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Abstract

We present a new model and a novel loosely coupled partitioned numeri-
cal scheme modeling fluid-structure interaction (FSI) in blood flow allowing
non-zero longitudinal displacement. Arterial walls are modeled by a linearly
viscoelastic, cylindrical Koiter shell model capturing both radial and longi-
tudinal displacement. Fluid flow is modeled by the Navier-Stokes equations
for an incompressible, viscous fluid. The two are fully coupled via kine-
matic and dynamic coupling conditions. Our numerical scheme is based on
a new modified Lie operator splitting that decouples the fluid and structure
sub-problems in a way that leads to a loosely coupled scheme which is uncon-
ditionally stable. This was achieved by a clever use of the kinematic coupling
condition at the fluid and structure sub-problems, leading to an implicit cou-
pling between the fluid and structure velocities. The proposed scheme is a
modification of the recently introduced “kinematically coupled scheme” for
which the newly proposed modified Lie splitting significantly increases the
accuracy. The performance and accuracy of the scheme were studied on
a couple of instructive examples including a comparison with a monolithic
scheme. It was shown that the accuracy of our scheme was comparable to
that of the monolithic scheme, while our scheme retains all the main ad-
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vantages of partitioned schemes, such as modularity, simple implementation,
and low computational costs.
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1. Introduction

We study fluid-structure interaction (FSI) between an incompressible vis-
cous, Newtonian fluid, and a thin viscoelastic structure modeled by the lin-
early viscoelastic cylindrical Koiter shell model. The cylindrical viscoelastic
Koiter shell model is derived to describe the mechanical properties of arterial
walls, while the Navier-Stokes equations for an incompressible, viscous, New-
tonian fluid were employed to model the flow of blood in medium-to-large
human arteries. The two are coupled via the kinematic (no-slip) and dynamic
(balance of contact forces) coupling conditions. Motivated by recent results
of in vivo measurements of arterial wall motion [1, 2, 3, 4], which indicate
that both the radial and longitudinal displacement, as well as viscoelasticity
of arterial walls, are important in disease formation, we derived in this work
the viscoelastic cylindrical Koiter shell model which captures both radial and
longitudinal displacement, with the viscoelasticity of Kelvin-Voigt type. The
novel Koiter shell model is then coupled to the Navier-Stokes equations, and
the coupled FSI problem is solved numerically. In this manuscript we devise
a stable, loosely coupled scheme to numerically solve the fully coupled FSI
problem. The scheme is based on a novel modified Lie’s time-splitting, and on
an implicit use of the kinematic coupling condition, as in [5], which provides
stability of the scheme without the need for sub-iterations between the fluid
and structure sub-solvers. Stability of the scheme was proved in [6] on the
same, simplified benchmark problem as in [7]. We provide numerical results
which show that the scheme is first-order accurate in time. We compare our
results with the monolithic scheme of Badia, Quaini, and Quarteroni [8, 9]
showing excellent agreement and comparable accuracy.

In hemodynamics, the coupling between fluid and structure is highly non-
linear due to the fact that the fluid and structure densities are roughly the
same, making the inertia of the fluid and structure roughly equal. In this
regime, classical partitioned loosely coupled (or explicit) numerical schemes,
which are based on the fluid and structure sub-solvers, have been shown to be
intrinsically unstable [7] due to the miss-match between the discrete energy
dictated by the numerical scheme, and the continuous energy of the coupled
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problem. This has been associated with the explicit role of the “added mass
effect”, introduced and studied in [7]. To rectify this problem, the fluid and
structure sub-solvers need to be iterated until the energy balance at the dis-
crete level approximates well the energy of the continuous coupled problem.
The resulting strongly coupled partitioned scheme, however, gives rise to
extremely high computational costs.

To get around these difficulties, several different loosely coupled algo-
rithms have been proposed that modify the classical strategy in coupling the
fluid and structure sub-solvers. The method proposed in [10] uses a simple
membrane model for the structure that can be easily embedded into the fluid
equations and appears as a generalized Robin boundary condition. In this
way the original problem reduces to a sequence of fluid problems with a gen-
eralized Robin boundary condition that can be solved using only the fluid
solver. A similar approach was proposed in [11], where the fluid and struc-
ture are split in the classical way, but the fluid and structure sub-problems
were linked via novel transmission (coupling) conditions that improve the
convergence rate. Namely, a linear combination of the dynamic and kine-
matic interface conditions was used to artificially redistribute the fluid stress
on the interface, thereby avoiding the difficulty associated with the added
mass effect.

A different stabilization of the loosely coupled (explicit) schemes was pro-
posed in [12] which is based on Nitsche’s method [13] with a time penalty term
giving L2-control on the fluid force variations at the interface. We further
mention the scheme proposed in [14], where Robin-Robin type preconditioner
is combined with Krylov iterations for the solution of the interface system.

For completeness, we also mention several semi-implicit schemes. The
schemes proposed in [15, 16, 17] separate the computation of fluid velocity
from the coupled pressure-structure velocity system, thereby reducing the
computational costs. Similar schemes, derived from algebraic splitting, were
proposed in [9, 18]. We also mention [19] where an optimization problem is
solved at each time-step to achieve continuity of stresses and continuity of
velocity at the interface.

In our work we deal with the problems associated with the added mass
effect by: (1) employing the kinematic coupling condition implicitly in all
the sub-steps of the splitting, as in the kinematically coupled scheme first
introduced in [5]; (2) treating the fluid sub-problem together with the vis-
cous part of the structure equations so that the structure inertia appears
in the fluid sub-problem (made possible by the kinematic coupling condi-
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tion), giving rise to the energy estimates that mimic those in the continuous
problem. In this step, a portion of the fluid stress and the viscous part of
the structure equations are coupled weakly, and implicitly, thereby adding
dissipative effects to the fluid solver and contributing to the overall stability
of the scheme (although the scheme is stable even if viscoelasticity of the
structure is neglected). The modification of the Lie splitting introduced in
this manuscript uses the remaining portion of the normal fluid stress (the
pressure) to explicitly load the structure in the elastodynamics equations,
significantly increasing the accuracy of our scheme when compared with the
classical kinematically coupled scheme [5], and making it comparable to that
of the monolithic scheme presented in [8, 9].

Vessel LumenDisplacement 

direction and 

magnitude

Arterial Wall

Figure 1: Longitudinal displacement in a carotid artery measured using in vivo ultrasound
speckle tracking method. The thin red line located at the intimal layer of the arterial wall
shows the direction and magnitude of the displacement vector, showing equal magnitude
in longitudinal and radial components of the displacement [20].

To deal with the motion of the fluid domain, we implemented an Arbitrary
Lagrangian-Eulerian (ALE) approach. In addition to the ALE method [21,
22, 23, 24, 18, 25, 26, 27, 28], the Immersed Boundary Method [29, 30, 31, 32,
33, 34] has been very popular in problems with moving domains, especially
when the structure is completely immersed in the fluid domain. We also
mention the Fictitious Domain Method combined with the mortar element
method or ALE method [35, 36], the Lattice Boltzmann method [37, 38, 39,
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40], the Coupled Momentum Method [41], and the Level Set Method [42].
Even though other viscoelastic models have been proposed in literature

to study FSI between blood and arterial walls, see e.g., [43, 44, 45, 46], to the
best of our knowledge, the present manuscript is the first in which both radial
and longitudinal displacement of a thin, viscoelastic structure are captured.
The main motivation for this work comes from recent developments in ul-
trasound speckle tracking techniques (see [47], Chapter 8), which enabled in
vivo measurements of both the longitudinal and diameter vessel wall changes
over the cardiac cycle, indicating that longitudinal wall displacements can be
comparable to the radial displacements, and should be included when study-
ing tissue movement [48, 2, 1]. See Figure 1. This is particularly pronounced
under adrenaline conditions during which the longitudinal displacement of
the intima-media complex increases by 200%, and becomes twice the magni-
tude of radial displacement [49].

The structure model capturing both radial and longitudinal displacement
is presented next.

2. The cylindrical linearly viscoelastic Koiter shell model

In this section we present the main steps in the derivation of the cylin-
drical linearly viscoelastic Koiter shell model that includes both longitudinal
and radial components of the displacement.

Consider a clamped cylindrical shell of thickness h, length L, and refer-
ence radius of the middle surface equal to R. See Figure 2. This reference
configuration of the thin cylindrical shell will be denoted by

Γ = {x = (R cos θ, R sin θ, z) ∈ R3 : θ ∈ (0, 2π), z ∈ (0, L)}. (1)

Displacement of the shell corresponds to the displacement of the shell’s

L

z

r

h

R

middle

surface

undeformed

shell

deformed

shell

displacement

Figure 2: Left: Cylindrical shell in reference configuration with middle surface radius R
and shell thickness h. Right: Deformed shell.
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middle surface. Following the basic assumptions under which the Koiter
shell model is valid [50], we assume that the walls of the cylinder are thin
with respect to its radius (i.e., h/R� 1), homogeneous, and deform linearly
(i.e., the displacement and the displacement gradient are both small). We
will be assuming that the load exerted onto the shell is axially symmetric,
leading to the axially symmetric displacements, so that the displacement in
the θ−direction is zero, and nothing in the problem depends on θ. Thus,
displacement η will have two components, the axial component ηz and the
radial component ηr.

