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Abstract

It ha been proved that the lattice Boltzmann Methods (LBMs) are very efficient for computational fluid dynamics
purposes, and for capturing the dynamics of weak acoustic fluctuations. Especially, the multi-relaxation-time lattice
Boltzmann method (MRT-LBM) appears as a very robust scheme with high precision. It is well-known that there
exist several free relaxation parameters in the MRT-LBM. Although these parameters have been tuned via linear
analysis, the sensitivity analysis of these parameters and other related parameters are still not sufficient for detecting
the behaviors of the dispersion and dissipation relations of the MRT-LBM. Previous researches have shown that the
bulk dissipation in the MRT-LBM induces a significant over-damping of acoustic disturbances. This indicates that
MRT-LBM cannot be used to obtain the correct behavior of pressure fluctuations because of the fixed bulk relaxation
parameter. In order to cure this problem, an effective algorithm has been proposed for recovering the linearized
Navier-Stokes equations (L-NSE ) from the linearized MRT-LBM (L-MRT-LBM). The recovered L-NSE appear as
in matrix form with arbitrary order of the truncation errors with respect to δt. Then, in wave-number space, the
first/second-order sensitivity analyses of matrix eigenvalues are used to address the sensitivity of the wavenumber
magnitudes to the dispersion-dissipation relations. By the first-order sensitivity analysis, the numerical behaviors
of the group velocity of the MRT-LBM are first obtained. Afterwards, the distribution sensitivities of the matrix
eigenvalues corresponding to the linearized form of the MRT-LBM are investigated in the complex plane. Based on
the sensitivity analysis and the recovered L-NSE, we propose some simplified optimization strategies to determine
the free relaxation parameters in the MRT-LBM. Meanwhile, the dispersion and dissipation relations of the optimal
MRT-LBM are quantitatively compared with the exact dispersion and dissipation relations. At last, some numerical
validations on classical acoustic benchmark problems are shown to assess the new optimal MRT-LBM.

Keywords: Computational aeroacoustics, BGK-LBM, MRT-LBM, Sensitivity, Group velocity, Eigenvalue
distribution, Dispersion, Dissipation, Von Neumann analysis

1. Introduction

The lattice Boltzmann method (LBM) has emerged as an innovative mescoscopic numerical method for the com-
putational modelling of a wide variety of complex fluid flows [1]. The early researches about the dispersion and
dissipation relations of the classical LBM (BGK-LBM) show that the LBM are well suited to capture the weak acous-
tic pressure fluctuations [2, 3, 4, 5]. But, the BGK-LBM always suffers from an unstability drawback. In order to
improve the stability of the BGK-LBM, the MRT-LBM was derived in moment space based on the generalized lattice
Boltzmann equation [6, 7]. Thanks to its adjustable bulk viscosity, the MRT-LBM can guarantee a better stability by a
high value of the bulk viscosity [3, 7]. In most researches and simulations, the relaxation parameters of the MRT-LBM
were chosen according to the results of the linear analysis [6, 7]. Results of the linear von Neumann analysis of the
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BGK-LBM and the MRT-LBM yielded quantitative results about the dispersion and dissipation relations. Von Neu-
mann analysis shows that the LBM have lower numerical dissipation than many aeroacoustic-optimized high-order
schemes for the Navier-Stokes equations [3]. The 2nd-order accurate LBM has the better dispersion capabilities than
the classical Navier-Stokes schemes with the 2nd-order accuracy in space combined with 3-step Runge-Kutta time
integration [3]. The dispersion errors in the LBM are larger than those induced by 3rd-order accurate in space the
finite difference method combined with 4th-order accurate time-integration methods, and also higher than those of
6th-order accurate dispersion relation preserving (DRP) schemes. But it is important to emphasize that thanks their
compactness, for a given dispersion error, the LBM are faster than high-order Navier-Stokes equations [3] and are
therefore more efficient for practical computations. Compared with the BGK-LBM, it is observed that there exists a
higher dissipation of the acoustic modes in the MRT-LBM [3, 8]. The free-parameter sensitivity of the MRT-LBM is
missing in open literature. Therefore, it is difficult to guarantee that the the results of the linear analysis are always
acceptable. In order to clarify the sensitivity issue, we will use a novel methodology to reflect the relation between
the L-NSE and the L-MRT-LBM. This methodology offers us a way to determine the free relaxation parameters in the
MRT-LBM. This entirely new work is different from the linear analysis. Using the linear analysis, it is impossible to
obtain the deterministic values of free relaxation parameters [6, 7]. This difficulty is attributed to a drawback of the lin-
ear analysis of L-MRT-LBM: the linear analysis [7] cannot reflect the influence of the linearized high-order truncated
terms corresponding to the L-NSE on the dispersion and dissipation relations. But, using our new methodology, the in-
fluence of linearized high-order terms coupled with free relaxation parameters on dispersion and dissipation relations
is revealed under a certain accuracy with respect to the higher-order truncation errors. Meanwhile, this methodology
offers us a way to deal with the acoustic problems for any values of the shear viscosity and the bulk viscosity. The
important fact is that the optimal MRT-LBM can be used in the weakly-compressible acoustic problems, for which
the shear viscosity is not always equal to the bulk viscosity. It is well-known that the classical BGK-LBM can only
be used to solve acoustic problems with equal shear viscosity and bulk viscosity, while the original MRT-LBM uses
fixed bulk relaxation parameters. As mentioned above, if the compressible effects are considered, the bulk viscosity
becomes important for the sound wave propagation [9, 10, 11]. So, it is necessary for acoustic problems to specify
both the shear viscosity and the bulk viscosity in the LBM.

By our novel methodology, the recovered L-NSE and the exact L-NSE can be expressed in matrix form in the
wave-number space as follows

∂tW = B(n) ·W + O(δtn) (recovered L − NSE), ∂tW = B ·W (exact L − NSE), (1)

where the square matrices B(n) and B are functions of wave-number k and base-flow uniform velocity u, and B(n)

can be regarded as a perturbation of B [8]. The vector W denotes the perturbed macroscopic fluid flow conservative
quantities (such as, density ρ, momentum j, · · ·). Denoting M(n)

ε = B(n) − B the perturbation matrix, the matrix
M

(n)
ε will be the function of all relaxation parameters of the MRT-LBM for n > 2. With the aid of the matrix

B(n), we only consider the influence of the free parameters in the L-MRT-LBM on the hydrodynamic modes. This
is of great benefit to determine the free relaxation parameters by our proposed optimization strategies. In order to
establish the optimization strategies, the parameter sensitivities are investigated in the wave-number space. Then,
the sensitivity properties of the free parameters on the hydrodynamic modes and the non-hydrodynamic modes are
obtained. According to the sensitivity analysis, we propose a class of the simplified optimization strategies to minimize
the dispersion and dissipation errors for the MRT-LBM in the wave-number space, based on the matrix perturbation
theory and the theory of the modified equations. The proposed methodology leads to a relation between the recovered
L-NSE and the exact L-NSE, and free parameters can be determined by this process. Then, the optimal dispersion
and dissipation relations are investigated by von Neumann analysis. It is noted that this famous and reliable analysis
method has been revisited and extended [12].

It is necessary to point out that our proposed original methodology is more general than the usual method for
recovering the higher-order lattice Boltzmann schemes [13, 14], although we also use the Taylor expansion method.
Our method appears as an easy-to-hand recursive algorithm in the wave-number space, which is completely different
from the method proposed in [13].

In next section, the fundamentals of the LBM are surveyed, and the algorithm used to establish the transformation
relation from the L-MRT-LBM to the L-NSE is given. In the third section, with the aid of von Neumann method,
the sensitivity properties of the free parameters to the dispersion and dissipation relations are analyzed in the wave-

2



number space. Then, the optimization strategies are studied in section 4. In the last section, the optimal MRT-LBM
schemes are validated considering some benchmark problems.

2. Fundamentals of the LBM and the methodology from the L-MRT-LBM to the L-NSE

In this section, the fundamental theory of the LBM is briefly recalled. Then, we give the linearized LBM and show
the method to establish the relation between the linearized LBM and the L- NSE.

2.1. Lattice Boltzmann schemes

The governing equations of the lattice Boltzmann schemes are described as follows [6, 7, 8]

fi(x + viδt, t + δt) = fi(x, t) + Λi j

(
f (eq)

j (x, t) − f j(x, t)
)
, 0 ≤ i, j ≤ N, (2)

where vi belongs to the discrete velocity set V, fi(x, t) is the discrete single particle distribution function corre-
sponding to vi and f (eq)

i denotes the discrete single particle equilibrium distribution function. δt denotes the time step
and N + 1 is the number of discrete velocities. Λi j is the generalized relation matrix. From here on, the repeated index
indicates the Einstein summation is used except for some special explanations. Let L ∈ Rd (d denotes the spatial
dimension) denotes the lattice system, and the following condition is required [13]

x + v jδt ∈ L, (3)

that is to say, if x is a node of the lattice, x + v jδt is necessarily another node of the lattice.
Generally, for BGK-LBM, the relaxation matrix is given by

Λi j = sδi j, (4)

where s denotes the relaxation frequency of BGK-LBM.
The standard isothermal MRT-LBM has the following form [7, 13]

mi = Wi = m(eq)
i , 0 ≤ i ≤ d, (5)

and
mi(x + δtv j, t + δt) = mi(x, t) + si

(
m(eq)

i (x, t) − mi(x, t)
)
, d + 1 ≤ i ≤ N. (6)

It is necessary to point out that for isothermal flow, the number of the conservative quantities is equal to d + 1.
According to the work of Lallemand and Luo [7], the relaxation parameters in Eq. (6), should satisfy the following
stability constraints

si ∈ (0, 2), d + 1 ≤ i ≤ N. (7)

The relaxation matrix Λ corresponding to Eqs. (5) and (6) is defined by

Λ = M−1S M, (8)

where S is a diagonal matrix which denotes the relaxation parameters of MRT-LBM. M =
(
Mi j

)
0≤i≤N,0≤i≤N

is the
transformation matrix, which satisfies the following basic conditions (refer to Appendix A for the detail definitions)
[7]

M0 j = 1,Mα j = vαj , (1 ≤ α ≤ d). (9)

The macroscopic quantities are defined by [7, 13]

mi = Mi j f j, m(eq)
i = Mi j f (eq)

j . (10)
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2.2. Theoretical dispersion and dissipation relations for the L-MRT-LBM and the L-NSE
In order to implement von Neumann analysis for the L-MRT-LBM, the expression of the L-MRT-LBM in the

frequency-wave number space is given in this part. Considering a uniform mean part f 0
i and a fluctuating part fi′, the

equilibrium distribution function can be linearized as [3, 4]

f (eq)
i ({ f 0

j + f j
′}0≤ j≤N) = f (eq),0

i +
∂ f (eq)

i

∂ f j

∣∣∣∣∣∣∣
f j= f 0

j

· f j
′ + O

(
f ′2j

)
. (11)

Then, considering a plane wave solution of the linearized equation

f ′j = A jexp[i(k · x − ωt)], (12)

by Eqs. (11), (12) and (10), we get the following eigenvalue problem for the L-MRT-LBM in the frequency-wave
number space [3, 4, 7]

e−iωf′ = Mmrtf′, (13)

where the matrix Mmrt = A−1
[
I − M−1S MNbgk

]
, and Nbgk is defined by

Nbgk
i j = δi j −

∂ f (eq)
i

f j

∣∣∣∣∣∣∣
f j= f 0

j

. (14)

For the L-NSE, the analytical acoustic modes ω±(k) and shear modes ωs(k) are given by [15]
Re[ω±(k)] = |k|(±cs + |u|cos(k̂ · u)),
Im[ω±(k)] = −|k|2 1

2

(
2d−2

d ν + η
)
,

Re[ωs(k)] = |k||u|cos(k̂ · u),
Im[ωs(k)] = −|k|2ν,

(15)

where ν is the shear viscosity and η is the bulk viscosity.

