
occurs when refining the computational domain. In our of implementation each
resolution level possesses its own “lattice units”. This change of scales induces a
need for a rescaling of the physical quantities between the grids. In the following,
we will work in lattice units, the c subscript stands for coarse grid units, while
f for fine grid units.

In our case we chose to refine the grids by a factor two only. Thus defining
δxc and δxf the spatial discretization of the coarse and fine grids respectively
one has the following relation between them

δxf = δxc/2. (17)

This will remain true for the rest of this document.
Once the spatial refinement has been chosen, one still has the freedom to

chose the temporal refinement. In the LBM two popular scalings exist: the con-
vective and the diffusive scaling. While in the diffusive case the temporal scale
is proportional to the square of the spatial scale (δt ∼ δx2), in the convective
case the temporal scale is proportional to the spatial scale (δt ∼ δx). Each one
of these scalings has its advantages and inconveniences. While the diffusive scal-
ing removes the compressibility error terms that may appear when simulating
incompressible fluid flows, the convective scaling has a much greater numerical
efficiency. In the present work we chose to use the latter. The convective scaling
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has as a consequence that the ratio of the spatial and temporal discretizations
is a constant, and therefore

δtf/δxf = δtc/δxc = const. (18)

Therefore the temporal loop in the fine grid must do twice more iterations
than the coarse one. Another consequence of the convective scaling, is that
the velocity and the pressure (and also the density, see Eq. (8) with cs being a
constant of the lattice) in lattice units are continuous fields on the grid transition
while the viscosity must be rescaled as discussed now. Let the Reynolds number
related to the coarse or fine grid as

Ren = UnLn/νn, (19)

where n stands for c or f , Un, Ln and νn being respectively the characteristic
velocity, the characteristic length-scale and the viscosity of the n grid. Writing
the Uc, Lc, Uf and Lf in terms of the physical characteristic velocity and length-
scale, U and L, one has

Un = Uδtn/δxn, Ln = L/δxn, (20)

and imposing that the Reynolds number is independent of the grid one gets

Rec = Ref ⇔
ULδtc
δx2cνc

=
ULδtf
δx2fνf

. (21)

Finally remembering Eq. (18) one finds for the rescaling of the viscosity

νf =
δxc
δxf

νc. (22)

As a consequence, by using the relation between the relaxation frequency and
the viscosity of Eq. (9), one gets that ωf is given by

ωf =
2δxfωc

δxfωc + 2δxc − δxcωc
, (23)

ωf =
2ωc

4− ωc
, (24)

The rescaling of the distribution function fi now needs to be discussed. The
algorithm that is used here is the one proposed by Dupuis et al. [8]. It must be
noted that this algorithm is the same as the algorithm of Filippova et al. [9], with
the exception that applying the rescaling before collision avoids the restriction
over the value of the relaxation frequency.

The basic ideas of the algorithm are explained in the following. As noted in
Eq. (14) each fi,n can be written as

fi,n = feqi (ρn,un) + fneqi,n (∇u),

fi,n = feqi (ρ,u) + fneqi,n (∇u), (25)
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where in the second line we used that ρf = ρc = ρ and uf = uc = u are
expressed in the same units independently if computed from fi,f or fi,c. Since
feqi only depends on ρ and u and, as discussed above, both are continuous
between the grids feqi does not need any rescaling.

On the other hand, the non-equilibrium part fneqi = fi− feqi is proportional
to the gradient of the velocity, it is therefore necessary to rescale it when com-
municating it between grids with different resolution. To determine this scaling,
let us note by fneqi,c the non-equilibrium part of the coarse grid and fneqi,f the one

from the fine grid. The continuity of the fneqi quantities read

fneqi,f = αfneqi,c , (26)

where α is the factor to be determined to impose the continuity of the non-

equilibrium distribution functions. At the leading order one has fneqi
∼= εf

(1)
i

and using Eq. (12) and (13) in the previous equation one has

1

ωf
Qi : Sf = α

1

ωc
Qi : Sc

1

δtfωf
Qi : S = α

1

δtcωc
Qi : S

α =
δtc
δtf

ωc

ωf
, (27)

where S is the strain rate tensor in physical units, while Sc and Sf are the
same tensor, but in coarse and fine lattice units respectively. Finally we find
the following relation

fneqi,c =
δtfωf

δtcωc
fneqi,f =

2ωf

ωc
fneqi,f , (28)

where we used that δtf = δtc/2.
Finally, in order to reconstruct the fine and coarse populations from their

corresponding partners, we can use the following equations

fi,f (xc→f ) = feqi (ρ(xc→f ),u(xc→f )) +
ωc

2ωf
fneqi,c (xc→f ) (29)

and

fi,c(xf→c) = feqi (ρ(xf→c),u(xf→c)) +
2ωf

ωc
fneqi,f (xf→c). (30)