To introduce the viscous effects into the linearly elastic Koiter shell model,
we must assume that displacement is a function of both position and time.
Thus η(z, t) = (ηz(z, t), ηr(z, t)). The derivatives with respect to the spatial
variable will be denoted by η′, and with respect to the temporal variable by
η̇.

To define the Koiter shell model we need to define the geometry of de-
formation, and the physics of the problem which will be described by the
dynamic equilibrium equations (the Newton’s second law of motion).

Geometry of Deformation. The axially symmetric configuration of a
Koiter shell can suffer stretching of the middle surface, and flexure (bending).
The stretching of the middle surface is measured by the change of metric
tensor, while flexure is measured by the change of curvature tensor. The
change of metric and the change of curvature tensors for a cylindrical shell
are given, respectively by [51]

γ(η) =

[
η′z 0
0 Rηr

]
, %(η) =

[
−η′′r 0

0 ηr

]
. (2)

The dynamic equilibrium equations. The total energy of the linearly
elastic Koiter shell is given by the sum of contributions due to stretching
and flexure. The corresponding weak formulation will thus account for the
internal (stretching) force and bending moment. For a linearly viscoelastic
Koiter shell each of the contributions will also have an additional component
to account for a viscoelastic response of the Koiter shell. The elastic response
will be modeled via the elasticity tensor A, while the viscous response will
be modeled by the viscosity tensor B. Viscoelasticity will be modeled by the
Kelvin-Voigt model in which the total stress is linearly proportional to strain
and to the time-derivative of strain.
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More precisely, introduce the elasticity tensor A, [51], to be defined as:

AE =
2Eσ

1− σ2
(Ac · E)Ac +

2E

1 + σ
AcEAc, E ∈ Sym(R2), (3)

where Ac =

[
1 0
0 R2

]
is the first fundamental form of the middle surface,

Ac =

[
1 0
0 1

R2

]
is its inverse, and · denotes the scalar product

A ·B := Tr(ABτ ), A,B ∈M2(R).

Here E is the Young’s modulus and σ is the Poisson’s ratio.
Similarly, define the viscosity tensor B by:

BE =
2Evσv
1− σ2

v

(Ac · E)Ac +
2Ev

1 + σv
AcEAc, E ∈ Sym(R2). (4)

Here Ev and σv correspond to the viscous counterparts of the Young’s mod-
ulus E and Poisson’s ratio σ. Then, for a linearly viscoelastic Koiter shell
model we define the internal (stretching) force

N :=
h

2
Aγ(η) +

h

2
Bγ(η̇), (5)

and bending moment

M :=
h3

24
A%(η) +

h3

24
B%(η̇). (6)

The weak formulation of the linearly viscoelastic Koiter shell is then given
by the following: for each t > 0 find η(·, t) ∈ Vc such that ∀ξ ∈ Vc

h

2

∫ L

0

(Aγ(η) + Bγ(η̇)) · γ(ξ)Rdz +
h3

24

∫ L

0

(A%(η) + B%(η̇)) · %(ξ)Rdz

+ρsh

∫ L

0

∂2η

∂t2
· ξRdz =

∫ L

0

f · ξRdz,

(7)
where ρs denotes the volume shell density and

Vc = H1
0 (0, L)×H2

0 (0, L)

= {ξ = (ξz, ξr) ∈ H1(0, L) : ξ(0) = ξ(L) = 0, ξ′r(0) = ξ′r(L) = 0}.
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The first term on the left-hand side of (7) multiplying h/2 captures the
membrane effects, while the second term on the left hand-side multiplying
h3/24 captures the flexural effects of the Koiter shell.

Components of the forcing term f = (fz, fr)
T are the surface densities in

the reference configuration of the axial and radial force. The corresponding
dynamic equilibrium equations in differential form can be written as follows:

ρsh
∂2ηz
∂t2
− C2

∂ηr
∂z
− C3

∂2ηz
∂z2
−D2

∂2ηr
∂t∂z

−D3
∂3ηz
∂t∂z2

= fz (8)

ρsh
∂2ηr
∂t2

+ C0ηr − C1
∂2ηr
∂z2

+ C2
∂ηz
∂z

+ C4
∂4ηr
∂z4

+D0
∂ηr
∂t
−D1

∂3ηr
∂t∂z2

+D2
∂2ηz
∂t∂z

+D4
∂5ηr
∂t∂z4

= fr, (9)

where

C0 =
hE

R2(1− σ2)
(1 +

h2

12R2
), C1 =

h3

6

Eσ

R2(1− σ2)
, C2 =

h

R

Eσ

1− σ2
,

C3 =
hE

1− σ2
, C4 =

h3

12

E

1− σ2
,

D0 =
h

R2
Cv(1 +

h2

12R2
), D1 =

h3

6

Dv

R2
, D2 =

hDv

R
,

D3 = hCv, D4 =
h3

12
Cv,

(10)

and

Cv :=
Ev

1− σ2
v

, Dv :=
Evσv

1− σ2
v

.

The boundary conditions for a clamped Koiter shell problem are given by

η(0, t) = η(L, t) = 0,
∂ηr
∂z

(0, t) =
∂ηr
∂z

(L, t) = 0. (11)

For a mathematical justification of the Koiter shell model please see [50, 52,
53, 54, 55].

3. The fluid-structure interaction problem

We consider the flow of an incompressible, viscous fluid in a two-dimensional
channel of reference length L, and reference width 2R, see Figure 3. The lat-
eral boundary of the channel is bounded by a thin, deformable wall, modeled
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by the linearly viscoelastic Koiter shell model, described in the previous sec-
tion. We are interested in simulating a pressure-driven flow through the
deformable 2D channel with a two-way coupling between the fluid and struc-
ture. Without loss of generality, we consider only the upper half of the fluid
domain supplemented by a symmetry condition at the axis of symmetry.
Thus, the reference domain in our problem is given by

Ω0 := {(z, r)|0 < z < L, 0 < r < R}.

Here z and r denote the horizontal and vertical Cartesian coordinates, re-
spectively. See Figure 3.

Remark 1. It is worth mentioning here that while the fluid flow will be
modeled in 2D, the thin structure equations, described in the previous sec-
tion, are given in terms of cylindrical coordinates, assuming axial symmetry.
It is standard practice in 2D fluid-structure interaction studies to use thin
structure equations that are derived assuming cylindrical geometry. This is
because cylindrical structure models account for the circumferential stress
that “keeps” the top and bottom boundary of the structure “coupled to-
gether” when they are loaded by the stresses exerted by the fluid, thereby
giving rise to physiologically reasonable solutions.

The mathematical model for the corresponding fluid-structure interaction
problem can be defined as follows. The fluid domain, which depends on
time, is not known a priori. The location of the lateral boundary, defined in
Lagrangian framework, is given by Γ(t) = {(ẑ + ηz(ẑ, t), R + ηr(ẑ, t)) | ẑ ∈
(0, L)} for t ∈ (0, T ). Throughout the rest of the manuscript we will be
denoting the Lagrangian coordinates by x̂ = (ẑ, r̂). The displacement of the
boundary will always be given in Lagrangian framework. However, we will
omit the hat notation on η for simplicity.

We will be assuming that for each t ∈ (0, T ) the boundary of the fluid
domain is Lipschitz continuous (see Figure 3), and that it’s lateral boundary,
in Eulerian framework, can be described by a Lipschitz continuous function

g(· ; t) : (0, L)→ R, g(· ; t) : z 7→ g(z; t), for each t ∈ (0, T )

so that, in Eulerian framework,

Γ(t) = {(z, g(z; t)), z ∈ (0, L)}, for t ∈ (0, T ).
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The fluid domain is given by

Ω(t) = {(z, r) ∈ R2; 0 < z < L, 0 < r < g(z; t)}, for t ∈ (0, T ). (12)

The inlet boundary will be denoted by Γin, the outlet boundary by Γout, the
symmetry (bottom) boundary for which r = 0 by Γ0, so that

∂Ω(t) = Γin ∪ Γ(t) ∪ Γout ∪ Γ0.

R

L

r

z

Figure 3: Deformed domain Ω(t).

The flow of a viscous, incompressible, Newtonian fluid is governed by the
Navier-Stokes equations

ρf

(
∂u

∂t
+ u · ∇u

)
= ∇ · σ in Ω(t) for t ∈ (0, T ), (13)

∇ · u = 0 in Ω(t) for t ∈ (0, T ), (14)

where u = (uz, ur) is the fluid velocity, p is the fluid pressure, ρf is the fluid
density, and σ is the fluid stress tensor. For a Newtonian fluid the stress
tensor is given by σ = −pI + 2µD(u), where µ is the fluid viscosity and
D(u) = (∇u + (∇u)τ )/2 is the rate-of-strain tensor.

At the inlet and outlet boundary we prescribe the normal stress:

σn|in(0, r, t) = −pin(t)n|in on (0, R)× (0, T ), (15)

σn|out(L, r, t) = −pout(t)n|out on (0, R)× (0, T ), (16)

where nin/nout are the outward normals to the inlet/outlet boundaries, re-
spectively. These boundary conditions are common in blood flow model-
ing [10, 33, 56].