2.3. New form of the L- MRT-LBM and corresponding the higher-order L- NSE
The equilibrium function m(eq)

i (d + 1 ≤ i ≤ N) is expressed as a function of the conservative quantities Wi

(Wi = m(eq)
i , 0 ≤ i ≤ d) (we use the same notations as Dubois and Lallemand [13])

m(eq)
i = Gi

(
{W j}0≤ j≤d

)
, d + 1 ≤ i ≤ N. (16)

or
m(eq)

i = Gi

(
{W j}0≤ j≤d

)
= Gi jW j = Gi jm j (17)

In order to implement the linear stability analysis and recover linearized macroscopic equations, we introduce the
linearized form of Eq. (16) around the reference state [3, 7, 13]. Using Eq. (17), the linearized description of Eqs. (5)
and (6) can be written as follows

mi(x, t + δt) = MilM−1
lp Ψprmr(x − vlδt, t), (18)

where the matrix Ψ has the following form

Ψ =


(
Ii j

)
0≤i≤d,0≤ j≤d

0

Θ
(
Ii j − S i j

)
d+1≤i≤N,d+1≤ j≤N

 (19)

where Θi j = siGi j (A matrix with the size (N − d − 1) × (d + 1)), I is an identity matrix and the diagonal matrix S is
defined by

S = Diag(0, . . . , 0︸  ︷︷  ︸
d+1

, sd+1, . . . , sN︸        ︷︷        ︸
N−d−1

). (20)

4



In order to derive the linearized high-order equations, one assumes that the discrete single particle distribution fi
belongs to C∞(T × L) (a functional set, in which the element possesses a sufficiently smooth property with respect to
the time domain T and the spatial domain L ). This assumption is also used by Junk et. al. for asymptotic analysis of
LBM [16]. This regularity hypothesis indicates that macroscopic quantities mi are smooth ones and that the linearized
system (18) is well defined.

The next step consists of performing Taylor series expansion of the right hand side of Eq. (18), yielding

mi(x, t + δt) =

∞∑
n=0

δtn

n!
Mil(−vαl ∂α)nM−1

lp Ψprmr, (21)

where α indicates the summation from 1 to d.
Now, we define the matrix A(n),∗ =

(
A(n),∗

i j

)
0≤i≤N,0≤ j≤N

as follows

A(n),∗
ir =

1
n!

Mil

(
−vαl ∂α

)n
M−1

lp Ψpr. (22)

When we need to derive the equivalent equations or the modified equations, it is difficult to use the matrix A(n),∗ to
carry out the calculations. In order to overcome this difficulty, we use the differential operators in spectral space. Let
us note ∂α = ikα, with kα the wave-number in the α -direction and i2 = −1. Then, in spectral space, the matrix A(n),∗

has the following form
(
A(n) =

(
A(n)

i j

)
0≤i≤N,0≤ j≤N

)
A(n)

ir =
1
n!

Mil

(
−ivαl kα

)n
M−1

lp Ψpr. (23)

Therefore, Eq. (21) can be rewritten as follows

mi(x, t + δt) =

J−1∑
n=0

δtnA(n)
ir mr + O(δtJ). (24)

In order to derive L-NSE corresponding to L-MRT-LBM defined by Eq. (24), we introduce an original recursive
algorithm. Given mi = Wi(0 ≤ i ≤ d) (Wi denotes the macroscopic conservative quantities, d indicates the number of
the macroscopic conservative quantities), the algorithm is given as follows

• Initial step. The initial Φ(1) and B(1) are given as follows

Φ
(1)
i j = δi j(0 ≤ i ≤ d),Φ(1)

i j =
1
si

Ψi j(d + 1 ≤ i ≤ N), (25)

B(1)
i j = A(1)

ir Φ
(1)
r j . (26)

Let W = {Wi}0≤i≤d and m = {mi}0≤i≤N denote the vector of the conservative quantities and the vector of all
macroscopic quantities, respectively.

At the first order of δt, for all macroscopic quantities, we have

mi = Φ
(1)
i j W j + O(δt), 0 ≤ i ≤ N. (27)

In the matrix form, we obtain
m = Φ(1)W + O(δt). (28)

At the first-order of δt, for conservative quantities, we have

∂tWi = A(1)
ir Φ

(1)
r j W j + O(δt). (29)

The matrix form is
∂tW = A(1)Φ(1)W j + O(δt). (30)
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• Recursive formula for all macroscopic quantities. Φ
(n)
i j can be given as follows

Φ
(n)
i j =

1
si

Ψi j −

n−1∑
l=1

δtl

l!
Φ

(n−1)
ir

(
B(n−1)

)l

r j
+

n−1∑
l=1

δtlA(l)
ir Φ

(n−1)
r j

 , d + 1 ≤ i ≤ N (31)

and
Φ

(n)
i j = δi j, (0 ≤ i ≤ d). (32)

Eliminating the higher-order term of δtn−1, we have

Φ
(n)
i j =

n−1∑
l=0

δtlCoeff
(
Φ

(n)
i j , δt, l

)
, (33)

where Coeff(·, ·, ·) is a function which extracts the coefficients of the polynomials, for example, f (x) =
∑n

i=0 aixi

Coeff ( f (x), x, i) = ai. (34)

According to Eqs.(31) and (33), we have

m = Φ(n)W + O(δtn). (35)

• Recursive formula for conservative quantities. B(n)
i j is presented as follows

B(n)
i j = −

n−1∑
l=1

δtl

(l + 1)!

(
B(n−1)

)l+1

i j
+

n∑
l=1

δtl−1A(l)
ir Φ

(n+1−l)
r j . (36)

Eliminating the higher-order term of δtn−1, we have

B(n)
i j =

n−1∑
l=0

δtlCoeff
(
B(n)

i j , δt, l
)
. (37)

Now, for the conservative quantities, we have the following equation system

∂tW = B(n) ·W + O(δtn). (38)

Using Eqs. (33), (35), (37) and (38), we can get the coefficient matrix of the conservative quantities at any order
of δt . Details and validations are displayed in [8].

2.4. Illustrative examples
In this section, we will use the above proposed algorithm to recover the L-NSE. Here, we will show two examples

corresponding to 2D and 3D MRT-LBM that are similar to the incompressible NSE [6, 7].

2.4.1. Application to the 2D MRT-LBM
In this part, we illustrate the algorithm presented in Sec. 2.3 considering the 2D MRT-LBM. For the standard 2D

MRT-LBM, the equilibrium distribution functions are described as follow (similary to the incompressible LBS)[7]

m(eq) =
{
ρ, jx, jy, −2ρ + 3

(
j2x + j2y

)
, ρ − 3

(
j2x + j2y

)
, − jx, − jy,

(
j2x − j2y

)
, jx jy

}
, (39)

where jx and jy denote the x-momentum and y-momentum respectively, and ρ represents the density (the reference
density ρ0 = 1, W0 = m0 = ρ,W1 = m1 = jx = u,W2 = m2 = jy = v). The corresponding matrix Ψ is given in
Appendix A.1. The diagonal elements of the corresponding diagonal matrix S are set as follows

s0 = s1 = s2 = 0, s3 = se, s4 = sε , s5 = s6 = sq, s7 = s8 = sν. (40)

6



For the original MRT-LBM [7], only sν is a free parameter, and se = 1.64, sε = 1.54, sq = 1.9. The analogous form of
Ψ can be found in the existent literature [7, 13]. The derivation of Ψ can be achieved by means of the first-order Taylor
series expansion with respect to ρ, jx and jy at reference states [3, 7, 8]. In the expression of Ψ, (U,V) to denote the
mean flow velocity components. In order to express the L-NSE by intuitive parameters, we introduce the following
relation

ση =
1
sη
−

1
2
, (41)

where η stands for any notations in the set Ξ = {e, ε, q, ν}. Now, when the truncated error term is equal to O(δt2)
, the coefficient matrix B(2) with the mean flow can be described by the summation of two matrices (the coefficient
matrices of δ0 and δt) [8]. These two matrices describe the specific terms in the linearized Navier-Stokes equations.
The coefficient matrix associated with δt0 is

0 −ikx −iky

− 1
3 ikx −2 ikx U − iky V −iky U

− 1
3 iky −ikx V −2 iky V − ikx U

 (42)

The coefficient matrix associated with δt is given in Appendix B.1. The higher-order truncated error matrices of δt
are omited for the sake of brevity (see [8] for more detailed descriptions).