This rescaling between the grids allows for a continuous transition of the physical
quantities at the grids interface. We are now going to discuss in more details
the actual coupling procedure between the coarse and fine grids.

3.3. Coupling from the fine to the coarse grid

The easiest part of the coupling is to go from the fine to the coarse grid.
As the fine grid has more sites than the coarse one (see Fig. 4). The necessary
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steps are: restrict the values, rescale them and copy them to the coarse grid.
The restriction operation can be a simple copy from the corresponding site, or
something more complicated, as a low-pass filter. This latter can be justified
by the fact that the fine grid contains information about scales that cannot be
resolved by the coarse grid and thus must be eliminated.

The proposed coupling is over the sites marked as xf→c is expressed by the
following equation

fi,c(x
c
f→c, t) = feqi

(
ρf (xc

f→c, t),uf (xc
f→c, t)

)
+

2ωf

ωc
f
neq

i,f (xc
f→c, t). (31)

where ρf =
∑

i fi,f and uf =
∑

i ξifi,f , and f
neq

i,f (xc
f→c, t) is the result of

applying the restriction to the incoming fine grid values. It must be noted that
ρ and u are calculated over the fine grid and by continuity of this fields due to
the convective rescaling, no other operation over them needs to be performed.

If we perform a simple decimation, then it is clear that the restriction oper-
ation is given by

f
neq

i,f (xc
f→c, t) = fneqi,f (xc

f→c, t) (32)

However, as we will show later, this is not enough. We propose a filtering
operation that is inspired by [17]. The aim of this operation is to remove the
scales of the fine grid that are not resolved by the coarse grid. We use a filter
width corresponding to the coarse grid resolution. A simple box filter is used
here but more complex filters can also be applied.

There exists many different ways of applying a filter in the lattice Boltzmann
framework. One can filter the complete distribution function or only ρ and u
(see [18]). In our case, we chose to apply the filter only on the non-equilibrium
part of the populations fneqi , because when the filtering was done on fi, or only
on ρ and u there was a too strong dissipation added by the filter and therefore
we noticed a decrease of the accuracy. In practice one simply does an averaging
over all the q lattice directions, thus obtaining the following restriction

f
neq

i,f (xc
f→c, t) =

1

q

q−1∑
i=0

fneqi,f (xc
f→c + ξi, t) (33)

As a final remark, we have chosen not to filter ρ and u. The main reason for
this being that the filtering of this quantities results in an artificial increase of
viscosity around the refinement interface. This can, of course, have undesired
results such as loss of accuracy and modification of the expected behavior of the
system.

3.4. Coupling from the coarse to the fine grid

As shown in Fig. 6, the fine grid possesses sites that do not have a cor-
responding site in the coarse one. Thus when performing the copy from the
coarse to the fine grid, it is necessary to estimate the missing information in
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Figure 6: Unknown sites in the fine grid.

such sites. We have chosen to apply an interpolation in order to complete the
missing informations. The details of the interpolation are explained further in
this document, as we have found that it is a vital part of the algorithm.

The coupling over the sites xc→f is given by two different operations. If a
point has a corresponding coarse site in xc→f (i.e. if a computational node has
both a coarse and a fine site, or in a mathematical notation if xf ∈ xc

c→f ) then

fi,f (xc
c→f ) = feqi (ρc(x

c
c→f ),uc(x

c
c→f )) +

ωc

2ωf
fneqi,c (xc

c→f ) (34)

where ρc =
∑

i fi,c, uc =
∑

i ξifi,c, and fneqi,c are computed from the populations
of the coarse grid.