At the bottom boundary r = 0 we impose the symmetry conditions:

∂uz
∂r

(z, 0, t) = 0, ur(z, 0, t) = 0 on (0, L)× (0, T ). (17)
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The upper boundary Γ(t) represents the deformable channel wall, whose
dynamics is modeled by (8)-(9). The structure equations are supplemented
with the following boundary conditions

η(0, t) = η(L, t) = ∂zηr(0, t) = ∂zηr(L, t) = 0 on (0, T ). (18)

Initially, the fluid and the structure are assumed to be at rest, with zero
displacement from the reference configuration

u = 0, η = 0,
∂η

∂t
= 0. (19)

The fluid and structure are coupled via the kinematic and dynamic bound-
ary conditions [57]:

• Kinematic coupling condition describes continuity of velocity

u(ẑ + ηz(ẑ, t), R + ηr(ẑ, t), t) =
∂η

∂t
(ẑ, t) on (0, L)× (0, T ). (20)

• Dynamic coupling condition describes balance of contact forces,
namely, it says that the contact force exerted by the fluid is equal but
of opposite sign to the contact force exerted by the structure to the
fluid:

fz = −J σ̂n|Γ(t) · ez on (0, L)× (0, T ), (21)

fr = −J σ̂n|Γ(t) · er on (0, L)× (0, T ), (22)

where

J =

√(
1 +

∂ηz
∂z

)2

+

(
∂ηr
∂z

)2

(23)

denotes the Jacobian of transformation from the Eulerian to the La-
grangian framework, and σ̂n denotes the normal fluid stress on the
reference domain Ω̂ = (0, L) × (0, R). Here ez = (1, 0) and er = (0, 1)
are the standard unit basis vectors, and n is the outward normal to
the deformed domain.
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3.1. The energy of the coupled FSI problem

To formally derive the energy of the coupled FSI problem we multiply
the structure equations by the structure velocity, the balance of momen-
tum in the fluid equations by the fluid velocity, integrate by parts over the
respective domains using the incompressibility condition, and add the two
equations together. The dynamic and kinematic coupling conditions are then
used to couple the fluid and structure sub-problems. The resulting equation
represents the total energy of the problem.

We start by first considering the Koiter shell model for the structure.
We recall the weak formulation of the clamped Koiter shell given by (7). In
(7) we replace the test function ξ by the structure velocity ∂η

∂t
and integrate

by parts over (0, L) to obtain the following energy equality of the clamped
Koiter shell:

d
dt

{
ρsh
2

∣∣∣∣∣∣∣∣∂ηz∂t ∣∣∣∣∣∣∣∣2
L2(0,L)

+ ρsh
2

∣∣∣∣∣∣∣∣∂ηr∂t ∣∣∣∣∣∣∣∣2
L2(0,L)

+h
2

[
E

1+σ

∣∣∣∣∣∣∣∣ηrR ∣∣∣∣∣∣∣∣2
L2(0,L)

+ E
1+σ

∣∣∣∣∣∣∣∣∂ηz∂z ∣∣∣∣∣∣∣∣2
L2(0,L)

+ Eσ
1−σ2

∣∣∣∣∣∣∣∣∂ηz∂z + ηr
R

∣∣∣∣∣∣∣∣2
L2(0,L)

]

+h3

24

[
E

1+σ

∣∣∣∣∣∣∣∣ ηrR2

∣∣∣∣∣∣∣∣2
L2(0,L)

+ E
1+σ

∣∣∣∣∣∣∣∣∂2ηr
∂z2

∣∣∣∣∣∣∣∣2
L2(0,L)

+ Eσ
1−σ2

∣∣∣∣∣∣∣∣− ∂2ηr
∂z2 + ηr

R2

∣∣∣∣∣∣∣∣2
L2(0,L)

]}

+h
2

[
Ev

1+σv

∣∣∣∣∣∣∣∣ ∂ηrR∂t

∣∣∣∣∣∣∣∣2
L2(0,L)

+ Ev

1+σv

∣∣∣∣∣∣∣∣∂2ηz
∂z∂t

∣∣∣∣∣∣∣∣2
L2(0,L)

+ Evσv
1−σ2

v

∣∣∣∣∣∣∣∣∂2ηz
∂z∂t

+ ∂ηr
R∂t

∣∣∣∣∣∣∣∣2
L2(0,L)

]

+h3

24

[
Ev

1+σv

∣∣∣∣∣∣∣∣ ∂ηrR2∂t

∣∣∣∣∣∣∣∣2
L2(0,L)

+ Ev

1+σv

∣∣∣∣∣∣∣∣ ∂3ηr
∂z2∂t

∣∣∣∣∣∣∣∣2
L2(0,L)

+ Evσv
1−σ2

v

∣∣∣∣∣∣∣∣− ∂3ηr
∂z2∂t

+ ∂ηr
R2∂t

∣∣∣∣∣∣∣∣2
L2(0,L)

]
=
∫ L

0
f · ∂η

∂t
dẑ. (24)

The first two terms under the time-derivative correspond to the kinetic energy
of the Koiter shell. The terms in the second and third row correspond to the
elastic energy of the Koiter shell (the terms multiplying h are the membrane
energy, while the terms multiplying h3 correspond to the flexural (bending)
energy). The terms in the fourth and fifth row correspond to the viscous
energy of the viscoelastic Koiter shell, while the last term corresponds to the
work done by the external loading, which comes form the fluid stress via the
dynamic coupling condition.
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To deal with the fluid sub-problem we multiply the momentum equation
in the Navier-Stokes equations by u and integrate by parts over Ω(t), using
the incompressibility condition along the way. With the help of the following
identities ∫

Ω(t)

∂u

∂t
udx =

1

2

d

dt

∫
Ω(t)

|u|2dx− 1

2

∫
∂Ω(t)

|u|2u · ndS,∫
Ω(t)

(u · ∇)u · udx =
1

2

∫
∂Ω(t)

|u|2u · ndS,

one obtains

1

2

d

dt

{
ρf ||u||2L2(Ω(t))

}
+ 2µ||D(u)||2L2(Ω(t))

−
∫ R

0

pin(t)uz|z=0dr +

∫ R

0

pout(t)uz|z=Ldr =

∫
Γ(t)

σn · u dS

The integral on the right-hand side can be written in Lagrangian coordinates
as ∫

Γ(t)

σn · u dS =

∫ L

0

[σn · u] |(ẑ+ηz(ẑ,t),R+ηr(ẑ,t)) J dẑ (25)

where J is the Jacobian of transformation from the Eulerian to Lagrangian
framework, given by (23). Now we use the kinematic and dynamic lateral
boundary conditions (20)-(22) to obtain∫ L

0

[σn · u] |(ẑ+ηz(ẑ,t),R+ηr(ẑ,t)) J dẑ = −
∫ L

0

f · ∂η
∂t

dẑ. (26)

Thus, the fluid sub-problem coupled with the structure satisfies

1
2
d
dt

{
ρf ||u||2L2(Ω(t))

}
+ 2µ||D(u)||2L2(Ω(t))

−
∫ R

0

pin(t)uz|z=0dr +

∫ R

0

pout(t)uz|z=Ldr = −
∫ L

0

f · ∂η
∂t

dẑ. (27)

By adding (24) and (27), the right-hand sides of the two equations cancel
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out and one obtains the energy equality for the FSI problem:

d
dt

{
ρf

2
||u||2

L2(Ω(t))
+
ρsh

2

∣∣∣∣∣∣∣∣∂ηz∂t
∣∣∣∣∣∣∣∣2
L2(0,L)

+
ρsh

2

∣∣∣∣∣∣∣∣∂ηr∂t
∣∣∣∣∣∣∣∣2
L2(0,L)︸ ︷︷ ︸

Kinetic Energy

+h
2

[
E

1 + σ

∣∣∣∣∣∣∣∣ηrR
∣∣∣∣∣∣∣∣2
L2(0,L)

+
E

1 + σ

∣∣∣∣∣∣∣∣∂ηz∂z
∣∣∣∣∣∣∣∣2
L2(0,L)

+
Eσ

1− σ2

∣∣∣∣∣∣∣∣∂ηz∂z +
ηr

R

∣∣∣∣∣∣∣∣2
L2(0,L)

]
︸ ︷︷ ︸

Structure Elastic Energy (Membrane Contribution)

+h3

24

[
E

1 + σ

∣∣∣∣∣∣∣∣ ηrR2

∣∣∣∣∣∣∣∣2
L2(0,L)

+
E

1 + σ

∣∣∣∣∣∣∣∣∂2ηr

∂z2

∣∣∣∣∣∣∣∣2
L2(0,L)

+
Eσ

1− σ2

∣∣∣∣∣∣∣∣− ∂2ηr

∂z2
+
ηr

R2

∣∣∣∣∣∣∣∣2
L2(0,L)

]
︸ ︷︷ ︸

Structure Elastic Energy (Flexural(Shell) Contribution)

}

+h
2

[
Ev

1 + σv

∣∣∣∣∣∣∣∣ ∂ηrR∂t

∣∣∣∣∣∣∣∣2
L2(0,L)

+
Ev

1 + σv

∣∣∣∣∣∣∣∣∂2ηz

∂z∂t

∣∣∣∣∣∣∣∣2
L2(0,L)

+
Evσv

1− σ2
v

∣∣∣∣∣∣∣∣∂2ηz

∂z∂t
+
∂ηr

R∂t

∣∣∣∣∣∣∣∣2
L2(0,L)

]
︸ ︷︷ ︸

Structure V iscous Energy (Membrane Contribution)

+h3

24

[
Ev

1 + σv

∣∣∣∣∣∣∣∣ ∂ηrR2∂t

∣∣∣∣∣∣∣∣2
L2(0,L)

+
Ev

1 + σv

∣∣∣∣∣∣∣∣ ∂3ηr

∂z2∂t

∣∣∣∣∣∣∣∣2
L2(0,L)

+
Evσv

1− σ2
v

∣∣∣∣∣∣∣∣− ∂3ηr

∂z2∂t
+

∂ηr

R2∂t

∣∣∣∣∣∣∣∣2
L2(0,L)

]
︸ ︷︷ ︸

Structure V iscous Energy (Flexural (Shell) Contribution)

+ 2µ||D(u)||2
L2(Ω(t))︸ ︷︷ ︸

Fluid V iscous Energy

=

∫ R

0
pin(t)uz |z=0dr −

∫ R

0
pout(t)uz |z=Ldr (28)

The coefficients Ev, σv are defined after equation (4). Therefore, we have
shown that if a solution to the coupled fluid-structure interaction problem (8)
- (22) exists, then it satisfies the energy equality (28). This equality says that
the rate of change of the kinetic energy of the fluid, the kinetic energy of the
structure, and the elastic energy of the structure, plus the viscous energy of
the structure, plus the viscous energy of the fluid, is equal to the work done
by the inlet and outlet data.