2.4.2. Application to the 3D MRT-LBM
In this part, the algorithm presented in Sec.2.3 will be used to recover the 3D L-NSE. For the sake of convenience,

we consider the standard 3D MRT-LBM and the equilibrium distribution functions with 15 discrete velocities are
given by [6, 7]

m(eq) =

{
ρ, jx, jy, jz,−ρ +

(
j2x + j2y + j2z

)
,−ρ,−

7
3

jx,−
7
3

jy,−
7
3

jz, 2 j2x − j2y − j2z , j2y − j2z , jx jy, jy jz, jx jz, 0,
}
. (43)

where jx, jy and jz denote the x-momentum and y-momentum respectively, and ρ represents the density (the reference
density ρ0 = 1, W0 = m0 = ρ,W1 = m1 = jx = u,W2 = m2 = jy = v,W3 = m3 = jz = w). The relaxation parameters
corresponding to the matrix (20) is defined by

{0, 0, 0, 0, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14} , (44)

where
s4 = se, s5 = sε , s6 = s7 = s8 = sq, s9 = s10 = s11 = s12 = s13 = sν, s14 = st. (45)

For the original MRT-LBM [6, 7], sν is a free paramter and se = 1.6, sε = 1.2, sq = 1.6 , st = 1.2 [6]. For convenience,
we redefined an enlarged set Ξ = {e, ε, q, ν, t}. The cooresponding defination (41) can also be used for 3D MRT-LBM.
When the truncated error term is equal to O(δt2), the coefficient matrix B(2) with the mean flow can be expressed by
the summation of two matrices. The coefficient matrix corresponding to δt0 is

0 −ikx −iky −ikz

−1/3 ikx −2 ikx U − ikz W − iky V −iky U −ikz U

−1/3 iky −ikx V −2 iky V − ikx U − ikz W −ikz V

−1/3 ikz −ikx W −iky W −ikx U − iky V − 2 ikz W


(46)

The coefficient matrix corresponding to δt is given in Appendix B.2 .
In Sec. 2.4.1 and Sec 2.4.2, the recovered L-NSE are given and the corresponding truncated error is up to δt2. In

order to save space, the matrices B(n) with the higher-order truncated terms of δtn (n > 2) are not given in this paper.
For readers, by the algorithm given in Sec. 2.3 and Maple symbolic calculations, it is easy to obtain the matrix B(n)

with any value of n.
From the matrices corresponding to the dissipation, it is clear that the dissipation action of the recovered L-NSE

is dependent on the mean flow. This dependency always leads to the breakdown of Galilean invariance. This point
remains an open issue to the knowledge of the authors.
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3. Sensitivity and stability analysis of free parameters in MRT-LBM

In this section, the sensitivity of the free parameters and the stability for the MRT-LBM will be addressed by
means of the first/second-order sensitivity of the eigenvalues [17] and the distribution of the matrix eigenvalues in the
complex plane, respectively. The free relaxation parameters in Ξ determined by the linear analysis in the wave-number
spaces are “sub-optimal” [6, 7]. However, the original sub-optimal free relaxation parameters are still used for the
simulations of fluid flows in open literature. Because of the linear character of the analysis, the influence of the free
relaxation parameters on the hydrodynamic modes is still not completely clarified. In this part, all of these will be
analyzed. The analysis offers us a new methodology to propose our simplified optimization strategies for determining
the free relaxation parameters.

3.1. Methodology for sensitivity and stability analysis

In this part, the methods for investigating the sensitivity and stability are presented.

3.1.1. The first/second-order derivatives of matrix engenvalues with respect to free parameters
For the convenience of analysis, let Υ denotes the free parameter set for both 2D and 3D problems. From Eq. (13),

the linear behavior of MRT-LBM is fully determined by the eigvalues of the matrix Mmrt. Let XM = {xi}0≤i≤N and
ΛM = {λi}0≤i≤N denote the eigenvector set and the eigenvector set of the matrix Mmrt, respectively. It is clear that XM

and ΛM are function of Υ. Let ε ∈ Υ denote the the concerned parameter which exists in the matrix Mmrt. Because
the eigenvalues of the matrix Mmrt are distinct from each other (|k| > 0), the first-order sensitivity method can be used
to address the linear response behaviors or the group velocity behaviors. According to the definition of the eigenvalue
problem, the following equations are satisfied

Mmrt(ε)xi(ε) = λi(ε)xi(ε). (47)

Differentiating with repect to ε yields

Mmrt
ε (ε)xi(ε) + Mmrt(ε)x′i(ε) = λ′i(ε)xi(ε) + λi(ε)x′i(ε), (48)

where Mmrt
ε (ε) = ∂εMmrt(ε). If we define YH

M = X−1
M = {yH

i }0≤i≤d+1 (H denotes the conjugate transpose) as the left
eigenvector set corresponding to ΛM , we obtain

YH
M(ε)Mmrt

ε (ε)XM(ε) + YH
M(ε)Mmrt(ε)X′M(ε) = Λ′M(ε) + YH

M(ε)X′(ε)ΛM(ε). (49)

Considering the diagonal elements in Eq. (49), we have

yH
i (ε)Mmrt

ε (ε)xi(ε) + yH
i (ε)Mmrt(ε)x′i(ε) = λ′i(ε)yH

i (ε)xi(ε) + λi(ε)yH
i (ε)x′i(ε). (50)

Since yH
i xi = 1, we get

λ′i(ε) = yH
i (ε)Mmrt

ε (ε)xi(ε). (51)

It is clear that the derivatives of eigenvalues with respect to the free parameters can be expressed by the right and
left eigenvectors and the derivative of the matrix Mmrt. The first-order derivative of eigenvectors can be described by
[18, 19]

x′i(ε) = Ci jx j(ε), yH′
i (ε) = −C jiy j(ε) (52)

where the matix C is defined by

Ci j =

{
yH

j (ε)Mmrt
ε (ε)xi(ε)/(λi(ε) − λ j(ε)), i , j

0, i = j
(53)

From Eq. (51), the second-order derivative can be described by [18, 19]

λ′′i (ε) = yH
i (ε)Mmrt

ε2 (ε)xi(ε) + yH′
i (ε)Mmrt

ε (ε)xi(ε) + yH
i (ε)Mmrt

ε (ε)x′i(ε). (54)
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From Eq. (13), the following relation between ω = {ωi}0≤i≤N and ΛM holds

exp(−iωi(ε)) = λi(ε). (55)

So, the first and second order derivatives of ωi(ε)) can be expressed by

ω′i(ε) = iλ′i(ε)/λi(ε), ω′′i (ε) = iλ′′i (ε)/λi(ε) − iλ′i(ε)2/λi(ε)2. (56)

Now, the first/second-order sensitivity of free parameters to ωi(·) can be investigated easily. The behavior of the
numerical group velocity of the MRT-LBM can be addressed.

3.1.2. Hydrodynamic stability in the complex planes
It is known that the changes of any free parameters always result in the variation of the matrix Mmrt. By inves-

tigating the eigenvalue distribution of the matrix Mmrt in the complex planes, the basic sensitivity behaviors of the
L-MRT-LBM can be revealed. According to Eq. (13), the frequency ω and the eigenvalues of the matrix Mmrt satisfy
the following relation

ωi = i · Log(λi). (57)

The stability of MRT-LBM requires that the imaginary part of ωi should be smaller than or equal to 0. It is well-known
that λi could be rewritten as follows

λi = |λi|(cos(θ) + i · sin(θ)) = |λi|exp(i · θ), (58)

where |λi| is the modulus of λi and θ = Arg(λi) is the argument of λi. From Eq. (57), the following relation can be
obtained

ωi = i · Log(|λi|) − Arg(λi). (59)

The stability requires that Log(|λi|) ≤ 0. That means all eigenvalues of Mmrt should lie within the unit circle the origin
of which is located at the point (0, 0). The eigenvalue behavior of the matrix Mmrt with respect to the ε-parameter
reflects the sensitivity of free parameters.

3.2. Analysis of the sensitivities
In this section, we consider the first- and second-order sensitivities of the eigenvalues with respect to the wave-

number κ and observe the real behaviors corresponding to ν, η and cs in the L-MRT-LBM. Finally, in the complex
plane, according to the distribution of the eigenvalues of the matrix Mmrt and the stability condition, the influence of
free parameters is investigated.

3.2.1. The first- and second-order sensitivities with respect to the wave-number magnitude |k|
Although there exist several papers that are focused on the analysis of dispersion and dissipation relations, as far

as authors know, the investigations about dispersion and dissipation behaviors with respect to |k| still haven’t been
completely perfomed [3, 4, 7] for the MRT-LBM.

From Eq. (15), the first-order derivatives of acoustic modes (i.e. group velocity) ω±(k) and shear modes ωs(k)
with respect to κ = |k| are given as follows (k̂ · u is the angle between k and u)

Re[ω±κ (k)] = ±cs + |u|cos(k̂ · u),
Im[ω±κ (k)] = −|k|

(
2d−2

d ν + η
)
,

Re[ωs
κ(k)] = |u|cos(k̂ · u),

Im[ωs
κ(k)] = −2|k|ν.

(60)

The second-order derivatives are given by
Re[ω±κκ(k)] = 0,
Im[ω±κκ(k)] = −

(
2d−2

d ν + η
)
,

Re[ωs
κκ(k)] = 0,

Im[ωs
κκ(k)] = −2ν.

(61)
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Table 1: Illustrative parameters for the investigations of the original D2Q9 MRT-LBM (δt = 1): ex denotes the unit vector (1,0) co-directional with
x-axis. The symbol “�” indicates that the corresponding parameters are determined according to the cases.

Index sν se ν η |u| k̂ · u û · ex k̂ · ex

0 1.9 1.64 8.771929833e-3 0.03658536587 0.0 0 0 0
1 1.99 1.64 8.375209333e-4 0.03658536587 0.0 0 0 0
2 1.999 1.64 8.337503333e-5 0.03658536587 0.0 0 0 0
3 1.9999 1.64 8.333733333e-6 0.03658536587 0.0 0 0 0
4 1.99 1.64 8.375209333e-4 0.03658536587 0.1 � � �
5 1.9999 1.64 8.333733333e-6 0.03658536587 0.1 � � �

Figure 1: Local information for derivatives of Im[ω]: (Left): Im[ωκ] ; (Righ): Im[ωκκ]. In the left subfigure, Green line denotes Im[ωs
κ]; Red line

denotes Im[ω±κ ]. In the right subfigure, Green lines denote Im[ω±κκ]; Red line denotes Im[ωs
κκ]. The parameters are from the index 1 of Tabel 1.

Figure 2: Local information for derivatives of Re[ω]: (Left): Re[ωκ]; (Righ): Re[ωκκ]. In the left subfigure, Green lines denote Re[ωs
κ]; Red line

denotes Re[ω±κ ]. In the right subfigure, Green lines denote Re[ω±κκ]; Red line denotes Re[ωs
κκ]. The parameters are from the index 1 of Tabel 1.
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From Eqs. (60) and (61), we can detect the lattice sound speed cs (for |u| = 0 or k̂ · u = π/2) and the effective shear
and bulk viscosities. Theoretically, the dispersion and dissipation relations are dependent on |k|, |u| and k̂ · u for the
fixed ν and η, and independent on the individual orientations of k and u.