However, if the fine site does not correspond to a coarse site in xc→f (i.e.
the computational node contains only a site of the fine domain), we will use the
following formula

fi,f (xf
c→f ) = feqi (ρc,uc) +

ωc

2ωf
fneqi,c (35)

where ρc, uc and fneqi,c are interpolated from the values where the fine and coarse
sites are coincident.

The fine grid can resolve more scales than the coarse one, it might be neces-
sary to try recreate these smaller scales when transferring the information from
the coarse to the fine grid. In order to solve this issue, we implemented the
approximate deconvolution approach proposed in [17]. However in the bench-
marks we performed we did not notice a significant gain when using this method
and therefore for the sake of clarity we will not present it here. Nevertheless we
think that in three dimensional cases and/or with a higher Reynolds number
(where very small structures should be present) such an operation might be of
the uttermost importance.

3.5. Grid coupling algorithm

We present a detailed version of the coupling algorithm that we implemented.
All the operations are explained in detail further in this document.

Let us suppose that the system is at time t. Both grids are complete, i.e.
all information needed on every site is given. A complete time iteration, for the
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convective scheme explained above, consists of one iteration of the coarse grid
and two iterations of the fine grid. The details of these iterations are given now.

1. A “collide-and-stream” operation is performed on the coarse grid bringing
it to time t+δtc. At this point the populations at xf→c that were supposed
to be streamed from the fine grid are unknown.

2. A “collide-and-stream” cycle is performed on the fine grid bringing it at
time t+δtc/2. The grid lacks information on the grid refinement boundary
sites xc→f . One then performs a double interpolation, one in time and one
in space. First the values of ρc, uc and fneqi,c of the coarse sites at xc→f and
are interpolated at time t+ δtc/2, by a linear scheme (which is of second
order accuracy at δtc/2). Then the values ρc(t + δt/2), uc(t + δt/2) and
fneqi,c (t + δt/2) are interpolated in space according to the discussion of
Subsec. 3.6 by using a local cubic scheme. All the populations at xc→f

(and not only the missing ones) are reconstructed following Eqs. (34)
and (35). At this point all the fine sites are complete.

3. A second “collide-and-stream” operation is performed on the fine grid,
bringing it to time t+ δtc. At this point we have the information from the
coarse grid to complete the fine grid at xc→f , and therefore no time inter-
polation is necessary. However, a space interpolation must be performed
for ρc(t+ δtc), uc(t+ δtc), and fneqi,c (t+ δtc) as in the previous step. Then
the populations of the fine grid are all (and not only the missing ones)
replaced at position xc→f according to Eqs. (34) and (35) again.

4. All the populations of the coarse grid at xf→c are replaced following
Eqs. (31) and (33)

fi,c(xf→c, t) = feqi (ρf (xf→c, t),uf (xf→c, t))

+
2ωf

ωc

1

q

∑
i

f
neq

i,f (xf→c + ξi, t). (36)

At this point both grid were brought to time t + δtc, are complete and
ready for a new iteration.

3.6. Interpolation scheme

As pointed out in the preceding subsection, the values of ρc, uc and fneqi,c on
nodes that do not contain both fine and coarse grids sites must be interpolated,
and are noted by ρc, uc and fneqi,c. In 2D, this interpolation is performed over
a line, thus over sites parallel to the refinement interface. The problem becomes
then a 1D interpolation of a function g which is known at the coarse sites. In
the following, we show our interpolation schemes for g.

The two easiest symmetric ways of computing the interpolation are using
two or four neighbors as shown on Fig. 7. If we use two points, it is sufficient
to perform a mean of them:

g(x) =
g(x+ h) + g(x− h)

2
(37)
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Figure 7: Possible interpolation schemes. Order one (top) and order three (bottom).

As the point where we interpolate is exactly in the middle of the two others, an
analysis of the order of interpolation shows us that this is in fact a second order
method in h.

On the other hand, by using four points, we find the following equation:

g(x) =
9

16
(g(x+ h) + g(x− h))− 1

16
(g(x+ 3h) + g(x− 3h)) (38)

By using Taylor expansions for each term, this interpolation can be proved to
be of fourth order.