4. The numerical scheme

To solve the fluid-structure interaction problem (8)-(22), we propose an
extension of a loosely coupled partitioned scheme, called the kinematically
coupled scheme, first introduced in [5].

The classical kinematically coupled scheme introduced in [5] is based on
a time-splitting approach known as the Lie splitting [58]. The viscoelas-
tic structure is split into its elastic part and the viscous part. The viscous
(parabolic) part is treated together with the fluid, while the elastic (hyper-
bolic) part is treated separately. The inclusion of the viscous part of the
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structure into the fluid solver as a boundary condition in the weak formula-
tion accounts for the fluid load onto the structure as it simultaneously deals
with the “added mass effect” [7]. This adds dissipative effects to the fluid
solver that contribute to the stability of the scheme. This approach provides
a desirable discrete energy inequality making this scheme stable even when
the density of the fluid is equal to the density of the structure, which is the
case in the blood flow application. The elastic part of the structure, which is
solved separately, communicates with the fluid only via the kinematic cou-
pling condition in the classical kinematically coupled scheme. The fluid stress
does not appear in this step, as it is used as a loading to the viscous part of
the structure in the weak formulation of the fluid sub-problem.

In this manuscript we will change this approach by additionally splitting
the normal stress into a fraction that loads the viscous part of the structure,
and a fraction (pressure) that loads the elastic part of the structure. This
splitting is done using a modification of the Lie splitting scheme in a way
which significantly increasases accuracy.

Thus, in this manuscript, the kinematically coupled scheme is extended
and improved to achieve the following two goals:

1. Capture both the radial and longitudinal displacement of the linearly
viscoelastic Koiter shell for the underlying fluid-structure interaction
problem.

2. Increase the accuracy of the kinematically coupled scheme by introduc-
ing a new splitting strategy based on a modified Lie’s scheme.

This version of the kinematically coupled scheme retains all the advan-
tages of the original scheme, which include:

• The scheme does not require sub-iterations between the fluid and struc-
ture sub-solvers to achieve stability.

• The scheme is modular, allowing the use of one’s favorite fluid or struc-
ture solvers independently. The solvers communicate through the ini-
tial conditions.

• Except for the pressure, the fluid stress at the boundary does not need
to be calculated explicitly.
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4.1. The Lie scheme

To apply the Lie splitting scheme the problem must first be written as a
first-order system in time:

∂φ

∂t
+ A(φ) = 0, in (0, T ), (29)

φ(0) = φ0, (30)

where A is an operator from a Hilbert space into itself. Operator A is then
split, in a non-trivial decomposition, as

A =
I∑
i=1

Ai. (31)

The Lie scheme consists of the following. Let 4t > 0 be a time discretization
step. Denote tn = n4t and let φn be an approximation of φ(tn). Set φ0 = φ0.
Then, for n ≥ 0 compute φn+1 by solving

∂φi
∂t

+ Ai(φi) = 0 in (tn, tn+1), (32)

φi(t
n) = φn+(i−1)/I , (33)

and then set φn+i/I = φi(t
n+1), for i = 1, . . . .I.

This method is first-order accurate in time. More precisely, if (29) is
defined on a finite-dimensional space, and if the operators Ai are smooth
enough, then ‖φ(tn) − φn‖ = O(∆t) [58]. In our case, operator A that is
associated with problem (8)-(22) will be split into a sum of three operators:

1. The time-dependent Stokes problem with suitable boundary conditions
involving structure velocity and fluid stress at the boundary.

2. The fluid advection problem.

3. The elastodynamics problem for the structure loaded by the fluid pres-
sure.

These sub-problems are coupled via the kinematic coupling condition and
via fluid pressure appearing in the elastodynamics problem. The kinematic
coupling condition also plays a key role in writing problem (8)-(22) as a
first-order system, based on which the Lie splitting can be performed.
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4.2. The first-order system in ALE framework

To deal with the motion of the fluid domain we adopt the Arbitrary
Lagrangian-Eulerian (ALE) approach [21, 22, 56]. In the context of finite
element method approximation of moving-boundary problems, ALE method
deals efficiently with the deformation of the mesh, especially near the in-
terface between the fluid and the structure, and with the issues related to
the approximation of the time-derivatives ∂u/∂t ≈ (u(tn+1) − u(tn))/∆t
which, due to the fact that Ω(t) depends on time, is not well defined since
the values u(tn+1) and u(tn) correspond to the values of u defined at two
different domains. ALE approach is based on introducing a family of (arbi-
trary, invertible, smooth) mappings At defined on a single, fixed, reference
domain Ω̂ such that, for each t ∈ (t0, T ), At maps the reference domain
Ω̂ = (0, L)× (0, R) into the current domain Ω(t) (see Figure 4):

At : Ω̂ ⊂ R2 → Ω(t) ⊂ R2, x = At(x̂) ∈ Ω(t), for x̂ ∈ Ω̂.

In our approach, we define At to be a harmonic extension of the mapping

A t

Figure 4: At maps the reference domain Ω̂ into the current domain Ω(t).

g̃ that maps the boundary of Ω̂ to the boundary of Ω(t) for a given time
t. More precisely, in our case Ω̂ := (0, L) × (0, R), and so At is a harmonic
extension of

g̃ : ∂Ω̂→ ∂Ω(t)

onto the whole domain Ω̂, for a given t :

∆At = 0 in Ω̂,

At|Γ̂ = g̃,

At|∂Ω̂\Γ̂ = 0.

To rewrite system (8)-(22) in the ALE framework we notice that for a
function f = f(x, t) defined on Ω(t) × (0, T ) the corresponding function
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f̂ := f ◦ At defined on Ω̂× (0, T ) is given by

f̂(x̂, t) = f(At(x̂), t).

Differentiation with respect to time, after using the chain rule, gives

∂f

∂t

∣∣∣∣
x̂

=
∂f

∂t
+ w · ∇f, (34)

where w denotes domain velocity given by

w(x, t) =
∂At(x̂)

∂t
. (35)

To write system (9)-(22) in first-order form, we utilize the kinematic
coupling condition (20). Written in the ALE framework, our problem now
reads: Find u = (uz, ur), η = (ηz, ηr), with û(x̂, t) = u(At(x̂), t) and û|Γ̂ =
û(ẑ, R, t), such that

ρf

(
∂u

∂t

∣∣∣∣
x̂

+ (u−w) · ∇u

)
= ∇ · σ, in Ω(t)× (0, T ), (36)

∇ · u = 0 in Ω(t)× (0, T ), (37)

with the kinematic and dynamic coupling conditions holding on Γ(t):

∂η

∂t
= û|Γ̂ on (0, L)× (0, T ), (38)

ρsh
∂(ûz|Γ̂)

∂t
− C2

∂ηr
∂z
− C3

∂2ηz
∂z2
−D2

∂(ûr|Γ̂)

∂z
−D3

∂2(ûz|Γ̂)

∂z2

= −

√(
1 +

∂ηz
∂z

)2

+

(
∂ηr
∂z

)2

σ̂n|Γ(t) · ez on (0, L)× (0, T ),(39)

ρsh
∂(ûr|Γ̂)

∂t
+ C0ηr − C1

∂2ηr
∂z2

+ C2
∂ηz
∂z

+ C4
∂4ηr
∂z4

+D0ûr|Γ̂

−D1
∂2(ûr|Γ̂)

∂z2
+D2

∂(ûz|Γ̂)

∂z
+D4

∂4(ûr|Γ̂)

∂z4

= −

√(
1 +

∂ηz
∂z

)2

+

(
∂ηr
∂z

)2

σ̂n|Γ(t) · er on (0, L)× (0, T ), (40)
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and the following boundary conditions on Γin ∪ Γout ∪ Γ0:

∂uz
∂r

(z, 0, t) = ur(z, 0, t) = 0 on Γ0, (41)

u(0, R, t) = u(L,R, t) = 0, η|z=0,L =
∂ηr
∂z

∣∣∣∣
z=0,L

= 0, (42)

σn|in(0, r, t) = −pin(t)n|in, (43)

σn|out(L, r, t) = −pout(t)n|out on (0, R)× (0, T ). (44)

At time t = 0 the following initial conditions are prescribed:

u|t=0 = 0, η|t=0 = 0,
∂η

∂t

∣∣∣∣
t=0

= 0. (45)

Notice how the kinematic coupling condition is used in (39) and (40) to
rewrite the viscous part of the structure equations in terms of the trace
of the fluid velocity on Γ(t). This will be used in the splitting algorithm
described below.