In order to observe the sensitivity of the hydrodynamic modes with respect to the wave-number κ, the locally-
magnified profiles are given in Figs. 1 and 2. In the left sub figure of Fig. 1, the green profile stands for Im[ωs

κ] and
the red profile denotes Im[ω±κ ]. It is noted that the acoustic dissipation has a significant change around κ = 2. When κ
is larger than about 2.25, Im[ω±κ ] grows very fastly. From the right sub-figure of Fig. 1, when κ is smaller than about
2.4, the shear viscosity ν in the L-MRT-LBM will be smaller than the given ν and becomes negative. This means
that the real behavior of ν and η depends on the wavenumber κ. Meanwhile, the important fact is that the computed
Im[ω±κκ] is varies from negative to positive values when κ is larger that about 1.75. This phenomenon means that ν+ η
is changes from positive to negative values after κ = 1.75 and the instability will appear for acoustic modes. In Fig. 2,
the profiles of the left subfigure denote the numerical Re[ωκ]. The red lines are the exact Re[ω±κ ]. It is clear that when
the second term of Re[ω±κ ] in Eq. (60), the red lines are the exact profiles of ±cs. From the subfigure, the computed
sound speed cs is dependent on the wavenumber κ under the condition of zero-mean flow. The green line indicates the
exact Re[ωs

κ]. It is clear that the computed Re[ωs
κ] coincides with the exact Re[ωs

κ] very well. From the right sub-figure
in Fig. 2, we can see that computed Re[ωs

κ] is exact for zero-mean flows. And the computed Re[ω±κ ] is sensitive to
the wave-number κ. Especially, when the wave-number κ is around 2, there exists some significant changes of the
computed Re[ω±κ ]. These results means the the numerical group velocity become very sensitive around κ = 2.

Figure 3: Local information for derivatives of Im[ω]: (Left): Im[ωκ] ; (Righ): Im[ωκκ]. In the left subfigure, Green line denotes Im[ωs
κ]; Red line

denotes Im[ω±κ ]. In the right subfigure, Green lines denote Im[ω±κκ]; Red line denotes Im[ωs
κκ]. The parameters are from the index 2 of Tabel 1.

In order to observe the impact of the influence of the small shear viscosity on the sensitivities, in Figs. 3∼6, the
profiles of the numerically-computed Im[ωκ], Im[ωκκ], Re[ωκ] and Re[ωκκ] are displayed for sν = 1.999 (indicated by
the index 2 in Table 1) and sν = 1.9999 (indicated by the index 3 in Table 1). Clearly, the similar results are obtained
compared with the results ( sν = 1.99, in the index 1 in Table 1). Now, we choose a smaller sν = 1.9 corresponding to
the larger shear viscosity (indicated by the index 0 in Table 1). From Figs. 7∼8, it is observed that when κ ≤ 2, there
does not exist any significant change for the sensitivities of the bulk viscosity ν + η and the lattice sound speed cs.
However, Fig. 7 shows that there exist some large deviations between the exact relations and the computed relations
for Im[ωs

κ] and Im[ωs
κκ]. These deviations indicate that for the large shear viscosity ν, the real ν of the MRT-LBM

deviates significantly from the exact ν in a large range of wave numbers.
In the above discussion, we focused on observing the sensitivity of ω with respect to κ for the D2Q9 MRT-LBM.

Now, we investigate the sensitivity of ω for the D3Q15 MRT-LBM. From Figs. 9∼14, it is seen that there exist very
significant changes for the first and second order derivatives of the acoustic and shear modes with respect to κ. From
Figs. 10, 12 and 14, it is observed that the computed cs has a significant dependence on the wave-number magnitudes,
and the computed cs deviates significantly from the exact cs. From Figs. 9, 11 and 13, the computed Im[ωκ] and
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Figure 4: Local information for derivatives of Re[ω]: (Left): Re[ωκ]; (Righ): Re[ωκκ]. In the left subfigure, Green lines denote Re[ωs
κ]; Red line

denotes Re[ω±κ ]. In the right subfigure, Green lines denote Re[ω±κκ]; Red line denotes Re[ωs
κκ]. The parameters are from the index 2 of Tabel 1.

Table 2: Illustrative parameters for investigations of the D3Q19 MRT-LBM (δt = 1): ex denotes the unit vector (1,0,0) codirectional with x-axis.
The symbol “� ” indicates that the corresponding parameters are determined according to the cases.

Index sν se ν η |u| k̂ · u û · ex k̂ · ex

0 1.9 1.6 8.771929833e-3 0.02777777778 0.0 0 0 0
1 1.99 1.6 8.375209333e-4 0.02777777778 0.0 0 0 0
2 1.9999 1.6 8.333733333e-6 0.02777777778 0.0 0 0 0
3 1.99 1.6 8.375209333e-4 0.02777777778 0.1 � � �
4 1.9999 1.6 8.333733333e-6 0.02777777778 0.1 � � �

Figure 5: Local information for derivatives of Im[ω]: (Left): Im[ωκ] ; (Righ): Im[ωκκ]. In the left subfigure, Green line denotes Im[ωs
κ]; Red line

denotes Im[ω±κ ]. In the right subfigure, Green lines denote Im[ω±κκ]; Red line denotes Im[ωs
κκ]. The parameters are from the index 3 of Tabel 1.
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Figure 6: Local information for derivatives of Re[ω]: (Left): Re[ωκ]; (Righ): Re[ωκκ]. In the left subfigure, Green lines denote Re[ωs
κ]; Red line

denotes Re[ω±κ ]. In the right subfigure, Green lines denote Re[ω±κκ]; Red line denotes Re[ωs
κκ]. The parameters are from the index 3 of Tabel 1.

Figure 7: Local information for derivatives of Im[ω]: (Left): Im[ωκ] ; (Righ): Im[ωκκ]. In the left subfigure, Green line denotes Im[ωs
κ]; Red line

denotes Im[ω±κ ]. In the right subfigure, Green lines denote Im[ω±κκ]; Red line denotes Im[ωs
κκ]. The parameters are from the index 0 of Tabel 1.
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Figure 8: Local information for derivatives of Re[ω]: (Left): Re[ωκ]; (Righ): Re[ωκκ]. In the left subfigure, Green lines denote Re[ωs
κ]; Red line

denotes Re[ω±κ ]. In the right subfigure, Green lines denote Re[ω±κκ]; Red line denotes Re[ωs
κκ]. The parameters are from the index 0 of Tabel 1.

Figure 9: Local information for derivatives of Im[ω]: (Left): Im[ωκ] ; (Righ): Im[ωκκ]. In the left subfigure, Green line denotes Im[ωs
κ]; Red line

denotes Im[ω±κ ]. In the right subfigure, Green lines denote Im[ω±κκ]; Red line denotes Im[ωs
κκ]. The parameters are from the index 1 of Tabel 2.
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Figure 10: Local information for derivatives of Re[ω]: (Left): Re[ωκ]; (Righ): Re[ωκκ]. In the left subfigure, Green lines denote Re[ωs
κ]; Red line

denotes Re[ω±κ ]. In the right subfigure, Green lines denote Re[ω±κκ]; Red line denotes Re[ωs
κκ]. The parameters are from the index 1 of Tabel 2.

Figure 11: Local information for derivatives of Im[ω]: (Left): Im[ωκ] ; (Righ): Im[ωκκ]. In the left subfigure, Green line denotes Im[ωs
κ]; Red line

denotes Im[ω±κ ]. In the right subfigure, Green lines denote Im[ω±κκ]; Red line denotes Im[ωs
κκ]. The parameters are from the index 2 of Tabel 2.
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Figure 12: Local information for derivatives of Re[ω]: (Left): Re[ωκ]; (Righ): Re[ωκκ]. In the left subfigure, Green lines denote Re[ωs
κ]; Red line

denotes Re[ω±κ ]. In the right subfigure, Green lines denote Re[ω±κκ]; Red line denotes Re[ωs
κκ]. The parameters are from the index 2 of Tabel 2.

Figure 13: Local information for derivatives of Im[ω]: (Left): Im[ωκ] ; (Righ): Im[ωκκ]. In the left subfigure, Green line denotes Im[ωs
κ]; Red line

denotes Im[ω±κ ]. In the right subfigure, Green lines denote Im[ω±κκ]; Red line denotes Im[ωs
κκ]. The parameters are from the index 0 of Tabel 2.
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Figure 14: Local information for derivatives of Re[ω]: (Left): Re[ωκ]; (Righ): Re[ωκκ]. In the left subfigure, Green lines denote Re[ωs
κ]; Red line

denotes Re[ω±κ ]. In the right subfigure, Green lines denote Re[ω±κκ]; Red line denotes Re[ωs
κκ]. The parameters are from the index 0 of Tabel 2.

Im[ωκκ] deviate from the exact Im[ωκ] and Im[ωκκ] . Numerically, Im[ω±] is very sensitive to the wave number κ.
From the current 2D and 3D results, using the given free relaxation parameters in the literatures, the numerical

dispersion and dissipation relations are sensitive to the wave number κ for û · k = 0. The behaviors of the numerical
group velocity will become sensitive when the wave-number magnitude of |k| is close to 2. It is necessary to point out
that if û · k , 0, we will obtain the most insensitive results. In order to save space, the investigations for |u| > 0 and
û · k , 0 are not shown here. With respect to other free parameters, we will address these problems in complex plane
in the next part.