The only drawback for this interpolation is the cost in parallel execution.
Every point must ensure access to two neighbors, this means that when paral-
lelizing the code, more communications have to be done between the distributed
blocks.

In addition, as the first and last site do not have as many neighbors as
needed, we need to use a non-centered third order scheme as depicted is Fig. 8
and given by the following formula

g(x) =
3

8
g(x− h) +

3

4
g(x+ h)− 1

8
g(x+ 3h). (39)

Figure 8: Asymmetric second order interpolation for sites that do not have enough neighbors.

Finally, let us note that there are no other interpolation cases in our two
dimensional implementation, because the outermost fine grid points always have
corresponding coarse sites. In particular, cases like the one depicted in Fig. 9
are forbidden.

3.7. Is second order enough?

Interpolation is a key part of grid refinement. In this section, we show
that even for a simple Poiseuille flow, the second order interpolation does not
conserve the mass.

We fix a flow at Re = umaxN/ν = 100, with umax = 0.01 the maximum value
of the velocity in lattice units, N the width of the channel in coarse lattice units
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Figure 9: Forbidden case to avoid complicated interpolations.

and ν the kinematic viscosity. The length of the channel is 4N (see Fig. 10). We
set the reference length to have N = 30 lattice sites. We prescribe the analytical
solution of the velocity on both the inlet and the outlet and the horizontal walls
have a zero velocity boundary condition. This setup is depicted in Fig. 10. The

Figure 10: Setup for the channel flow

channel is divided in two equal parts. The first one is covered by a coarse grid
and the second part is covered by a grid two times finer. A linear pressure
drop is expected in the direction of the flow. As can be seen in Fig. 11 a clear
discontinuity of the pressure appears on the refinement interface in the case
of second order interpolation, while it remains completely smooth in the cubic
interpolation case.

Even though the pressure slope is correct, the mass loss is clearly visible
in the pressure jump right where the interface is located which leads, in more
complicated cases, to numerical instabilities and to the introduction of spurious
error terms. In Fig. 12 we plotted the value of this pressure jump with respect
to the resolution. One can see that the magnitude of the jump is of order one
in space.

This error can be explained in the following way. On the one hand, the
linear interpolation is locally of order two in space (since the interpolated point
lies exactly in the middle of the two known points, see Fig. 7). This error gives
rise to an order one error globally as errors are summed over the entire line. On
the other hand, the LBM time-space integration is third order accurate locally,
and second order globally (it is obtained through a trapezoidal integration).
Therefore the linear interpolation gives rise to error terms incompatible with
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Figure 11: Pressure plot along a horizontal line for the proposed refined Poiseuille flow.
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Figure 12: The pressure jump magnitude verus the resolution of the coarse grid.

the error expected from the LBM.

4. Numerical experiments and results

The grid refinement technique, presented in the previous section, has been
tested on two 2D problems. First, we study the unsteady flow past a circular
cylinder at Re = 100 which is a well documented problem (see [23] for example).
Then, the case of the dipole–wall collision, which is a 2D turbulent problem that
has been already studied and benchmarked for a LBM code in [13].
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4.1. Flow past a cylinder

This flow has been extensively studied. In particular we find a set of tests
in [23] where a set of values have been obtained using a wide range of methods.
Here we are interested in the unsteady flow past a circular cylinder at Re =
umeanN/ν = 100, with umean the mean velocity of the inlet flow, N the diameter
of the cylinder and ν the kinematic viscosity, and will compare our result for
the maximum drag Cd and lift Cl coefficients

Cd =
2Fd

ρu2meanN
, Cl =

2Fl

ρu2meanN
, (40)

Fd and Fl are the drag and lift forces respectively, which are given by the
equations

Fd =

∫
S

(ρν
∂vt
∂n

ny − pnx)dS , Fl =

∫
S

(ρν
∂vt
∂n

nx + pny)dS, (41)

where S is the cylinder surface, n = (nx, ny) is the normal vector of the surface
S, and vt is the tangential velocity on S. In the LBM, this forces can be easily
computed by the momentum exchange method as presented in [14].