Remark 2. As shown in [59], if we discretise (35) as

w(x, τ) =
Aτ (x̂)− x̂

τ
+O(τ), (46)

we obtain a linear affine transformation for Aτ

Aτ (x̂) = x̂+ τw(x, τ) +O(τ). (47)

It can be easily shown that, using this transformation, spatial partial deriva-
tives of a function on a domain Ω(τ) are equal to the derivatives of the same
function on the reference domain Ω̂, plus an error O(τ) [59]. We avoid deal-
ing with this problem by writing only the time-derivative on the reference
domain, and leaving the spatial derivatives evaluated on the current domain.

4.3. Details of the operator-splitting scheme

We split the first-order system (36)-(45) into three sub-problems. The
fluid problem will be split into its viscous part and the pure advection part
(incorporating the fluid and ALE advection simultaneously). The fluid stress
σ̂n will be split into two parts, Part I and Part II:

σ̂n = σ̂n + βp̂n︸ ︷︷ ︸
(I)

−βp̂n︸ ︷︷ ︸
(II)

, (48)

19



where β is a number between 0 and 1, 0 ≤ β ≤ 1, with β = 0 corresponding
to the splitting introduced in [5]. As will be shown later, the accuracy of the
scheme changes as the value of β increases from 0 to 1. The numerical results
presented in this manuscript will correspond to the value of β = 1, since our
numerical investigation showed that β = 1 provides highest accuracy for
Examples 1 and 2 presented in this manuscript.

The viscoelastic structure equations will be split into their viscous part
and the elastic part. These are combined into a splitting algorithm in the
following three steps.

• Step 1. Step 1 involves solving the time-dependent Stokes prob-
lem, incorporating the viscous part of the structure and Part I of the
fluid stress via a Robin-type boundary condition. The time-dependent
Stokes problem is solved on a fixed domain Ω(tn). The problem reads
as follows:

Find u, p and η, with û(x̂, t) = u(At(x̂), t) such that for t ∈ (tn, tn+1),
with pn and ηn obtained at the previous time step:

ρf
∂u
∂t

∣∣
x̂

= ∇ · σ, ∇ · u = 0 in Ω(tn)

∂η
∂t

(ẑ, t) = 0 on (0, L)× (tn, tn+1),

ρsh
∂(ûz |Γ̂)

∂t
−D2

∂(ûr|Γ̂)

∂z
−D3

∂2(ûz |Γ̂)

∂z2 + β
√

(1 + ∂ηnz
∂z

)2 + (∂η
n
r

∂z
)2(p̂nnn)|Γ(tn) · ez

= −
√

(1 + ∂ηnz
∂z

)2 + (∂η
n
r

∂z
)2(σ̂nn)|Γ(tn) · ez on (0, L)× (tn, tn+1),

ρsh
∂(ûr|Γ̂)

∂t
+D0ûr|Γ̂ −D1

∂2(ûr|Γ̂)

∂z2 +D2
∂(ûz |Γ̂)

∂z
+D4

∂4(ûr|Γ̂)

∂z4

+β
√

(1 + ∂ηnz
∂z

)2 + (∂η
n
r

∂z
)2(p̂nnn)|Γ(tn) · er

= −
√

(1 + ∂ηnz
∂z

)2 + (∂η
n
r

∂z
)2(σ̂nn)|Γ(tn) · er on (0, L)× (tn, tn+1),

with the following boundary conditions on Γin ∪ Γout ∪ Γ0:

∂uz
∂r

(z, 0, t) = ur(z, 0, t) = 0 on Γ0,

u(0, R, t) = u(L,R, t) = 0,

σn|in = −pin(t)n|in on Γin, σn|out = −pout(t)n|out on Γout,
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and initial conditions

u(tn) = un, η(tn) = ηn.

Then set un+1/3 = u(tn+1), ηn+1/3 = η(tn+1), pn+1 = p(tn+1).
Note that here we used only Part I of the fluid stress.

• Step 2: Solve the fluid and ALE advection sub-problem defined on a
fixed domain Ω(tn). The problem reads: Find u and η with û(x̂, t) =
u(At(x̂), t), such that for t ∈ (tn, tn+1)

∂u
∂t

∣∣
x̂

+ (un+1/3 −wn+1/3) · ∇u = 0, in Ω(tn)

∂η
∂t

(ẑ, t) = 0 on (0, L)× (tn, tn+1),

ρshs
∂(û|Γ̂)

∂t
= 0, on (0, L)× (tn, tn+1),

with boundary conditions:

u = un+1/3 on Γ
n+1/3
− , where

Γ
n+1/3
− = {x ∈ R2|x ∈ ∂Ω(tn), (un+1/3 −wn+1/3) · n < 0},

and initial conditions

u(tn) = un+1/3, η(tn) = ηn+1/3.

Then set un+2/3 = u(tn+1), ηn+2/3 = η(tn+1).

• Step 3: Step 3 involves solving the elastodynamics problem for the
location of the deformable boundary by involving the elastic part of
the structure which is loaded by Part II of the normal fluid stress.
Additionally, the fluid and structure communicate via the kinematic
lateral boundary condition which gives the velocity of the structure in
terms of the trace of the fluid velocity, taken initially to be the value
from the previous step. The problem reads: Find û and η, with pn+1

computed in Step 1 and ηn obtained at the previous time step, such
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that for t ∈ (tn, tn+1)

∂u
∂t

∣∣
x̂

= 0, in Ω(tn)

∂η
∂t

(z, t) = û|Γ̂ on (0, L)× (tn, tn+1),

ρsh
∂(ûz |Γ̂)

∂t
− C2

∂ηr
∂z
− C3

∂2ηz
∂z2

= β
√

(1 + ∂ηnz
∂z

)2 + (∂η
n
r

∂z
)2(p̂n+1nn)|Γ(tn) · ez on (0, L)× (tn, tn+1),

ρsh
∂(ûr|Γ̂)

∂t
+ C0ηr − C1

∂2ηr
∂z2 + C2

∂ηz
∂z

+ C4
∂4ηr
∂z4

= β
√

(1 + ∂ηnz
∂z

)2 + (∂η
n
r

∂z
)2(p̂n+1nn)|Γ(tn) · er on (0, L)× (tn, tn+1),

with boundary conditions:

η|z=0,L =
∂ηr
∂z
|z=0,L = 0;

and initial conditions:

u(tn) = un+2/3, η(tn) = ηn+2/3.

Then set un+1 = u(tn+1), ηn+1 = η(tn+1).
Do tn = tn+1 and return to Step 1.

Remark 3. Note that the outward normal to the lateral boundary can be
written as

n =
(−η′r, 1 + η′z)√
(η′r)

2 + (1 + η′z)
2
. (49)

Using this equality, we can take n in Step 3 implicitly, which upon substi-
tuting û|Γ̂ by ∂η

∂t
leads to the following system

ρsh
∂2ηz
∂t2
− (C2 − βp̂|n+1

Γ(tn))
∂ηr
∂z
− C3

∂2ηz
∂z2 = 0 on (0, L)× (tn, tn+1),

ρsh
∂2ηr
∂t2

+ C0ηr − C1
∂2ηr
∂z2 + (C2 − βp̂|n+1

Γ(tn))
∂ηz
∂z

+ h2

12
C3

∂4ηr
∂z4

= βp̂|n+1
Γ(tn) on (0, L)× (tn, tn+1),

where pn+1 is pressure computed in Step 1.

Remark 4. The trace of the pressure, used in Step 3 to load the structure,
needs to be well-defined. In general, one expects the pressure for a Dirichlet
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problem defined on a Lipschitz domain to be in L2(Ω), which is not sufficient.
Several works, see e.g., [60, 61, 62], indicate that, under certain compatibility
conditions, the solution of the related class of moving boundary problems has
higher regularity, allowing the definition of the trace of the pressure on the
moving boundary. In fact, we can show that for our problem, under certain
compatibility conditions at the corners of the domain, the pressure belongs
to W 1,8/7(Ω), which is more than sufficient for the trace to be well-defined
on Γ(tn) [63].

5. Numerical results

We present three examples that show the behavior of our scheme for dif-
ferent parameter values. Example 1 below, corresponds to the benchmark
problem suggested by Formaggia et al. in [64] to study the behavior of FSI
scheme for blood flow. The structure model in this case is a linearly viscoelas-
tic string model capturing only radial displacement, with the coefficient that
describes bending rigidity given in terms of the shear modulus and Timo-
shenko correction factor, which is different from the corresponding Koiter
shell model coefficient. The structural viscosity constant and the Youngs
modulus in this model are both relatively small.

In Example 1b we supplemented this model by an equation describing dy-
namics of longitudinal displacement, obtained from the Koiter shell model.
The corresponding equation for longitudinal displacement is degenerate, as it
does not involve any spatial derivatives as in the equation for radial displace-
ment, and there are no coupling terms between the radial and longitudinal
displacement.