3.2.2. The behaviors of eigenvalues of Mmrt in the complex plane
From Eq. (59), the linear stability of the MRT-LBM requires that the eigenvalues of Mmrt should lie in a unit

circle whose origin is located at the point (0,0). The investigations of sensitivities will address the factors that have
a significant influence on the distribution of the eigenvalues in the complex planes. From Eq. (15), the distribution
of the hydrodynamic modes are only dependent on the parameter set Υ̂ = {k, u, k̂ · u, ν, η}. That means the behavior
of eigenvalues of the matrix Mmrt should be dependent on the parameter set Υ̂. However, the researches dealing
with the relations of dispersion and dissipation of the linearized MRT-LBM indicate that there exists some significant
dependence on the orientations of k, u and free relaxation parameters in the matrix Mmrt [7, 8]. The values of the free
relaxation parameters are set according to the recommended values [7]. In order to implement the analysis, we give
the following definations for k and u. For the 2D problems, k and u are defined by

kx = |k|cos(θk), ky = |k|sin(θk); u = |u|cos(θu), v = |u|sin(θu). (62)

The inner product of k and u is given by
k · u = |k||u|cos(θk − θu). (63)

For 3D problems, k and u are defined as follows

kx = |k|cos(θk)sin(ζk), ky = |k|sin(θk)sin(ζk), kz = |k|cos(ζk);
u = |u|cos(θu)sin(ζu), v = |u|sin(θu)sin(ζu), w = |u|cos(ζu). (64)

The inner product of k and u is given by

k · u = |k||u|(cos(θk − θu)sin(ζk)sin(ζu) + cos(ζk)cos(ζu)). (65)

In Eq. (65), if let θk = θu, we have
k · u = |k||u|cos(ζk − ζu). (66)
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For the 2D problems, the discrete values of the variable |k| are set as a sequence of number {i · δk}0≤i≤J where
δk = π/J. First, the parameters given in Index 4 in Table 1 are used to implement our 2D investigations. Considering
the wave-number vector k parallel to ex and k̂ · ex is equal to 0 or π, we consider k̂ · u as a random parameter in
the interval [0, π]. Ten uniform random values of û · ex for each value of k are generated in [0, π] to investigate the
influences of û · ex on the distribution of the eigenvalues of the matrix Mmrt. In order to address the influences of
k̂ · ex, we let u‖ex ( û · ex is equal to 0 or π) , and ten uniform random values of k̂ · ex for each value of k are generated
in the range [0, π]. In Fig. 15, the distribution of the eigenvalues of the matrix Mmrt is given. From the figure, it is clear
that k̂ · ex for u‖ex has more significant influence than û · ex for k‖ex. When u is parallel to ex, The distribution of the
eigenvalues of the matrix Mmrt appears very random with respect to the random k̂ · ex. In Fig. 16 , the distribution of
the eigenvalues is figured for k̂ · ex = π/4 and û · ex = π/4. û · k is regarded as a random variable. In Fig. 17 , the
distribution of the eigenvalues is displayed for k̂ · ex = π/2 and û · ex = π/2.

According to Figs. 15 - 17, we conclude that the distribution of the eigenvalues of the matrix Mmrt is very sensitive
to the angle between k and ex . Therefore, k and ex are expected to strongly govern the dissipation and dispersion
relation of the linearized MRT-LBM. Furthermore, it is observed that the distribution of the eigenvalues appears
symmetrical with respect to the real axis. This symmetry property is obvious because of the symmetry property of the
wave-number vectors. The angle between the wave-number of the red color distribution and the wave-number of the
blue color distribution is equal to π corresponding to each k.

Figure 15: Distribution of the eigenvalues of the matrix Mmrt: (Left) k‖ex , and û · ex is regarded as a uniform random variable in the range [0, π].
For each value of k, ten random numbers for û · ex are generated in [0, π]. (Right) u‖ex , and k̂ · ex is regarded as a uniform random variable in
the range [0, π]. For each value of k, ten random numbers for k̂ · ex are generated in [0, π]. The parameters are from the index 4 of Tabel 1. (Blue
Color) k = [kx, ky]; (Red Color) k = [−kx,−ky]. The circles in the subfigures stand for the unitary circles with the origin located at (0,0), which are
also the stable regions of the linearized MRT-LBM.

Here, we revisit the conclusion about the stability of the transverse modes and the longitude modes. It was
indicated that the transverse modes is more stable than longitudinal modes and the sound waves propagating in the
direction of the mean flow are quite unstable for the BGK-LBM [7]. This instability instability can be reduced in
the original MRT-LBM [7]. In Fig. 18, when θk and θu are regarded as the two random variables in the range [0, π],
the probability density function (PDF) profiles of of eigenvalue modules are given for the transverse modes and the
longitudinal modes. From this figure, it is clear that for the original MRT-LBM, the PDF profiles of the eigenvalue
modules of the matrix Mmrt nearly has the same shape. And it is also observed that there exist some modules larger
than 1 (refer to the vertical line x = 1 in the figure). That means the MRT-LBM is not always stable for any |k| ∈ [0, π]
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Figure 16: Distribution of the eigenvalues of the matrix Mmrt: (Left) k̂ · ex = π/4; (Right) û · ex = π/4 . û · k is regarded as a uniform random
variable in the range [0, π]. For each value of k, ten random numbers for û · k are generated in [0, π]. The parameters are from the index 4 of Tabel
1. (Blue Color) k = [kx, ky]; (Red Color) k = [−kx,−ky]. The circles in the subfigures stand for the unitary circles with the origin located at (0,0),
which are also the stable regions of the linearized MRT-LBM.

Figure 17: Distribution of the eigenvalues of the matrix Mmrt: (Left) k̂ · ex = π/2; (Right) û · ex = π/2 . û · k is regarded as a uniform random
variable in the range [0, π]. For each value of k, ten random numbers for û · k are generated in [0, π]. The parameters are from the index 4 of Table
1. (Blue Color) k = [kx, ky]; (Red Color) k = [−kx,−ky]. The circles in the sub figures stand for the unitary circles with the origin located at (0,0),
which are also the stable regions of the linearized MRT-LBM.
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Figure 18: Probability density functions of eigenvalue modules (In Eq. (62), θk and θu are regarded as random variables in the rang [0, π] ) : (Red)
k̂ · ex = 0 and û · ex = 0; the difference of θk and θu is equal to 0 . (Blue) û · k = π/2 ; the difference of θk and θu is equal to π/2. The parameters
are chosen from Index 4 in Table 1.

and any small shear viscosity. These instability phenomena agree with the results of the second-order sensitivity
analysis in Sec. 3.1.1.

In Eq. (64), taking θk = θu, we regard θk and θu as random variables in the range [0, 2π]. Furthermore, we consider
two cases: (a) assuming ζk = 0, ζu is a random variable in the range [0, π]; (b) assuming ζu = 0, ζk is a random variable
in the range [0, π]. In Fig. 19, the distribution of the eigenvalues of the matrix Mmrt is plotted for any û · k. In Fig.
19, the red points overlap with the blue points, meaning that for k = [kx, ky] and k = [−kx,−ky], similar eigenvalue
behaviors exist. The random phenomenon in the right sub figure of Fig. 19 indicates that the eigenvalue distribution
is very sensitive to the orientation of the wave number k. This phenomenon is identical with what was observed in
the case of 2D linearized MRT-LBM. In Fig.20, we consider two additional cases: (a) θk = 0 and ζk = 0, θu and ζu are
random in [0, 2π] and [0, π], repectively; (b) θu = 0 and ζu = 0, θk and ζk are random in [0, 2π] and [0, π], repectively.
From the figure, it is clear that we can obtain the same conclusion as that we have in Fig. 19 .

From the investigations of eigenvalue distribution of the matrix Mmrt for the 2D and 3D linearized MRT-LBM, it
is concluded that for the given û · k, the dispersion and dissipation behaviors are mainly determined by the orientation
of k. Therefore, the acoustic modes and shear modes of the linearized MRT-LBM corresponding to the analytical
hydrodynamic modes (15) are mainly sensitive to the wavenumber vector k.

4. Simplified optimization strategies to determine the free relaxation parameters

In this section, we will focus on simplifying the optimization strategy proposed in [8]. The simplification is based
on the sensitivity analysis presented in Sec. 3 and the properties of the matrix B(n).

An optimization strategy to obtain the optimal free relaxation parameters was proposed in [8]. This optimization
strategy is well suited for the 2D/3D MRT-LBM. In order to handle low bulk viscosity flows, the researches in the
present paper will be focused on dealing with the following minimization problem for 2D and 3D problems [8]:

Min : G2d(Ξr) =

∫
0≤θk≤2π, δt|k|≤π, 0≤θu≤2π, |u|≤u0

‖M(n)
ε ‖

2
Fdθkd(δtk)dθudu, (67)

and
Min : G3d(Ξr) =

∫
0≤θk≤2π, 0≤ζk≤π, δt|k|≤π, 0≤θu≤2π, 0≤ζu≤π, |u|≤u0

‖M(n)
ε ‖

2
Fdθkdζkd(δtk)dθudζudu, (68)
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Figure 19: Trajectories of the eigenvalues of the matrix Mmrt for the 3D linearized MRT-LBM. (Left) ζk = 0; (Right) ζu = 0. The parameters are
from the index 3 of Tabel 2. (Blue Color) k = [kx, ky]; (Red Color) k = [−kx,−ky]. The circles in the subfigures stand for the unitary circles with
the origin located at (0,0), which are also the stable regions of the linearized MRT-LBM.

Figure 20: Trajectories of the eigenvalues of the matrix Mmrt for the 3D linearized MRT-LBM. (Left) θk = 0 and ζk = 0, θu and ζu are random in
[0, 2π] and [0, π], repectively; (Right) θu = 0 and ζu = 0, θk and ζk are random in [0, 2π] and [0, π], repectively. The parameters are from the index
3 of Tabel 2. (Blue Color) k = [kx, ky]; (Red Color) k = [−kx,−ky]. The circles in the subfigures stand for the unitary circles with the origin located
at (0,0), which are also the stable regions of the linearized MRT-LBM.
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where u indicates |u|, Ξr denotes the free relaxation parameter set ( Ξr ⊂ Ξ), ‖ · ‖F indicates the matrix Frobenius norm
and the matrixMε is dependent on |u|, |k|, δt and free relaxation parameters, which is defined by

M(n)
ε = B(n) − B + δt2B̂. (69)

In Eq. (69), B(n) and B are defined by
B(n) = δtB(n), B = δtB. (70)

The matrix B̂ in Eq. (69) is given as follows for the 2D/3D L-MRT-LBM
0 0 0

0 − 1
3 kx

2σe − 1
3 kxkyσe

0 − 1
3 kxkyσe − 1

3 ky
2σe

 , (71)

and 

0 0 0 0

0 − 1
9 kx

2(σν + 2σe) − 1
9 kykx (σν + 2σe) − 1

9 kzkx (σν + 2σe)

0 − 1
9 kykx (σν + 2σe) − 1

9 ky
2(σν + 2σe) − 1

9 kzky (σν + 2σe)

0 − 1
9 kzkx (σν + 2σe) − 1

9 kzky (σν + 2σe) − 1
9 kz

2(σν + 2σz)


, (72)

which are corresponding to the exact total bulk viscosity dissipation coefficient matrix of δt (refer to Appendix B ).
According to the analysis displayed in Sec. 3.2, the eigenvalues are mainly sensitive to the wave number k.

Therefore, taking u to be parallel to ex and considering the most sensitive factors, we can simplify Eq.(67) and Eq.
(68) as follows

Min : G2d(Ξr) =

∫
0≤θk≤2π, δt|k|≤π, |u·ex |≤u0

‖M(n)
ε ‖

2
Fdθkd(δtk)du, (73)

and
Min : G3d(Ξr) =

∫
0≤θk≤2π, 0≤ζk≤π, δt|k|≤π, |u·ex |≤u0

‖M(n)
ε ‖

2
Fdθkdζkd(δtk)du, (74)

where u = |u · ex|. More specifically, the above simplified formula Eq. (74) is very effective for obtaining the free
relaxation parameters of the 3D problems, which reduce the integral variables.