The details of the geometry are shown in Fig. 13. In this figure all the
quantities are given with respect to the diameter of the cylinder N . At the
inlet we impose a Poiseuille profile and a zero velocity gradient at the outlet.
Furthermore near the outlet we filtered the solution using the method proposed
in [18] to increase the numerical stability of the boundary condition. The hor-
izontal walls have zero velocity. We use a lattice velocity umean = 0.00333 and
the cylinder diameter is fixed to have N lattice sites. First, we used a uniform

Figure 13: Geometry for the flow past a cylinder.

single-level grid to find a resolution at which we find values for the maximum of
the drag and lift coefficients that are close enough to the values in the reference
[23]. We found that N = 80 was enough.

Based on this, we implemented a four level refined grid where the finest
resolution has Nf = 80. In this case the coarsest grid will only have Nc = 10.
For accuracy reasons in this benchmark, we have decided to use the incom-
pressible BGK model [11]. The only difference introduced by this model is the
computation of the equilibrium distribution which is now given by

feqi = wi

(
ρ+ ρ0

(
xi · u
c2s

+
1

2c4s
Qi : uu

))
, (42)
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where here ρ0 is a constant and was chosen to be equal to one here. Since the
discussion we performed in Sec. 3 is generic and does not really depend on the
exact form of the equilibrium distribution there is no change in the refinement
strategy.

The refinement used for our simulation is depicted in Fig. 14. In this picture,
N refers to the total diameter of the cylinder in coarse units. The results

Figure 14: Proposed refinement for the 2D flow past a cylinder.

obtained for the drag and lift for the refined case match the accuracy with three
significants digits (which is also the level of accuracy given in Ref. [23])

Cd = 3.24, Cl = 0.982. (43)

Furthermore, these values are in good agreement with those found in [23], where
Cd = 3.22 − 3.24 and Cl = 0.99 − 1.01. The results for the uniform grid
are obtained with about 5900N2 points, whereas there are only about 1000N2

points in the refined case, representing roughly five time less points. We did not
perform any advanced technique to find the optimal position of our refined grids,
it is therefore possible that one can get similar results with even less points.

In order to compare the CPU performances, we used a single CPU to simplify
the comparison procedure. When benchmarking the uniform grid against the
refined one for several values of N , we find that a mean speed-up of 5, thus
proving that the overhead introduced by the coupling between the different grid
levels does not have a significant impact in the overall performances.

4.2. Dipole–wall collision

This benchmark, based on Refs. [7] and [13], analyzes the time evolution
of a self-propelled dipole confined within a 2D box. The geometry of the box
is a square domain [−1, 1] × [−1, 1] and is surrounded by no-slip walls. The
initial condition describes two counter-rotating monopoles, one with positive
core vorticity at the position (x1, y1) and the other one with negative core
vorticity at (x2, y2). This is obtained with an initial velocity field u0 = (ux, uy)
which reads as follows in dimensionless variables :

ux = −1

2
‖ωe‖ (y − y1)e−(r1/r0)

2

+
1

2
‖ωe‖ (y − y2)e−(r2/r0)

2

, (44)

uy = +
1

2
‖ωe‖ (x− x1)e−(r1/r0)

2

− 1

2
‖ωe‖ (x− x2)e−(r2/r0)

2

. (45)
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Here, ri =
√

(x− xi)2 + (y − yi)2, defines the distance to the monopole centers.
The parameter r0 labels the diameter of a monopole and ωe its core vorticity.

The average kinetic energy of this system at a given time is defined by the
expression

〈E〉 (t) =
1

2

∫ 1

−1

∫ 1

−1
‖u‖2 (x, t)d2x, (46)

and the average enstrophy by

〈Ω〉 (t) =
1

2

∫ 1

−1

∫ 1

−1
ω2(x, t)d2x, (47)

where ω = ∂xuy − ∂yux is the flow vorticity.
The dipole described by Eqs. (44) and (45), under the actions of viscous

forces, develops a net momentum in the positive x-direction and is self-propelled
towards the right wall. When the dipole collides with the wall a maxima of
enstrophy is achieved.

In order to obtain really accurate results, the pressure field must be initial-
ized from the velocity field, using the Poisson equation

∇2p = (∇u) : (∇u)T (48)

where the column symbol stands for the full index contraction. This equation
is solved with a Gauss-Seidel iterative method.