In Example 2 we consider the full Koiter shell model capturing both ra-
dial and longitudinal displacement, and the coupling between the two. The
coefficients in the model are given by those associated with the derivation of
the Koiter shell, see (10). The values of Youngs modulus, Poisson ratio, and
shell thickness are the same as in Examples 1 and 1b, with the structural
viscosity coefficients small, and related to the one in Example 1. This exam-
ple could be used as a benchmark problem for testing numerical methods for
FSI in which the structure is modeled as a linearly viscoelastic Koiter shell.

The last example concerns simulation of blood flow through a section of
the Common Carotid Artery (CAA). Numerical simulations were compared
with experimental data showing very good agreement.
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The following values of fluid and structure parameters are used in Exam-
ples 1 and 2, listed below:

Parameters Values Parameters Values

Radius R (cm) 0.5 Length L (cm) 6

Fluid density ρf (g/cm3) 1 Dyn. viscosity µ (poise) 0.035

Wall density ρs(g/cm3) 1.1 Wall thickness hs (cm) 0.1

Young’s mod. E(dynes/cm2) 0.75× 106 Poisson’s ratio σ 0.5

Table 1: Geometric parameters, and fluid and structural parameters that are used in
Examples 1 and 2 presented in this section.

Parameter β, introduced in (48), which appears in Step 1 and Step 3
of our numerical scheme, can vary between 0 and 1, where the value of
β = 0 corresponds to the kinematically coupled scheme presented in [5]. The
change in β is associated with the change in the accuracy of the scheme (not
the stability). For the test cases presented in Examples 1 and 2, the value
of β = 1 provides the highest accuracy. We believe that the main reason
for the gain in accuracy at β = 1 is the strong coupling between the fluid
pressure (which incorporates the leading effect of the fluid loading onto the
structure) and structure elastodynamics, which is established for β = 1 in
Step 3 of the splitting, described above. Namely, in the case β = 1, the
structure elastodynamics problem is forced by the entire contribution of the
fluid pressure, which appears in Step 3 as a loading onto the sturucture. The
elastodynamics of the structural problem is, therefore, directly coupled to
the entire fluid pressure for β = 1. It remains to be investigated how does
the optimum choice of β (providing highest accuracy for a given problem),
depend on the coefficients in the problem.

5.1. Example 1: The benchmark problem with only radial displacement.

We consider the classical FSI test problem proposed by Formaggia et
al. in [64]. This problem has been used in several works as a benchmark
problem for testing the results of fluid-structure interaction algorithms for
blood flow [10, 56, 9, 8, 5]. The structure model for this benchmark problem
is of the form

ρsh
∂2ηr
∂t2
− kGh∂

2ηr
∂z2

+
Eh

1− σ2

ηr
R2
− γ ∂

3ηr
∂z2∂t

= f, (50)
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with absorbing boundary conditions at the inlet and outlet boundaries:

∂ηr
∂t
−

√
kG

ρs

∂ηr
∂z

= 0 at z = 0 (51)

∂ηr
∂t

+

√
kG

ρs

∂ηr
∂z

= 0 at z = L. (52)

Here G = E
2(1+σ)

is the shear modulus and k is the Timoshenko shear correc-
tion factor. The flow is driven by the time-dependent pressure data:

pin(t) =

{ pmax

2

[
1− cos

(
2πt
tmax

)]
if t ≤ tmax

0 if t > tmax
, pout(t) = 0 ∀t ∈ (0, T ), (53)

where pmax = 2 × 104 (dynes/cm2) and tmax = 0.005 (s). The graph of the
inlet pressure data versus time, is shown in Figure 5. The values of all the
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Figure 5: The inlet pressure pulse for Examples 1 and 2. The outlet pressure is kept at 0.

parameters in this model are given in Tables 1 and 2.

Parameters Values

Shear mod. G(dynes/cm2) 0.25× 106

Timoshenko factor k 1
Structural viscosity γ (poise cm) 0.01

Table 2: Example 1: Structural parameters considered in Example 1, in addition to those
listed in Table 1.

The structural viscosity and Youngs modulus are both very small. For the
typical physiological values of these parameters see, e.g., [46]. This means
that the arterial wall in this example is rather elastic. The relatively large
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value of the coefficient in front of the second-order derivative with respect to z
(describing bending rigidity), minimizes the oscillations that would normally
appear in such structures. See Example 2 for more details.

We implemented this problem in our solver. Since this model captures
only radial displacement the solver was modified accordingly. The model
equation (50) can be recovered from the Koiter shell model (9) by setting
the following values for the coefficients:

C0 = Eh
R2(1−σ2)

, C1 = kGh, C2 = 0, C3 = 0, C4 = 0,

D0 = 0, D1 = γ, D2 = 0, D3 = 0, D4 = 0.

The numerical values of these constants are given in Table 3. Homogeneous

C0 = 4× 105 C1 = 2.5× 104 C2 = 0 C3 = 0
D0 = 0 D1 = 10−2 D2 = 0 D3 = 0

Table 3: Koter shell model coefficients for Example 1.

Dirichlet boundary conditions for the structure in Step 3 were replaced with
absorbing boundary conditions (51)-(52). The problem was solved over the
time interval [0, 0.012]s. Propagation of the inlet pressure pulse in terms of
velocity, displacement, and pressure, vs. time, calculated at the mid-point
of the tube, are shown in Figure 9. A 2D cartoon of the pressure pulse
propagating in the tube, is shown in Figure 10.

The numerical results obtained using our modification of the kinemati-
cally (loosely) coupled scheme proposed in this manuscript, were compared
with the numerical results obtained using the classical kinematically coupled
scheme proposed in [5], and the monolithic scheme proposed in [8]. Fig-
ures 6, 7 and 8 show the comparison between tube diameter, flowrate and
mean pressure, respectively, at six different times.

These results were obtained on the same mesh as the one used for the
monolithic scheme in [8], containing 31× 11 P1 fluid nodes. More preciesely,
we used an isoparametric version of the Bercovier-Pironneau element spaces,
also known as P1-iso-P2 approximation in which a coarse mesh is used for the
pressure (mesh size hp) and a fine mesh for velocity (mesh step hv = hp/2).

The time step used was 4t = 10−4 which is the same as the time step
used for the monolithic scheme, and the kinematically coupled scheme. Due
to the splitting error, it is well-known that classical splitting schemes usu-
ally require smaller time step to achieve accuracy comparable to monolithic

26



0 2 4 6

1

1.1

z axis [cm]

d
ia

m
. 

[c
m

] t = 2 ms

0 2 4 6

1

1.1

z axis [cm]

d
ia

m
. 

[c
m

] t = 4 ms

 

 

monolithic

kin. coupled

β=1 scheme

0 2 4 6

1

1.1

z axis [cm]

d
ia

m
. 

[c
m

] t = 6 ms

0 2 4 6

1

1.1

z axis [cm]

d
ia

m
. 

[c
m

] t = 8 ms

0 2 4 6

1

1.1

z axis [cm]

d
ia

m
. 

[c
m

] t = 10 ms

0 2 4 6

1

1.1

z axis [cm]

d
ia

m
. 

[c
m

] t = 12 ms

Figure 6: Example 1: Diameter of the tube computed with the kinematically coupled
scheme with time step 4t = 10−4 (dash-dot line), implicit scheme used by Quaini in [8]
with the time step 4t = 10−4 (dashed line) and our scheme with the time step 4t = 10−4

(solid line).

schemes. However, the new splitting proposed in this manuscript allows us
to use the same time step as in the monolithic method, obtaining comparable
accuracy, as it will be shown next. This is exciting since we obtain the same
accuracy while retaining the main benefits of the partitioned schemes, such
as modularity, simple implementation, and low computational costs.

The kinematically coupled scheme was shown numerically to be first-order
accurate in time and second order accurate in space [5]. Second-order accu-
racy in space is retained in the current kinematically coupled β-scheme, since
the same spatial discretization of the underlying operators Ai, i = 1, 2, 3, was
used in the present manuscript as in [5]. However, due to the new time-
splitting, the accuracy in time has changed. Indeed, here we show that this
is the case by studying time-convergence of our scheme. Figure 11 shows a
comparison between the time convergence of our scheme, the kinematically
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Figure 7: Example 1: Flowrate computed with the kinematically coupled scheme with
time step 4t = 10−4 (dash-dot line), implicit scheme used by Quaini in [8] with the time
step 4t = 10−4 (dashed line) and our scheme with the time step 4t = 10−4 (solid line).