In Table 3, illustrative examples are given for both 2D and 3D problems. The truncated error of Eq. (38) is set
to equal 4 for handling the acoustic problems with the low bulk viscosity and for guaranteeing stability [8]. In order
to investigate the dispersion and dissipation relations for the optimal MRT-LBM, the profiles of the transverse modes
and the longitudinal modes are shown in Figs. 21∼24. From these figures, it is clear that the simplified optimization
strategies (73)∼ (74) can make the MRT-LBM schemes endowed with the low-dispersion low-dissipation properties.
From the viewpoint of stability, the optimal MRT-LBM appears more stable than the original MRT-LBM [7, 8].
Especially, for the optimal MRT-LBM, the lower bulk dissipation parameter can be chosen for aeroacoustic problems.
In the original MRT-LBM, because of sustaining the stability of the MRT-LBM schemes, the low bulk viscosity is
forbidden or impossible [7, 8]. From Figs. 21 - 23, it is observed that for the optimal MRT-LBM, the acoustic modes
with u perpendicular to k are more stable than the acoustic modes with u parallel to k, and the shear modes with u
perpendicular to k are more accurate than the shear modes with u parallel to k.

5. Numerical examples

In this section, we perform some numerical simulations to validate the optimal MRT-LBM on 2D/3D benchmark
problems . All simulations are performed using an ad hoc version of PalaBos [20]. For the current optimization
procedures, the truncated error term is only up to the fourth order so that we can improve the dissipation relation
errors of the MRT-LBM and the isotropic errors [8]. In this part, we only focus on the case with the fourth-order
truncated error terms. If you want to further improve both the dispersion and dissipation errors, the higher-order
truncated error terms are needed [8].
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Table 3: Optimized free relaxation parameters corresponding to the specified sν and se for the MRT-LBM under the condition u‖ex (û · ex = 0) .
The upper bound u0 of |u| is equal to 0.2. The symbol “� ” indicates that the corresponding fields are inapplicable. For D2Q9, ex = (1, 0). For
D3Q19, ex = (1, 0, 0). The truncated error in Eq. (38) is equal to δt4.

Model Index sν se sε sq sπ st

D2Q9 0 1.99960008 1.99960008 1.997623852 1.999448768 � �
D3Q19 1 1.99960008 1.99960008 1.994155318 1.998982400 1.992025433 1.999363601
D2Q9 2 1.886792453 1.886792453 1.470217043 1.842711354 � �
D3Q19 3 1.999960001 1.9999800002 1.9993910550 1.999916523 1.9996934332 1.999886136
D2Q9 4 1.995389843 1.9953898430 1.9729857787 1.9875516898 � �

5 1.999996000 1.9999960008 1.9999762501 1.999994487 � �
6 1.9999988 1.9999988 1.9999928163 1.9999992651 � �

(a) u‖k (b) u⊥k

Figure 21: The dissipation relations for the optimized 2D MRT-LBM: (a) û · ex = 0; (b) û · ex = 0, k̂ · ex = π/2. The relaxation parameters are
given by Index 0 in Table 3. The magnitude of u is equal to 0.2. ω±,e and ωs,e denote the exact acoustic modes and shear modes respectively. ω±

and ωs denote the numerical acoustic modes and shear modes respectively.
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(a) u‖k (b) u⊥k

Figure 22: The dispersion relations for the optimized 2D MRT-LBM: (a) û · ex = 0; (b) û · ex = 0, k̂ · ex = π/2. The relaxation parameters are
given by Index 0 in Table 3. The magnitude of u is equal to 0.2. (Green line) Exact shear modes Re[ωs]; (Red line) Exact acoustic modes Re[ω±].
ω±,e and ωs,e denote the exact acoustic modes and shear modes respectively. ω± and ωs denote the numerical acoustic modes and shear modes
respectively.

(a) u‖k (b) u⊥k

Figure 23: The dissipation relations for the optimized 3D MRT-LBM: (a) û · ex = 0; (b) û · ex = 0, θk = θu = 0 and ζk = π/2 in Eq. (64). The
relaxation parameters are given by Index 1 in Table 3. The magnitude of u is equal to 0.2. ω±,e and ωs,e denote the exact acoustic modes and shear
modes respectively. ω± and ωs denote the numerical acoustic modes and shear modes respectively.
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(a) u‖k (b) u⊥k

Figure 24: The dispersion relations for the optimized 3D MRT-LBM: (a) û · ex = 0; (b) û · ex = 0, θk = θu = 0 and ζk = π/2 in Eq. (64). The
relaxation parameters are given by Index 1 in Table 3. The magnitude of u is equal to 0.2. (Green line) Exact shear modes Re[ωs]; (Red line) Exact
acoustic modes Re[ω±]. ω±,e and ωs,e denote the exact acoustic modes and shear modes respectively. ω± and ωs denote the numerical acoustic
modes and shear modes respectively.

5.1. A 2D acoustic point source

In this part, we consider propagation of the 2D acoustic wave generated by a point source. These investigations
only focus on comparing the optimal MRT-LBM with the BGK-LBM and the quasi-incompressible BGK-LBM. The
time-dependent acoustic point source is set as

ρ(·, t) = 1 + ρ′sin(2π/T · t)
u(·, t) = 0
v(·, t) = 0

(75)

where ρ′ = 0.01. The compuational domain is Ω = [0, L]2 (L = 1). The number of the lattice points is equal to
200 × 200. The period T is equal to 4 · δx (δx = 1/200). The relaxation parameters in the standard LBM are set by
Index 5 in Table 3. In Fig. 25, the contour lines for three different methods are shown based on the same contour
level values. It is very clear that the contour line result obtained by the optimal MRT-LBM is the best one. The
BGK-LBM has nearly the same results as the quasi-incompressible BGK-LBM. This results are similar to that in
former researches [8]. Here, we point out that, with respect to the optimal MRT-LBM, the contour line result of the
acoustic point source in our former research is better than the result of the optimal MRT-LBM in the current paper.
It is needed to be clarified that in the current optimization strategy, the mean flow influence is considered, but in
the former research, the optimization strategy for the kind of problem was implemented with the zero mean flows.
The optimization strategies in this paper appear in a more general form. From the results of this problem, the well
performances of the optimization strategies are further demonstrated.

5.2. The 2D acoustic pulse source

We now consider the 2D acoustic pulse source for assessing the simplified 2D optimization strategy. Assuming
that the viscosity effect is negligible on acoustic waves, the acoustic pulse problem possesses an analytical solution
[8, 21]. The initial profile is given as follows 

ρ0 = 1 + ρ′
u0 = U0
v0 = 0

(76)
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(a) BGK-LBM (b) Quasi-incompressible BGK-LBM

(c) Optimal MRT-LBM

Figure 25: Density contour lines for the BGK-LBM, the quasi-incompressible BGK-LBM and the optimal MRT-LBM at t = 0.7. The viscosity
ν = 1.66667 × 10−5.
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where ρ′, ε, α, r and U0 are defined by

ρ′ = εexp(−α · r2), ε = 10−3, α = ln(2)/b2, r =

√
(x − x0)2 + (y − y0)2, U0 = 0.01. (77)

The parameter b in Eq. (77) is equal to 0.03. The exact solution of ρ′ (if (x0, y0) = (0, 0)) is given by [21]

ρ′(x, y, z) =
ε

2α

∫ ∞

0
exp

(
−
ξ2

4α

)
cos(cstξ)J0(ξη)ξdξ (78)

where η =
√

(x − U0t)2 + y2 + z2 and J0(·) is the Bessel zero-order function of the first kind. The computational
domain Ω = [0, L]2 (L = 1). The relaxation parameters are determined by Index 5 in Table 3. In order to validate
the precision of the optimal MRT-LBM, the mesh convergence and the time convergence are calculated. The adopted
lattice resolutions are 1002, 2002, 3002 and 4002. The evolution of the acoustic pulse is restricted in the computational
domain in order to avoid the effects of boundaries. From here on, the L2 relative error is defined by

EL2 (t) =

√√∑Nnodes
i=1 (ρ′th(xi, t) − ρ′num(xi, t))2∑Nnodes

i=1 (ρ′th(xi, t))2
, (79)

where ρ′th(xi, t) and ρ′num(xi, t) denote the theoretical and numerical solutions at the lattice nodes xi, respectively.
First, in Fig. 26, the density profiles for different LBS are given at t = 0.4. It is clear that the results obtained by
the original MRT-LBM are less satisfactory because of the large bulk viscosity. In order to show the quantitative
comparisons, the L2 relative errors are given in Figs. 27∼28 with respect to the mesh resolution and the evolution
time, respectively. From Fig. 27, it is clear that the results obtained by the optimal MRT-LBM have the lowest
L2 relative errors and the best convergence property. Further, some super-convergence properties are exhibited for
the optimal MRT-LBM. Let us observe Fig. 28 and we can conclude that when the mesh resolutions are fixed, the
original MRT-LBM has the best precision. With respect to the evolution time, three methods have nearly the same
time convergence order.

5.3. The 3D acoustic spherical pulse source
In this part, we continue to investigate the 3D acoustic spherical pulse source in order to obtain a further validation

for the simplified 3D optimization strategies. Assuming the viscosity influence is ignored, the acoustic pulse problem
possesses the analytical solution [22]. The initial profile is given as follows

ρ0 = 1 + ρ′
u0 = U0
v0 = 0
w0 = 0

(80)

where ρ′, ε, α, r and U0 are defined by

ρ′ = εexp(−α · r2), ε = 10−3, α = ln(2)/b2, r =

√
(x − x0)2 + (y − y0)2 + (z − z0)2, U0 = 0.01. (81)

The parameter b in Eq. (81) is equal to 0.03. The exact solution of ρ′ (if (x0, y0, z0) = (0, 0, 0)) is given by [22]

ρ′(x, y, z) =
ε

2α
√
πα

∫ ∞

0
exp

(
−
ξ2

4α

)
cos(cstξ)

sin(ξη)
ξη

ξ2dξ (82)

where η =
√

(x − U0t)2 + y2 + z2. The computational domain Ω = [0, L]3 (L = 1). The simulation results of two
cases are shown. The relaxation parameters are determined by Index 3 in Table 3. Because of the very low viscosity,
the corresponding viscosity dissipation can be ignored. The adopted lattice resolutions are 1002, 2002 and 3002. In
Fig. 29, the density profiles are shown for different LBS. It is observed that the profiles obtained by the original
MRT-LBM have the worst precision. Quantitatively, the L2 relative errors with respect to the mesh resolutions and
the evolution time are presented in Figs. 30∼31. The conclusions are similar to that of the 2D problems. The optimal
MRT-LBM has the best precision with respect to the mesh resolutions and the evolution time. At the same time, some
super-convergence property of the optimal MRT-LBM is observed.