In this test-case, we are aiming at obtaining the maximum values of the en-
strophy which have been computed in [7] with a spectral method. We intend to
use local refinement in the areas where we know the important physics happen,
namely close to the wall where the small structures are formed. It is expected
to obtain accurate values comparable to those obtained with a uniform grid.
We study two different Reynolds numbers , Re = 625 and Re = 5000.

For Re = 625, we use three levels of refinement as shown in the Fig. 15.
The pathway of the dipole is refined. However, we know where it will collide, so
this part is further refined. We find that this strategy agrees with the physical
phenomenon.

This example is particularly challenging from the numerical point of view
since strong velocity gradients are crossing the different refinement interfaces.
We can compute the number of points in the refined domain and compare it
against the number of points in the non-refined grid. Let us call N the resolution
of the coarsest grid. The finer grid would therefore have a resolution of 4N or a
total amount of points of 16N2. When using a local refinement strategy as the
one proposed in this benchmark, one obtains 9

2N
2 points. For any length N we

observe that we are using almost four times less points in the refined case.
When performing a one CPU benchmark between a uniform grid and our

refined version for several values of N , we find a mean speed-up of roughly
three. Once again it is interesting to see that the performance gain is close to
the memory saving that has been computed.

When analyzing the error for our refined grids, we compare the values ob-
tained with the most accurate value of the enstrophy found by a spectral method,
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}

Figure 15: Refinement for the dipole-wall collision

which is 933.6. When decreasing N and simulating again, we find that the so-
lutions tends to this value with second order slope. This can be seen in Fig. 16.
This is really an interesting fact, as we are preserving the second order accu-
racy of the LBM with the grid refinement technique. It is important to note
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Figure 16: Evolution of error for the filtered and unfiltered simulations.

that the case Re = 625 can be done without the filtering method presented in
Subsec. 3.3. However, when dealing with the case Re = 5000, it is imperative
to use the filtering operation, as the small structures from the fine grid pollute
the coarser grids, triggering numerical instability. This can be seen in Fig. 17,
where, on the left, the non-filtered case shows signs of numerical instability (and
finally diverges) while the filtered one remains stable.

For the case Re = 5000 the most accurate value obtained for the enstrophy in
[7] (with an spectral method code) is 5536. When using six levels of refinement
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Figure 17: Problems at Re = 5000 for non-filtered simulation on the left. On the right the
filtered version, which shows no perturbation.

(Fig. 18) and setting N = 100 for the coarsest grid we have found 5500 for
the maximum of the enstrophy. When using a uniform grid, this same result
would require a resolution of approximately N = 3200, which makes the solution
of the problem really difficult to achieve, thus proving the importance of grid
refinement.

Figure 18: Six level grid refinement to achieve a good enstrophy value.

5. Conclusions

In this paper we proposed a detailed description of grid-refinement for the
lattice Boltzmann method. First we have revisited the basics of the subject
trying to provide a self-consistent presentation of grid-refinement in the cell-
vertex case.

The order of accuracy of the interpolation needed at refinement interfaces
was shown to be of at least third order in order to give satisfactory results.
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We also introduced an advanced technique for the coupling between different
grid levels thanks to a filtering of the non-equilibrium parts of the distribu-
tion function. This approach, inspired by classical computational fluid mechan-
ics solvers, allowed an enhanced stability of the refinement algorithm at high
Reynolds numbers. Furthermore, the accuracy of our algorithm at moderate
Reynolds numbers was shown to be not reduced with respect to its non filtered
counterpart.

Our approach was validated on two two-dimensional benchmarks: the flow
past a circular cylinder and the dipole-wall collision. The effectiveness of the
filtering was especially visible on the Re = 5000 dipole-wall collision case, which
was intractable without the filtering technique.

We have also performed comparisons between the CPU performance of our
grid refinement against a uniform grid. We found that the speed-up obtained
show a good consistency with respect to the memory savings.

The implementation presented is built on top of the Palabos open-source
library, and it is available for testing purposes.

The next step is to port this approach in three dimensions. Because of the
different nature of 2D and 3D turbulence, it is likely that extra care will be
due for the treatment of 3D, high-Reynolds grid refinement. The 2D considera-
tions of the present paper represent however the fundamental steps to a general
understanding of grid refinement with lattice Boltzmann.
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