4t ||p− pref ||L2 L2 order ||u− uref ||L2 L2 order ||η − ηref ||L2 L2 order

10−4 4.01e + 03 - 5.97 - 0.003 -
(5.65e + 04) - (136.32) - (0.0446) -

5× 10−5 1.57e + 03 1.35 4.05 0.56 0.0014 1.1
(3.36e + 04) (0.75) (77.91) (0.80) (0.0264) (0.75)

10−5 296.36 1.04 1.0 0.87 3.17e− 04 0.92
(7.27e + 03) (0.95) (16.27) (0.97) (0.00576) (0.95)

5× 10−6 134.33 1.14 0.46 1.12 1.45e− 04 1.13
(3.3e + 03) (1.14) (7.36) (1.14) (0.0026) (1.14)

Table 4: Example 1: Convergence in time calculated at t = 10 ms. The numbers in
the parenthesis show the convergence rate for the kinematically coupled scheme presented
in [5].

coupled scheme, and the monolithic scheme used in [8]. The reference solu-
tion was defined to be the one obtained with 4t = 10−6. We calculated the
absolute L2 error for the velocity, pressure and displacement between the ref-
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Figure 8: Example 1: Mean pressure computed with the kinematically coupled scheme
with time step 4t = 10−4 (dash-dot line), implicit scheme used by Quaini in [8] with the
time step 4t = 10−4 (dashed line) and our scheme with the time step 4t = 10−4 (solid
line).
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Figure 9: Example 1: Propagation of the inlet pressure pulse in terms of displacement,
pressure, and velocity profiles versus time, evaluated at the mid-point of the tube.

erence solution and the solutions obtained using4t = 5×10−6, 10−5, 5×10−5

and 10−4. Figure 11 shows first-order in time convergence for the velocity,
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Figure 10: Example 1: Propagation of the pressure wave.

pressure, and displacement obtained by the kinematically coupled scheme,
monolithic scheme, and our scheme. The error of our method is notica-
bly smaller than the error obtained using the classical kinematically coupled
scheme, and is comparable to the error obtained by the monolithic scheme.
The values of the convergence rates for pressure, velocity, and displacement,
calculated using the kinematically coupled schemes, are shown in Table 4.

5.1.1. Homogeneous Dirichlet vs. absorbing boundary conditions

We give a short remark related to the impact of the homogeneous Dirichlet
vs. absorbing boundary conditions. Although absorbing boundary conditions
for the structure are more realistic in the blood flow application, they will
only impact the solution near the boundary, except when reflected waves
form in which case the influence of the boundary conditions is felt every-
where in the domain. It was rigorously proved in [65] that in the case of
homogeneous Dirichlet inlet/outlet structure data η = 0, a boundary layer
forms near the inlet or outlet boundaries of the structure to accommodate
the transition from zero displacement to the displacement dictated by the
inlet/outlet normal stress flow data. It was proved in [65] that this bound-
ary layer decays exponentially fast away from the inlet/outlet boundaries.
Figure 12 depicts a comparison between the displacement obtained using
absorbing boundary conditions, and the displacement obtained using homo-
geneous Dirichlet boundary conditions, showing a boundary layer near the
inlet boundary where the two solutions differ the most.

It is worth pointing out, however, that absorbing boundary conditions
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Figure 11: Example 1: Figures show relative errors compared with the kinematically
coupled scheme which is first-order accurate in time. Top left: Relative error for fluid
velocity at t=10 ms. Top right: Relative error for fluid pressure at t=10 ms. Bottom:
Relative error for displacement at t=10 ms.

help in reducing reflected waves that will appear when the propagating wave
reaches the outlet boundary and reflects back. The “optimum” absorbing
boundary conditions would have to be designed on the basis of Riemann
Invariants (or characteristic variables) for the hyperbolic problem modeling
wave propagation in the structure. Those conditions, however, are not always
easy to calculate, and so approximate Riemann Invariant-based absorbing
conditions such as (51)-(52) are used. Figure 13 shows the displacement
in the case of absorbing boundary conditions (51), (52), and homogeneous
Dirichlet boundary conditions η = 0 at t = 100 ms and t = 200 ms. Notice
how the two solutions differ everywhere in the domain, and how the solution
with absorbing boundary conditions reduces the amplitude and formation of
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Figure 12: Example 1: Displacement of the structure in the case of absorbing boundary
conditions (solid line) and homogeneous Dirichlet boundary conditions (dashed line).

reflected waves.
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Figure 13: Example 1: Displacement of the structure in the case of absorbing boundary
conditions (solid line) and homogeneous Dirichlet boundary conditions (dashed line).

5.1.2. Example 1b.

This example is an extension of the benchmark problem by Formaggia
et al. [64] studied in Example 1. The extension concerns inclusion of the
longitudinal displacement in the model described in Example 1.

Namely, here we explore how the Koiter shell model (8)-(9) looks for the
coefficients given by those in Example 1. Namely, the radial displacement
satisfies the same model equation as in Formaggia et al. [64], while the longi-
tudinal displacement satisfies equation (8) in the Koiter shell model, with the
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Figure 14: Example 1b: Longitudinal displacement (red) and radial displacement (blue)
for the Koiter shell model in Example 2 calculated with ∆t = 10−4.
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Figure 15: Example 1b: Flow rate for the Koiter shell model in Example 1b calculated
with ∆t = 10−4.
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Figure 16: Example 1b: Mean pressure for the Koiter shell model in Example 1b calculated
with ∆t = 10−4.

corresponding coefficients in accordance with equation (50). More precisely,
by comparing equations (9) and (50) we observe that only the coefficients
C0, C1 and D1 are different from zero. This implies the following Koiter shell
model:

ρsh
∂2ηz
∂t2

= fz, (54)

ρsh
∂2ηr
∂t2
− kGh∂

2ηr
∂z2

+
Eh

1− σ2

ηr
R2
− γ ∂

3ηr
∂z2∂t

= fr. (55)

Notice that this problem is degenerate in that the operator associated with
the static equilibrium problem is no longer strictly elliptic. This is due to
the fact that the coefficient C3 at the second-order derivative with respect to
z of ηz in equation (54) is equal to zero. Nevertheless, we solve the related
FSI problem with zero Dirichlet boundary data η = 0, and study the flow
driven by the time-dependent pressure data (53) given in Example 1. The
values of the coefficients in the Koiter shell model (55)-(54) are equal to
those in Example 1. Figures 14, 15, and 16 show the displacement, flow
rate, and pressure, respectively. It is interesting to notice, as is shown in
Figure 14, that the magnitude of longitudinal displacement is the same as
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the magnitude of radial displacement.

5.2. Example 2.

In this test case we consider the full Koiter shell model (8)-(9). This
means that all the coefficients Ci and Di are given in terms of the Young’s
modulus E and Poisson ratio σ, and their viscous counterparts Ev and σv,
through the relationships (10). Since the terms containing the 4th and 5th
order derivatives are negligible (it can be shown, using non-dimensional anal-
ysis, that these terms are much smaller than the remaining terms), we ig-
nore these terms in the numerical simulation. We present this example as
a benchmark problem for FSI studies in which the structure is modeled by
the Koiter shell model (8)-(10), which captures both radial and longitudinal
displacement.

The fluid and structure parameters are given in Tables 1 and 5. The
model and the coefficients are summarized as follows:

ρsh
∂2ηz
∂t2
− C2

∂ηr
∂z
− C3

∂2ηz
∂z2
−D2

∂2ηr
∂t∂z

−D3
∂3ηz
∂t∂z2

= fz

ρsh
∂2ηr
∂t2

+ C0ηr − C1
∂2ηr
∂z2

+ C2
∂ηz
∂z

+D0
∂ηr
∂t
−D1

∂3ηr
∂t∂z2

+D2
∂2ηz
∂t∂z

= fr,

with

C0 = hE
R2(1−σ2)

(1 + h2

12R2 ), C1 = h3

6
Eσ

R2(1−σ2)
, C2 = h

R
Eσ

1−σ2 ,

D0 = h
R2Cv(1 + h2

12R2 ), D1 = h3

6
Dv

R2 , D2 = hDv

R
,

where here we take the value of D1 to be equal to γ from Examples 1 and 1b,
which, from the definition of coefficient D1 above, implies Dv = 6R2γ/h3.
From here we determine Cv = Dv/σv = 2Dv. The corresponding values of

Parameters Values

Structural viscosity Cv(poise cm) 30
Structural viscosity Dv(poise cm) 15

Table 5: Structural viscosity parameters for Example 2.

the coefficients are given in Table 6.
This model includes the coupling terms between the longitudinal and

radial components of the displacement through C2 6= 0 and D2 6= 0, and
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C0 = 4.0133× 105 C1 = 333.3 C2 = 105 C3 = 105

D0 = 12 D1 = 10−2 D2 = 3 D3 = 3

Table 6: Koter shell model coefficients for Example 2.
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Figure 17: Example 2: Longitudinal displacement ηz, and radial displacement ηr cal-
culated on a coarse mesh (solid line) and on a fine mesh (dashed line), obtained with
4t = 10−4.

the leading-order viscoelastic effects in the radial displacement described by
D0 6= 0. Notice a much smaller value for the coefficient C1 than in Example 1.
Also notice the large coefficient C2 that describes the coupling between the
radial and longitudinal components of the displacement in the Koiter shell
model.

Figure 17 shows longitudinal and radial displacement of the structure
computed on two different meshes, evalued at times t = 2, 4, 6, 8, 10 and 12
ms. The coarser mesh is twice as fine as the mesh used in Example 1, so
that the triangularization of the coarser mesh is hcoarsep = hp/2, hcoarsev =
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Figure 18: Example 2: Flow rate computed on a coarse mesh (solid line), and on a fine
mesh (dashed line), obtained with 4t = 10−4.

hv/2. The fine mesh in this example is twice as fine as the coarse mesh,
namely hfinep = hcoarsep /2 = hp/4, hfinev = hcoarsev /2 = hv/4. Note that the
longitudinal displacement is of the same order of magnitude as the radial
displacement. Figures 18 and 19 show the corresponding flow rate and mean
pressure. The appearance of oscillations near the inlet is physical, and is
associated with a very small value of the coefficient C1 when compared to
Example 1. An increase in the value of visoelasticity parameters, examined
in the next example (physiologically reasonable), dampens the oscillations
observed in this example.