In all, from the numerical investigations, the optimal MRT-LBM not only improves the computational precision
for acoustic problems, but also present some super-convergence properties compared with the BGK-LBM.
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Figure 26: Fluctuation density profiles of 1000ρ′ for three different 2D LBS along the line y=0.5 at t=0.4: (a) Lattice number 1002; (b) Lattice
number 2002; (c) Lattice number 3002; (d) Lattice number 4002.
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Figure 27: The L2 relative errors for three different 2D LBS with respect to the mesh scale δx: BGK-LBM, Optimal MRT-LBM, Original MRT-
LBM.
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Figure 28: The L2 relative errors for three different 2D LBS with respect to the evolution time t: BGK-LBM, Optimal MRT-LBM, Original
MRT-LBM. Lattice number: (a) 1002; (b) 2002; (c) 3002; (d) 4002.
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Figure 29: Fluctuation density profiles of 1000ρ′ for three different 3D LBS along the line y=z=0.5 at t=0.4: (a) Lattice number 1003; (b) Lattice
number 2003; (c) Lattice number 3003.
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Figure 30: The L2 relative errors for three different 3D LBS with respect to the mesh scale δx: BGK-LBM, Optimal MRT-LBM, Original MRT-
LBM.
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Figure 31: The L2 relative errors for three different 3D LBS with respect to the evolution time t: BGK-LBM, Optimal MRT-LBM, Original
MRT-LBM. Lattice number: (a) 1003; (b) 2003; (c) 3003.
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5.4. The sound generation by a turbulent airflow over a moderately deep rectangular cavity

The problem is to study aerodynamic sound generation by a turbulent air flow over a moderately deep cavity.
Despite the real flow is expected to be 3D and turbulent, it is known that dominant acoustic tonal modes are generated
by nearly 2D structures which can be captured thanks to 2D simulations. Therefore, 2D simulations may be useful in
predicting main frequencies of the radiated acoustic field. This benchmark problem is taken from the “Fourth Com-
putational Aeroacoustics (CAA) Workshop on Benchmark Problems”. The ratio of the cavity width and the depth is
0.3124. In Fig. 32, the schematic view of the computational domain is given along with the corresponding physical
scales. The inflow at the far left boundary was set as uniform with a velocity magnitude of 50 m/s along the horizon-
tal direction. The outflow boundary condition and free-slip boundary condition are applied at the outlet and the top
boundary, respectively. In order to avoid the influence of the sound wave reflection from the left boundary, the outlet
boundary and the top boundary, buffer (sponge) regions are used. The buffer region thickness at the inlet and outlet
is equal to one-twentieth of the domain length along x-direction. The buffer region thickness for the top boundary is
one-twentieth of the rectangle region. The lattice resolution along the thickness of the cavity tongue B is equal to 50.
The optimal relaxation parameters are set by Index 4 in Table 3. It is necessary to point out that for the current con-
figuration, the computation by the BGK-LBM diverged after about 1.4× 105 time steps. For the current investigation,
the computation by the optimal MRT-LBM was implemented for 6.48 × 105 time steps and the optimal MRT-LBM
was still stable. Figs.33∼35 show the computed Fourier spectra of sound pressures with the measured sound pressure
spectra and the CFD (TIDAL, Time Iterative Density/pressure based Algorithm) sound pressure spectra. The tonal
frequencies and amplitudes of the computed spectra coincide with those of the experimental spectra very well. It is
clear the obtained spectra by the optimal MRT-LBM is better than that by TIDAL.

2D

D

HA

B

20D

20D

60D

Figure 32: Schematic computational geometry: A = 25.42mm, D = 7.94mm, B = 3.18mm.

5.5. Application to the acoustic scattering from a cylinder solid body

The acoustic scattering from a cylinder solid body was presented in the second CAA workshop on benchmark
problems [23]. The objective of this problem focused on addressing the propeller generated sound field scattered
off the fuselage of an aircraft. By this benchmark, we address the performance comparisons among the optimal
MRT-LBM, the DRP schemes and the high-order compact schemes for solving the linear acoustic problems (the
DRP schemes and the high-order compact schemes are used to solve the linearized Euler equations). The schematic
geometry is given in Fig. 36. The left big black disc indicates the cylinder and the right small black disc denotes the
acoustic source. The two-dimensional cylinder radius R is equal to D/2 (D = 1 for current researches). The centre of
the cylinder is located at the origin. At the initial time (t = 0), the initial profile of the acoustic source is defined by

p(x, y, 0) = p∞ + δexp
[
−2

(
(x − xsD)2 + y2

w2

)]
, (83)
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Figure 33: Comparison of sound pressure spectra at the centers of the cavity left wall
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Figure 34: Comparison of sound pressure spectra at the centers of the cavity floor

35



500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
50

60

70

80

90

100

110

120

130

← 1624

← 2616

Frequency, Hz

S
P

L
, 
d
B

(r
e
f.
 2

0µ
 P

a
)

 

 

Optimal MRT−LBM

CFD (TIDAL)

Experiment

Figure 35: Comparison of sound pressure spectra at the centers of the cavity right wall

where w = 0.2, δ = c2
s × 10−4, xs = 4 and p∞ = c2

sρ∞. The low δ is to ensure a linear response and guarantee the
linear analysis theory. The problem was propsed as the second problem in Category 1 in [23], but the given analytic
solution is incorrect [24]. The correct analytical solution was given as follows [24, 25]

pe(x, y, t) = p∞ + Re
{∫ ∞

0
(Ai(x, y, ω) + Ar(x, y, ω))ωexp(−iωt)dω

}
. (84)

The incident wave amplitude is

Ai(x, y, ω) =
1
2b

exp{−ω2/(4b)}J0(ωrs) (85)

where rs =
√

(x − xsD)2 + y2, b = ln2/w2 and J0 is the Bessel function of order zero. And the corresponding reflected
wave portion is given by

Ar(x, y, ω) = Ar(r, ω) =

∞∑
k=0

Ck(ω)H(1)
k (rω)cos(kω), (86)

where H(1)
k is the kth order Hankel function of the first kind and

Ck(ω) =
ω

2b
exp{−ω2/(4b)}

εk

πω
[
H(1)

k

]′
(r0ω)

∫ ∞

0
J1(ωrs0 )

r0 − xsDcos(θ)
rs0

cos(kθ)dθ, (87)

where ε0 = 1, εk = 2 for k , 0, r0 = 1/2 and rs0 =
√

0.25 + x2
s D2 − xsDcos(θ).

In order to compare numerical results with the exact solution, the computational time is non-dimensionalized as
tcs/D . The pressure samples are recorded at three different points A(r = 5D, θ = π/2), A(r = 5D, θ = (3/4)π) and
C(r = 5D, θ = π). The pressure signals are sampled between 5 ≤ tcs/D ≤ 10. The acoustic pressure posc is non-
dimensionalized as p′ = posc/

[
(ρ∞c2

s)δ
]

. For the current computations, the relaxation parameters are determined by
Index 6 in Table 3 and the lattice resolution along the diameter of the cylinder is equal to 50. The corresponding values
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of the shear and bulk viscosity are very small, so that the dissipation influence on the acoustic waves can be ignored.
In Fig. 37, the comparisons between the optimal MRT-LBM, the DRP schemes and the high-order compact schemes
are presented. For the schemes of the DRP schemes and the high-order compact schemes, the temporal integration
is performed using the 4-6 low dispersion and dissipation Runge-Kutta (LDDRK) optimized scheme [26, 27]. From
the results, it is clear that the best results are obtained by the optimal MRT-LBM. This conclusion guarantees that
the optimal MRT-LBM is better than the fourth-order DRP scheme and sixth/fourth-order compact schemes of the
linearized Euler equations. In Fig. 38, the comparisons between the optimal MRT-LBM and the exact solution are
shown. From the results, it is observed that the computational error at the points B and C is larger than that at the point
A. The observed deviations from the exact solution are mainly from the non-linear influence of the lattice Boltzmann
schemes, because the exact solution is obtained by the linearized Euler equations. The another possible reason is
attributed to the step approximation of the the cylinder boundary. However, the results of the optimal MRT-LBM are
the best ones. In Fig. 39, the acoustic wave patterns are shown at tcs/D = 5.77 and tcs/D = 8.66. Three wave fronts
are observed. The farthest wave front from the cylinder is generated by the initial condition. The next front is the
wave reflected off the right surface of the cylinder. The wave front closest to the cylinder is produced by the collision
and merging of the two parts of the initial wave front on the left side of the cylinder.
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D

30D

3
0
D

Figure 36: Schematic figure of the acoustic scattering problem.

6. Conclusion

In this paper, the researches are focused on the sensitivity analysis and the determination of the relaxation param-
eters in the MRT-LBM. By the investigations of the sensitivity, it is concluded that the numerical behaviors of the
dispersion and dissipation are mainly dependent on the variation of the wave number k. From the behaviors of the
eigenvalues of Mmrt in the complex planes, it is observed that the distribution of the eigenvalues has the certain shapes
if the wave number k is fixed and the velocity vector is regarded as a random variable. According to the sensitivity
analysis, the integral spaces of the optimization strategies are simplified for 2D/3D problems. Then, by von Neu-
mann analysis, the numerical performances of the optimization strategies are validated. Finally, by the benchmark
acoustic problems and considering the ignorable small viscosity in the LBS, the optimal MRT-LBM is compared
with the BGK-LBM and the used high-order compact/DRP schemes . The numerical results demonstrate that the
optimal MRT-LBM can be used to simulate the acoustic problems very well. Meanwhile, the optimal MRT-LBM
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Figure 37: Comparison between computed (the optimal MRT-LBM, the DRP schemes and the high-order compact schemes) and exact solutions
of two-dimensional scattering problem at the point A . (a) Compared with the fourth-order DRP scheme (seven-point stencil). (b) Compared with
the sixth-order compact scheme (three-point stencil). (c) Compared with the fourth-order compact scheme (three-point stencil). Line (—): Exact
solution. Dashed line (- - -): optimal MRT-LBM solution. Dash-dot line (- · -): solutions of the high-order/DRP schemes.
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Figure 38: Comparison between computed (optimal MRT-LBM) and exact solutions of two-dimensional scattering problem at the three points .
(a) The time series of p′ at the point A. (b) The time series of p′ at the point B. (c) The time series of p′ at the point C. Line (—): Exact solution.
Dashed line (- - -): optimal MRT-LBM solutions.