To study convergence in time we define the reference solution to be the
one obtained with 4t = 10−6, and we compute the L2-norms of the differ-
ence in the pressure, velocity and displacement between the reference solution
and the solutions obtained with 4t = 10−4, 5 × 10−5, 10−5 and 5 × 10−6. A
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Figure 19: Example 2: Mean pressure computed on a coarse mesh (solid line), and on a
fine mesh (dashed line), obtained with 4t = 10−4.

comparison of the time convergence between our scheme and the kinemati-
cally coupled scheme is presented in Table 7. Figure 20 shows a comparison

4t ||p− pref ||L2 L2 order ||u− uref ||L2 L2 order ||η − ηref ||L2 L2 order

10−4 1.75e + 03 - 5.83 - 0.0092 -
(3.422e + 04) - (91.175) - (0.0513) -

5× 10−5 739.9 1.24 3.85 0.6 0.0065 0.5
(1.9943e + 04) (0.78) (49.76) (0.87) (0.0284) (0.85)

10−5 158.46 0.96 0.88 0.92 0.0022 0.66
(4.24e + 03) (0.96) (10.016) (0.99) (0.0058) (0.99)

5× 10−6 72.67 1.12 0.4 1.13 0.0012 0.92
(1.94e + 03) (1.12) (4.6) (1.12) (0.0026) (1.16)

Table 7: Example 2: Convergence in time calculated at t = 8 ms. The numbers in the
parenthesis show the convergence rate for the kinematically coupled scheme presented
in [5].
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between the time convergence of our scheme and the kinematically coupled
scheme. Similarly as before, our method implemented with β = 1 provides
a gain in accuracy over the classical kinematically coupled scheme, which
corresponds to β = 0.
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Figure 20: Example 2: Figures show relative errors compared with the kinematically
coupled scheme which is first-order accurate in time. Top left: Relative error for fluid
velocity at t=8 ms. Top right: Relative error for fluid pressure at t=8 ms. Bottom:
Relative error for displacement at t=8 ms.

5.3. The Common Carotid Artery (CCA) Example

We conclude this manuscript by showing a simulation of flow and dis-
placement in the left common carotid artery. A straight segment of the left
CCA, such as the one shown in Figure 21, is considered. The geometric pa-
rameters, such as length, average radius, and wall thickness, are taken from
the measurements reported in [67, 68, 69, 70, 71], while the Youngs modulus

39



Figure 21: A B-mode ultrasound image of CCA [66] representing our computational do-
main. The black triangle above the CCA is the jugular vein (not a part of the computa-
tional domain).

is taken from the measurements reported in [70]. Blood vessels are essen-
tially incompressible and therefore have the Poisson’s ratio of approximately
0.5 [72]. The Table in Figure 21 shows the values of the corresponding param-
eters that were used in our simulation. They are within the ranges reported
in the above-mentioned literature.

Parameters CCA

Radius H (cm) 0.3
Fluid density ρf (g/cm3) 1.055
Fluid viscosity µ (g/(cm s)) 0.04
Wall density ρs(g/cm3) 1.055
Wall thickness h (cm) 0.07
Young’s mod. E(dynes/cm2) 2× 106

Poisson’s ratio σ 0.5

Table 8: Geometry, fluid and structure parameters for the common carotid artery example.

The structural viscosity constants Cv and Dv are equal to

Cv := 3× 104 dynes/cm2 · s, Dv := Cv σ.

This choice of structural viscosity parameters was shown in [45] to resemble
the viscous moduli of blood vessels. These parameters give rise to the values
of the Koiter shell coefficients given in Table 9.
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C0 = 1.7022× 106 C1 = 846.9 C2 = 3.1× 105 C3 = 1.867× 105 C4 = 0
D0 = 23439.2 D1 = 9.527 D2 = 3500 D3 = 2100 D4 = 0

Table 9: Koiter shell model coefficients for the common carotid artery example.

We study blood flow driven by the inlet and outlet pressure data shown
in Figure 22. The morphology of the pressure wave in the left CCA was
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Figure 22: The inlet and outlet pressure data. The average pressure drop is around 0.0673
mmHg per centimeter.

obtained from [48]. The average pressure drop equals around 0.0673 mmHg
per centimeter, which produces the local Reynolds number of around 1000.
This is associated with the maximum blood flow velocity of around 100 cm/s,
which is typical for CCA [73, 74, 75, 76]. Indeed, the results of our numerical
simulation, presented in Figure 23, show the velocity ranging between 22
cm/s and 97 cm/s, which is within the expected values for the CCA.

Radial wall displacement has been well examined by many experimental
studies [71, 77, 78, 79, 75]. Maximum radial displacement decreases with
age, and usually varies between 0.1 mm and 0.38 mm, i.e. between 3%and
13% of the vessel’s radius. Indeed, our simulation, shown in Figure 23 top
left, indicates maximum radial displacement around 6%, which is well within
the normal range.

Figure 23 top right, shows longitudinal displacement computed using our
thin shell model. We see that the longitudinal displacement in our simu-
lations lies between min ηz = −0.1 mm and max ηz = 0.05 mm, which
implies the total longitudinal displacement (defined to be max ηz −min ηz)
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Figure 23: From top left, to bottom right: radial displacement, longitudinal displacement,
pressure, and velocity, calculated at the mid-point of the CCA segment, vs. time.

of 0.15mm. This is in good agreement with experimental studies obtained us-
ing B-mode ultrasound speckle tracking method and/or B-mode ultrasound
velocity vector imaging [80, 1, 3, 4], which report the total longitudinal dis-
placement in a healthy CCA between 0.052 mm and 0.302 mm.

Finally, we observe the captured viscoelastic properties. The viscoelastic
effect is visible in the stress-strain relationship of the arterial wall, which
exhibits hysteresis. Figure 24 shows hysteresis between the vessel diameter
and pressure at the center of the vessel over one cardiac cycle. Hysteresis
can be quantified by the energy dissipation ratio (EDR), which is a measure
of the area inside the diameter-pressure loop relative to the measure of areas
inside and under the loop, i.e., EDR = A1/(A1 + A2) × 100%. Walls with
higher viscoelasticity have larger area inside the loop, resulting in higher
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Figure 24: Hysteresis between vessel wall diameter and pressure at the center of the vessel,
over a cardiac cycle.

EDR. In our simulations EDR is 8.5%. This is comparable to the results
in [48] which show EDR of 7.8% for a young subject.

6. Conclusions

In this manuscript we proposed a new thin structure model capturing
radial and longitudinal displacement of arterial walls, and have designed a
modification of a loosely coupled partitioned scheme (the kinematically cou-
pled scheme [5]) to numerically simulate the resulting fluid-structure inter-
action problem between blood flow and arterial walls. The proposed arterial
wall model is given by the linearly viscoelastic, cylindrical Koiter shell model.
The fluid and structure are fully coupled using the kinematic and dynamic
coupling conditions. The new loosely coupled scheme (the kinematically
coupled β-scheme), which is 1st-order accurate in time, and 2nd-order accu-
rate in space, is based on a modified Lie splitting. In [6] it is shown that
this scheme is unconditionally stable for all 0 ≤ β ≤ 1. Two test prob-
lems were presented showing that the kinematically coupled β-scheme has
accuracy which is comparable to that of the monolithic scheme by Badia,
Quaini, and Quarteroni [8, 9] while retaining the main advantages of loosely
coupled partitioned schemes such as modularity, easy implementation, and
low computational costs (no sub-iterations between the fluid and structure
sub-solvers are necessary for convergence). We believe that the main rea-
son for the increase in accuracy is related to the stronger coupling between
the leading effect of the fluid load, given by the fluid pressure, and struc-
ture elastodynamics, which are now strongly coupled in the last step (Step
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3) of the splitting. It remains to be investigated how does the choice of β,
which would provide highest possible accuracy of the kinematically coupled
β scheme, depend on the coefficients in the problem.

Although the methodology discussed in this manuscript was presented
for 2D problems, there is nothing is the proposed time-splitting scheme that
depends on the dimension of the spatial domain. The same methodology
can be applied to 3D problems, while, of course, the implementation of the
proposed algorithm in 3D would be much more complex in that case.

Extensions of the proposed methodology to study FSI between an incom-
pressible, viscous fluid and a thick structure (arterial walls), modeled using
equations of 2D/3D elasticity (e.g., St. Venant-Kirchhoff model, used, e.g.,
in [27, 28] to model arterial walls), are under way.

The research presented in this manuscript provides a first step in our effort
to capture multi-layered structure of arterial walls and their interaction with
blood flow. In modeling the intima-media/adventitia complex, the coupling
between a thin shell (intima) allowing radial and longitudinal displacement,
and a thick structure (media/adventitia) is important. Development of the
model presented in this manuscript is a crucial first step. Our preliminary
results show that the modified kinematically coupled scheme proposed in this
manuscript is perfect for the numerical solution of such a complex, multi-
physics FSI problem. Research in this direction in under way.

7. Acknowledgements

The authors would like to thank Boris Muha for his help with the manuscript.
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