Figure 39: The acoustic wave patterns by the optimal MRT-LBM. (Left) tcs/D = 5.77; (Right) tcs/D = 8.66.
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performs better than the BGK-LBM and the used high-order compact/DRP schemes numerically. Especially, some
super-convergence properties are observed.
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Appendix A. Transformation matrices and matrices Ψ of MRT-LBM

Appendix A.1. For two dimensional MRT-LBM with 9 discrete velocities

The transformation matrice for MRT-LBM with 9 discrete velocities is described by

M =



1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 −2 0 2 0 1 −1 −1 1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1



. (A.1)

For the weakly-compressible MRT-LBM, the matrix Ψ is given by

Ψ =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

se

(
−2 − 3 U2 − 3 V2

)
6 se U 6 se V 1 − se 0 0 0 0 0

sε
(
1 + 3 U2 + 3 V2

)
−6 sε U −6 sε V 0 1 − sε 0 0 0 0

0 −sq 0 0 0 1 − sq 0 0 0

0 0 −sq 0 0 0 1 − sq 0 0

sν
(
−U2 + V2

)
2 sν U −2 sν V 0 0 0 0 1 − sν 0

−sν UV sν V sν U 0 0 0 0 0 1 − sν



. (A.2)
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For the MRT-LBM similar to an incompressible LBS, the matrix Ψ is given by

Ψ =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

−2 se 6 se U 6 se V 1 − se 0 0 0 0 0

sε −6 sε U −6 sε V 0 1 − sε 0 0 0 0

0 −sq 0 0 0 1 − sq 0 0 0

0 0 −sq 0 0 0 1 − sq 0 0

0 2 sν U −2 sν V 0 0 0 0 1 − sν 0

0 sν V sν U 0 0 0 0 0 1 − sν



(A.3)

Appendix A.2. For three dimensional MRT-LBM with 15 discrete velocities
The transformation matrice for MRT-LBM with 15 discrete velocities is described by

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1

0 0 0 1 −1 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 1 −1 1 1 1 1 −1 −1 −1 −1

−2 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1

16 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1

0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1

0 0 0 −4 4 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 −4 4 1 1 1 1 −1 −1 −1 −1

0 2 2 −1 −1 −1 −1 0 0 0 0 0 0 0 0

0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 −1 −1 1 1 −1 −1 1

0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1

0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1

0 0 0 0 0 0 0 1 −1 −1 1 −1 1 1 −1



. (A.4)

Appendix B. Coefficient Matrices

In this section, the dissipation coefficient matrix will be divided into two parts: exact dissipation coefficient matrix
(δt · D); the part (δt · D̂) of non-Galilean invariance related with mean flows.

Appendix B.1. Coefficient matrices of L-NSE with the first-order of δt for 2D MRT-LBM
The exact part D of the dissipation coefficient matrix is given by

D =


0 0 0

0 − 1
3 kx

2σν −
1
3 ky

2σν −
1
3 kx

2σe − 1
3 kxkyσe

0 − 1
3 kxkyσe − 1

3 kx
2σν −

1
3 ky

2σν −
1
3 ky

2σe

 . (B.1)
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The part D̂ of non-Galilean invariance is expressed by

D̂[1, 1] = D̂[1, 2] = D̂[1, 3] = 0 (B.2)

D̂[2, 1] = 1
3 kx

2Uσν + 1
3 ky

2Uσν + 1
3 kxkyVσe + 1

3 kx
2Uσe

D̂[2, 2] = kx
2V2σe + 2kx

2U2σe + kxVkyUσe − kx
2V2σν + 2kx

2U2σν + 4kxVkyUσν + ky
2V2σν

D̂[2, 3] = 2kxkyV2σe + kx
2UVσe + kxU2kyσe + 2kxU2kyσν − 2kxkyV2σν + 3ky

2VUσν − kx
2UVσν

D̂[3, 1] = 1
3 ky

2Vσe + 1
3 kykxUσe + 1

3 ky
2Vσν + 1

3 kx
2Vσν

D̂[3, 2] = ky
2VUσe + kxkyV2σe + 2kxU2kyσe + 3kx

2UVσν + 2kxkyV2σν − 2kxU2kyσν − ky
2VUσν

D̂[3, 3] = ky
2U2σe + kxVkyUσe + 2ky

2V2σe − ky
2U2σν + 4kxVkyUσν + 2ky

2V2σν + kx
2U2σν

(B.3)

Appendix B.2. For three dimensional MRT-LBM with 19 discrete velocities

D =



0 0 0 0

0 − 1
3σν|k|

2 − 1
9 kx

2(σν + 2σe) − 1
9 kykx (σν + 2σe) − 1

9 kzkx (σν + 2σe)

0 − 1
9 kykx (σν + 2σe) − 1

3σν|k|
2 − 1

9 ky
2(σν + 2σe) − 1

9 kzky (σν + 2σe)

0 − 1
9 kzkx (σν + 2σe) − 1

9 kzky (σν + 2σe) − 1
3σν|k|

2 − 1
9 ky

2(σν + 2σz)


(B.4)

where the wave-number vector k = (kx, ky, kz) and |k| =
√

k2
x + k2

y + k2
z . The viscosity is defined by ν = 1

3σν and the

bulk viscosity is defined by η = 2
9σe. Then, the effective bulk viscosity is given by η + 1

3ν.
The part D̂ of non-Galilean invariance is given by

D̂[1, 1] = D̂[1, 2] = D̂[1, 3] = D̂[1, 4] = 0 (B.5)
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D̂[2, 1] = 1
3 ky

2Uσν + 4
9 kx

2Uσν + 1
9 kxVkyσν + 1

9 kxWkzσν + 1
3 kz

2Uσν + 2
9 kxWkzσe + 2

9 kxVkyσe + 2
9 kx

2Uσe

D̂[2, 2] = 13
3 kxWkzUσν + 2kzVkyWσν + kz

2W2σν + 13
3 kxVkyUσν + 8

3 kx
2U2σν −

2
3 kx

2V2σν + ky
2V2σν−

2
3 kx

2W2σν + 2
3 kxWkzUσe + 4

3 kx
2U2σe + 2

3 kx
2W2σe + 2

3 kxVkyUσe + 2
3 kx

2V2σe

D̂[2, 3] = 7
3 kykxU2σν + 3kyWkzUσν − 4

3 kxkyV2σν −
2
3 kxW2kyσν −

2
3 kx

2UVσν + 3ky
2VUσν − 2

3 kxWkzVσν+
2
3 kxU2kyσe + 2

3 kxW2kyσe + 2
3 kxWkzVσe + 2

3 kx
2UVσe + 4

3 kxkyV2σe

D̂[2, 4] = − 2
3 kx

2UWσν + 3kz
2WUσν − 2/3kxVkyWσν −

4
3 kxkzW2σν + 3kyUkzVσν + 7

3 kxU2kzσν −
2
3 kxV2kzσν+

2
3 kx

2UWσe + 2
3 kxU2kzσe + 2

3 kxVkyWσe + 4
3 kxkzW2σe + 2

3 kxV2kzσe

D̂[3, 1] = 2
9 ky

2Vσe + 2
9 kyWkzσe + 2

9 kyUkxσe + 1
3 kz

2Vσν + 1
9 kyWkzσν + 1

9 kyUkxσν + 4
9 ky

2Vσν + 1
3 kx

2Vσν

D̂[3, 2] = 4
3 kxU2kyσe + 2

3 kxW2kyσe + 2
3 ky

2VUσe + 2
3 kyWkzUσe + 2

3 kxkyV2σe −
2
3 kxW2kyσν −

4
3 kykxU2σν+

3kx
2UVσν + 3kxWkzVσν − 2

3 ky
2VUσν + 7

3 kxkyV2σν −
2
3 kyWkzUσν

D̂[3, 3] = 2
3 ky

2W2σe + 4
3 ky

2V2σe + 2
3 kxVkyUσe + 2

3 kyWkzVσe + 2
3 ky

2U2σe + 13
3 kxVkyUσν + 2kxWkzUσν+

kx
2U2σν + kz

2W2σν − U ∗ t − 2
3 ky

2W2σν −
2
3 ky

2U2σν + 8
3 ky

2V2σν + 13
3 kzVkyWσν

D̂[3, 4] = 3kzUkxVσν − 2
3 kyU2kzσν −

2
3 ky

2VWσν −
4
3 kykzW2σν −

2
3 kyUkxWσν + 7

3 kyV2kzσν + 3kz
2WVσν+

2
3 kyU2kzσe + 4

3 kykzW2σe + 2
3 kyV2kzσe + 2

3 kyUkxWσe + 2
3 ky

2VWσe

D̂[4, 1] = 2
9 kz

2Wσe + 2
9 kzVkyσe + 2

9 kzUkxσe + 4
9 kz

2Wσν + 1
3 ky

2Wσν + 1
9 kzUkxσν + 1

3 kx
2Wσν + 1

9 kzVkyσν

D̂[4, 2] = 2
3 kxkzW2σe + 2

3 kzVkyUσe + 4
3 kxU2kzσe + 2

3 kxV2kzσe + 2
3 kz

2WUσe + 3kx
2UWσν −

2
3 kz

2WUσν+

3kxVkyWσν + 7
3 kxkzW2σν −

2
3 kxV2kzσν −

4
3 kxU2kzσν −

2
3 kyUkzVσν

D̂[4, 3] = 2
3 kzUkxVσe + 2

3 kz
2WVσe + 4

3 kyV2kzσe + 2
3 kykzW2σe + 2

3 kyU2kzσe −
2
3 kz

2WVσν + 3ky
2VWσν−

2
3 kyU2kzσν + 3kyUkxWσν −

4
3 kyV2kzσν + 7

3 kykzW2σν −
2
3 kzUkxVσν

D̂[4, 4] = 8
3 kz

2W2σν + 13
3 kxWkzUσν + ky

2V2σν + 2kxVkyUσν − 2
3 kz

2U2σν + kx
2U2σν + 13

3 kzVkyWσν−

2
3 kz

2V2σν + 2
3 kxWkzUσe + 2

3 kz
2U2σe + 4

3 kz
2W2σe + 2

3 kz
2V2σe + 2

3 kyWkzVσe
(B.6)
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